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Abstract

The problem of the harmonics of the electron cyclotron frequen

cy in plasmas is discussed.

The dispersion relation for propagation vectors nearly perpen-

dicular to the external magnetic field is studied for some den

sity, temperature and frequency ranges. The unperturbed distri

bution function 1s assumed to be Maxwellian. Longitudinal waves
are also discussed in plasmas with electron streams and tempe-

rature anisotropies.




I. Introduction

Intense radiation at harmonics of the electron cyclotron
frequency from a non-relativistic plasma lmmersed in a magne-
tic field was reported by G. Landauer1 in 1961 and later by

many other52

In previous papersj, it has been shown that quasi-electro-
static waves propagate nearly perpendicular to the external ma
gnetic field, Ei,with a large index of refraction at the harmo
nics of the electron cyclotron frequency. These waves may ex-
plain the radiation observed perpendicularly to E: by Landauer
if a sufficiently large number of electrons with superthermal
velocity perpendicular to fz are present. The radiation emitted
parallel to fﬁ could actually be explained by the same mecha-
nism because the energy does not flow in the direction of the

quasi-electrostatic waves.

The theory seems to apply to the other experiments also, and
even in cases where it is very improbable that the electron di-
stribution function departs from a Maxwellian in the superther-
mal range. In fact, in this case the condition YL/vphasé% 1
(where v, 1is the electron velocity perpendicular to fz ), which
is necessary in order to have radiation at the harmonics, can
be fulfilied even in the thermal and subthermal velocity ranges
by those waves which have been found in ref. > to have a phase
velocity smaller than the thermal velocilty. (The assumption of
a non-Maxwellian distribution function is, of course, useful

oniy for non-thermal radiation).

In ref. 3 we gave only a short and very rough discussion of




the dispersion relation, the cyclotron radiation and the cou-
pling between longitudinal and ftransverse waves. Here we study
in detail the dispersion relation in the range of parameters
which seems to be typlcal for the observed phenomena, namely:
angular frequency w of the same order of magnitude as the plas
ma frequency wp; collision frequency y much smaller than w and
electron thermal velocity Vinh two or three order of magnitude

smaller than c.

For the longitudinal waves we take into account also devia-

tions from thermal equilibrium.

Some other points in papers 3 require a through discussion.
First, the radiation of longitudinal waves from an electron in
a plasma with strong absorption. In deriving the energy loss
of a spiralling electron, the absorption was neglected. However,
numerical calculations in progress show that the glven value is

not far from the correct one.

Moreover the total power emitted by the plasma was estimated
assuming complete incoherence between the radiating electrons.
The energy loss from a charge being proportional to the square
of the charge, any coherence effect should enhance the radia-

tion.

Another very important point is the coupling between longi-
tudinal and transverse waves, which in ref. 3 was calculated
. for the particularly simple and unrealistic case of a sharp

edge density- and magnetic field profile.

One would think that this coupling may be very small in a
more realistic model, because the characteristic lengths of

the inhomogeneities-in plasma are certainly much larger than
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the wave length of the longitudinal waves, A. However, D.
Pfirsch has suggested (private communication) that the coupling
can still be large in the neighbourhood of the resonances of
the index of refraction for longitudinal waves, Nl, even if the
inhomogenelity in ﬁ; (and/or density, mean velocity and colli-

sion frequency) is small, provided that the inequality

lgrad N,| - 1

can be verified. (Then the WKB method cannot be applied,)

In this way a coupling between the longitudinal and the trans
verse waves, which go adiabatically into vacuum, can take place
not only at the plasma-vacuum surface as it was assumed in ref.
%, but also in the interior of the plasma. The value of the
coupling, however, seems to be not very different from that
quoted in ref. 3 for the following reason. Local variations of
the microscopic index of refraction in the neighbourhood of the
harmonics of the cyclotron frequency that satisiy (1) may be
similar in effect to the jump of Nl quotéd in ref. 3. Actually

the jump of N, follows from that of EZ and density. However, 1t

R
is possible to construct a plasma model in which a Jump 1n fi
does not give a sensible change in Nl and see that in this case
the coupling is negligiblea. Hence we comclude that the rela-

tion:

Transmission Coefficient = 2/[N,|

is principally due to the rapid change in the index of refraction
and that this may be critically dependent upon small variations

in E:, density, etc..

: ; =
Although the inhomogeneities of plasma and B, are an essen-

tial feature of the problem, we take them into account only 1in
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order to evaluate the coupling and in the following we consi-
der waves propagating in a homogeneous plasma. In this way we
renounce a prlori the description of several aspects of the pro
o 7,8

]

blem like fine structure tunnelling effect6 and so on

Here, as in ref. 3, we take account of Landau damping. The
possible predominance of the collisions relative to Landau damp
ing does not alter the form of the result, as will be briefly

discussed at the end of section 2.

