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Summary

A short review is given of the methods of
Bogoliubov and of Rosenbluth and Rostoker for the
derivation of kinetic equations. The procedure of
Sandri based on the concept of multiple time scales
is then followed for weakly coupled and long range
homogeneous systems. The advantages of this procedure
are exposed and the Landau equation is rederived in
a more compact form. Also the Bogoliubov-Lenard-Balescu
equation is obtained again.

New results are found for the relaxation into the
kinetic regime and the conditions for kinetic behaviour.




1. Introduction.

We consider a one species many body system obeying
the laws of classical mechanics. Such a system is described
in all details by the Liouville equation or the B.B.G.K.Y.-
hierarchy derived from it. We want to derive from this
starting point a kinetic equation for the one particle
distribution describing an irreversible behaviour. This
irreversibility is introduced by means of multiple time
scales as used by Sandril), McCunee) and Friemanj). Their
method is closely connected with the synchronisation hypo-
thesis of Bogoliubovu) and gives a more systematic presen-
tation of his ideas. The method makes clear, as pointed out
by McCune5), that irreversibility comes in mainly by con-
sidering the asymptotic results of fast processes as initial
values for slow processes and that assumptions about a
statistical independency(molecular chaos)of the particles
do not seem to be essential. Indeed it is shown that the
usual assumptions may be weakened.

In this paper the interaction forces are assumed to be
central and we restrict ourselves to the cases of weak coup-
ling and long range forces. The precise meaning of these
cases 1s given in section 2 which contains also the derivation
of the hierarchy and a discussion about the application of
the theory to plasmas. Section 3 gives a short review of some
previous methods leading to the kinetic equation, in section 4

we explain the concept of multiple time scales, and in sec-
tion 5 we treat the simple initial value probleml) for the
weak coupling and long range cases. In section 6 we consider
the relaxation of the system into the kinetic regime and

in section 7 we discuss the conditions which should be ful-
filled for the theory in sections 5 and 6 to be valid on
basis of the complete initial value problem. In section '8
finally we collect our main results.



2. Foundations.

A classical system of N particles in a volume J/ obeys
the Liouville equation
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where
L) density of systems in f--space
—
4&~ postion vector of particle i
Ve velocity of particle i
Fri—. mass of a particle
¢2.;a interactionpotential of particles i and J
A:. external force on particle i

Reduced distribution functions 4? are defined by
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where i is an abbreviation for (A-J, ;7‘7 and 0’5 for o/ %k 0/ K
It is clear that

7/_-5‘ FS_(/J ey 08 é‘/a/f;--a/fs

represents the probability of finding particlez in the element

df, particle 2 in rj—f& and so on upr to particle §, no
matter where particles S*C‘"" N are in phase space.

Integration of (2.1) over all coordinates and velocities
except those of the first § particles gives
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The last but one term in the left-hand side of eq.(2.3)
obviously vanishes if[)decreases quickly enough for
increasing velocity of any particle.

Using the symmetry ofDwith respect to interchange of
particles the sums in the third and fifth terms in the
left-hand side of eq.(2.3) are easily simplified.

The third term can be written as

N-s [ 9 o
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L2 is the velocity space,ﬁ?the surface of the system and l?
the unit vector perpendicular to.g :

If we restrict our attention to a part of the system
sufficiently far from the walls we may note that in the
integrand in the right-hand side of eq.(2.4) particle S+/
is far from the others and therefore statisticalyindependent
of the others, i.e.

Fos (1=, 541) = F5 (1,--,5) F (5+1)
Then we get from eq. (2 h)
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where n(if"} and # [X} are the local particle density

and average velocity in the hydrodynamic sense respectively.
The contribution of eq.(2.4) vanishes, because already in
the Liouville equation it is assumed that one deals with

a fixed number of particles. The boundary conditions should

be such that the total number of particles remains constant.

The fifth term in the left-hand side of eq.(2.3) becomes
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For SK N we now obtain the usual B.B.G.K.Y.-hierarchy
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where 7= /A}' is the particle density.
The system of eqs.(2.5) is open. The problem is to close
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it. This can be achieved sometimes by means of an expansion

in some small parameter.

All quantities in eq.(2.5) may be made dimensionless by

means of Q@,, an average value of the interaction potential,

Z, » the range of the potential and V., the thermal

velocity. In that case two dimensionless parameters appear

in eq.(2.5). The last term of the left-hand side representing

the mutual interaction of the § particles gets the factor
¢o/m Vr‘} and the right-hand side the factor ﬂt3 ¢/€nv‘"“

According to the order of magnitude of these factorswe can
distinguish as Frieman 6) three interesting cases (QFG({)

A) Dilute gas with short range forces

%/m;_z-'ﬂ/» AdimE (2.6)
B) Weak coupling

%é”,-z neio (2.7)
C) Long range forces

En (2.8)
gzé>/,¢m/?“ = £ nzie Y

Case A) leads to the Boltzmann equation, B,\Lm the .
) 8

Landau7) equation and C) to the Bogoliubuv s Lenard”
Balescug) equation.
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The case of a plasma*) offers some difficulties, because

the quantities gho and ’Zo mentioned above do not
really exist there.

In a plasma we have three characteristic lengths

a) distance of closest approach or Landau cut-off

2
<, = e/m. V7;1 (2.9)

( —€ : electron charge)

)
b) mean interparticle distance ,<n"45
c) Debye length

‘QL/-=

(2.10)
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These three lengths are not independent but define only
one dimensionless parameter which can be expressed as

A = (n/zj/"’ (2.11)

i.e. the inverse of the number of particles in a Debye
Sphere. We assume everywhere

Z & N5 K2/ 2<</ (2.12)

2

In this case we have many particles interacting with each

other simultanecusly. It seems natural to consider such
a -plasma as being case ).

4
Indeed taking %, = %/ and 9150 e e/ac{ we find
the conditions (2.8) with £ = A .

% In this paper we treat only a homogeneous electron plasma
in a continuocus neutralizing background of positive charge.
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We should note however that an expansion h1.2 cannot
give correct results for small interaction distances.
This expansion has only sense if in the dimensionless
form of eq.(2.5) all quantities except the parameter &
do not deviate too much from unity. This condition
is clearly not satisfied in the term
Y ,’i%/ on PR
X
L

£ o
for small distanceg -X?' . Therefore we expect the

need for a cut-off at short distance.

A natural cut-off is 2L , because 1t corresponds to the
distance of closest approach of two particles with the

relative velocity 2 M}_

The procedure ) gives a correct description of weak
interactions and the collective effect ( screening for

large distances) but neglects close collisions.

If we treat the plasma as a system of type A) we describe
correctly the close collisions but not the collective
effect, because such a treatment amounts to a restriction
to binary interactions. In this case the right-hand side

of eq.(2.5) diverges because of the lack of screening,

and we have to introduce an artificial upper cut-off at 1%{

Procedure B) suffers from both difficulties and has to
be provided with two cut-offs at ‘%, and “Zy/ . Never-
theless procedure B) gives under some conditions an

approximately correct result corresponding to that of A)

if one neglects close collisions there and to that of C)

if one neglects interactions over distances larger than 4%{
there. This behaviour of procedure B) indicates indeed

that it is not too bad to extend procedure A) up to "Bt

or procedure ) down to 2z
We summarize the three procedures in the following table.
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where }; and 1&. are distances obeying the inequalities
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In order to make the following discussion easier we define
s-body correlation functions js by a cluster expansion

E(--s)= :4”45FZL)+§ 3’4(4 /77“ F (k)
+ S

k;te.j (2.13)
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and write down explicitly the first two hierarchy eguations
for the distribution function F = F; and the correlation
function g = g_z following from (2.5) for a homogeneous
electron plasma without external forces.
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One can estimate the order of magnitude of the contributions
. of different ranges of interaction distances to the right-
. hand side of eq.(2.14).

