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Summary

We study a one species homogeneous plasma outside
equilibrium. We discuss the normalisation of the correla-
tion function which leads to a condition on the Fourier
transform in space of the density correlation £;(¢?j for
Zﬁ_ng . We compute é;(i?) by two different methods and
connect the result with the fluctuation spectrum of the
electric field. Integrals involved in the general case
are evaluated for small K . This result introduces
a limitation on the behaviour of the velocity distribution
for large velocities.

It is shown that fluctuation spectra may be obtained also
from test particle calculations. The test particlé problem
helps furthermore to understand the limitation mentioned
above.

Finally we use L;(Fa)to compute the interaction part
of the equation of state.



1. Introduction.

The system considered here is a homogeneous infinite
electron plasma in a continous neutralizing positive
background. Collective effects leading to Debye screening
are taken into account.

We have seen in Part I , section 5, that the correlation
function in such a plasma relaxes to an asymptotic function
in the fastest time scale Z; , 1.e. in a time roughly
of the order G&:' , the inverse of the plasma frequency,
while the distribution function F = E varies in the
much slower time scale 2; and reaches thermodynamic
equilibrium in a time of the order ﬂ"{j oo;’ , wWhere
/2'%3 » the number of particles in a Debye sphere, is
much larger than unity.1’2’3)
It is therefore possible and in agreement with the ideas
of Bogoliubovu) to define a meta-equilibrium plasma in
which all 8- body functions l§ (S 29.) are functionals
of the one body distribution function F which itself
is in lowest order of the small parameter (/)7'2‘:2?)-'
constant in time.

It is well known that the validity of these concepts is
restricted to stable initial distributions that only allow
for damped plasma oscillations on basis of the linearized
Vlasov equation. ( See Part I section 5 and Appendix B),

Our purpose here is to discuss the normalisation condition
for the pair correlation function and its relation to com-
plete screening ( section 2), to give a complete solution

for the correlation function by two different methods

( sections 3 and 4), to connect the results with fluctuations
of the electric field ( section 5) and the test particle
problem ( section 6), and to show that the theory gives

only correct results in view of complete screening and
physically acceptable fluctuation spectra, if certain

conditions on the distribution function are impcsed.
(Section 7)




Finally we use our results for the calculation of the
interaction part in the equation of state obtained

from the virial theorem derived in a new way exhibiting
more clearly its validity outside thermocdynamic equi-
librium ( section 8).

2. Normalisation of the pair correlation.

It has been observed by A.Schlﬁteri) that the 1limit
hierarchy of eq. (I. 2.5) is exact ( without the limit
N) V= 00 ) for renormalized § -body functions fs'*
given by
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s = (N-s)! NSIE__(/V-J)!N“ D(”"’N)J&T-‘jgm (2.1)

the notation being as in Part I, section 2.

We clearly have

= (2.2)

and therefore the normalisations
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%) Private communication. See also Reference 5.



Defining the correlation by

EX04) < UE ) g% (14

(2.4)

we see from eq. (2.3)
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For 6' EEE ~ and j* we have the usual equations
(I. 2.14) and (I. 2.15) where the integrations have to be
carried out over the, entire velocity space and over the

volume ¥~ in configuration space.

Omitting zero order correlations we expand the dimension-
)
less correlation 3_*0, 2.) as

[~ (o] o
d‘?*(’z'l}:: fj*w/l,z) + €% S /7Y e (2.6)
_ 3)~/
£ =6y
In the dimensionless notation we measure distances, veloci-

ties and times in units of ‘ZJ ( Debye length), \l,. (thermal

velocity) and 2‘{ V_r'":.: (,J;' respectively.

The normalisation (2.5) reads then

quo*[/,l}a’§: _ _5,_9(0 (2.7)




It is clear from eq. (2.6) that this implies

[ 05, =- Ay

ox(z) / o
[j £ (2)ds, =0, T =22 (2.8)

230,
The function j {1,2. obeys the following equation

o
( Zg is the fastest time scale and corresponds to Qaalr,
see Part I)
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The integrations are over the entire Cg -space and over

the reduced volume 'V"?J in dimensionless configuration

Space.

