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ERRATA

page 10 After eq. (3.2) read: Then we have1’6’1o)

»
A —

In the middle read: Rosenbluth and Rostokerl;

In the line above eq.(3%.4) read: (cf.Ref.13 and 10)

page 11 In the third line from the bottom read:
egs. (2.15) , (2.8)

page 12 In the 8th line from the bottom read: Renau)’u)

page 13 The exponential function in the denominatorof the
first line of eq. (4.3) is to be replaced by

exp {(l - 52') W"}

page 17 In the 6th line from bottom read: limitf-)og)
instead of the ref. in the 3rd line from the bottom.

page 21 In the last term of the formula in the middle

Fi is to be replaced by F1




General expressions for the radial distribution
functions in an electron-ion-plasma outside thermal
equilibrium are obtained from the hierarchy equations
in first order of the plasma parameter.

It is shown that these expressions can also be derived
in the framework of the test particle problem.

In the special case of Maxwellian distributions with
different temperatures for electrons and lons and
under the mild restriction that the thermal velocity
of the ions is much smaller than that of the electrons
the results reduce to expressions first given by

Salpeter 1).

The results of Kadomtsev 2) and Renau 3,4) for the
electron-electron radial distribution function VJee(t)
disagree with ours and those of Salpeter. The reason
for this is discussed.

A curious phenomenon, which may be called "anti-
shielding", 1is shown to follow from W,e 1in the case
that the electron temperature is smaller than the ion

temperature and is studied in some detail.

Finally the influence of a magnetic field is shown to
vanish in the special case of two Maxwellians.
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1. Introduction

Studies of the ionosphere on one hand and of the
interaction of laser beams and laboratory plasmas on
the other hand, have drawn a strong interest in the
scattering of electromagnetic waves by a plasma. The
total power that is scattered by a plasma volume v
into a given solid angle is proportional to the mean
square of the Fourier transform of the electron
density fluctuations < | Ce (']?’)\2') 5). This quantity
is related to the Fourier transform of the electron-
electron radial distribution function Cbée(Ea) by
eqs. (3.1), (3.3) with both subscripts a,b representing

electrons.

Several authors have presented calculations of \~@e£t)
but complete agreement exists only in the case of
thermodynamic equilibrium 6). Another case of great
interest, however, consists of Maxwellian distributions
with different temperatures 6& and 6L as pointed out

by Salpeter l), Renau 3’4), and Kegel

Salpeter 1) and Renau 3,4) treat this problem with the
aid of the test particle picture. Kadomtsev 2) and
Ecker and Kroll 8) on the other hand start from a more
fundamental kinetic description, i.e. from the
hierarchy equations.
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Renau and Kadomtsev 2) find
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L,%) and Ecker and Kroll 8)

whereas Salpeter give

__e e 1\, B-6 T
=g et §)e g 3]

ef, e.g. E.E. Salpeter, Phys. Rev. 120, 1528 (1960)
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Salpeters definition differs ficm ours by a factor Vv
M.N. Rosenbluth and N. Rostoker, Phys.Fluids 5, 776 (1962)

e

Ecker and W. Krdll, to be published in Phys. Fluids
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where € 1s the elementary charge, 96 and Q_ electron

and ion temperature respectively (in ergs), D the total

Debye length, i.e.

e o A ! <_ b 2 &y
n* 1);' Y 0r=mpe D7 = Frrze?
L

(1.3)

n the electron density and Xe the ion charge (/=7 =/2)

Qur result agrees with eq. (1.2)

The result of Kadomtsev is due to an error in the

mathematical analysis as already has been observed by
Ecker and Kroll 8). The same can be said with respect
)

, h o 1 "
to the treatment of Renau 25 This is shown in sec-

tion 3.

It should be noted that the kinetic treatments of
Kadomtsev 2) and Ecker and Kroll 8) specialize right
from the beginning to the special case of two
Maxwellians with the additional restriction

E‘/ M & 5%7?,

(M: ion mass, m: electron mass)

This enables these authors to separate the velocity
and space dependence of the correlation functions and
to end up with ordinary differential equations for

the radial distribution functions.