Treating the range 0O {4 <QL with procedure A) one sees
easily that

0[( }/—22 v O /= A0LF]  210)

Using C) for 2Z > 2/ one finds the same order of magnitude,
while B) applied to the range 2y K2 2/ eives

O/ CEls[= v-n"2%h 3 0fF-pA o 0[] o

The logarithmic factor in (2.17) comes from the integration
in the collision inetral over the absolute value of the
interaction distance between the cut-offs 1§L and ,%{ .

In deriving (2.16) and (2.17) one should take

gl
O/ £ F12) “"/ in case A)

O/ j//'z/ = & in cases B) and C)

Fl) Fi)




because the correlations are assumed to be due to the
interactions and therefore

(’AJ gé
Of 7 7ar
From the results (2.16) and (2. 17) it is seen immediately

that both close collisions and interactions over distances
larger than the Debye length may be neglected, if

/
’%1 5 >/ (2.18)

We shall restrict ourselves to this logarithmic accuracy
throughout this paper.

Although our considerations seem to indicate that procedure
B), which is the easiest one, gives sufficient information

for our purposes, procedure C) is often highly preferable,

because

a) it avoids one artificial cut-off
b) it gives insight in the shielding mechanism

c¢) it imposes certain restrictions on the validity
of the theory.

%. Previous methods.

The review of Qreviously published methods in this
section is far from complete. The work of Prigogine and
Balescu 10,11,9) based on a direct systematic solution of
the Fourier transformed Liocuville equation for instance is
not discussed here.

We give some comment on the theories of Bogoliubov 4) and
Rosenbluth and Rostokerlg).

For the sake of simplicity we illustrate these theories for
the weak coupling case.
We write the hierarchy in the. abbreviated form

/5

EY + KK +ELL K {AJ‘-;-/ S/ (31)
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where £ is the small parameter of weak coupling, if

eq. (3.1) is written in dimensionless form. If not, one
may nevertheless expand in powers of £ and put eventually
& =/ . The operators ks _Q and LS+/ are defined by

=2 T5s  Qu=-i3 Pyo

ol 45%/'1 :)X- :9;>
)
LJ‘-H = ;,”,_” ) d ?¢"»‘*’ 2
L=/ J+/ :gjaz ‘ ;ye? (3:2) -

We treat a homogeneous system without external forces. The
kinetic equation we are looking for should have the form

2
Fw = A/l £ (3.3)

where /4 [G;le is an expression completely defined for
every £ by F ([t) .

Clearly such an equation does not follow from the general
solution of the hierarchy, which dependscn all initial
conditions /Fy /t-:oj.

a)Bogoliubov's theory.

Bogoliubov now assumes that for all initial conditions
admissible from a physical point of view all functions

FS {S>l) relax quickly to functionals of F . (Synchroni-
sation hypothesis). This relaxation occurs in a time of
the order of a collision duration 2€/y._ . The distribution
itself is approximately constant in this initial stage.

F changes in a much longer time scale, the kinetic stage,
of the order /Z% £2 1in the weak coupling case. In this
time thermodynamig-equilibrium is reached, or, in the
inhomogeneous case, local thermal equilibrium.

i1 Y



“ 11 -

Following Bogoliubov we now expand A (/; }3/ of eq.(3.3)
and all /& for § > 3

2F
SE Al F)+EA(1;5) + 52 Ay (1F) + -
(3.4)

558~ £y 7)o s B, e ——

where the form of /-;(Q)/l,--,.r_; F} for every ¢ is
uniquely defined by F/4).

The crucial point is now the expansion of the %%En—operator
in eq.(3.1) for § 22

2>
2F =D #+€D + —-- (3.5)

where D,Z denotes a differentiation with respect to t through
the dependence on F with the replacement of ?F/gé. by Az .

The equations (3.1) have to be solved by these expansions
and together with a boundary condition corresponding to
vanishing correlations in the infinite past, i.e.

" : S
F(—-»'_—) - vd =
Ln SRR F ) s
_— —y — -3 - = ‘
xg,z.,\;_,\g,;;q‘.:g_;g-)zs({ss

For the expansion coefficients f;(%) we have

[} — J ,
Lo KO-, - 7)= 7 F (7
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(3.7)
; ) /> = _ = — ) _ 5
ﬁ E; (Xg‘_‘///.z;ll/lh-J 1{(}-—0) < Rt
From eq.(3.1) with 3=/ we obtain
/40 =0
A =L, FE€ 0 F) (3-8)
= ¢ ,
/%3 ZAZ %{ ')(/4 <5 FZ}
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From the definition of ﬁz follows Do =0 because Ao:’
and we find from egs.(3.1), (3.4) and (3.5) for § >.2

S5 =0 (3.9)

(o) — g
b, 5+ As i SEN) /s @ Ly, Frvfy (5.10)

Eq.(3.9) can be written as

ZS;T’ (U/un y ,’FZ

: f/"\h =0 24k2S
24 DX .
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or substituting X, ¢- 6, L /01- Xy- as arguments
or £ o) i 7
QRO -V P T
5 /_é{ 9;/; PR /=D .2_4./'53
2 Z

We see therefore immediately that the only solution satisfy-
ing eq.(3.7) is

("/ 77—/:- E—\} (3.11)

o/ __
These solutions imply LJ- /:5_( =¢ and therefore also
/4, =D and D, =0 . Egq.(%3.10) becomes simply with
the aid of (3.11)

) 5y
=S
ke 5= 77 F(7)

Using the same method as the one leading to eq.(3.11) we
obtain as the only solution satisfying eq.(3.7)

U/X'“V Z:?: J-J‘,F/ /‘Q‘S(*" z'/"/z'l‘i_;—/‘?/

and therefore

KO- R 5 F)= 4. 71 F(7) E332)
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with
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From the last line of egs.(3%.8) we now get as the lowest
order of the kinetic equation {5.3)

AR | (3.14)
SE TS, 8, FP) A7)

The Bogoliubov theory can be applied also to inhomogeneous
systemf In the short range case this results in a.generalized
Boltzmann equation showing an interference between streaming
and collision term. In the case of a homogeneous plasma Bogo-
liubov arrived at a closed system of two equations for &
and the correlation(?. LenardB) succeeded in deriving an
explicit kinetic equation from this system.

The main point in Bogoliubov's theory is the synchronisation

hypothesis. This hypothesis is not proven and the theory fails
in two respects:

1) it gives no information about the fast processes
leading to the synchronisation

2) it offers no basis for a discussion on the question
which class of initial conditions leads to kinetic behaviour.
The situation with respect to these points is improved by
the multiple time scale method discussed in the following
sections. This method is at the same time easier.

b. Theory of Rosenbluth and Rostoker.

Rosenbluth and Rostoker expand all functions fg including
F, = F 1in powers of & in a straight forward way. These
expansions are only valid in a short time of the order of
magnitude IZQ/V » the charateristic time by means of which
time is made dig;nsionless in eq.(3.1)}.

a h



In zero order we have

2 =)
= v (3.15)
3 F. (o)
S§ 7
S i T As ’Jff—/a =g & B.g (3.16)

The natural solution of eq.(3.16) is because of the absence
of interactions in this equation

+— (o) S)
5= 7 Fr) (3.17)
S mlely
In first order one then obtains because AS ‘?':7; ~ /l‘/ == )
)
5 E
2 Y
o7 (3.18)
2 F ¢
3 2,
24 TAERQ EY_, s5s2 (2.33)
Eq.(3.19) is satisfied by
Z Sy .
5 e —— 2 /c,//77 F k) taltiy
/£-¢<J£S k =y
K# (."(/'
for all § ir
2)45'50 y

and this equation follows also from (3.19) together with
(3.17) for § =g .