In sect. 2, the dispersion relation is given in its general
form. In sect. 3 it is approximated and wave propagation at fre
quencies outside the harmonics is studied. w;ve propagation in
the neighbourhood of the harmonics is discussed in sect. 4 ne-
glecting Landau damping and in sect. 5 including Landau damping.
In sect. 6 the equation for longitudinal waves is considered
for electron distribution functions departing from a Maxwellian
to take Into account streaming and temperature anisotropies.
In App. 1 we approximate the series involved in the dispersion
relation and give asymptotic expansions for Bessel functions
of complex argument. For several ranges of the parameters, the
dispersion relation may be reduced to a simpler class of equa-

tions. In App. 2, approximate solutions to these are given.

2. Dispersion relation

Let us consider a uniform and infinitely extended plasma

with the following equilibrium electron distribution function

f,(v) =(-_—J—2%%je, exp (77020

where d 1is the number of electrons per cmj.
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We shall look for waves of the form xp [,;,(R"-€-wb)j )
with an angular frequency w high enough, so that ion motion
can be neglected. Then in a Cartesian reference system (EE,
é"e, ?3), such that the external magnetic field TB-: is parallel

to 63 and i?==KL§H + Kygg, the complex dielectric tensor has

the following component59
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(I; e )! the derivative of (I- e ) with respect to/y., and

W, the electron cyclotron frejuency.

The dispersion relation
1 =
| (&) 7w R+ KK (1= Fei) [ =0
can be written
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(2) reduces to A2 0 in the case of quasi-longitudi-

nal waves

In what follows we shall use eq. (2 ) to determine K; as a
function of w and K, , assuming w and K; real. In fact, although
We consider here an infinitely extended plasma, we are actually
concerned3 with a plasma column parallel to Ez , and with the

Problem of the radiation through the lateral surface of the plas



ma. In analogy to Snell's law in Optics, which states that w
and K, do not change through a surface of discontinuity, it
seems reasonable to assume that also through the lateral sur-

face of the plasma w and K; do not change.
This fact provides also an upper limit forIKd, namely

|K”l = w o

= IK"vacuumI < IKvacuum ’ e

A lower limit for ,K", seems to be 1/L, where L is the

length of the plasma column.

Starting from eq. (2 ) and using the condition

—+ < lKulé%

we want to show in the next sectlions that in the range of pa-
rameters 'mp/w and vth/c we are interested in, there are
waves propagating nearly perpendicularly to E: with a large in
dex of refraction. In particular we shall see that there are
longitudinal waves whose index of refraction has a line structu
re. The lines appear when w/we approaches the value n, whe
re n is an integer ranging from one to a number approximately
equal to the inverse of the relative width of the lines w/Aw
(or w/(ﬁdwe) if w is fixed and B, varies). Moreover there

are waves whose index of refraction is large for all values of
m/we up to about the same value as before. They can also give
rise to radiation of lines, because of the line structure of
the cyclotron radiation itself. For these waves, however, the
ratio between absorption coefficient and wéve length is larger
than for the longitudinal waves and the transmissisn coefficient

probably much smaller.

In Landauer's experiments the width of the lines,zkwe, seems




to be determined by Landau damping, because ﬁdwe is about
10'2w and y can be estimated to be much smaller than lO_jw.
The relative line width is therefore of the order of (K”vth)/w

i.e. of A . Accordingly we shall neglect collisions.

In the following we shall discuss the dispersion relation
(2) not for arbitrary values of w - this would be very compli
cated - but at points between every two consecutive harmonics
such that O(w - ﬁwe) = O(we/2) and in the very neighbourhood
of the harmonics u)gsﬁwe.
In the first case, l§V|is larger than 1 for all integer n,

provided that

1/(nA )>» 1. (3)
In the other case we have
[5=] 51,
ir A 2(n Awe)/n, and
5. ]

if condition (3 ) is rulfilled.

22

Condition (3 ) is necessary in order to have large values
of the index of refraction. A fA} of' the order of 10_2 seems
to be in agreement with the fact that Landauer has observed
harmonics up to about the 45-th and measured for the relative
width of the linés, (EZXme)/w, an almost constant value of some

percent.

Remembering that9, when lém,lgz 2

A o B 4.
%, -t oo i)

and that, when | éwJ « A
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we can give approximated expression for the Quantities Yik va

1id for O(w - ﬁwe) = O(u;e/:z) ana for w mﬁme respectively.

Outside the harmonics, if we write w = ¥ W, (» # n), we

get
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These expressions hold approximately even if there are col-

lisions, provided that y/w &£1.

At the harmonics we get
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These expressions are still valid if there are collisions

s

provided that y/w& A . If, however, the collision frequency
then one has to substitute in
iw/y.

1> y/w>>A

is su2h that
Zﬁﬂﬁ with

the preceding formulae
3. Waves outside the narmonics of we.

In this section we discuss the dispersion relation for va-
lying outside the intervals (n-nAwe, n+ndwe ) if
' Wy

2W,

lues of w/me



w is fixed or the intervals (n-nAw , n+ndw) if B, is fixed.
2 2w

We supposeIN“L&I ana look for propagation vectors nearly

perpendicular to fg

This last condition allows us to separate eq. ( 2) into the

dispersion relation for ordinary waves (Eilli?