Writing ox(l) _ 0-)(-.(1,0)_'_ 2 O*(,),)‘f_ L
& =4 d

whereS) |

A=23V=(N)"</




we get from eq. (2.8) in the limit ﬂ% 0O the same

equation for go*(’)o) with integrations over con-

figuration space extended to infinity. This new equa-

tion is the usual one which we want to treat. The

question arises which normalisation condition exists for
% (/,0)

It is clearqBBat

2
f?"x.z, = xla should have a finite range of the
order unity ( or 1&/ for é?*(V,Q) ). Otherwise the expansion

in & has no sense. Let us assume furthermore

(o]
*("o) as a function of the distance

© 3¢ (1, Q 8 o 3 & 5 o
g*(’ Uzd,o V,)V.Z)Z'o +6! (XI-‘L)V/)V.Z Z;)
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where Xo is independent of Xj2, and d/l(ﬁ):l.) has a
finite range of the order unity. Then we clearly have

A0

where the integration in the right-hand side extends to

infinity for both velocity and space variables.

(o]
*('J o) does not obey the normal-

Therefore the function
isation condition in the first line of eq. (2.8) in general.
This is only the case if Jo= O ,i.e. 1if the correlation
has no part ( of order 2 or AN with a non-zero average

over the entire configuration space.

The case A’ozo corresponds to complete screening of the
electric field of every particle. This may be seen from
egqs. (2.2) and (2.4) which imply

E02) = 3 {FFas giilf

L [g*(’)(/,a)a’i{ dc;o*(”o) ( /,1)0/53 o (52)d%]




If particle | is completely shielded, i.e. exactly
compensated by the lack of other electrons ( compared
with the average density) in its neighbourhood, then
one has far from particle 1 one electron more than
corresponds with the average density. Therefore the
conditional probability density for finding particle 2
somewhere in phase space far from particle 1 is equal
to the distribution function for a modified system
with the reduced volume jf;-y;ﬁj‘

Therefore

N
Xy —> 0, 5[’,1)"'9/\/._, F@)F2) (2.11)

or, by eq.(2.10)

‘;jkf_§">°) é? Ar((é'z}'_%”cj

We have left again the dimensionless notation.

Eq.(2.11) is the product law for probabilities with a
correction connected with the right counting of the
particles. The relation between complete screening and
normalisation of g*(!,l.) is further clarified in
section 6 where we calculate the field of a test particle.

We expect complete screening for the asymptotic q*()(r -)DO)
Therefore we expect *(’ O) to satisfy the normalisation
(2.5) in the limit T,=> 09 but not necessarily for

finite Z; . Introducing the Fourier-Laplace transform

oy
— /
JEY %)P)"j;?ﬁzg,f/% g*(4o)(,¢zj (2.12)




we find again eq. (I. 5.29),

The asymptotic correlation

fA(k'?’-z) —>o+/ad$(€ﬁ;z/o)

is the solution of the integral equation (I.5.33) or
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where
- v /2
2 P Y = )= [ A /2 )7
P k2 A A(K,'J/“ jA(K: %'./1)0/5 (2.14)

The normalisation condition corresponding to eq.(2.5)
is

/
AA /P:a, ,? == F(d (2.15)

Indeed one finds from eq. (2.13) that the left-hand side
is only bounded for K —> ¢ if the expression between
square brackets in the right-hand side vanishes, which
condition leads to eq. (2.15)
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D4 Calculation of the pair correlation -

Integral equation method.

We start from eq. (2.13) and drop the subscript A

and the argument A~ which occurs only as a para-

meter.

Following Lenard 6) we obtain

b2 - 106) 2L J

P77
DF (VY -

3 F /u/
F(V) Fét Dt = T “/° ’ (3.1)
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where /i, ;; and A_ are defined in eq. (2.14) and

F(u/ and H[u)by
El) = [F(R)S(RV-0) 50

H () = /4/7/5/;?72. i)
, K
= 2

(3.2)

(3.3)




Moreover we have introduced negative frequency parts

of functions in egs. (3.1),(3.2). For realyd the positive
and negative freqyegcy parts of a function gp(iﬁ) satis-
fy the relations [0

Wil)+ )= Y ()

00
. _ / 5///‘&7
5”7“/”9{/ /“2577- u’ - u I’ ()

~od

It is easy to see that QU*ZLJ and QV'lﬁt} as defined
by eq. (3.4) can be continued analytically in the complex

U- -plane as 400
)= s Y
7 <7 w! - u e
— D9
7 I

e -5

— od
and that ?V’?ég/ and QV-ZZb} are analytic without

singularities in upper- and lower half plane respectively.
The symbols and denote integration below and
above the pole & = uZ respectively.