The present paper, however, avoids such assumptions

and treats in section 2 the general "meta-equilibrium
state" of a plasma in first order of the plasma
varameter (n_()3)—’ . In this "meta-equilibrium

based on the ideas of Bogoliubov 11)

functions are functionals of the velocity distribution
which itself is approximately constant in time. General

expressions for the radial distribution functions,

9) M. Feix and P.P.J.M. Schram, Proc. VIth Conference
on ionisation phenomena in gases, Part I, p. 189

10) P.P.J.M. Schram, Thesis (Part III), University of
Utrecht, 1964, Euratom Report 1805.e

11) N.N. Bogoliubov, in "Studies in Statistical Mechanics”,
edited by J. de Brer and G.E. Uhlenbeck (North Holland

n 9,10)

all correlation

(1.4%)

Publishing Corporation, Amsterdam, 1962), Vol I, Part A.




i.e. correlation functions integrated over all velocity
variables, are obtained as solutions of a system of
integral equations of the type of Lenard. 12)

In section 3 the picture of dressed particles as used
by Rosenbluth and Rostoker 13,14) is applied to the
problem and the results are seen to agree with those of
the preceding section.

In section 4 the special case of two Maxwellians with
the restriction (1.4) is discussed. Special attention
1s pald to the phenomenon of "anti-shielding". In
section 5 finally the effect of a magnetic field is
studied.

2. Kinetic theory of the radial distribution functions.

We consider a homogeneous neutral plasma consisting of
electrons and ions with densities n and %éL respectively.

We start from the hierarchy equations and the usual
definition of correlation functions. 13) In first order
of the plasma parameter ﬁq‘[)%}—’ the system of
equations may be closed by neglecting triple correlations.
In this approximation the electron-electron correlation

function é’ee (\_? VZ)X’: 34 t) fee(, 2_) satisfies

the following equation:
2)E0E )

e +(7-%): a*-’jffee(”“ b_ﬁ‘z(w
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2% ¢j i?ee(l 3) - fec&”/,{‘m G ey

o
AL L) 9¢-a3
¥
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12) A. Lenard, Ann. Phys. 3, 390 (1960)

13) N. Rostoker and M.N. Rosenbluth, Phys. Fluids 3, 1
(1560)

14) N. Rostoker, Nuclear Fusion 7, 101 (1961)




where é; 1s the electron distribution function and

b=
el ,;(Z__;("';

4 d

The correlation functions ,576' “9_ and j
satisfy equations of the same type.

(2.2)

Asymptotic Fourier transformed correlation functions
may be defined by

00
'a "
A - 3 / __'d’ij oyl 4
jee (E:’ Vv ) Jé,g,g fJfJJZ EXP(SLL LK. Z jee(?’\'.z:iatj (2.3)
and similarly for¢9¥£ etec.

These functions obey equations of the type of eq. (3)

12)

in Lenards paper . Furthermore we write

Hee (R, )= ja/%m/*v jee(k*",’j_t)é"(u ~—-5) (2.4)

and so on for ffe[J JE‘,/VQL' . Note that the
veloclty component U belongs to a particle of the

kind indicated by the first subscript of the functlons
HEE_ ete.,

We now introduce the Tormalism of positive and negative
frequency varts of functions. For real & these are

defined by the relations ~7*

W ! J{'é}} * ’Y/ : {A-} - ‘iflj bj:f + c0
-f/ —y FG’ T/éuv ! (2:5)
b) - plu) =77 F J

- o0

(Pmeans "principle value of")
It is easily seen that y/ (7‘; angd sﬁ (QJ can be
continued analytically in the complex {{~plane as
T
s oz § L
W - w
o, (2.6)
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15) N.I. Muskhelishvili, Singular Integral Equations
Noordhoff, Groningen, 1953 _
16) N.G. van Kampen, Physica 21, 949 {1955)
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The symbols f and 7( denote integration below and
above the pole w'=uU respectively.

An important feature of 9u+(uj and 9U~(uJ is
that they are holomorphic in upper- and lower half
plane respectively.

We define one-dimensional velocity distributions by

PR [ (PSR, R e

" and use the abbreviations

H = Hee= e/ /‘,_=Fe+'2.F‘:
z ’
Hy =Hip=Fie R =F¢+ 7 F (28
o M . _ 4mned
= g T Ay u‘p— m K=

We omit the arguments of all functions for the sake
of brevity and arrive finally at the system of
equations for ff

_EF‘*‘ DFe) . aFe %~ 2F
- e e ar
He 2me [ F “F 2u S du (H' T du H’(e

.9)

- LDFC _em IFC] IFY X\ me oFC
He ”Jé[ {FL FM u f au.(H) MauH 2.10)

mzl 2 L—gF L'EF-L Bf‘ x| QFL—
- !l —
H(:l: —-2TTLH.P /\1 { F G JI [/71)_ 2(2.11)

2 e-maFt  —2F&] m2dFY 8 OF
H —»Zﬂ'tup {F' 7 2u /‘_9“- - Mau(H)+ Hf/(2

1 &)