N* = €az = ‘H‘G‘E) i e (9)

==00

= =

and the dispersion relation for extraordinary waves (E;_L_E%
i 1

N> = Eqq9 +f2

14

where

4 M=t M=)

Gm IRl s )

6?51 1152_ -14,(j;béjxﬁ)/

M=-ta

€22 = &y "léjﬁ éz:m (];L Jﬁﬁ/

We solve these equations in the regions fo the plane (w ,LF{)
w
in which the Eim's can be approximated by means of formulfe

found in App. 1.

Consider first ordinary waves. Using the power expansion
for the series, a solution can be found which lies in the very

neighbourhood of the"macroscopic" one,
= 4 — [weN\2-
N =+

The pure imaginary solution with O(bwlkoé))z 0(1), numerical
ly found by Dnestrovskii and Kostomarovlo can not be ocbtained

with the expansions of App. 1.
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All other solutions are complex, with Regfb)<10, i.e.
[Re (N)| < \Im(N)| . In fact, wnen Regp):>0,

,vgl I.,.,e’u' < e AL

A=-00 M= |'&M’@“)l

so that there are no solutions, besides the macroscopic one,

such that |w| &Y

For |u| ¢» and »¥>» 1, eq. ( 9) becomes (see App. 1)

_.L%rj?— > codbPTl') I» (/9 ?/_/u.

S (YTT)

Since (see ref. 13 @ 5.51)

Pl ,
()| < F;-"—!c ,3)!,1 -t)

there are no solutions in this range, besides the macroscopic

D)

one.

When Re(p) < 0 and /~f>>2’£" (the value of » is arbitrary)

( 9) can be written

C-—AJ 29N Jyw&) st

This equation is discussed in App. 2. It has an infinite number
of solutions such that [Re&w)] and IIm}w)l go to infinity,

with ‘Re&w)/lm&y&!—a 0.

When Reyk) < 0 and l/»! S Y » 1, ea. (9) becomes
(- )/9' (—4)y29r(9£?—ﬁjz[(\’4+ ) -—/&( +4') {12)
Mu(z“"‘)
Also this equation is discussed in App. 2. The solutions are

similar to that of eq. (11).

Finally, it could be shown that there are no solutions such

that Re(pr) €0 and 1% I/I@’, V1.
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For the extraordinary wave, the "macroscopic" index of
refraction

wp 4 vt ot e y)7
N = i[' +(9£)4 v 54.(%;133 ] _i[ ’"‘t:&jzg‘(*{i;)t))]

A
holds approximately, as long as NQ«'(gi}géf Therefore there
8

is no true resonance when w approaches\fa$"+a£'
The pure imaginary index of refraction numerically found
by Dnestrovskii and Kostomarovll in the range O(pq) = 0(v)

can not be recovored with the expansions of App. 1.

In the ranges in which the approximations of App. 1 are
valid, there are no other solutions with Reyw) > 0. In fact,

for v ~ B+l 1 and for |u| » ¥ it is: €, & 1 and |%[<«1.
2

The other solutions have Regﬁ) < 0 and are complex. Rather

tedious calculations show that they are

a) longitudinal waves witthl»%Ej ( ¥ arbitrary) given by

(-3 2 (@) 2B (3)

T Aiaa (¥TT) )

b) transverse waves with 14:Lu!«¥' and ¥» 1, given by

-C&)Z(%’Lﬁ_. o ([ s,» «,» )(1)@-%1 %) e *)

c /ﬁ? B (YT)

@)

Equations (13) and (14) are discussed in App. 2. The so-
lutions have a structure quite similar to that already con-

sidered in this section.




4, vWaves in the neighbourhood of ﬁwe, neglecting Landau damping

When the ratio w/we tends ton (n = 1,2,..) and K, tends

to zero at the same time, so that ilnequalities

G >4 ana 2=

remain valid, Landau damping 1is negligible. Then the dispersion

relation separates into equaticns (9 ) and (10) and can be dis-

cussed briefly. This case 1s not too important for the radiation
problem discussed in sect. 1; it gives, however, information

about-the structure of the index of refraction.

Consider first ordinary waves Their equation can be written

2/ __ — A e -
N> =1+ ("‘%; Lot ey zilie ) (15)

Being clear that no solution can réach a finite value, diffe-

rent from zero, in the limit M/me =N, ywe look for’/L's that

approach zero and infinity

In the {irst case the series can be approximated by the ze-
ro order term of the expansion in powers Of’/b . Then eq.(15)

becomes

0 = A -@ﬁ)l@-!- 5:—) + (%2)1;—,-_“%; k’s’%)z%f
A

- 2 2y /= 2
and shows that N vanishes as [ﬁmp - w)(n -»)

When Lw} goes to infinity, vie distinguish the two possibi-

lities Re&%) > 0 anag He&w) £ 0. Wnen RQQM) > 0, vWe get

RGN O R

The right hand side being real,/m nas to be real and positive.

Hence tne waves are possible only at the left side of the har-
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monics and N goes to infinity as (}‘“3’ When Heﬂﬁ) £ 0;

the dispersion relation becomes (see App 1)
Mo _ [z e e\ (1) w2 ],
(- = [EETE R ] T L e

This equation is discussed in App 2. It has complex solutions
with [ImSy)!) |He$ﬂ0l ; the order of infinity of ImgﬂJ is larger

./
than (M-¥) 8 The waves exist on both sides of the harmonics.