We note that integration by parts in eq.(3.5) leads to

2)9u41?9(hj - P HU(QJ + (=)

2 u — 2

Lenard6) proved that ff[@t) is a real function. Because
only the imaginary part of AL(%%} plays a role in the
kinetic equation (I.5.35), Lenard only needed eq.(3.1)
and not the solution of eq.(3.2). If one is interested
in the correlation itself however, it is important to

2T
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to solve eq. (3.2). In order to do this we use the
first line of eq. (3.4) and write eq.(3.2) in the form
( see also Ref.9)

__f_/:éﬁ/_ > M _ 27TL 14/0'2
Z)  Zl) T emn 2zl

: E-(K)DF@}'E/LQD?;@JJZ (3.6)

with

# 2% ()
ZZi Wl = — P S
{/ / FE X7 ‘;o =P -

The terms of the left-hand side of eq.(3.6) are positive-

and negative frequency functions provided that 2:*262}

and Ef_éﬁj have no zeros in upper- and lower half U-plane
respectively. i

We note that Z_[a.j is identical to the dielectric constant

& (/_(-: 14_/ of eq.(I.5.37) and Z"'[u} to its complex
conjugate éf’*[kﬁ;g). It follows therefore from the dis-
cussion in Part I, section 5, and from

Z (o) = {Z+(Lc*)f*

that our proviso is)fulfilled if ;?Cf; @} obeys the
10

Penrose criterium , eq. (I.5.40), for every direction
of )E’ . The solution of eq.(3.2) is obtained directly
by taking the positive- and negative frequency parts of
the right-hand side of eq. (3.6)

Hle)= Z ) ahs, (8] #Z () fauhis. (18]

o
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Performing some rearrangements described in the Appendix
we arrive at the result

Hlu)=— 2705 9/—%//; Fly >" “h 14
3 ,
I D4 3}5'(“}/3”_ Z-Zk/ (

)Py, -
O Z ) f]
8”’””/¢/=-ﬁ“/a/+%§i/% '
“Pe Z ()
+/ ,‘_—"(u/ ' (3.9)
E)ﬁaﬁékgzL ézfikéﬁ/‘JL—J)z

Special attention is paid in this paper to the purely

3.8)

configurational correlation function

L5 (R)= [H /@ ol (3.10)

It may be obtained from eq.(3.8) or (3.9) by an inter-
change of the order of integration, i.e. the { -integration
is carried out before the integrations connected with the

4+ and - signs. The result may be written in the alternative

forms + 00
y
¢ 2 F ]
ZG;' R’ - LI LU e .
( / T/ﬂé DF(HJ/QL(_ (Gwll)
= 0

A CFEs ) P )
Z () Z ")

.
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and oo

erin(R)==1 + [ 9;;{/“//2 .
o0 “u

. aF‘/%LL 3 9;‘5‘%%& J(CL_ (3.12)

—

Z (%) = T lw)

The results of eqs.(3.11) and (3.12) have been obtained
also by Wolffll) by a different method.

Equations (3.8) up to (3.12) are very appropriate if one
wants to calculate the integrals in special cases by means
of contour integration.

Eg.(3.12) may, however, be transformed into a much simpler
form

+od v
87;’/;75/?=_/+/ . F() ey

uj-/-/n‘z/u/ (3.13)
with .
7 Rp,
Ale) = Re =z ()= f-u? -/ ﬁz@c&’
3 (3.14)
M /ﬁt/ =dmZ fu)= 77-“/;3 QJZ“/

It is difficult to carry out the integration in eq.(3.13)
for all ﬁ( . But a simple result may be obtained for small
K . On first sight the integral is proportional to ~9
( or k’") % i P——)o . However, the resonance bé-
haviour of the integrand can give a larger contribution.

“1%-
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For large ¢4 we have 2(&)—"‘ / = P/ and /u(a.j
very small. The integrand in eq. (3.13) has there-

fore sharp peaks at u=2=* “’P it Uy > V7_

( L%_ : thermal velocity). This leads to

Up=> 09, 8773n L5 (K) 2 — ) +

/ F(u) F () (3.15)
RAUREZA LS
P

u:-uP

This result is correct as long as the second term in
the right-hand side is larger than tL"q for large 4

P

We remark that, if,&Qﬁ) i1s known from eq.(3.8) or (3.9),

A(?/ follows from eq. (3.1) and jAA (EZ?, T/?) from
eq. (2.13). The function /g (K’Jis not sufficient for

determining ﬁ(k_:i?) —l./;)

4. Calculation of the pair correlation-Frequency spectrum
method.

Following Rostokerlg) we introduce an asymptotic corre-

lation in phase space and time V(}T,?Dtlﬁ,?z)t')

It 1is the correlation part of the probability density for

finding particle 1 in a phase space cell centered around
()??)V;.) at time t and particle 2 near (X-)Z: V;) at

a later time Z’. In a homogenous plasma we clearly have

WRGER )= W(E, BT, )

with
et
Yn=X-X;  7T=t-¢
and

V/F/.)a,?,\_/f Z‘=cy=dqw(/,.z) (5.1)

J

=1 lw
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()
j"‘/j[/,.z_) being the first order asymptotic correlation
of the static type discussed in the preceding sections.