An asterisk denotes the complex conjugate. It
should be noted that according to egs. (2.6)
differentiation and taking positive or negative
frequency parts are commuting operations and

that su*'(u.*):- il}/_(%)f*




Adding eq. (2.10) to eq. (2.9) and eq. (2.12) to
eq. (2.11) we obtain

F € PF €
e e
H, Z = 2miut [ E o F————gi DF 2 H2.13)
Lo 2F¢
= 2 m
H,Z = J’TM[ 2'? 9;«_ +i7 2 1 [210)
Zz_is the dielectric constant. We have
:f_' ) DF"
Z = P QLL, (2.15)
The sum of egs. (2.13) and (2.14) gives
DE T 25 - 2F~
2Tl b EH-2 2.16
H= muf[ T e ggu_j =l ;;u_H (2.16)

This is essentially the integral equation of Lenard.
Exactly as in his paper it can be proven that H is
real.

The solution of eq. (2.16) (see Ref., 10 and 17) 1is
given in Appendix A. When H is known fﬁ,{z follow
from eqs. (2.13), (2.14%) and *1ea etc. from

eqs. (2.9) up to (2.12).

This procedure and the results are given in
Appendix B.

We find for instance

-4 e : FX JF¢€ F€
nH —Zmu e E’f-:zmulA) P "(——+ (2.17)

P Z* Ju i du Z e-
DFC, . 2 "-BF
where + Dic e “P A o W
F
A3 il : . L (2.18)
A zrrzu; oy | Z Z
The Fouriea transform of the radial distribution
£ [ K’ b
unction W&P_(k) is given by i
35 3 2l
Oy (R)= [ % G €T, F)= [ (R 219
-o0

17) R. Balescu aud H.S. Taylor, Phys. Flulds %, 85
(1961)




Substituting eq. (2.17) into en. [(2.1%) and
interchanging the - integration sith the one
implied by the minus operation ir the first
term of the right hand side of eq. (2.17) we

obtain BFe F-€+
n Wy, = LI LU I[( - 277w, ’2 /—\)

._e e- O\
(Z—-hzm 23’_ A)gF Chl_

After some rearrangements describAd in Apnendlx C

we arrive at

b ) + Y Fe {2FG+I

L, =~ + [ | = 20 ut.
e ar =) -l e
€ e }J/u & P

mx DF"'*- (‘Z—T"”ﬁgz (2.21)

. ./‘_7_ 5":‘ '-f— Clﬂ\n/)'éx C‘ﬂ‘ry'l?ﬂ,/?_ > Z+

DECYOFEY el om DES LFC\[
Y e ZDLL. <z ( /) (&;e____ -F P CﬁL_

.

~| + ZZ ﬁ: ,l—zrrut’-

g (2.22)
. F ("Z e M'.&}Z gé)};ue+ D(JFI cj

The same expression may be obtained in a quite

different way. Considering the Vlasov equation as
an exact equation for the microscopic density in
phase space of the particles in an actual system
'(sum of delta functions) and averaging over the
initial conditions by means of the zeroth order
distribution functions one can derive an expression
for the mean squared four-dimensional Fourier

transform <|e( W) l)'> This quantity is

proportional to the differential cross-section for
light scattering. It was obtained by Salpeter 6)
by means of the outlined procedure for the case of
two Maxwellians.

Integration over ¢) leads to eg. (2.22) by virtue

of egs. (3.1), (3.3).




In exactly the same way as eq. (2.22) we derive

= 2 2F¢et |
K ZZ /’Z/_ /' 2riH, “» S } (2.23)

.a;)/—-‘-*g ‘£
= KZ/T:.LL‘C ';J;Q 5 —E—-:/c/u,

n.u/ == ¥ o

DL
A 7 i !
L / pY s
Ny =2meuly [ ——r Fe( 27 ul 2225,
e /) Z Z-r T f M 9[{_ (2.24)
A
- ' - e+
m Bt i  PFEEN\2ETT
‘M 2 F /+°277LM/° 2u ) 2w
and
A Ax
i = e (.29

A A
The functlons Lwée_ and W .+ are real, but vae

and W’ are complex in general. The relation (2.25)
15 1dentical with the purely logical requirement

in physical space
Wee C?) = We! (’" '?)

Ir /E{?) and 5(17’} are isotropic, then

A
Wi, = (;‘/EL. (2.26)
and both are real because now
o)
T & = 7, em IFL 'E’F@
Wee = TWo X | 5% (F p7 B0 =0

3. Connection of the radial distribution functions

with the test particle problem.

