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ABSTRACT: The equation of motion of the meridional centre of
mass of a toroidal 6-pinch is derived. It is shown that the
equation d2 s/dt? = 2 c2/s (s = distance of the meridional
centre of mass from the axis; ¢ = Newtonian speed of sound)

is a good approximation. It gives an outward acceleration
independent of the ratio p/B2 . The right hand side contains
contributions of about equal magnitude due to the gas pressure
and due to the diamagnetic behaviéur of the plasma. Corrections
to this relation due to "geometrical" effects are of second
order in the aspect ratio A (A<« 1) while dynamical corrections
due to compression or expansion of the plasma are of first
order in A . Both are of minor importance in practical

applications.




1) If we introduce a system of cylindrical coordinates (s,9.z),
a toroidal ©-pinch can be defined as a magnetohydrodynamic
configuration where all quantities are independent of ¢
and where the magnetic field is everywhere toroidal:

B=(0,B(s.2).0) (1)

The plasma shall nowhere touch the walls of the discharge
vessel. There then exists in the meridian plane a ring-like
region where the gas pressure p=0 . In this region the
magnetic field is necessarily of the form

B(S.Z)=-S-QB° where p(s,z) 80 (2)
s

so Bo 1s a function of time only which we shall not specify
(it is, of course, proportional to the total current through
the external coil).

If the motion is at some time purely meridional it will
remain so. We assume this to be the case. The equation of

motion is then:

p %% = with f = (5,0,1;) (3)
and T | a(82s?) _ ap (4)
2p052 ds ds
) 1 aB? 3 5)
f, = - — - 2B .
= 2py Bz 3z ( ‘

As a consequence of eg. (2)

f =0 where p

(1]
o

(6)

For further reference we note that from eqs. (4) and (5)
with eq. (2), the focllowing theorem of the virial type

holds:




2)

3)
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ﬂdsdzi-i = 2 ﬂ'dsdzp (7)

p®xo0 p£O0
where r=(s,0,2) 1s the radius vector and the integrals are
to be extended over that portion of the meridional plane
where p 1is different from zero. For the simple proof see the
appendix.

A complete analysis of the dynamic behaviour of the toroidal
©-pinch implies solution of the equation of motion, the
equation of continuity, an energy equation and the equation
describing B (s,z;t) . We shall,lhowever, show that some in-
teresting conclusions can be drawn on the gross behaviour
with much less knowledge. Such conclusions seem warranted
since it is known that a toroidal 6-pinch can under no cir-
cumstances be in a static equilibrium [1] .

We define M as the mass per unit angle of ¢ by

M =Hdsdzsp(s.2), (8)

pP*0
so that 2t M is the total mass in the pinch.

We define further averages of functions F(s,z) by

~
O
S

<FY» = M~1 'Hds dz s F(s,z) p(s,z) .

p*o
Of particular interest among these averages is <r> which in
a certain sense may be called the meridional centre of mass.

Fer further reference we consider a simple example

2
Pec = const, for (s - S¢) +22¢R? (10)

©
1

0 elsewhere

We assume the aspect ratio A =RIS, of this homogeneous ring
of circular cross section to be small compared to one, and

evaluate the average of some powers of s and z up to order a?




o U e
<s2> = 520142 a2) <22> = LR2
{ s> = S, (ia-.}:.Az) £z > =0
<s9> = 1 (11)
<s=1» = s
<s=2> = 5.2 (1 %—A2+ ..... )
<s-3 = Sc'3(1+%—A2+ ..... )

It should be noted that the meridional centre of mass does
not coincide with the centre of the ring.