Remembering the results o’ the preceding section we may des-
cribe the behaviour of Nord 1s follows.
Outside the neighbourhood of the harmonics there is a réal SO~
lution only when ™ > mp’ the zero temperature index of refrac-
tion. This index is zero at w = mp, tends to infinity when the

frequency approaches the harmonics from below and to zZero when

it approaches the harmonics from above.

Since N goes to zero as
Ay
PR
[(w?‘._w—"‘)("‘-"v)] (17)
when m:>mp there is a pure imaginary N that vanishes below
ﬁme if n = 1,3,5,.. and above nw_ if n = 2,4,... Its value for

frequenclies between the harmonics was computed in ref. lo.

When w is smaller than mp , the macroscopic index is imag-
inary When the frequency approaches the harmonics ﬁme, it tends
to zero from above if n = 1,3,.. <.Mp/w and from below if
n = 2,4,.. <.wp/m. Moreover, in the neighbourhood of the har
monics there are two real indices, one going to zero and the

other to infinity, both from below.

In addition to the pure real or pure imaginary vanisning

indices, on both sides of the harmonics there are complex in-




dices whose number grows with a, accoraing to (17). The complex
waves found outside the hormonics tend to infinity witn Regk)<'0,

when tne frequency approaches the harmonics from both sides.

The study of the extraordinary waves is analogous but a little

more tedious . The eyfation is

= 15
E_M(N‘z'- 52.'2.) = £qo a8 )

where

A

nEH N —

=

EL_OE) [.‘12_ CI ) 97 (Ine ,ﬂj+ —1(14_‘4;9]

e )[R 2]

MER M —A

In order to see that M can not tend to a finite non-van-
ishing value when y goes to n let us consider the term con-
taining the factor (%-»)?%* in eq (18) The condition that

this term vanishes leads to
¥ 2
Iz =:"-\J“)’5-‘ Iz

which is not compatihle with Bessel equation. There are , how-
ever, waves with M going to 0. Consider first the fundamental

frequency; then

&y = L) +('9£) 91[4 + (A /")4-v=-] )
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Ezz = €y

and eo. (18) becomes

€y Tl &a =0 (19)
which gives
2
A = (A-v)(1-2 CE%P) ) . (20)

At the harmonics we have

253 (\* 4 .
by = €= 1+ ()2 ()P Z + (R iy

- e B T2 (5

The cispersion relation (19) gives then the solutions

D e [HEDE )]

»J(n v)(w'f (m,:))] ) (21)

c) Moo= (7=») /(55 'C':")F)z)

) u

The waves (20) and (21) are neither longitudinal nor transerse.

Nhen—)y| goes to infinity and Ikﬁ)q > 0, eq (i8) becomes

S G - -




The solutions are:

a) a longitudinal wave existing only above the harmonics, which

corresponds to the positive real value of /u_ given by

3/9-_;_%’;)1%3.,4_ .}
Y w) -5 Vam

b) a transverse wave existing only below the harmonics which

has a positive real value of./y, given by

32 top\ & 2 3 A
o (_‘-" (c ) ac -y V1 )
When V] goes to infinity and Re(/u) < 0 the eguation is com-

plicate and has only solutions such that [Regu)l and lImymﬂ

tend to infinity at both sides of the harmonics.

These results taken toghether with those derived in the last
section show how complicated the behaviour of the index of re-
fraction and the polarisation are. A detailed description seems
to be of academic interest because even few collisions or a
small T.andau damping alter the picture in an essential way.
Therefore we give only a summary of the most ty-pical proper-

ties.

A very large number of real and complex waves go to zero
at the harmonics from both sides. A quasi-longitudinal wave
tends to infinity from above at the harmonics and a quasi-tran
verse one from below. The last wave, however, exists only in
the very neighbourhcod of the harmonics and can easily be de-
stroyd by collisions or Landau damping (see the next section).
Unlike the ordinary waves, the extraordinary zero temperature

solution is not valid in all intervals outside the harmonics.




In the neighbourhcod of the frequency wg 4 w2 , in fact,

no real index exists and the complex ones do not exhibit a re-

sonance.

5. Waves at the harmonics of w_, including Landau damping

When N, does not vanish and |w - ﬁmel < wA, the waves are
no longer polarized exactely parallel or perpendicular to ﬁ:,
so that the dispersion relation is much more involved. The ef-
fect of Landau damping is not only that of making N, finite at
the resonances but also that of eliminating a number of waves,

as will be clear in the following.

Since the components e&k's are approximated by means of the
formulae of App. 1, the dispersion relation will be solved not
for arbitrary values of n and Jw[ » but in the following ranges:
1) |#]«1 and n arbitrary; 2)|wl«n and n $»1; 3) 62»}4»5 5> 1

and finally 4)[#[2>52/2 where n is arbitrary.

1) I»l &1 and n arbitrary.