Density fluctuation spectra may be defined as
ensemble averages in the following way

P,(K) = 6— (@ (R)QI(R) > (3.1)

where the subscripts a and b denote species
(electrons or ions\) V is the volume of the system

and ?aﬁ are Fourier tranzsforms of the microscopic
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deviations from the average density, i.e.

-~ 7 - - -
n(x)-m = =5 [p0k) expreR- ) of*x

(3.2)
-3 -~>
nix) = Z S(x-X X, €7} )
Then we have Lo 9)
-~
Py (R) = M { &, + Wiy (K7) 4 (3.3)
S, being unity for equal species a and b and
zero for unequal species.
We note that eq. (2.25) follows immediately from
egs. (3.1) and (3.3).
-
The quantity Flb (K) may be calculated by
means of the concept of "dressed particles" as
introduced by Rosenbluth and Rostocker 12). We
consider a homogeneous many species plasma in which
a test particle of type a with the coordinates
- -~
>
Y = )Kn *l&f is moving with the constant
velocity CZ . In the reference system of the
test particle the linearized Vlasov equation for
the particles of type b is (cf.Ref. 12 and 9):
e ) t 0, ){
- (3.4)
-~ —
- LM ) Fp (V) 7¢/X~X, %,?‘,’_)__
My Vv Y X
and the Poisson equation has the form
X X
D (3.5)

= -4)?[1";, J(X“)-(—) * 52%/745 &;ﬁ‘)&“’pﬂ:%\i/‘) ("/3!,}7
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C =
where i (L’) is the equilibrium distribution
and {45 is its linear perturbation caused by the
test particle.

By means of a Fourier Laplace transformation one
deduces from (3.4) and (3.5) the following asymptotic
expression for t — <=2

T)F"_(a)/
T e [ sz ey

A - _ Yoo, € My A T4 A :
I - (3.6)
(a8 iy Z (/“a)
where F°(44) is defined as in eq. (2.7) and 42«5
1s the Fourier transform of )
- =2 “"3 -> - = > .
Ny {x’-X} UC,//) = fo/’e,» f/dé (v X, v, 7y #) (5.7)

and

- VFS Tin)
Z ((4&) = 4+CZ Mp?-ZFd ({)44“ /MZM‘! (3-8)

LI/T €f e

L (3.9)
“I"C - M, i 2
In calculating (3.6) from (3.4) and (3.5) it was
assumed that the initial perturbations as functions
. ot d
of X“X} have finite range.
In the special case of a two component plasma we
obtain from (3.6):
—L -
Ly
- Py 2 0 o H=He
K U = -2+t U —
YLee{ i e ) P 23 ( u, )
(3.10)
JFE {,
- : 2 D wu M=y
n;.e("f, i'(c') = 2t M/’ £ Z""[z,(,')

( Z"(u} and Mh‘ are now defined as in eqgs. (2.15)
and ¥, and ¥; are the velocities of the test

particle under consideration).

\
»* ) A A = 7 .
May {4, Y ; does not dzpend cn the components of
~» N = : o
Vi serpendicular to ¥ and i= therafore denocted

A
by ‘)"l;“)f:l Usy )
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The quantity F;b ( R>) now may be obtained from
(3.6) by considering the plasma to consist of
dressed test particles in the sense that their
fluctuation spectra are additive. With this

assumption the following expression follows from

(3.6):
Pay (K7) :§ ’Hcf{c)},,c + N, (K, a)}

- <
'{C&,c F ey (Ku)d Frea) of vt
From (3.3) and (3.11) follows for the two component
plasma with m, = M, /Z = N .

a >

MW, (K) =~ + {1178 ua)]* Fita)
r3 / Mie (R u))* Fita) } efu
1t should be remarked that eqs. (3.11) and (3.12)
follow also from a general relation derived by

Rostoker 18) between the correlation function and

the test particle problem (cf. section 4).

If we now substitute (3.10) into (3.12) we obtain
again eq. (2.22). In the same way egs. (2.23) and
(2.24) may be deduced.

We conclude this section with the remark that
Renau 4,5) did not write eq. (3.4) in the reference

system of the test particle and therefore omitted

-2 D )},
the term vV, * 7};— . In order to investigate the

asymptotic solution he put ?/bf =0 . By this
procedure he only considers test particles which
are at rest relative to the plasma. Renau also does
not calculate ﬂgf by means of (3.12) but by putting

n * _
mw,, (A) = ., (& 0)

18) N. Rostoker, Phys. Fluids 7, 491 (1964)

(3.11)

(3.12)
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4. Discussion of the special case of two Mexwellians.