The solution of (3.21) is

(y /= =
;T = /£ -V a7 o
2 2 (% ) , zﬂd (3.22)

= (BB T F ) F )

o
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where X, =X -X", ¥, =¥ -V and the first term

in the right-hand side involves the initial condition for

A . For finite :T? and non vanishing V. @ F ¢V
2 R 1) /2 2

approaches the limit ‘EEA given by (see eq.(3.13))
'z /o) 0) /=
loa. =4 FOUR)F (T (3.23)

/
if the initial ]i(} vanishes for large :XT: .

In the second order we have

(-
27;_&/.__ , E(d (3.24)

Substituting the asymptotic result (3.23) in (3.24) we

obtain a kinetic equation similar to (3.14) but with different
orders of F in the left and right-hand sides. This equation

is clearly only valid for small times. It describes a linear
variation of }T‘E’in time because f?(Q)is constant,

The method of Rosenbluth and Rostoker gives the possibility
to investigate the fest synchronisation process because one
retains the time derivative in eq.(3.19). On the other hand
it fails to give a kinetic equation valid for long times.
Furthermore there is no clear Jjustification for substituting

the asymptotic )C.lg) of eq.(3.23) into eq.(3.24).

These disadvantages are absent in the multiple time scale
method described in the following sections.

It should be remarked that the theory of Rosenbluth and
Rostoker was originally applied to the plasma case with

the collective effect. This theory was extended to include
magnetic interaction by Harris and Simon lj’lu’15).The weak
coupling case, as described here, was first treated with this
method by Friemané)



4., Multiple time scales.

As already observed in the discussion of Bogoliubov's
theory there exist in a many body system several time
scales with very different orders of magnitude.

In an ordinary not too dense gas for example we have

L <
a) Lp= “° ¥, » the duration of a collision. In this
time scale all /f; (.S‘ 22,/ relax to functionals of A
according to Bogoliubov.

b &= {*"g“'o , £= nzod , the average time
between two successive collisions. In this time scale
the distribution function relaxes to a local Maxwellian.
This process is described by the Boltzmann equation.

istic length of inhomogeneities). It is the characteristic

; the hydrodynamic time (L : character-

time for hydrodynamic phenomena as sound waves and the
relaxation to a stationary flow pattern.

These phenomea are described by the Euler equations of
hydrodynamics.

a) £, =871F, , &5 = é’/t,,, , the diffusion time.
In this time scale transport phenomena take place and the
system relaxes into thermodynamic equilibrium. This re-
laxation is described by the Navier Stokes equation.

It 1s clear that the above separation of time scales is only
possible if & d <&/ . Then indeed we have

Lp KL, & tj" <
The Chapman Enskog theory consists of an expansion of
the Boltzmann equation in powers of 5' . It assumes a fast
relaxation ( in the 4, time scale)of the distribution function
to a functional of density, mean flow velocity and temperature.

Rather in the same way the Bogoliubov theory expands the
hierarchy equations in powers of & and assumes a relaxation
in the £, time scale of the functions A& to functionals of

the distribution function.

- P~



It should be noted that in the weak coupling case we

have Z‘, = g2 Z‘D ) 5 = ¢a/m Vrz' and in the

long range case fa = 'za//y_.’_ = ‘:‘)/o_/ and Z‘,:E*'fo) £=é’)'§j =/

In these cases the definition of ia_as " the average time
between two successive cdlisions" has no sense and should

n

be replaced by the average time for a particle tra jectory

to undergo a 77/.7_, deflection."

We remark also that the treatment of an inhomogenous system
with long range forces is extremely hard because already
small inhomogeneities can introduce phenomena of the fastest
time scale, f},, namely the plasma oscillations.

(See e.g. Ref. 17,18,19,20)

We now return to homogeneous systems and exploit the

existence of different time scales in a systematic way
following Sandril). We give a new and very simple justification
for Sandri's method.

We write the hierarchy equations in the abbreviated form
.

%;2§'"*'°QS Fs =Lgy, Fepy (4.1)
where (s and Z;;k,- are operators the form of which is noé
interesting at the moment. It is sufficient to note that
they depend linearly on some small parameter &£ . Now we
introduce "extended" functions ﬁg' which are functions
of an infinite number of time coordinates Z;,,Z;J 21‘---
and obey the "extended" hierarchy

2F 2E - =
275 + il 3 -a S L - —
2z, £ 2z, +& 21}'* 'f-uSES- LJ’*/ 'rsw (4.2)

Solutions of egs.(4.2) may be expressed as

s

- — 2
5=Fln.g-r5,5-5'0, 1 5

1f the dependence on the first argument Z; and the
> 0 ‘ is obtained from
X‘t) P"l //£££5J

]
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It is clear therefore that to every solution

F; /Z:"»Z::Z_.a,“")’;“:s) of egs.(4.2) a
solution },:S‘-/é} 1 ==, 5’/: }é‘/z;-.-z‘-’ z;-.—gz’-) 525—2{-}_-_} /,—-,.S'/

of eqs.(4.1) corresponds.

The advantage of eqs.(4.2) lies in the separation of
different time scales, Z, describes the fastest phenomena

( in a dimensionless notation Zp would correspond to 4725),
Z, slower ones, and so on. The solution of egs.(4.2) is,

/
of course, not unique. We substitute an expansion of the

form
Zf _ 2;—(@}_+ E.é??(q* oA )E?dﬁ/#_ ——

into eqs.(#.e)‘and require the coefficients of every power
of & to vanish.

The additional requirement that - A& (0/, F'J(’}J 5, 3
are bounded for all values of Zﬁb zZ,, ~—- assures

that the expansion is valid for long times.

This "removal of secularities"is the essential point of the
theory. It makes the solution of eqs.(4.2) unique.

It should be remarked that this method usually breaks down
in ordershigher than the one inswhich the kinetic. equation

is obtainedl’EI). The method fails therefore up to now, as
all older theories, to give finite corrections to the kinetic
equation.

In the following sections we treat the extended hierarchy

(4.2). We do not distinguish typographically between the

functions I-g and F'S and we do not write down in general all

the variables z, z,,-~-~ as arguments of the functions
“Swem 7

o

J
In sections 5 and 6 we treat the simple initial value problem.
This means that all correlations are assumed to be zero at

ray ¢© . The initial condition for the distribution

o
is incorporated in its zro order.

i
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In section 7 we discuss the complete initial value
problem in order to see under which conditions the
influence of the initial correlations vanishes quickly

enough to make the theory of the simple initial value
problem valid.

5. Derivation of kinetic equations. Simple initial
value problems.

We apply the extension method of section 4 to eqs.(2.14)
and (2.15).

A) Weak coupling.

In zero order we have
(o)
gF = /) (5.1)
2Z,

2 2 |
—_— = == {0/ — |
29?-; +(‘”*‘2/°9?,ch7 (12) =0 (5.2) |
\
*i

From g l2) /z; =a/.-,.-g and eq.(5.2) follows ;("‘)/44’./‘—-0
for all Z:) .