It is useful to consider the fundamental frequency, w,, se-

parately. The &;.'s are in this case

=1 *(.%)2@% ) f;) )
fn= ‘) (74 * 4) ;

€aa, = &n - 2(.%916% * 4) )

o QR A)
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b3 = —BY\E | j
€yp = 1 "(”BJ (1-5 L\WT J

It may be proved that the dispersion relation does not have

VL 2
solutions such that LuJ%ﬂAG%P and that fopy4é<34@git becomes

approximately

(7 B[4 08D -] o

2
This equation has the solutions Ni =1 -Fgﬂ and Nf =2 - [we

w w
which are the macroscopic ordinary and extraordinary waves, re

2.

spectively. The Landau damping does not enter in the result.
At the harmonics w = nw_, the Eix's become

=1+ = @ E S L

= il + @2 (T )

Epr= &y +2if2Ey - 1 @) (-0 ) |

b= @)% E10-()% {5 @:2; ;

ARG *HI 0 ZZf";%») )

where Iﬁ(/k-) = @) ﬁ‘i

The dispersion relation gives the macroscopic ordinary and



extraordinary waves, whose index of refraction is that found
in sect. 3, with V¥ = n. Moreover it has other solutions, cor-

responding to quasi-longitudinal waves given by
_ LAM
& = [ 22T (G w)] 2e)

The index of refraction grows in magnitude with n. Eq. (22)
holds as long asJMJ is much smaller than 1, i.e. only at the

first lfew harmonics.

2) klen and n > 1.

Suppose first that He&»):> 0. Using the approximations of

App. 1 we can write

=44~ (f_’%) t’f_’ w? E“ M@l_ e ;
fo= G 40 55 )+ (G- ) T e
el

(23)

o =GE 5GP (= (5 HELET)
B _{_@ R Cm _ )I_,, + i) A\FF +~—.f(-.m_4 2 4 u(ﬂ)L

€3z = ’!*G*) t?‘) (“&Vk) 12” é)I- ’ﬂ’ )
C"%Jr\ﬁ*—fﬁ‘)/(“\f*_:&_);)r

A rather tedious analysis show§ that the dispersion relation

where Iﬁyk)e7ﬂ'—

has the following solutions. First, longitudinal waves, whose

equation



1-(5) = 5&3(%3—%,&>I ye”"

can be solved approximately bj extracting the n-th root of

both sides. Because the logarithm is always small compared to

6%)4_% %-[4‘@;‘)%@’34/5 . (24)

This equation correspond to eq. (22) when n is large. There

z=/B s

are also ordinary waves given by

L :LQ:.:.: -
o)L, e
and extraordinary waves for which

B bty _ o | R B _)e 26
N=trne b o (B b Te(de” (26)

Taking the n-th root of both sides, eq. (25) gives

(5)” "”—-—[ AL 1“#.(2.;_‘2“- _)1 (27)

and eq. (26)

3l

]

@ =17
AR ) (28)

These solutlions satisfy the dispersion relation when the ex-

pressions in the brackets are much smalier than 1, because only
- 3.3

then is |u| « n. This happens when Af{i{g’%i)lﬁain (27) and AVIm <

AC%%&E)& in (28) - that is, outside the wange we are inte-

rested in.

The expressions for the &, 's when Re&») < 0 can be obtained
from ihe corresponding expressions (23) valid for Re&») > 0,

with the following substitutions




- 2% .

I ¢) - T 64
M(ﬁ) s [

and the expression —ﬂ2/3 in g, and &,4 replaced by ﬂ2/6.
The resulting solutions are formally identical with (24), (27)
and (28), where, of course, only the roots such that Re&#) <0

are to be consicdered.

3) Do kd>E D 1.

When Re&w) > 0, one has

=1 - - = 2“*%&1»1;@% :
s (%) @ - ) ()
cam B T GER (1B ] € 0F )

@"-4&(1«6/0)“6_’37—& <,., +_Z:_+m i “"‘5)

— & 24 E
€ A4 + "/é_;f.m_

ga= -(%7'(”,%_“;(1%4_?_: - ,&‘,(,%DI; ;f")
where (see App. 1)

I- 67 = (/H I+ "’7 /ﬁ(m-ﬂ)] )
50 = [(f% Z)e

and =

7y = <o g FI ]
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The order of magnitude of the different terms of the disper
sion relation are such that only the quasi-longitudinal waves
are possible. Their equation

-t (o 5P -

N A

is studied in App. 2. The solutions are

o= o )bl ez () ) + T (r=0, 1, 2,..)

(4«7 <sjpd «A ),
These indices of refraction, which were already mentioned in

ref. 3, seem to play an important role in the observed emis-

sion of high harmonics.

When Res;&) <0, and r_12>>}/&f>> n, the moduli of I-e_’u' and

! — -
5 I-ue_'“' are larger than ’e ;/u,/ The components & 's are
UEH -

of the order of e'9 and no solutions to the dispersion re-

lation exists.

4) 14> 7%/2 and §  arbitrary.