In making use of these relations we shall effectively re-
verse the logic. If we consider configurations in which

the plasma cross section is essentially circular, such that

2 (<s2>- (s> W2 L 2 (gz2y - ¢ 2302

we call that quantity the (minor) radius R of the plasma.
The aspect ratio A we then define by

A=R<s1> or: A=zR-{s>1

The definitions of A may be considered equivalent, since
we are only interested in cases where A1 and A occurs
only in correction terms. We then assume that the internal
relations between the different quantities of eq. (11) are
approximately true to second order in A for all quantities
occuring in eq. (11), e.g.:

(s)-(s‘1>=1+-l— AZ
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4) From our definitions it is (with the aid of the equation

of continuity) easily proved (see appendix) that

d -
.
at W = GP> = <ED
Therefore:
MQE (s):ﬂdsdz fgs (13)
dt?
=2Hdsdzp-ﬂdsdzfzz (14)

In passing from eq. (13) to eq. (14) the theorem (7) has been
used.

Eq. (14) is more useful than eg. (13) since under all ordi-

nary circumstances the integral containing t; is small in
magnitude compared to the integral containing tg . This is
plausible on geometrical grounds, if the configuration possesses
a plane Qf symmetry, say z=0 (the integral dedz f; =z is
invariant under a translation along z ). In addition, it is
plausiblé that f; 1is smaller in magnitude then tg when the
plasma is not rapidly being compressed, since eguilibrium

in the z -direction is possible while it is not in the s -
direction.

We shall return to this point and neglect the t; —integral
in eq. (i4):

|
|
N
w
v
"

dtzz % ﬂds dz p (15)

2<plpsd

2¢2¢s-1>
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In the last expression the Newtonian speed of sound c¢
has been assumed uniform.

If we approximate (s-1) by <s>-! we arrive at the re-
sult derived under more restricted assumptions by E. Remy [2].

It is particularly noteworthy that the acceleration of the
meridional centre of mass is independent of the local values
of the ratio p:BZ12p , but depends only on the geometry and
(for a given composition of the plasma) on the temperature.
If we assume that at some time the meridional centre of mass
is at rest at a distance s from the major axis of the torus
(i.e. <s>=5, dS/dt = 0 ), then it takes a time T to move
to the slightly larger value s.+b6s , where

T=L(s-85)"2 , s» 6s>0. (16)

In the present approximation, the results do not even depend
on the aspect ratio. Its influence can be estimated by com-
bining the model of eq. (10) with eq. (15), resulting in

a2 2¢2 1 (l?)
— s> = £ 1 d a2 :
dt (s> § “g A SRR

or
- el A2y 12 2025 -1 . (18
2 s (1 (‘A }}-Zc Se i AL (1 )

Though the factor 1/4 in front of A2 can not be considered
to be precise, it is obvious that the aspect ratio has indeed
generally only a very minor influence on the outward accelera-

£ien of the pinch.

In the preceding section we have assumed

| <tz 2ips>iK < plps >

and therefore neglected the terms containing t, . This assumption
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is especially questionable when the plasma undergoes a fast
compression or expansion; more precisely it is the deviation
from equilibrium and therefore the acceleration of the com-
pression (or expansion) which matters. We discuss this
effect by considering a model of sufficient adaptability.

We assume that the spatial variations of p and B are, with

two time dependent parameters (soB, and sp2(1+a)) related by

s2 82, (1eayp = L B2 (19)

1
2
So

Consequently:

2
te-0-(ea)2e) Yy (20)
= 2

If s, is arbitrarily chosen to be close to <s> , then the
choice @ =0 gives as nearly an approximation to static
equilibrium as is possible. This is evident on insprection of
eq. (20); the force vanishes on the cylinder s=s, , 1T is
parallel to Vp , 1f s < so 3 and antiparallel if s>sqo . A >0
corresponds to an accelerated compression, a< 0o to a decele-
rated compression (or to an accelerated expansion), for a<-1
the plasma is not confined at all by the magnetic field.

The "ansatz" (19) or (20) should be sufficiently versatile
(besides the two independent parameters, one of the functions
p or B can be freely chosen) to approximate sufficlently

most configurations of actual interest.