WX,V v z ) satisfies the equation

12 :; z
2 - 2 — : 2 DESD
A .. = = e F(v,
(;ZE < Egiiz‘>'1vr(itQ.) g} ké; Zi) WF',¢L. :9 ;; ‘}
> (LF0)  fulfperivme  us
@ :;__> > - + N i’ J ,,lé, ’)af; Q{i s
g0 ,Xu*"{r} X! Xd% (=0

and its Fourier-Laplace transform defined by an equation
of the type (2.12) may be obtained from

A s, J
W(")‘G,Fz)»/’)"‘ P-;g?[ﬂj« (’?ﬁf’)

_ e e ) | ) Mg o
k* ;)";2_9 377’060-1 .?)+ V(k,}l/, ‘GJP)JJléf

We define the dynamic density correlation by
—_— > b 3
(k/ [W Ky _)P)d T (4.4)
and find from a straightforward calculation
p=ilkz+5 (Ej /fz-() i [Z/

_ Zmeuf Q,r"/z/ (4.5)
e = f

-15-
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and for P-"-'-'l.'/(Z-S {E") just the complex conjugate
of eq. (4.5) ( Z is real).

The inverse Laplace transform Z;fé??z;) may be written
as

N &
(R T) = 757 b (R)exp i k= z)olz

(4.6)

where
Lt/ ~ /)
é:z—' /’Fy'— é; /k/f.é; /k/_‘é_/_o =/ kz.S (}f_yfé/;;kz,.g /P}

For Z > ¢ only EZ—ZP gives a contribution in

eq.(4.6), for Z< O only b—z*(}?j and for Z =0
+ —

both 52 /;y and b—z /p/

Using the relation between /f'kégj and /6/(25/ given in

eq.(3.2) one derives easily

/7. /R .24 aZD’t'upz' /"?/z/
- / ) Ak “I7in a;r—‘(%z ‘ (4.7)

DE) )R <
JCE ) (PP, )
Z7(z) Z (=)
It is now obvious that from eq.(4.6) with Z =¢ the

ZS’(%T/ is obtained as given by eq.(3.11)

It is interesting that we succealed in deriving 47 (K>
without actually solving the integral equation (3.2) by

considering dynamic correlation functions which contain
more information about the system.

-16-
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5. Relations between fluctuations and the correlation

function.

The precise microscopic density of an actual system
may be written as

NV
’?L/T(’,'f/=%5{?'}?/t}f (5.1)

For the ensemble average <f11(3a ﬁ));> we find of course

n(Rt)>=7= Yo

We now consider averages of the type

(nde )nlelL) > =/z”§f S(2-R).
4://=l
- S(7 - X)) D (- n)dS -5,

and find using the symmetry of [) with respect to inter-
change of particles

nfR)nle) > = Y S(0-3) /5 (X-%,) FO)5,
o V=1L g /5/)7,*_?/5/)@-?%5&1)45 ‘5
— 7 5(;"_?%4;7;/?_?/.
5058 -RY) R 75 Y5

X
where é{- (2;2} is defined by eq. (2.1) or (2.2).
We note that the functions F;* and not FS- have
direct physical meaning in calculating ensemble averages.

s [ S5



= 17 =

Defining the Fourier transform

P(R) = 573 [ fnejmten T)> e -
, E?X/D /—./.'/F? -—a)a/jx (5.2)

and using eqs. (2.4) and (3.10) we find

P(%)= '77 f/f-c?r#?b/*"/!

(5.3)

We may also define the Fourier transform of the actual
density by

nl) =[O Replir s,

Substituting this in eq. (5.2) we obtain

PR)= [<e(R)e(R)> exp filrih 0f 'K

or, because f:%ﬁ?zjis independent of 'R’ , integration
over configuration space gives

P(R)= 3L cotr)o(-R) >
The reality of n[x")—lz in eq. (5.4) implies p(—k"’)= e*(?/

and therefore

) _ drs ,
POR) =55 <R 50

-18-
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Following quite similar lines we find for the
fluctuations of the electric field

& (R)5 (2> =2;f”["“«"/3,

(5.6)

. {/+8v3/né"/;?)fex/>{zm(z"_ x*%ali’k
We get therefore for the mean electrostatic energy density
E - 7 2/ ) /3
s <ER)> = W (KK (5.7)

with

W(R)= ey /fc?rx”’/?[/,;’z_ 2772 R
4 < =) = — 2 b, &0

We now want to express k/kﬁg/in terms of the Fourier

transform of the electric field in order to derive

eq. (5.8) more directly.