Here we distinguish the cases: a) Regﬁ) > 1 and n arbitra-
ry or Re@})}-o and 52§> 1 and b) Regu)éf-l and n arbitrary

or Re(/&) <0 and 62»1.

a) The components of the dielectric tensor are:

=4+ &f) 'L[? gﬁgil(f ““ﬁh)]

=R T E N BB A

il

€21

w=
Fapise B (4500
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There is a longitudinal wave with |ﬂzyp44<1ﬁﬁ because, when
O(@z&) - 0 [&)
A e
r

2 . ; 2
then B 1s approximately 53ﬁ§% , C approximately Eﬁgfé

and the dispersion relation becomes

The solution is

N==x%(PB* )@”@zz@ ‘('_4—;—2—@5-7/3 Go)

Z

which has been already given in ref. 3.

With the value of /A we have chosen, solution (30) is the

only one possible. With much smaller values of /. one get also

ordinary and extraordinary waves; the first, when A4 «25..,(

is glven by

2 = —
(_g_ 2, S,;_ Ey =1 €. @"mzizz*
e A
The second, when %4 44(ﬁf ) and is given by

G- - G5,
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b) The components of the dielectric tensor can be written

& =1 -+Ggfz”“ =
w622
&= &y + 1%%? 2+ 4f&uf€1) (%4z@u jfil)
C—-@ \ﬁ A»L ,.(ﬁ A 1r6 -
5= 2C G%% (%4———>C(.+c(Fﬁﬂ ¢;rz&1qé?w(

33 = 1 +@1C1§%& */z‘%—)d

where

MI/4' o X
- w (1t 7
cf,.—.—e/":[ﬁz. ) Cij: e

Calculations show that longitudinal waves are possible only

as long as | <<@« )_. and that they satisfy the equation
& 2 3/2. . -4 s

There are also transverse extraordinary waves such that

J’u"»(ﬁ)z_ corresponding to the ecguation

) BaC Y s (2 (52)

lr—‘-‘—'l- 1."/" - ;“'2_ ‘UEL
Equations (31) and (32) are solved in App. 2.

In conclusion, we may summarize in the following way what
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happens when the Landau damping 1s included:

1) The index of refraction is never zero or infinite at the
harmonics. With the exception of the quasi-macroscopic waves,
all possible oscillations have very short wave length and are

rather strongly damped.

2) Using the results of sect. 3 one can see that when A is of
the order of %%- the Landau damping destroys ordinary waves,

with the exception of the macroscopic one, which remains prac-
tically unchanged. The macroscopic extraordinary wave also re-

mains unchanged.

3) Only waves with Regyj >0, i.e. [NR[:>|NI| , have a line
structure: they are longitudinal waves. VWhen Reguj < 0 the or-

der of magnitude of N at the harmonics is the same as elsewhere.

6. Deviation from thermodynamical equilibrium

The results of the preceding sections have been derived star
ting from a Maxwellian electron distribution function. According
to the model of ref. % and to the discussion of sect. 1, how-
ever, a deviation from thermodynamicél equilibrium has to be

assumed in order to explain the observed radiation.

Here we consider longitudinal waves only, propagating in a

plasma described by the distribution function

2.
id i Wi -ve:)

N
=57 d. E. [V, =‘”'————J£L—~‘““‘L“ R =
‘.Fo(f?) = Z_ rl‘ oi (v, rr) %‘ T U{G‘_‘ Vi P %5 W

=

-

which takes account of streams of particles and temperature

anisotropy.

)
. . - . + O
The dispersion relation 1s
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X S
Ki Vg
Ll ¥T;
+00 K qr = E™
i w —~ hfll oL =M1 ‘-JE C’l T“‘/ﬁ'-) z J' u"J"' e
= ﬂ-n» mo= g e

where

z z(a)vh" a‘_-'W“-)ec
\rilCuU/M"‘_

In what follows we shall consider only the case of small
deviations from an isotropic, centered Maxwelllan, in the sense

that we shall suppose

dl >> di (1:2,5, ")N) _; Vth!H = vthj_-f ; vol = O-

Moreover we shall assume W X nuW, (n=1,2,...) and [KiL%»Kﬁ‘.

Consider first the isotropic case of two centered Maxwellians

(v, =¥ = 0) With very Gllferent Lemperaturess W, =

or In this way one ob-

Vihia ¥ Veha Vene — Vthiz € Vtha
tains a dilistribution with relatively more fast or slow electrons
than a Maxwellian, but without streams. If the condition |5, , (%2,
i--cv

= Jd.:L Z _._/.’--——
m V2 L )
e 25""WH\ (33)
is not fulfilled, it is clear that the second distribution func
tion does not contribute to the lines but modifies the back-

ground and that only sligthly as long as d2/v <<d1/v

tha thq
If condition (33) is fulfilled the dispersion relation is

K,1'+ )(*Hme T L V‘") )( +n-c, 10")

nim M q#ﬁ, m. —Al
ooy o ST () %"—;I; (m)] =0 (34)

his equation shows that the terms dependent on the index
2 are negligible compared to the other in the case Vi, > Vip, .

The result is not too surprising beacuse we have introduced



deviations from the Maxwellian in the distribution function

in a veloclty range far away from the phase velocity.

In the opposite case a modification arises

Vihe < Vehe ?

2 2 -
when (mpz/vthz) %f(wp1/vth4) . Then the solutions of equa-
tion A = 0 are approximately obtained from those given in
sect. 5 by labelling the quantities wp and Vin with the index

2.