More generally it follows from eqs. (3.1) that
() 3 o)),
5900~ 5)= 7T FO ) (5.3)
&=y

(a/ -
In first order one has from eqs. (2.14), (2.15) and é? {42/ =0

PF% 2y r¢y

s = 4 (5.4)
92“/ 2 Z,

and

B To 8
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2/ 7) (1
i?z; '*(‘f 7/ 2 f? (1Y = (5.5)

/ E?gé = 2
s o s e 9/ /0/
— /. ;;j§> ;;eﬁ éggi/)f:/'(Q//C' [ﬁ;/

The simple initial conditions are
) {
7z =0)=0  FVz70)=0

Therefore eq.(5.4) gives because of eq.(5.1) immediately

27~4
“o ’Dz*

F =

This means that F~¢/ grows linearly in the fastest time
scale. Now we apply for the first time the principle of
removal of secular terms and find

) PR
- —-—-———92_, -0 (5.6)

Eq. (5.5) can be solved by integration along its character-

istics. The result is (‘?Z r_}?—)?, Zj =’?-l_7;'

%
/,} _ F 4 9 -
7 /4£/—m91,;‘ %(IJEE-ZESI)JS[;?»-;%) (5.7)
/ 7 2 )

';TﬁU(QJ ;TﬂV/%}

For large Z"o g(/,-l.) approaches an asymptotic limit
which is obviously given by eq.(5.7) if one extends the

integral from zero to infinity. The Fourier transform in
space of the correlation, which is often useful, 1s defined

i
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by

/.
0‘? (B77%,7 / P73 57(///"3/ EX/O/_‘ *14)0/3*/2, (5.8)

/

This function may be obtained from eq.(5.7) or as the
solution of the Fourier transform of eq.(5.5).

]

FER R n)= ply =LA

(5.9)

For large Z. ¢?approaches a limit ¥4 in the sense of
generalized functions. This limit is given by

/\

A 277 2 9
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¢)_/kjis the Fourier transform of the interaction potential
and is defined by a formula similar to eq. (5.8). The general-
ized func@ion 3"()(} is the negative frequency part of the
Dirac delta function & (x) and can be written as

- / / i
O7(x)< 7 I (x)+ 357 P 5 (5.11)

where the symbol P means "principle part of".

=D




The general solution of the hierarchy equations (3.1)
in first order is

&) W/ oy T —y
=25 4 (4) 11 F¢k)
Iéc(d,é_s k;éc'/ (5.12)
exactly as in eq. (3.20).

Of the second order theory we only treat the equation for
the distribution function because we are lboking for the
kinetic equation and we are not interested in the complete
second order solution of the hierarchy. We have.

DFH Fl 25ty ,
27, T 25, "o, Tm 3

o 955) "/'j//-z/c/f {(5.15)
o2 &

\VJ’

The second term of the left-hand side drops out because
of eq. (5.6). Eq. (5.13) can therefore be integrated over zZ,
with the aid of egs. (5.1) and (5.7). For large Z, the result

isa
[ 2%

(o)
/:-KZ/____ - 2F

o

Vil
°/ 2 m. 9

a)
% 2y dA ﬂ/“/f (5.14)
if the expression ¢
ety 2 ),

-/
approaches its asymptotdc value RA faster than as Z;

s L .
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i.e. if

A z-"J"’ "”/ 2,850

Zp 09 o

This condition is proven to hold in the next section. We
now apply again the principle of removal of secularities
because F?should ve finite ( and small) for all 7
This condition gives the kinetic equation

Ea_fifgj n 2 2995-3 U(/ o
— ~3 /2
27, AL 2 f"' 52 (5.15)
The right-hand side is the " dollision integral®™. It can
be expressed also in terms of the Fourier transforms of
the potential and the correlation function ( Parsevals
theorem).
DFE )
- - 3‘,_’2_.—’;)— : \ ) A =¥ =¥} /3 ?
>z, J’rr;m_?‘?o E’¢(k%{kt]j/}jé}a/ko/li _—

When substitutingég from eq. (5.10) we only need the odd
part irlk'i e. the imaginary part OfQZA and therefore only
the first term of the right-hand side of eq. (5.11).

A
27, T Tm 5y ¢£//rj5//?¢r/kwly3 sy

Lg (P, 1) o *% o2

_ol -



where we have omitted the index / of E’,the Greek sub-

scripts denote cartesian components of vectors and obey the
summation convention 5 I[-—, = T{Z is chosen as integra-

tion variable and

5 2FECYR . D ;-/ "/{"' i/
/7 ‘_"'F{d//?";?/ 27 FN// (5.18)
The tensor

S :f,“zk S e g . FE

) P (k) (k.rt‘/kdl\%c//( 5 10)

—>
is symmetrical and depends only on the vector X .
It is therefore clear that it must have the form

i1,
SNP =A ", +8B 3—0,[3 (5.20)
( 5& ¢ Kronecker delta)

Taking the scalar product of eq. (5.20) and Zg;z§g and
Ciﬂﬂ respectively we find

Kg w ¥ “/J B’& ﬂ(s—“ﬂ-z%@/ (5.21)

and therefore substituting 5&43 from eq. (5.19) and
integrating out the direction of R’

il

(v
A= 135% ) .22)
3 A-.%_O//cyﬁ(k/k (5.2



Collecting egs. (5.22) and (5.20) the kinetic equation
(5.17) takes the simple form

2K o (wayn
S’zk =i 2 e Zgéfﬁz.hj/qf3}f

(5.23)

where (j is a constant given by
o

C =222 [ dtjan

0

(5.24)

Eq. (5.23) is indeed the simplest representation of the
Landau equation.

In Bogoliubov's work the constant C: is given, 1if one
writes his representation of the Landau equation in
velocity variables instead of momentum variables, as

77"

C = 2 ;2 /,23/4/,2/&2_
0

+ DO

76 [ S o

where gé'is the derivative of the potential with respect
to its argument.

(5.25)

It is proven in appendix A that egs.(5.24) and (5.25) are
indeed identical.

In the case of a Coulomb potential the integral in eq.(5.24)
diverges for small and large k.

-26-



Taking a modified Coulomb potential

¢/2/—— _f_zex [—kz)//~8x (-k z/f ky=2;" &k =27/
= /0 o Pk, > Ty, AL =y,

we have using A 3> A,

A e kL-Z
¢Kk/:-&77"" 5%+ k2 ) (K2 + 4F)

and from eq. (5.24)

277e%n A,
C = 1R ’g?_ E (5.26)

B) Long range.

We treat here a homogeneous electron plasma in a continuous
neutralizing background of positive charge.

The long range treatment has already been referred to
in section 2. It offers the advantage of giving a correct
description of the screening effect.