The total energy is
& 'Vr-;f;;/<54(?)>o/3x
7’ L, D ‘
= G | <ER)ER)>expli fi2e i) Rfol Sl
77‘/( ER)EL-R)S o4
7/_&/(/ 4(/‘?}/‘2’\) o 3%

I

I

o 1 =
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Therefore

W(R)< 3= <|E(RI['

(5.9)

The Poisson equation now leads to eq.(5.8) as follows

W(R)= 35 bre) s <fp (R = 277 PR

Acz

Substituting eq. (3.13) into eq. (5.8) we have

/8 773

W (7))~ 2 / .

where A[u/ and /M.Ztt/ are given in eq. (3.14).

For small AK-we find from eq. (3.15)

W(R)e =% {[ _Fl)

2 773 9 F[“l/gu_ —
|
2 F/u//Bu_ IA-='—L(.P
In equilibrium we recover the familiar result
2
/ g Ky
=] et
W(R)= T3 R A KD
- 97 ne’
kj =27 =

(5.10)

(5.11)

(5.12)

“=
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6. Test particle problem.

We consider a test particle performing a straight
trajectory = ?f-?f

The field particles have an equlibrium distribution
F{V>) with the normalisation f/— (V)d3v=/ .

The test particle causes a perturbation of the distribu-
tion of the field particles and an electric potential

in the plasma.

The distribution function of the field particles takes
the form

==y > — /—>-5——> — = /
%/X,KXMJG,Z'/-:F/V/‘*% X—Xo—léf)vjl{)'f
and the potential may be written as

¢ /?*XZ* ?‘f—) -V:) t)

It is simpler to describe the phenomena in the reference _
system of the test particle. In lowest order of E'“(974%/)
we may use the linearized Vlasov equation

9%_‘+V.21+ 9)( j(Z,D;t/

e 2FE(Y) 2(RET, L) (6.1)
2R 2V ?

and the Poisson equation

5 2EEXEL) 4«77@/}/?..;?/
+ 7 %/?-x 0 by

(6.2)

DY =
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It is already clear from eq. (6.2) that if ¢5 is
completely shielded the integral in configuration
space over the right-hand side should vanish and
therefore

/
%/X’? 7:? z‘/a/ﬁ/a/”,v--—-—z (6.%)

J

This is similar to eq. (2.5) if one replaces f*(/;.a/

W F(P) 4, (R V3

Indeed, performing a straightforward analysis along
the lines of Rosenbluth and Rostokerlj) we find in
the limit Z‘-—)Do for the Fourier transforms in

space A
¢ F, n) = - = =

RTthT ZTUR 1) (6.4)

; DEH

f{k MD)QPV-—— AN u/f /x,ttoj/a%

S Pirn > /0 (6.5)
(K, 4s)

Compare for the netation with egs.(2.14,(3.3),(3.4),(3.5)
and (3.7). It is seen immediately that

f

7 (R=0,V, we)el’ = = g7z

in agreement with eq.(6.3).
It should be remarked that, although both ) and the

correlation function describe screening and satisfy
the same normalisation corresponding to complete screen-
ing, there exists no simple relation between the two in

e
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general. It is, however, possible to derive the

fluctuation spectra }:%ﬂ§1} and W (k”) and

therefore also the integrated correlation function
Z;-(<§? from eq. (6.4) and (6.5).

From eq. (5.9) and a natural interpretation of aver-
ages in the test particle problem we get

W (R)= 772 k| bR 1) B * (R 1) E o,

(%)
hVF/t{ojc/uo being the number of test particles
in the range c{k,o , 1f one stops to distinguish
test particles from field particles.

Substitution of eq.(6.4) in eq.(6.6) leads directly
to eq.(5.10). The function @(}?} defined in eq.(5.4)
may be compared with

9'('?%):37;_3 -fzz//:\//?j i?fat,,/o/jy

where the first term of the right-hand side is the
Fourier transform of a delta function and represents
the contribution to the density of the test particle
itself.