The energy exchange between electrons and ions is

slow compared to the thermalisation time of each
species. It is thereforeuseful to study a plasma in
which electrons and ions have Maxwellian distributions
with different temperatures, i.e., putting M= ,

m, =M for a moment,

P = (TR ) enp (- Feg i B A e B

Substituting this into eq. (2.21), performing a
contour integration over the first term of the

integrand and rearranging the second part we obtain

wk
ol i) < —2e [//,, _@__@_@_.[] (4.2)

ki+)p™?
where D.,. and D are Debye lengths defined in
eq. (1.3%) and

. 2 vt
(V /M,z/ua T Cwlexpl(-€ v’f f .
I:.: jQ£ T+ fi//—c

. B
T F & — e (‘f"C}Wl
o et f (4.3)

i 4
A+ 2'71\!‘ (sz‘ D-‘z) ’7-_% W[ 1),,'-1!(1'/9 (“Vy]fh.‘ p(—z[flp/‘izwf)ﬁ

with
R
= =5 }/l (4.4)

In the 1limit £ —> (¢ contour integration 1s again
possible and leads to the result

. A s 4 I O - &-C A
Lian (K) = = = = F . 4.5)
ay R DL @ «ir)? &, k), ’](

and Fourier transformation gives eq. (l.2). Details
about the calculations leading to egs. (4.2), (4.3)

are given in Appendix D.




It 15 also proven in Appendix D that corrections
du=s o the finite ratio of thermal velocitlies arve
of order £

A°ter some calculations one obtains

2

£ far) iz = e 2y v O~ Cx

\‘, “"/‘.-" - e X =3 .,
‘ Qr [eu rC5)t =5

(4.6}

{( z é){ - wt )f*’/’/"‘) ¢ 12 = <t ,)/f/f (e

In a hydrogen plasma with the usual condition that

G is not considerably larger than G, the correction
found above is not more than a few percent. We

therefore return to eq. (1.2), i.e. eq. (4.6) with & =g,

We observe that, if (3, 2 CZ-’ w, (v) 1s always
negative., If, however, (3 < GZ-, w,, (7) changes

sign at a distance 7, given by

SO S e &/6 )
e 1 -(1+280/6)7

For O, ¢ Cf we have 7, = 2 Pe /2

The correlation has the "wrong sign" for » 2 7,
This phenomenon may be called "anti-shielding"

Also the average charge density around an electron
described by W, (7) = W (v) =W, (v) shows such
a behaviour.

The radial distribution functions W, etc. may be
found in a similar way as eq. (L.6). In the limit

£ = @ one has
Wei(7) =/, () = 22~ exp(-% )
. G v (4.8)
i) = e 28 - §
It can be seen easily that the average charge
density around an electron changes s£ign

at the distance




[y

gi

o tzt1) G .
] F § sm——mi =, t
?;l " D& on { (1+2cq,:j..,) =7 (4.9)
Z B¢ 2
+ =
(1+~5 ) 74

-) .

A Je X
If Q << Oy then v, = —:Z:z— De

s

Anti-shielding is also possible in a one component
plasma, i.e. electron gas and continuous neutralizing
background. This case is obtained from our

formalism in the limit 2Z => ©O

Wolff 19) showed already in this case that for the
(one-dimensional) distribution function

F( - ;ZOCW, ¢) (4.10)
u) = () ex p(-oau
cone finds
e 1 a 1 v
W(v) = W"D;(T zD,)”P[*bI (4.11)
with
. i 7)
e PN vy (4.12)

Tt follows immediately from eq. (4.11) that wW(7)
changes sign at 7 = % 0, -

The analogy between the example of Wolff and the
anti-shielding of eq. (1.2) lies in the fact that
in both cases there are less electrons in the

tail of the distribution than in an equilibrium
with the same average energy per particle.

We want to point out that anti-shielding is not
surprising in the light of the connection between
the correlation function and the test particle

18)

problem as given by Rostoker which may be

19) P.A. Wolff, Phys. Fluids 5, 316 (1962)
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{ y z+1) G o
) L t Taszare )P ~
r' < D r4+z&/ ) o (4.9)
(1+25)" -1
o T . I+ X
1t B, <« Oc then W = —3 = De
Anti-shielding is also possible in a one component
plasma, i.e. electron gas and continuous neutralizing
background. This case is obtained from our
formalism in the limit Z - ©
Wolff 19) showed already in this case that for the
(one-dimensional) distribution function
Lo (4.10)
F(“) p a_eltfp(.._o(“*) .
" (%)
one finds
1 i 4 v
W(v) =~ (—-—-—- e [-_. ) (4.11)
Tadp \ T zﬁ,) YPL™ g,
with
J
"Ju f/ ,-'(Af)
D = U-L ot 2 l{ gy (4.12)
0 P / (M)

It follows immediately from eq. (4.11) that wW(7)
changes sign at ”» = %), .