We start from eqs. (2.14) and (2.15) and find again in zero
order the results of eqs. (5.1) and G

In first order we have

IFY  SFW 4 2 2¢
B e e 2 G (5.27)



o (5.28)

The Fourier-Laplace-transform of the first order correlation
function defined by

2
FET @f/jﬁ’z; s [ explpz-i RMPRLLY

satisfies, if g(‘;}/z; =o/='—0 the transformed equation

R
YD/ > = ) . / o1, . 3FCY)
;/k’ 75 “a'“.z“/%*ﬂ”']”f /F(%’/ du,

97—"("&/ (o) (5.29)
_ s DFEyy o

where we have introduced the Coulomb potential and its
Fourier transform

= e ) = m————
gs/z X2 A 274kt (5.30)

=28
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and furthermore

o
KevV -3
= i (velocity component parallel to Ak )
P55 2
wui=r w2 47 ne
P R = e (plasma frequency)

A(ﬁ?f?/"/)/:/f"‘(,;: P;’;“/':’/qu/’y’

] [ )

and /1# 1s the complex conjugate of A . Use has been made

of the symmetry condition
FCREV )= g (R 7 7 )

following f‘rom the fact that g(”[xej is real. The
v **
function g { o/

JIJ -l.:

for large Z, the asymptotic limit qu (R % /

can be expressed as

=S = =

jjq(k,m} /0_,0/3;/,'27 % P)

if the 1limit in the right-hand side exists, i.e. if there

defined by eq. (5 8) approaches
which

(5.31)

(5.32)

exists a solution of an equation which is obtained by multi-
plication of eq. (5.29) with /D and taking the limit/O—écl

-29-
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This equation is

Ja (R0 7) = 27l 8- ”‘//’7"2- (52 -
=02),) (o) 'BF@/ﬁ/A . oy
FIYFTG) + AA* (%7 ‘—C 3 A, (R, j:}7(5 33)

;94& 'QAQ

where

hy (8 P)= [ (R 77

The conditions under which a solution of eq. (5.3%) exists
are discussed in Part III of this thesis. We shall see,
however, that fcr the kinetic equation we only need the
existence of the imaginar art of Z\ P 7’/

- g y p A [ J

We proceed therefore to the kinetic equation and integrate

(5.27) with respect to Z; . For large Z, we obtain

7, F 24
4 =_Z;/92; m or /“"'&074//"/"/3:/ (55

This is quite similar to eq. (5.14) and valid if a condition
of the type mentioned there is fulfilled. Requiring that <Y
is small for all.z;hm obtain the kinetic equation in a form
analogous to eq. (5.15). In terms of Fourier transformed
functions we can write this equation, using eqs.(5.30)
(Coulomb potential), (5.3%) and (5.31), as ( omitting the
subscript Z g/ ?’

2 FY > /'
57~ e R Ik eran oo

/



LenardB) succeeded in deriving from the integral equation
(5.33) a purely algebraic equation for Zm. 2,\ . Sub-

stitution of this result in eq. (5.35) gives the explicit
form of the kinetic equation. The result may be written as

SFO oy 2 [k ks S(RE)

92; T 9 ¥, ky/E(RRP_,”.zL/_,[F:WJikQﬂ}(

(5.36)
with b;.\ (V: ?/ given by eq.(5.18) and the dielectric
constant & (Et M-/ by

DF (&)
E(k,u) = /+ 272 .
(i P ow (5.37)
and .
— —_ -
‘i?;=$5* F (ﬁftﬁ/==//Cf“f@cﬂaj//7(4iﬁJMJ/QQLI
— o0
= (5.38)
FUR w) = /: @) § (i . P) ol v

wl-
We see.that F is the negative frequency part of an one-
(]
dimensional distribution function /& in which all velocity
components are integrated out except the one parallel to Xk’

-31~
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The kinetic equation (5.36) is very similar to eq. (5 17 )
It is essentially eq. (5.17) if one interprets the ¢) (k}
in it as the screened Coulomb potential between two
particles

e&
2k (R R DI

It 1s in general not possible, however, to carry out the
integrations with respect to the direction of .Eﬂ as we

did with eq.(5.17), because the screened interaction potential
depends not only on the magnitude of R’ but also on its
direction.

Lenard carried out the integration over the magnitude
and showed that in logarithmic accuracy, i.e.

n. k"’/@ >/ , €q.(5.36) reduces to the Landau
equation (5.17) with C given by eq. (5.26).

As it has been said already eq. (5.36) is only valid if
I A_ (E" '17"/ exists. This condition corresponds
to the requirement that & (E: #) has no zeros for real & .

We investigate this condition in more detail. We have

lg(k Q}'-Z; /;-14'2/3/ BF(kuj/a .3_

= (5.29)

r iy | 2E(F 4
“ du

This expression can only vanish for those real values of &
for which both terms in the right-hand side vanish. The

second term vanishes in all points with zero slope and

-




the first term is zero for some value of K if, and only
if, the integral is positive.

Therefore eq. (5.36) is valid if, and only if, for every
direction of i? the inequality

-+ 00 = /.=
2 F’[ﬁ;,u325LL
P oy~ du £ O
L ‘= Ve (5.40)

ey
is satisfied in all points & = 7/77__» for which F(J?,u/

has zero slope.

The same condition restricted to all minima of ﬁ;{iﬁtg}

is exactly the Penrose criteriongg) for electrostatic
stability of Vlasov plasmas. This criterion is necessary

and sufficient. If eq. (5.40) is violated in a minimum

fa?kt u/+ as zeros for some values of A on the real

# -aXxls and in the upper half of the & -plane corresponding
to stationary and growing electrostatic oscillations respect-
ively of a plasma obeying the linearized Vlasow equation with the
one-dimensional zero order distribution i?(E?:&gf and an
arbitrary inhomogeneous initial perturbation. Penrose shows
that a stable plasma, i.e. obeying eq. (5.40) in all minima,
can only exhibit stationary oscillations if eq. (5.40) is
violated in inclination points defined by

Qﬁ"(;i':u/ 22 F (7, n/ p

2u g , 2t

Only in that case E*(qu/ =9 has solutions for real values
of 4 Dbut not for values of 4« with Zm « > O . Ve
conclude therefore that eq. (5.40) is satisfied for all
maxima, if it is satisfied for all minima. Indeed it follows

from the paper of Penrose, that the integral of eq.(5.40) in
a minimum is always smaller than in the surrounding maxima.

+)It is &% which corresponds to the dielectric
constant in the paper of Penrose. -353-
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Therefore we may restrict condition (5.40) to all points
U = _V;E; for which F'(?C (A./ has a minimum or in-
clination point. If /ﬁﬂi‘tg} vanishes in a certain range
of values of & eq. (5.40) should be satisfied for all
values LL='2%} in that range.

It should be remarked that we have to require that ﬁ$4f?¢€}
is stable and allows for damped oscillations only at every
value of the time coordinate Z;. The stability of /5265749/
is not necessarily conserved by the Bogoliubov-Lenard-
Balescu equation. If, however, f:[pf/ is isotropic, then
it remains isotropic and ;?(7F:tf} is always single-
humped and therefore stable. This matter is discussed in

Appendix B.

6. Relaxation into the kinetic regime.

The extension method of sections 4 and 5 enables us
also to investigate the transient behaviour of the distribu-
tion function,i.e. the way in which it approaches asymptotic-
ally a solution of the kinetic equation.

We discuss this in the simplest case, the weak coupling
case. It may be seen from eqs. (5.13), (5.15) and 5.6)
that the relaxation into the kinetic regime is described by

2F
27,

5 20, | 4 ¢
:547_7"9_77. 5__;4:@{ §"0)= g (N'/f‘{f (6.1)

Using Fourier transforms as in eq. (5.16) we obtain with
the aid of eq. (5.9)

YF& g7n 2
'_j—_z-_:_:— me 9V /C{Z' fa//(a/‘?Z{

exp (R z?"zzys??f«m/rpl;z(%’ﬁ?