From eq.(6.5) we see that

B

(6.6)

(6.7)

(6.8)
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From eq. (5.5) and an averaging process as in eq.(6.6)
follows

400
P(R)=é7n / O (K uo)0' (K} ) F(%) o)l

(6.9)

Substitution of eq.(6.8) in eq.(6.9) shows that the
relation (5.8) exists between this P(k_v and the
W(K’) of eq.(5.10). This finishes the task of
connecting the results of test particle calculations
with the exact theory of the foregoing sections. It
is clear that this connection exists as far as spatial
correlations are concerned but not with respect to
correlations in velocity space. The complete correlation
function (2.1} cannot be found from test particle
calculations.

We shall derive now some special results for small K
which allow for an interesting physical interpretation.

The energy per unit time emitted by a test particle due _i?

5 7
to the drag exerted by its asymmetric cloud is eV:,':’¢("' 2y,
2

The emission per unit time, unit volume and per Fourier
mode is therefore, according to eq.(6.4), given by

+ 00
: e z'ku,,/?{f’u,/
W, (F)= =2 e
e{) 2IT< k2 Z "k, ) “ (6.10)

—0d

For small k the integrand has sharp peaks at & :L*ZLP
and the integral is easily seen to yield

ol I k’ﬂli{9 v -
" (K —“ﬁ%/"—’/’?“p/* F/f,'*%o/f o)

-2l -
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It is clear that the right-hand side corresponds
to plasma waves emitted by fast particles with

velocities in the neighbourhood of:ft%p "
phase velocities of the waves. The energy density

the

of the waves consists of two parts, namely the energy
2

density of the electrostatic field £ 7p,- and the

kinetic energy density of the ordered motion connected

with the electric current density. This energy density

follows simply from

b2 ' 2 i
7
'-L /7n2.-—¢£~ = = G/ il -15
2 en ) 2 P77
D
because
—
T'a___ /QE [7y) —>
S T eE =g F

Per unit volume and Fourier mode we therefore have

from eq.(5.11) an energy density of the waves given

by

2W /) /’%’7‘%

In thermodynamic equilibrium this is the Rayleigh

Jeans Spectrum*)

E%ﬁj ﬁ?th

? \thu%l»t U= u—’- @ FZA}/Q 173
Up

2 W(R)= 525

Applying now Kirchhoff's law separately to the waves

(6.12)
[ (6.13)
u:"uP

(6.14)

% Usually the Rayleigh Jeans spectrum contains an extra
factor 2 in the right-hand side. This is correct for
electromagnetic waves which have twice as many degrees
of freedom than electrostatic waves because of the

magnetic field.

BB
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in positive and negative direction we find from
eqs.(6.11) and (6.13) the absorption coefficient

A(R) a5

2F (754
Ax (R) = mhig| =, =2{+(R)

u:::u.P (6.15)

where dﬁ_ is the Landau damping coefficient.
This is exactly the absorption coefficient we should

have expected.

In Ref. 12 and 13 Kirchhoff's law was already stated
in the form ( for thermal equilibrium)

W, (R) = 0977-3 24, (%> (6.16)

but no explanation was given there why the right-hand
side contains 2 W(l?/ instead of )«//f:’} i

The physical interpretation of our small K-results is
quite clear. Fast particles emit plasma waves which are
absorbed again by the Landau damping mechanism. In the
meta-equilibrium investigated here these processes ba-
lance each other and the energy density of the waves
may be considered as following from Kirchhoff's law.

7. Discussion of the results.

It should be pointed out that the expressions /7(&} )
and zgzualdo not necessarily converge uniformly to a
limit 4if k -—»o . It is true that if one takes first
the 1imit & —> O before evaluating the integrals in
in eqs.(3.8) up to (3.13) one finds

Hlw) > - Fln) | dm3nb(R)->~/
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This, however, 1is only correct if the integrands in

eqs.(3.9) and (3.12) approach zero faster than /it/
for large [u|

-/

] —%
We examine in fact the three following points for k-—’)o

a) uniform convergence of /f(ﬁ??&e}

-/
b) uniform convergence of 4 (k) —> “'6§ZT%QJ
which corresponds to the complete screening of
a particle.

¢) finite limit for h/(/?}

From eqgs.(3.9),(3.12) and (5.10) it may be seen that
in all these cases we have to impose a condition on

expressions of the form ;L""F[u/{g—‘{:_)_,when IM.[—a [»¢ I

These conditions lead to an asymptotic behaviour of the

form
F/uj s 7,?“_ /u} exp /—— N}u[/s)
where /?,n_(a.} is an arbitrary polynomial and & a

positive number.