The analogy between the example of Wolff and the
anti-shielding of eq. (1.2) lies in the fact that
in both cases there are less electrons in the

tail of the distribution than in an equilibrium
with the same average energy per particle.

We want to point out that anti-shielding is not
surprising in the light of the connection between
the correlation function and the test particle

18)

problem as given by Rostoker which may be

19) P.A. Wolff, Phys. Fluids 5, 316 (1962)




expressed as

= ~> == - -
945(1?! Vu, %):f:‘(VuJ)ﬁJ {,;'.j i{.{/tf’)
- P - D > (4.13)
+/'A(Vb}fi.5('r, vy, v )

FE M [EE) o (R0, 00 fos (R17,8, ) o R

where the notation is analogous to that in section 3.

If a and b represent electrons then eq. (3.12)
follows by integration over ;Z! ;Z and Fourier
transformation with respect to ¥ . The first two
terms in the right hand side of eq. (3.12) may be
interpreted in the way that one of the electrons
under consideration is a test particle and the other
one a field particle or that both are in the cloud
of a third electron, the last term on the other hand
describes the two electrons being in the cloud of an
ion. Analyzing the derivation of eq. (1.2) we

conclude that if

Wi (%) = W (r) + W (%)

£4¢
T e’ - am
]
W, = = -~ — £X - )
« ) Q r P De (4.1%)

'21 C-)»t. Ll
Wit~ o5 5. Lerr-3)-epl-5)
then W@PT(V) stands for the term in which an ion
plays the role of the test particle and WQE‘[f)
represents all other terms. We see that w,J (+)

is negative and thfﬂﬂ positive for all *» . The
leading terms for large * are those with the factor

exr(- %i ) because Je 7_D . In equilibrium,

nowever, these terms cancel. If & ¢ & their
sum 1s positive and this means anti-shielding.
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Anti-shielding arises from the enhanced tendency
of two electrons to approach both an ion in the
case that the electron temperature is lower than
the equilibrium value 8 =&y

it is tempting to assume in a similar way that
the antishielding in the case (4.11) of a one-
component plasma is due to an enhanced tendency
of two electrons to avoid the neighbourhood of

a third one as a consequence of the relative lack
of fast electrons in the distribution (4.10).

5. The influence of an external magnetic field.

i =

If an external magnetic field B 1is present we
have to add expressions (a, b represent electrons
or ions)

? ~» &
M[(V XB YA J'(V"’(‘B)W ]315“«,*: %, ¥,

to the left hand sides of equations of the type
(2.1). The general kinetic theory as described in
section 2 then becomes very complicated. In the

situation of section 4, however, «here we have two

Maxwellians, and in the 1limit €0 (cf. eq. (4.4))

the system of equations of the type (2.1) may be

5/f)("1)

solved by means of the ansatz ( 6“1& are Maxwellian
!

distributions)

0} PSR T, T ) = 7)) X (7

l!_)

if one neglects all scalar products containing
the velocity of an ion as a factor. This neglect
corresponds to the limit £ = ¢ . It is seen
immediately that under these conditions all
expressions of the type (5.1) vanish and it is
possible to recover eq. (1.2) and eq. (4.8) 7)
Consequently a magnetic field does not change the
results of section 4 in zeroth order of g .

>

(5.2)
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Apoendix A.

Solution of the integral equaticn (2.16)

Wwriting H=HT + H~ in eq. (2.16) and using
eq. (2.15) we have
- + Z+H- — 2Ire Mez [/:-.' ”)’:; F ’Df-s- g
z Hot T om /o T

Dividing by 2 Z*% one can separate positive and

negative frequency parts.

.95k 2

> -2 + T 7 D vt
nH =l?7'¢otPZ { > - >+ }

1.

and a similar equation for - S

This decomposition is unique because, if we split

up zero in positive and negative frequency varts
f- —

then Fﬂ+ and H;-are required to be regular in the

entire complex plane and to vanish at infinity.

This implies HS = H, =0

It

A condition for our procedure to be valid 1s that
;Z+and ifihave no zeros in the upper- and lower
half plane respectively. It is shown in Ref. 10
that this is true if £ (4] obeys the Penrose
criterion 20) for electrostatic stability.