=5l
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-...-% ____5
5 {I-;: Z[/ being given in eq.(5.18).

e

==
Writing § = Z;’ we have

Jx ep iR s, (7 7)-
_z_'_;/a/-?fe.xﬂ/zk.f/ /y ___)

The asymptotic behaviour may now be obtained by expanging

5 (I/"’ f/z‘ / in a Taylor series in powers of f/g
From eq. (5.18) we see that

f[ﬁ’ Z?=a/=o

Moreover we note that for symmetry reasons only the cosine

part of the exponential contributes to the ﬁ?— integral in
« (0.2). Consequently only even terms of the Taylor ex-

pansion of E(V Z?’/ contribute to the Zf -integral, namely

2T (B %07 (555

2 &+l ot 2
2Hy 21, B, 2 87 22222, ), z;
The result is therefore o+ ————
dF& c?(v/ (6.3)
2z, ” 0/2-6/
with
: 77-3/2 2 2%/
Q)= M2 9r 21 k_/z ko
o 974‘,; 2 I, 53 (6.4)

A k/, 52 _iu_ é\""(k/c‘oé(:?fa/
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It is interesting that the relaxation is not exponential
but follows a power law.*) Now 1t is well known that the
asymptotic relaxation to thermodynamic equilibrium found
from the linearized kinetic equation is exponential. It
is therefore clear that in the approach to equilibrium
after a sufficiently long time the deviation from equi-
librium is mainly of non kinetic origin. However, ;r(ﬁ/
is of order g’z, £ being the parameter of weak coupling,
and the importance of the phenomenon depends therefore on
the ratiozjﬁ'if S is the order of magnitude of the ratio
of the initial value for the linearized kinetic equation
and the final Maxwell distribution.

The asymptotic series in inverse powers of Z;i is only

correct if the integrals of the type occurring in eq.(6.4)
=

exlst and if some derivatives of /& ,at least the second

-—’
derivatives, exist for all V¥ .

Let us assume that the last even derivatives of‘Zfaexisting
everywhere are of order be . The Taylor series is now
replaced by an exact expression namely the first %P*/ terms
of 1t plus a rest term which can be written as

52, 32,2+ 5
! 2 > a5/,
(2p)! 7% 7.2 (%)

where ©< &</ and

- 1
%) our result differs from the 2; Z law found by Sandri ).




2
Now we assume that —— 7/ is b ded
2K, /;‘ y [ R_Z_P ounded,
<

o2, 2

then the rest term clearly gives a contribution to
?F("//gro which has an absolute value less than

2
9‘& 7ﬂ—1 /2,, o '}-z/) /

L B M

2P B2 Aep
© ’ (—2/3),/(.{/0+.2} /_T;V’a Aa“""‘l"-/J/ (6.5) |
where

‘2;/3,2,---2;/33 O/J’/‘C/Jy’trljaf,zl“"szﬁﬁ(k/cn@?/ (6.6)

It is obvious that the expression (6.5) becomes smaller
than all the foregoing terms resulting from the Taylor
expansion, if ZB is large enough.

This proves that our expansion (6.3) is really asymptotic
if all the integrals Zi,, , /< é/) exist. Ve
study now in some detail these integrals.

In a way similar to the one leading from eq. (5.19) to ;
eq. (5.22) we get '

fo,/:’,g A 4a BityenR2§) = (6.7)
= 5 {655 S B L5 f
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where

G, l5) = /ms U G LS [

c, [f} /(3¢ /kj/'mk§+3 -.3 J;"F‘i o &

(6.8)

It may be seen immediately that G /§) and /f/ exist
as finite integrals, if the integral in eq. (5.24) giving
the constant before the collision term in the kinetic
equation converges.

Now we assume that

L (k) = /v"'gz'&/*/

can be continued as an analytic function in a strip of
the complex plane around the real axis.

-k < In (k) £ K

We may write eq. (6.8) in the form

G [5)=- Z"é—/é (k) exp /z'/ff)//f-é‘};{‘a/k
~00

+09
¢ < =
C, /f‘ = - 2—/1 /k/e»yo/c'kfj//* 2}— eIl
- 09
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Shifting the integration path in the positive imaginary
direction we obtain

+00 ’
G (§)= - 7 explks) /A (k) explens) {1+ s
e ok

f

Kﬁ*tﬁg_

< (%7 == '-1£ﬁp(’k E)/CL(C@fLA%/ELﬂP[Q/ﬁEj { /-f

2 K
+(k+"/‘:z)§ “(/{f‘:kz)z?-&}c{k

x)
If L Zkv*b'k.;_/ is absolutely integrable it is

easily seen now that

IC}ZE}/ < -ng exp (~k,5) (1 + ;f-g)

’Cz. (9} & *-/Q.Z exp (-4 3(/(/*% zgz/ (6.9)

with oo
/7= []L (k+dh )]k

On the other hand we see substituting eq. (6.7) in eq.(6.6)
that

0

I 22, I< é,ﬂr/z [ {]c (5)] +lc, (§}lf°{§

%) Note thatl_ﬂdhas been assumed already as integrable
in eq. (5.24).

- 3Q -

(6.10)




and it is obvious from eq. (6.9) that the integral in the
right-hand side of eq. (6.10) converges for all /D ;3‘/
This proves that all integrals occurring in the asymptotic
expansion of aFtasz; exist,

It is interesting to look into a special example. We take
a Maxwellian for £&¢) and study the relaxation of the
correlation Function from zero to its asymptotic value and
the resulting behaviour of a}::('zl’/‘bz"‘;, . As interaction
potential we choose a Debye shielded Coulomb potential.

F(p) =[—§_—/%— exp (-avr/

| e? / 2
5‘25//‘/:_4772 kz?"&j p) ¢//2./= :;— ex/:ékd,z/

(6.11)
We then have
—
l7'=-2a I FO>P) FoY P i)
From eq. (5.10) we see using eq. (5.11)
A =3 > A 2
JA R T) =32 bt =y p) Foy7) (6.12)

This is the well known equilibrium correlation function.

A A _ A
For the transient correlation function f-f/‘ =<?7_ we
obtain from eq. (5.9)

G (RPE )= 2 Blk)exp(-iR 7,
I7 P

FR) FO (P i)
| (6.13)



The correlations in configuration space corresponding
to eq. ( 6.12) and (6.13) are

In ) == 58 Bl) Fll) Frryp)

(6.14)

7r ¥ = i Pl2-75)) Fep) Fo )

It is interesting to note that with the potential of

eq. (6.11) the transient correlation 577.(42H} decreases

()
exponentially but the 1ti 2 F =¥ .
p y resulting /";ZB as 7

Substituting eq. (6.13) in eq. (6.2) it 1s possible again
to integrate out the directions of A . We rind

2EE Wa

__Sr7na*_, a )% .

5z, =" o /-/’/ry(;;/ ﬁ/é’ﬁzr Hhbnp.
o o

./zvcf)é’-Zf/exp/:a-/t/‘!flr"--.arffcfaé’i'
' /C/ (Z{"Z‘a/'f'qz/”?o/f

C, Zf} and Q(f'/ being given in eq. (6.8).

The ¢ -integration is elementary,.the & - and A -integra-
tions for the potential of eq. (6.11) are possible with
the aild of integral tables.zj’eu) The result is

DFC)  9rrpaie? /3 kil
27, = T PO, (v- 2 - lméav)'

kr =% = 1./
' ex/o/ _44..‘2_..—0//8*/0(’92;‘7f‘%‘-‘é“g +VVZ/ (6.15)

'—eX/Df'IQZ;V/LC C/@ZB—VVZ' -—"i_eﬁ( ~ayz
LV va’ /o/ /
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where the error function is defined by

Eofe () = [expl 2ot

The asymptotic expansion of the error function

Lafe )= expln) (T = T3+ 5 --)

leads directly to an asymptotic series in inverse powers

of 224 . The resulting Z;"y -law may be written in
the form

9;.—/&/“:) Jfﬂa‘é"'ex/o/ 3 I+ Yart
91— - f '-Za-V'z'
2 7% m* K] z 7 (6.16)

7. Complete initial value problem.

Up to now we only treated the simple initial value
problem. That means that we chose the correlations and
the distributions of higher than zeroth order to vanish
initially. We now want to discuss the effect of non vanish-
ing initial correlations. It is still possible to incorporate
all initial conditions in the zero order functions, i.e.