The values for /2 and /3 are indicated below for the
three cases:

a) 1 =0 ,/3 >/
b) N ==/ /3' >0 (7.1)
e) N =} /3 >2

We consider as example the often used class of distribu-
. 11)
tion functions

¢,
z-/

) G
F/V/ (V2+a&)’2. J F/k}‘—'(ug_’_a‘yzl JA'Z= (7.2)
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which violates all conditions (7.1) and leads to
both an incomplete screening and a divergence of
the long wavelength energy density components. We
find namely in this case

L(R)=- 2
I Ki+ KE

2 2 <
=) _ »ne A +//"2}/fa (7.3)
W (}( — — Y72 k& kL‘f kc_)z'
k“" - ('2'2"3)';‘9»2- 2-3
o —— 2 Lg 2 _— ,—
a By

It is interesting to note that the violation of the
normalisation condition 52}?:0)=—/d?;rin)"l(complete
screening) is removed if one uses the non-uniform con-
vergence of EZP/ in order to write

A kS
5 (R)=~ g fk‘ - 480 f (7.)

where 5k,o is a Kronecker delta corresponding to 'V-,
in configuration space. This has clearly no sense be-
cause the basic equations were valid in the limit 7/ — oo
but it shows that the results do not violate the neu-
trality condition for the system as a whole. For finite
-D"the Z? -spectrum is discrete and one finds also
from eq.(7.4) that k/(ﬁa}is proportional to 7/'/3 for
small (discrete) X .

In order to get a physical insight in our difficulties
we should realize that the usual treatment is a first
order theory in a small parameter S . It is a good
approximation only for & < &p , say, where &, may
still be a function of K. We suggest that at least for
some velocity distributions (_‘é/k}-—)o) ir k=>0.

-28 -
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This situation is well known in another related
problem namely the damping of plasma oscillations.
In zero order of & one finds the Landau damping
which is exponentially small for small K8’14) In
first order of & IchikawalS) finds a damping
proportional to K% Therefore the validity of the
zero order theory is clearly restricted to a range

offwhich decreases with decreasing K.

We notice that our difficulties with small K-components
are associated with large velocity properties of the
distribution function. For example one may visualize
the meta-equilibrium spectrum as resulting from the
competition between the emission of electrostatic

waves by fast particles and their absorption by the
Landau damping mechanism as described in section 6.

The breakdown of the expansion in E is connected
with the fact that for small K other mechanisms (like
the collisional damping of Ichikawa )take over Landau
damping. To each new absorption effect corresponds a
new emission effect. Atthermal equilibrium the result-
ing spectrum is always the Rayleigh Jeans one no matter
which processes are involved but this no more true out-
side thermodynamic equlibrium.

Of course, as soon as we cut off the velocity distribution
all difficulties disappear for small enough £ , the
critical é; decreasing for increasing cut-off velocity.

8. Equation of state.

An interesting application of the correlation
function may be found in the interaction part of the
equation of state as given by the virial theorem.

Usually the virial theorem is derived by means of a

-29-




time averaging process on the equations of motion
of the particles. It is a bit unsatisfactory that
the interaction part of the equation of state is

to be calculated with the aid of the correlation
function usually obtained as an ensemble average.
Although one should expect time- and ensemble aver-
ages to be equal, this has never been proven and

it is therefore more elegant to derive the virial
theorem purely by means of ensemble averages. This
is done in this section. The procedure shows more-
over more clearly under which conditions the result-
ing equation is valid. It is shown for instance that
the virial theorem is also valid in our meta-equi-
librium situation.

We start from the Liouville equation

ot " (%2 m

¢ z/-/ ’ak V (8.1)
A T
+E—@:cﬁ@[}(h-“-,~) =0

where Qb:* is the interaction potential between
particlesd / and 6/: and Ki the external force on

»
particle / .
We perform the following manipulations:

Xpa Vi
a) multiplication of eq.(8.1) with = k® 'k
and integration over the entire [~ -space.

b) Reduction of the sums by means of the symmetry
of D in its arguments.

c¢) Demonstration that some terms vanish, because
they can be written as integrals over the
divergence of a vectorfield vanishing at infinity
or at the surface of the system.

“30=
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The result is in the notation of section 2

noe [TV LS+ (B2 -—Fﬁaz

__/_zj "’_”9¢/.2 5"
/. )‘;.g D‘—? d

X, AV ‘ (8.2)
L D F
"',,,_/F/g".—é—?/—j— Dy ds =
/

The first term vanishes in the approximation where /:(2)
is stationary, i.e. in our meta-equilibrium. It

vanishes also for distribution functions isotropic

in velocity - or configuration space even if they

were non-stationary.