An important change in the result could be expected in the
case of a 2-humped isotropic distribution function having the
maxima in the low velocity range, in the neighbourhood of the
phase velocity. This function can be constructed by mean of

two lsotropic Maxwellians subtracted one from the other with

2 #&1 2
the conditions vy, >Viy, and (w /Vthz) (w /Vthﬂ) The
dispersion relation is then given by eq. (34) where wgi is
2 2
replaced by _wpi However, because (wp1/vth1) is always

2 .
larger than (wpl/vthL) the real and imaginary part of the
index of refraction diminishes only slightly without a change

in the order of magnitude.

Consider now the case of a plasma with a beam, with isotropic

temperature. Then
H.l'\rﬂ :
A e Ve 0 s =
2 (K—J.\Yﬂ»?_.) ’ Ay n=-00

If we assume |N,|<i, it follows K,v &w and Ky, &Ku

When Vo < Vigs this case does not differ essentially from

the preceding one. When VD Vth , the Sm;s calculated at

3
the harmonics are much larger than 1, so that the beam does
not coatribute to the lines centered about the harmonics. On

the contrary, there can be lines centered on the Doppler shifl-




ted frequency = ﬁwe + Kyv_. These lines are much smaller
_ 2 2
than the lines due to the plasma 1f Vthz/d2-5>vth1/d1 , and
2 S
higher if vth?_/d2 < Jthf/ﬂ Emission of Doppler shifted
lines has been recently reported by G. Bekefl and E. B.

Hooper, Jr.2

Another case 1s that of a centered anisotropic Maxwellian.

Remembering that, at the harmonics,

‘§#£[»4 and [$c1«4

we get

e — o e — o
e (=5 B o)

This expression coincides with expression ( 8), when 2545
is substituted by ZEAS + TL/T“ . An appreciable change in
wave propagation results only in the case of a very strong
temperature anisotropy. Also then the relative width of the

lines is of the order of A.

Finally, the case of a plsma with a beam (vO > Vin ) with

anisotropic temperature can be deduced from the preceding ones.
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Appendix 1

A) Evaluation of the series involved in the tensor Yik

First we notice: that the evaluation of the series contained

400
in (6-8 can be reduced to the evaluation of SZL T . In fact

M=->  m -y

S Ll _ fim (SM Lc»))

mER m-m VIR

5 Ll < Li @_f”L,oa L)

mEm (m -Ma)"' Yyom Ced MN=—to M—V @‘L-)!)"

The series involving Ié are the derivatives of the preceding

ones with respect tom .

The expansion in powers oqu , valid for Lﬂ1<§l, is

+00
IM_G‘“) _ A
«gm moy Y +/:%L et (C—) “’Cm—y)

where the last term can be important for y=n>1.

Let us now substitute the integral representation of Ing»)
- .
» - -—_/A.Cod :
L. 0)= D7 (e Coosme) de |
a o |
in 2: =~ . Then, by means of the equation

o ey cosgmeg) - T ebe) A

2y A (YTT) 2y

m=4 )) Ma
we get atte
= e, co:\CYCe g
2: Lo - MO,TF) g ) (35)
Mz=-qp MY
or, using for'mula12 't yt
0l (2)>0
e?m‘:coob’t)dt T, Cis_)-r’““-@”v)ge' de Rel)
[e]

we get



- A .

+00 il ML—
T - ) e s B
T, Lo vt L0 ¢ sapb)dt (56)
cost —vE
- c,o:sCﬂT)Se,/w ot
Re.() >0 )
S weosh t -yt
g_m :r[nnry - Mcyn) P(/L) Se/ dt y (37)

Re(p)< 0,

Some approximations may be given for the integrals on the
right of (3), (3) and (37), for which no simple exact expression

is known (see ref. 13 p. 3%13).

When Y or |Re9w)| are much larger than 1 and Re&u)((h

we can write
(a%]

o0 wt vk
go/"”’&’b'yiw %ng;b s L_@Q/w %C

wnere Z(z) is the "plasma dispersion function" defined in sect.

2. With the expansions (4 ) and (5 ) we have:

when ]U:%:I «1 ,
W, gkl Pl A = V4
i A = Y—&—C"”?J"Tsj}) )
0 ¥ s
when ¥ __ 22
=2 | .
o0 -~
}Lcorﬂ/b v e/ ’5
3 v o LT RR )

Repeated integrations by parts of the integral

S e WC?L‘;’)OLC

give an expression valid when‘pyl «¥Y%, namely




Sz 2z M
e w o3 L) coa@m e
e A AR A B>

;_ Whenj/w{>> ))Q') the asympto:ic method of Laplace gives

45‘/.0' )

+00 AL +00 -—}‘-/
In Table I approximations for V-z _I_,,.__o_,_ and 5’2 (Q"f'_)
N=-th M—)) M=-ta M=

are quoted.
(2]

The series éz %%3; has been calculated for » = n+l/2.
N= - =
The result = - n
+ 00 — w—h o R Wi = = (FT
Sy s Pty g AR 22
M- M —R =1z 2= 2 /me..—’?—- G

is, however, too cumbersome to be used in the discussion of

the dispersion relation.