F (y/zf.:o/_____./;/?///, _--,J: Z"..:o/=0

We restrict our attention again to the homogeneous weak
coupling case.

2z 2F

s

In zero order we have again eqs. (5.1) and (5.2).



The solution of eq. (5.2) is now

U0 YRR, BT 2 =0)

(7.1)

in obvious notaticn. The Fourier transform is

In first order we have for the distribution function

27-‘(/ 2F 4
92" 22; :_‘P”—L

=02 - 27_:5“/_‘? 30 2 /-ex/o/—JE?Fz;/
[ s m il R —
/ - KI

R b(x) g 7 UR TV p=0) o/ WK

(7.4)

—
where we have omitted the subscript of ¥ and have written

/
VTZ = Z'-c'-"s - Because the Z; -dependence of the second term

in the right-hand side of eq. (7.4) is different for different
functions ?‘[‘//z; :uo/ we have to require that both terms
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in the right-hand side are bounded seperately. This
leads to eq. (5.6) and to the condition that the inte-
gral in eq. (7.4) has a finite limit if L, 09 .

-
We denote this integral as J (éb) Fﬁ/ , say, and write
it in the form

T(%,7)= /*e,:/o/dw//?g/v (K %, 7)
7 aﬂ/ro/7 (7.5)

where
% %:,,%/j‘f*’f/f:fr??zrw BE o )rae

The function /~ exists certainly because é?‘hQQ%/'being
directly related to a probability density through its
definition eq. (2.13) must be integrable with respect

to all its velocity arguments and /= 1is nothing else
than St Le) integrated over the f -components perpen-
dicular to P

Thg existence of ;%igbifi/Z;, Pi/ clearly depends on the
behaviour of f'(l?’,o7/z;,7)/f°r small 7/2“') . The limit
exists if //R> Yy, 7%/ is bounded for small ?/z‘; and
if the Z? -integral exists. We may write

17 (7, 7] < [Bewlis & 7|4

with + 0o
o
IR P) =P I(R 7 %
=09

There are no difficulties for small A’ if 66&%/ and
3("///,2,1 Z, =-o/ have a finite range in configuration
space such that the expressions

“hh




T

)% = arrif e-o)
[g 4, 7z =0)d e = ITIG U R0, 750

— ey
are finite for nearly all values of VJ_ and V ;
The A’ -integral exists if ¢(k}/_(}_" ‘—)) is
bounded for all A , as is certainly the case if ¢5(2.j
and {0)(//,,2, 2;:0) are also absolutely integrable
in configuration space, and if this product decreases
sufficiently fast for large K

The condition for small (¢ on /_//?’ u, 7/ is

related to the principle of "absence of parallel motions

of Sandri ), namely in the case where {0)()—(" Z{' Z' 0)
depends only on Z{ through the absolute value ZZ' for
small Z€ -components. In that case the condition may be
written as

f/o//k X Vz=0)=0,8>0

Z{—"O (7.6)

-3
We note furthermore that I/Z;) V '/ vanishes always

. -3
according to eaq. (7.5) if [ /E* / is an even
function of K

- hrC



We might be interested in the condition under which
the relaxation of 274 is raster than that of Loy’
e 9% is faster an at o Zo

as calculated in the preceding section, i.e. faster

than Z':D_? . It follows from eq. (7.5) that this
is the case if ,

A 58 IR w V=0

u -0
It is also interesting to note that from the relation

of /K u, ?/ with a probability density its integrabil-
ity over 4« follows and therefore

A LT (R 0 P) =0, § >0

un-=xy0o
We summarize the state of affairs as follows:

If f_(/?, W, F‘/ is proportional to |u.lP for small M.
then

P £-/ is physically impossible
=1L P& O leads to a growing F ¢/ S F U
O 4/) 4 3 results in a decaying T—‘[‘/ but /@z';,
does not decrease faster than the 37:“7;)2-

)
of section 6.

/a >3 gives a BF%Z'

orelaxing faster than
the 97:(2'/92—0 of section 6

A special case of the condition A > is the "absence
of parallel motions" as formulated in eq. (7.6)

We now continue the formal description of the complete
initial value problem in order to investigate the con-
ditions for kineticity in the next order. The relevant
equations are
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&)
Eg__éj/ 22,501/ L 2(;?‘,_(’//2/ -

92; e ?X,‘,_ o 7:\'72.

3 ty,
o // FEOIFel) r 2,2000) f = 7t 25! Y,

(7.7)
575/3 lo) /7 2 F ¢ de,/ o
f] /
/ /4 t3) o5 - o7 gizs/fﬁf/‘fﬁ
o 4 D¢/J ? 2 =5 )
. J(5% % - 55 )i 0

9;:[1/+ 9F(l}+ ?_f.fa/__/_’_ ?, 9?‘/2 £1)
A TR Fra R G AN A

If the conditions mentioned above are satisfied then
(e) (1,2) and F ¢ decay in the time scale T

F2 ( =

Therefore we may put without loss of generality

96‘72{0}(4"1/ 5 g e

e — ——

27z; - 27z

We may proceed in the same way as z?L the preceding
sections 5 and 6 in order to find the kinetic equation(5.17)
The relaxation phenomena as described by the transient
correlation of eq.(5.9) and the BF(ZJ/Q s of

(6.2) are not complete now. We introduce again Fourier

A =
transforms and denote the new contributions by {31_ (R ™, F: Z';,)}
DFN )
and { ( /3 y 3 respectively.

Using eq. (7.2) and a similar solution for the double
Fourier transform é;;‘bf namely

-1
AR R B 21 5)= R 7 R et e )

and with the aid of the symmetry of correlations with
respect to interchange of particles we find

< BT =
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/eXID/Ak ?Iz_//j\/c//k --)/-_; *45/ F/ﬂ'//l?/
"-j{ojfff'f?’:? =g} 27 2/-/"// zf/J(a/j / (7.9)

77

7R [edon //“*j)/fs‘”’/k SRR
exp/ A, p?z;/j D?{ gslo)( ;7_»1 e 7= :o/
8)(/0 A'/?E Z?z;/ﬂe,g/o /_“'Rf;‘{:*/zz/c/jk,o/v[/

~—

A =3 — i
We write the solution in the form { T(R u, v, Z}*"}f =0
being the initial condition,

L (RE Rz = exp iR P2 [1 40 2 ey

é’xp/t' E’.PZ}}’]O/Z;’

= 9
where /. /k, n, v, 2~4’/ is short hand for the right-hand
o F¢&)
side of eq. (7.9). The equation for / /92_0 is
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The most dangerous terms in eq. (7.9) are those which
contain the 3/;_;,? —operator, because this operator
introduces a factor Z, . We restrict the attention

to two typical terms. Integrating by parts with respect
to 259 we derive

QFG/P h
| ——Uf-—v

Lo
os ‘U

PRl Fir) R R s exp (-0 & #z;)
/;j‘(o//i’—z’f Vg z" o/ex/o E” --)/z_ f/f

= c?zrfn_/a/"’lf ;f"/(k, R e i P =0/ exp {*L'P.’Z?’(Z;-S‘y
+ = —

Introducing

I (R-R wul P ﬁ?[a}(/? R )
5(5E u)s(
G(’ 'IMWV/ /f(a(/ J,[F‘P lzé:‘y

) L n!

7-:¢

ey s

carrying out the S-integration and substituting

!