1A VA" :
We express =z~ and &, 1in terms of Z~ by
means of eq. (2.15) and obtain

/‘—"F—ZT"‘F*Z_ a + A #
p + & L ! - = li *
We arrive at z + +
mhd == F- # A2~ (A.1)
where A is given in eq.(2.18) .

20) 0. Penrose, Phys. Fluids 3, 258 (1960)
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Appendix B.

Evaluation of H.. etec.

Substituting eq. (A.l) into egs. (2.13) and (2.14)

and eliminating ‘DE‘}/th by means of eq. (2.15)

one derives

e Ff 2 DF‘ =
mH +F° = T + 27 dp EEZ"A
. - (B.1)
3 A
. z_f_" n_.“-l mz DF A—
nH, +2Z F¢ = = = ToAle Sp Finc o U
Substituting again eq. (B.l) into egs. (8.9):; (2.10)4
(2.11) and (2.12) and remembering that for real #
positive and negative vart of a function are comolex
conjugate we arrive at eq. (2.17) and
- \-.‘. - --{
_ & F* mz dF Ca )T PF
H-:Z!/Jb{z[- - — 2/ >l
N ey P (zf M Du f’/” D
(B.2)
‘4
FS ., AF arcup AT) 22 28
S ‘___._-—i
+( > T T u i M U
H;. is obtained by interchanging F with z F! and
3 Ft mx JF’ ) '
U with —g oy in eq. (2.17) and #re¢ Dby
doing the same in eq. (B.2).
Integrating eq. (2.17) over « and applying the rule
+ =o ¥ e
- _ i
S ¥ w) X(u) o = [ Yu) X)) He (B.3)
- o - o

which follows directly from eq. (2.6), we find

eq. (2.20). In the same way one gets

- g = v €4
nwl — Zﬁ"‘ al - Z/’ - -_— 2 X DF ¥ Df
¢ }1:{/~ T AT Ay —== TR /7

, N e (B
+[fZ—: FoaT i ar L, )'mr- DF*-
D et M ; hjrcfgf




20

A
The corresponding formula for w,, 1s obtained

from eq. (2.20) by interchanging F* with b4 F(

2 —
and ?F/Du with ”_"‘_.ﬂ%- 2{—:&’ By the same

A‘ . 3
procedure W[, is derived from eq. (B.4).

Aopendix C.

Derivation of the formulae (2.21) up to (2.25).

Substitution of A from eq. (2.18) and of the

identities
F.e f,f -
‘-—'-": — ‘DF-C I— '() ¢ ]
Z- Ty Z ) /. Z )

into eq. (2.20) gives

o

A ~ ) . - €
-nmg—dl”‘”f’l_///(éf_z: Z) (3, )

{»r» . ) .}b% ?w {W(WJ}]‘/”

Omitting pureiy positive or negative frequency
functions from the integrand, because these do

not contribute to the integral, one obtains

%) ()5 )
+%_ﬁ+ 2FeT /z* Z)(D,.-e _%)]dq

T

A
n W,

Now we apply the rule (B.3) in order to remove

F¢ L4
the ¥ operations from ( E T ) - . We carry
e 4
out the subtraction in the last factor of the
integrand with the aid of the definitions for F,

and F, given in eq. (2.8).
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Finally we subtract unity from the entire expression
and add it again in the form

o
Jofe
- + = o(u
. 35?& ( ) (-D ) Jl
using egs. (2.8) and (2.15) in order to simplify the

sum. The result is given in eq. (2.21). Eq. (2.22)
follows directly by taking the common denominator Z2 T

Defining

SH,odu = w,, -, (c.1)

€

we find from egs. (B.1), (2.15), (2.18) and (2.8)

B B e : 9;e+
n w, -1 +_/r(’EF: + AT ¢ Hy ,/ ol vt

S

]

V=T as

, DF
> z+[F (1-27¢ a4t m—;“)-{-lf"; uﬂ_ﬂw]‘/"

]

-4 +J[

-4+fz s [Fe(a-amiwg 22 2E2 ) rarii zF“?Z?

The last equality of eq. (C.1) together with
eq. (2.21) now leads directly to eq. (2.24).

Egs. (2.23) and (2.25) follow from egs. (P.22)
and (2.24) respectively by virtue of fthe rule (B.5) .

Appendix D.

Derivation of egs. (4.2), (4.3), (4.6).