We introduce

K/?)=- @(’_‘7 +X, (%)

(8.3)

where ¢(X/ is some external potential andK (_5)

the wall force on a particle, which is assumed to

be zero everywhere in the system except in a small

layer around the system where it increases very

fast to infinity. This implies that F{) g irf
particle 1 is at the surface of the system and F [/.2.} 0
if particle 1 or 2 is at the surface.

The second term in eq. (8.2) may be written as ( in
index notation and without the subscript 1)

,L/)g’%‘ °/§ / vm _
=/ /Qxf; (){,(< >) <v4>fo/jX-—n PIWALRS
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because < K 179> = ‘3(173 FCJ“?V vanishes at
the surface. The third term in eq. (&.2) becomes
for central interaction forces

2
n- 3(-’7‘;9/3 IEX

N

B-N-8 plER)~ [Fla) Iy, e

The last term in the left-hand side of eq.(8.2) may
be transformed as

(8.7)

=3[R B e ) =t i Bl

where Az(ﬁciz/t/GTZEyb/fvr is the local density.

We substitute eq.(8.3) in the right-hand side of eq.(8.7)
and notice that (“" K =») 1is the force per unit
no ,2. X W (xj p

volume exerted by the walls on the system. It exists only
in the small boundary layer and may be identified with

— EPdS where pis the hydrostatic pressure of the

system exerted on the walls, aﬂs a surface element and

,2= the unit vector normal to it. If f) is position

independent we now have

fn[?j}?fw(x—%ja/"?X:—/afﬂr?o/S==—3/37/_ (8.8)

D=
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IfP does depend on position eq.(8.8) defines an
average hydrostatic pressure.

From eqs. (8.2) upt to (8.8) we derive the quite
general equation of state

/)= }'j‘nm. ‘%—"/(v*’-)a/fx
n< 2
~ 55 [2 2208 4y o),

2
- }if/-ﬂ/,\ﬁ?. ;S‘;_{?/a/ﬁ(

In the case of a homogeneous electron gas and a

(8.9)

neutralizing continuous background we write

M E)= 1+ T (Z) (8.10)

where f?@? is the configurational correlation function
and we identify gﬁbiﬁzj with the potential of the back-
ground

¢e (%)= "?-/925,2 t)dx, (8.11)

Then the third term of the right-hand side of eq.(8.9)
cancels against that part of the second term which comes
from the constant in eq.(8.10). Extending the volume
integrals to infinity and using the smallness of the
range of /_(/?) we get

A nt :9¢6 (%}
—_ /) <y3 P /2 £
P =3 arSE z‘/’z = riope (8a2)
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Substituting the Coulomb potential and Fourier trans-
forms we may write

/ 2 3
/D =F hmcvis4 P ‘?77"’75//?2/3
/2 77 A4 K

(8.13)

where é;-((]?zj is given in e.g. eq.(3.13).
For isotropic distributions zé;((}?Z) depends only

on the magnitude K and eq.(8.13) may be written
as
w4 ¢ 2 / ¢
==.j’10/ﬁ Yl -
/) -24/77”/72’3 (8.14)

In thermal equilibrium &=/ corresponding to the usual
result of the Debye Hiickel theory and for the class of
distribution functions (7.2) we find

~3\4 2-3
/3 2Y=3 R 2 /14 L 2=34, -
L2-S, 2-/

X =3

if the Debye length is defined by

2= L2 =
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Appendix. Solution of the Integral Equation (3.6).

From eq. (3.6) we have

M_QFV-‘ _ V‘?FM‘_ +
87 H+=Zﬁt'x;Z’f— o /i é“']
=

and a similar equation for /?". We have omitted the
argument U for the sake of brev1ty

We express 2/_/9‘4_ and QF-/QM_ in terms of Z. z

by means of eq. (3.7) and obtain

+
5,77”_// Z FF'Z sz

=~F f-/ZZ/Z

Adding the corresponding equation for /f and using
eq. (3.7) in the form

zZ =7 -—:Z?TL/;Z
we see that

—

a2 (£ ™
377'/2/7"'*—/‘-'7“‘—"27”/"9:4_ 2

L ¥
*;) Fl“ﬁg
?7

or, using again eq.(3.7) in order to split up the
denominator Z+Z-,

() }E? :;};? i?
3 o —
awn Ffz‘ Qu {9""/:)“.( 3 Z)
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By means of the idendity

[ L il + (o e
Z- T 2w \°Fh.zZ 25 onZ”

we now arrive directly at eq. (3.9).

The same idendity again with unity instead of 2

leads with the aid of eq,(3.7) from eq.(3.9) to
eq.(3.8).