The series 2 Lo can be found to be

MmEM M- 8
(___ -1 g S . /" cs)
2 £ ~ Pﬁ 2o Cfu. 2 - 4)/ 2 C—‘Dﬁ—;— (_B = Io )
A=0 /u_’ AL =20 JL =Y
where () is the s-th derivative of I, S}) with respect to

the argument. However, for the discussion of the dispersion

relation the approximations given in Table II are more useful.
& —a\/

The corresponding values of ) Twe”and S CIM.&'P)

Mt @.—&L)Z- MEAT @«.-—ﬁ)z_

L E

ool .

S‘e//- Sim (PE) dE a)e, (1 -
0 S
|

|

|

|

l

| are given in Table III.

|

B) Asymptotic expansions of In{a)

Besides the well known expressions valid for[ﬁ{«@ %g and
M».‘g’, we need two less common expressions valid for/Lu,[«)J F
¥3» 1 and L[y, IRe(/u)’» 1. They can be derived from ref. 13
using the method developed in §§ 8.6 - 8-61. When Jel ¥,
Y31, region 2 of fig. 21 has to be chosen if Re(#) < 0 and

region 3 ir Re9u),> 0. When [p[sy¥+4 the region 1 should be chosen.




_32;_

The resulting expressions for Iygw)e7“‘ and (Iygﬁ)ejk),
are given in Table IV.

Appendix 2

Equations (11),(13),(31) and (32) are of the form

T JmS (38)

where Re(s) > O, |g »1, p is a positive even number and A

e+

e
is complex. Let us write s =¢e , 16/ ¢ X and A =ae

(k=0,+1,*2,..); taking then the logarithm of (38) and sepa-

rating the real and imaginary parts, we get

ng:ﬂwﬁ"‘S’Ph) )

3-:}{#—9 = ¢ +%9+1R‘1T

T ﬁn@¢g”?)/g is much smaller than 1, these equations have

the approximate solutions

(m=0,+1,=2,..)
_ (39)
g = i(e-}-(—%-—f-hj'ﬂ' (I‘:O,Il,ié, . -)
oy 2
where £ 1s equal to &V[otg%-_)/g =—.«3n,[°((*[€.+(%+ )]T) J/Lif(-(-(%f"ﬁ .

The following conditions are to be fulfilled

E>0 , ie. *3%'>4 J
eaq,  ie  u(xg™)/g €1 ; (40)

Solutions (39) are the only ones possible if condition b &«1,

1s satisfied for the given value of & and for all values of




g in the range where eq. (38) is valid. Otherwise, there

are also smaller solutions which are not of the kind of (39).

Because q is much larger than 1 and p is 1 or 3, condi-
/2
tion £ «1 is always fulfilled if D(gP> 1 and « $ § . These
last conditions are always satisfied in the case of egs. (11),(13)
and (32), which have therefore only the solutions (39).
wg, 2% \H3 E\F .

(31) has the solutions (39) when(ﬁ&lA << <Gﬁ) ; in the
interval 2m*& ¢ < (-B 2783 it has no solutions with Re(s)> O.

It is interesting to note that |Re(z)l/|Im(zM is equal

to g and goes to zero as |z, goes to infinity.

g/l g
Remembering that €9u164+5) = e we can write egs. (12),
>0

(1%) and (27) in the form

2 2
=t T Pl
o 5 =Be”, (41)

where Re(g) > 0,

is complex.(The form with the minus sign corresponds to eq.

(27).)

If we write

73]
y'5 = + & = e
iz T T /D” ¢
(P
and B =f3& we get, analogously to egs. (39)

w = ilri FE 42w

y= (Y78 £2KT)
where £ = b (S LA

That is 2/ 2 - t%):ttqi +_j£9+LKT[j£ )

= T e
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3 2
Im[%é—_"-{-m:;iﬁjz_ \P-l-q'ig -i-Z‘CTr

When the positive sign on the left hand side 1s taken, these

equations can be approximately written
Re (22) = = (§+ %6 +2KT)E )
Im,("?,i—) = ['U + 7/2-9 +2[“T

and therefore one ohtains dJdg @& = * € which gives

9::1%;£+zde j £ >0

_ 2y (W)
g = :

The conditions to be satisfied are quite similar to that for
eqs. (39.

(42)

Eq. (13) has only the solutions (42). Eq. (14) has solu-
. 2 2\ s
tions with Re(s) > O only in the interval ¥ »¢> (@)ﬁ%@é@)

and then they are given by (42).

With the negative sign on left hand side of eq. (41), one
has analogously — c%&@:ig which gives

9,—,:t‘g__ﬂ-_s.+2m—T ;

(43)
B B LUEIT
28 2

Therefore £ has to be negative and the conditions to be ful-
1
filled are B g?/z_é i 3 Ggw]jzg?/b/)/é?/af) 2y
4«34L4%ﬁgvayl

In the case of eq. (27) they are always satisfied. Expressions

(43) are therefore the only possible solutions.
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One could have developed the exponent in (41) in powers
before writing it in the form X'e‘w but it is easier to
see that the error made in determining ¢ and ® 1is of the

order of \%. by the method we have used.
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