The first term between the curly brackets in
eq. (2.21) is a positive frequency function,

say /\+ and therefore regular in the upper half

plane. The factor F'(")F‘A)u)‘f creates a pole

at wu=o0 for the terms between the curly brackets




22
separately but not for their sum. Therefore
+9

e
{ _____ .}CJH.: 977( (Residue in U=0 of AT)

(It is easily verified that the contour at infinity

does not contribute)

Substitution of the Maxwell distributions (4.1) and
|
+ g =
- " 9)“‘ =(LLF")":1.zm‘
elementary calculations using M.F- w=0 L&D

yield eq. (4.2).

The integral I is obtained in the form of eq. (4.3)

by means of the substitutions

/M % F_—e,.r_' E ¢ 4 ( e")i
W—(Té.f’ w (e =+ zr tuF
S A .
Zzzt zmzt\ZT zT
By virtue of the last identity one obtains
’ +c9 + =,
T= - %1% [eqp(ond)d Sfew) |1 w2 il )] " 0.
~ 00
where
" gt pD* _ &
« = 0 (k07" p= Cifni= g
/{E'W)::: ‘ /+-ZT7‘Z&L‘ EW {E-KP (’”Ez\v\/‘e’_) j'-rl (D.2]

L () = explwy + £ p exp (-6

We investigate the order of magnitude of;IR 1'Cs
the contribution to | from the region w >R
Because the integrand is an even function of W

IR _— I‘"R if I‘R is contributed by W< — R

From the Nyquist diagrams of the type described
by e.g. Penrose 20) it follows that —f(%udfg /




e

Furthermore

|1+ 2maciw b (w}\ = (Hour‘éw P/ e Yf} c/g)

b o o)W > T sy ) > 'Fql/azglwz‘exp YY),

Therefore

(2]

, _ / / )
| L) < i 77 | e espdtoaesf
R
tr R >/ then wi >W for W>R and

0 | LR /
4 2 Exp (:,81./&)0/%% RZ {:"/’(‘P"ddv 238 exf{_ﬁ R)

Consequently

1 exp (R}

P FT/’ g e

jr is expeonentially =mall in R . We now choose

K= £ % and return to eq. (4.3) in which we
replace the limits of integration by -R and Y'R

FR

' C[» : é'z[t"w} .
= Re — PJ ‘ _ (D.4)
L £ g3 J W Z}ngexM(a-g_i)wlﬂﬁfzrr'/*ﬁxfwi.—‘*(wﬂ

Bv contour integration we have
&

- .
I._ ,/ 2/.) TRE’Z Z REJ..ng) i E _L%] (D.5)

The residues belong to zeros W (hﬁﬂ“

= / + EP c-leiU~£"‘)W j in the upper
half plane with |w,|< R and Iqs is an integral
along a semi circle with radius R in the upper

half plane.

It is easily seen that

z, =WE= o {ﬂn—“—Jr(Zr.H)rrf_},n:o,tt,tl,-




The transformation Z=w2 maps the poles of the
upper half W:-plane into the poles of the entire
Z-plane.

. / |
Q_ZRESi-dL@.S=§ )z, f’(z‘") H-(/ 0()"‘2 O( z»E%J (D.6) |

|Z I< R
Terms of order £.Z are due to Taylor expansions
of 'ZI{EW) and {EAP( glwz-)f For the other
exponential in L5 (Hj i.e. { exm(;- l}} an
asymptotic expansion has been used. This 1s

| 2
possible because ‘Z:H‘ B f bt IZ%1,

In the integrand of 1#3 the same exnansions show

that the integrand is a function of W% .

The semi
circle can then be transformed into a full circle

in the Z-plane.

— ...,._. (/.Z. g ol __!_ 2_. r
I(P_ 2 ,Z/_:Rg(]“q)zfﬁz) /f_(/-m 1—0(21)5.{) (D.7)

All the terms in may now be calculated by the

residue method again. For the rosidue at z=0 one

g =i s -
needs an expansion of (éj in powers of Z

/ I o/ 5
(~>)(1+sp) i' =& /_E_B_ } f'O/z}f

o / o Y

+____S_ v %))
- 1-X)2Zy, g i

The first two terms in the right hand side arise

from the pole at Z=0.

/ ;
A crucial point is that the terms CD(/EZE) éZZ:a)
[
are identical with the corresvonding fterms in
eq. (D.6).
From eqs. (D.5), (D.6) and (D.8) then follows that

the residues of fthe poles at Zk cancel and therefore

L= (- O()OZH-.EP) +°3, (- o(}% +O(E}
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or, with the aid of egs. (D.2) and (4.2),

A A" G | B - &
e E e O

&6 / / De_&

T 3 (9; k2p )% -2< (k‘3+be"& ﬂ#—ﬁ/zﬂ

Fourier transformation now yields eq. (4.6).
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