To render these considerations more precise, we define appro-
priate averages for the acceleration of compression in axial
direction (az ) and in lateral direction (ag ) by

= {lz - <z>) ""7_}
(<z2y -¢2>2) 12

o
<

(21)

(<
[0
h

[=%
-

((s=-¢s>) - vg >
(<s2> -¢s>?) M2
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Assuming eq. (19), pip=c?2 (¢ uniform), <z>=0 , and
choosing (without loss of generality)

so2 = ¢s-23 -1 (22)

we obtain

a; = - c2aq<z2>-12

(23)
c2 2-¢52Ks1y +(14@)<s-2>-1 . <5-3>)
(<s2> - ¢s>2)1/2
We use the simple model of eqg. (10) to define the (minor)
radius of the plasma R and the aspect ratio A and express
the different averages by these quantities up to the order A2 :

ag =

2
_2e?

C
R

(24)
°s=-2T°2(A2+G.(A2+0.(1+—2—A2) ) A K

az

In our model - and presumably in reality as well under normal
circumstances - a sufficiently fast compression (a » a2) will
be essentially isotropic, while near equilibrium (ial < A2)
the lateral compression due to the outward drift becomes
noticeable. During a fast pinch discharge, a will be first
larger than 1 (but not by ordersof magnitude), then it will
through values 0> a »>-1 approach values 1 ai €« 1 , possibly
with superimposed oscillations.

It remains to derive the eguation of motion of the meridional
centre of mass for our present model. Using eq. (13) or (1i4)

and eq. (19) with {22), one obtains

2
e {s> = cz{(s‘1>¢ (1+a@)<s-2y-1 (s‘3>} .
dt?

or introducing A in the same fashion as before:




d2 2¢2 1 )
e e 262 (1,1 2 1,3 a2y . (26)
Y {s> 5 (1 T A+ a.(2 3 Af) ) A K

Of course, both coefficients of A2 cannot be considered

to be reliable, least of all % a . We therefore omit this
correction term. Employing the approximate relation az=_%ﬁ

of the appendix, we re-write eg. (26) as (s=<s>)

d2 ] 2c2 4 -
2= LB Yo 26 LY
2 {5-&4 ) S (1421‘\ } :97)
\a
42 o .l ay
4

~N

dt

This form shows clearly that the correction to eq. (15)
stemming from the compression is small though larger than
the "geometrical" corrections considered in eq. (17) (since
it is of relative order al ),

The author wishes to express his thanks to Drs. Lotz, Remy
and Wolf.




Appendix

Proof of eg. (7)
We introduce qfs,z) by

2q = B2s2 - 802502 ’

Then q =0 where p =0 (ea. (2)), and

=-—— Va-Vp
Ho$

f

Integration by parts yields

Hdsdz fg-s

p £0 p¥ECOC

ﬂdsdz f .z = ﬂdsdz (pv«q!s2 Mo )

n

ﬂ. ds dz (p - q:fs2 Ho)

This proves the assertion.

In our present notation, the model of eq. (19) is equi-

valent to the assumption:
q = -502(1+(l'.)p
In contrast, eq. (15) would certainly be precise if

q:—szp.

Here the contrivbution to the acceleration of the centre of

n s 1

mass due to the iamagnetic" effects (represented by q )

and that directly due to the pressure are exactly the same.

Proof of eq. (12)

All integrals are to be extended over the region where p % 0




(since dM/dt=0 by conservation of mass)

- 1 il
= -ﬁ.ﬂ’dsdzs_r(s pvzq»—;—%psvs}

(equation of continuity)

= L
R o ‘H‘dsdzspi

(integration by parts)

= LXD> .

Similarly:

4 ¢y -
L >

n

A
M

:4—‘[[ dsdzs{p :—f -;(V-px)-p(.!.-vir.}
v

Remark regarding eaq. (21)
It may seem more natural to take instead of eq. (21) the
following measure of acceleration

42 (522512
di?

zaz + 0227312 { <B6z2>¢vy2> - bz . v,>?2 }

( 6z = z - <¢z> ), and correspondingly in the s -direction.

This measure implies some knowledge of the spatial distribution
of v (not only of v ). In the simplest possible case in which

vz < bz 1t reduces however to ey . This is, for instance, the

case when the ring model of eq. (10) is to hold identically

in time; here the relation
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