/_ I
wz, g'=u't, §=wI

7
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we obtain
)/
|25 o 2o forcioy 2 givd
o

K P’ex/o /~—¢‘k?//,,z/a/?/ /“//,(7’_ & 7/25 ) 7}23 , 7/«/1%’”
— drn a//(/;/;;j R 7/z;,, f/?-:u p"/o(/z'k’i‘/]f o 5 s

where
/

cx‘[ﬂﬂﬂ/'== e E ;f; 2//;-<9a90(4-¢59{/{

Relaxation into the kinetic regime requires a }:C&/(/Pb/
bounded for all Zj or

, DFYP)
,/ZZ4~L zﬁ?s —_— = 0 , 5i>¢9

An analysis similar to that leading to our extended
principle of absence of parallel motions shows that
we have to impose the conditions that if for small lt,liﬂh/

FR-R gt 7)o P lwi] #

/ /
[3 (RR ww 7)< |l Fiw] ? (7.11)

then /Of-i >/ and /3’+i/>/
These conditions are strongér than those we found before.

Of course we can formulate also a new.and stronger con-
dition for 2;—(4/9 to decay faster than Z—~7
Z-o 2




It should be emphasized that our conditions only

refer to the validity of the multiple time scale

method up to the order in which the kinetic equation

is found. On one hand these conditions give certainly
no information about the validity of the theory in
higher orders, on the other hand it is not impossible
that a system relaxes into the kinetic regime in a

way which cannot be described correctly by the multiple
time scale analysis. ( e.g. mixing of different time
scales).

- 51
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8. Conclusions.

We treated a classical many body system interacting
with central forces. It appeared to be advantageous to
exploit the existence of multiple time scales by means
of the extension method of Sandril). In this way we derived
kinetic equations valid for long times for weakly coupled
and long range systems. In the case of weak coupling we
investigated the relaxation into the kinetic regime. We
found conditions on the initial correlations which are
stronger than the "absence of Parallel motions" of Sandri.
If these initial correlations satisfy still stronger con-

ditiqgs the relaxation into the kinetic regime obeys a
f- -law.

The theory exposed here does not go beyond the order in
which the kinetic equation is obtained.

D
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Appendix A Proof of eq. (5.25) starting from eq.(5.24).

The integral in eq. (5.24) may be written as a two dimensional
integral

I75n 4 7
€= m2 LT XA (A.1)

—
The vector ‘tl lies here in a fixed plane and the integration
has to be carried out over this entlre plane. From the de-
finition of the Fourier transform ¢5(x} we can derive

bto)- s fptept it

gﬁsre the integration over Z runs from -&? to+00 and the
Z -integration over the entirejia -plane.

Now we form the expression

& 92‘(@./ y o= gﬁ/zfﬁj? exp/-d' &0 7)oz /%2

or by integration by parts

> @/ (V37T

Y
/k-f-/ e e&f/—g'gf” froky (A-3)

o V=% 2%
Inserting eq. (A.3) into eq. (A.1) we obtain
C= -y [ 5% PU37) PUETT)
V& ezt +3)]
cep LR (BB f 5 oz ol S Ly

-5k
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Because

[espf-c8. (2272 )f din, o) 5 (203

=S
5(’2, +2‘,’) being a two dimensional delta function, we see immediately
that

(2l + 09 1o
. . 3 /‘/z 27 ’Va 2!
C = ,zn/;’e/jt/“%//% 2 AP Ve
o

}/z;“ffz’j Mz? + 227
Sy

and this leads directly to eq. (5.25)
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Appendix B. Penrose criterion and Bogoliubov-Lenard-

Balescu equation.

“n
If F/F)/ is isotropic F/H-/ does not depend on e
and is single humped. This follows from

= =54 [7%+V/£V& v,

C>0

‘//;ﬁh 2 F’(k, vf/

v,
V, L

— — JTT I FT(Qci}

)
Therefore f:(k/ has only one extremum, a maximum at u=o,
and is stable according to the Penrose criterion.

We now prove that an isotropic /ﬂﬁﬁ/ remains isotropic if
it obeys the Bogoliubov-Lenard-Balescu equation given

in eq. (5.36) together with egs. (5.18), (5.37) and (5.38).
Performing the /{ -integration we may write

2E_ 9 2[Rl 7k R)elads

27 377—3/7, oV’

i (3?:r.v9/
& RT)E T = F(7) 2(7.7)

)= L
kﬂ' k« jai-"(x e% fz 77"w9 ar&k 5.2

-x?

)
3
\3'
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(B.1)
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>
If F_K/ is isotropic the explicit dependence of L

on ¢ vanishes and we have

L = L{v)/-l,k)

where -3
. v
R e= =

and we obtain from eq. (B 1)

2L [v
2F /0/2 %/kg (v 4, 4)
292; ‘;77 é)t/

2%

i.e. ZT is a function only of the magnitude V¥V of
the velocity. Therefore fr(ﬁij remains isotropic if it
is isotropic at some fixed time.

The more grneral statement, that fi/;ij remains stable for
all directions if it has this property as some fixed time,
is not true. We illustrate this by means of the Landau equa-
tion (5.23) for which we give a counter-example.

If the statement is not true for the Landau equation it
cannot be expected to be true for the egs. (B.l), (B.2).

The difference is admittedly that in the Bogoliubov-Lenard-
Balescu equation the denominator goes through a zero when
the border of instability is passed. If, however, one starts
with a distribution such that i:(zf “3/ is stable for
alli?except one specific value )qo for which F&: k./
at the border of instability, then the zero of the denominat
will be integrable in ]F’—space and no essential difference
with results obtained from the Landau-equation is to be

expected.

Therefore we restrict ourselves to the proof that the
Landau-equation does not conserve the property of electro-
static stability.

is

or
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We write the Landau-equation in the form

2F 2 : Zhﬁlﬂc/ :);:/5? E;’

S = Cop[R] Pl R7) 2 2L

T e )3T
Substitute

F(7)=3(4)5(y ///Vz/

F/Z'“/—/ /%/7) (B.4)

in the right-hand side and integrate over l and t;.
The result is

efé-:—cg_,f_(fgé (B.5)

(B.6)

is a positive constant.
Now we consider a situation where <?1¢& is single-humped
but has a horizontal inclination point at k% = Pg » Say

2 ) =
5%, = s g —1@ (B.7)

Pé:l{-, < P"z::[/o
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We assume furthermore
2 /b:,_/g
V
f =diy, >0
ké —-P;
T

5 =L 3“-{
| %‘g)&=%<0 > 97,91z )V vo>0

or (B.9)

b) 2 22
//9) 0,52—) <o

-

(B.8)

then 6/2G@= passes the border of instability.
The situations a) and b) correspond to the Nyquist diagrams
a) and b), see Ref. 22.

Im X

( Rk 2 T Re

situation a situation b

Im £

From eqa. (B.5), B.7) we find

). et

927 P (B.10)

_59.-




_59_

Therefore one of the conditions (B.9) is always satisfied
and f(l@) becomes unstable.

Our example (B.4) is, of course, a very singular one. The
integral in eq. (B.6) diverges and the distribution is at
the border of instability for all 9@2 ;ﬁé? because
FV-'/;E':' a_/ has a minimum at ¢ = X, ), and

-+oo9,‘r,-/? +00
’“//Qk. o/“___/_. ;/A{a%lﬁc/ >0
~o0 “-r e = iz -1 <
— 09

as may be seen from egqs. (B.4) and (B.8).

These disadvantages may be removed, however, by taking
sharply peaked Maxwellians instead of delta-functions
in eq. (B.4). This will not change the result (B.10)
appreciably.




