INSTITUT FUR PLASMAPHYSIK

GARCHING BEI MUNCHEN

Subroutines storage overlapping

by

K. Hain and F. Hertweck

IPP-6/6 August 1963

A method for minimizing the storage used by a program

is presented.

Die nachstehende Arbeit wurde im Rahmen des Vertrages zwischen dem Institut
ftir Plasmaphysik GmbH und der Europdischen Atomgemeinschaft tber die

Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgeftihrt.

In this paper we present a method to minimize the
storage locations needed by a program consisting of a "main"
program and a number of "subroutines". The method applies
only to the storage locations for "own" variables, 1i.e.
for variables defined only for a certain subroutine. Besides
these "own" variables there are the parameters defined in
the calling program. The point is that the contents of the
storage locations for "own" variables must not be destroyed
by any subroutine called by the considered one. On the
other hand, independent subroutines may share their storage,
so by this overlapping of storage the number of storage
locations needed can be reduced.

This procedure of storage allocation is a static one;
that means the storage allocation is performed when the
whole program is brought into storage. It is assumed that
the dimensions of all arrays are known. It seems reasonable
to introduce such a procedure instead of "dynamic" storage
allocation during execution because of the time consumption
and the size of the program in the latter case.

One could also consider of a "half-dynamic" storage
allocation. This is reasonable in the case that the program
has to be executed several times independently with different
parameter sets. The dimensions of some arrays may be different
in these "runs". Now if the program with all arrays fixed to
their respective maximum size would not fit into storage,
while the actual arrays for each run would, then the
"half-dynamic" storage allocation would be of great help.

So a certain "storage allocation part" of the program has
to be performed and the whole program has to be relocated
before execution.

We define a program to consist of a main program and
a certain (finite) number N of subroutines. It is understood

that there is always one and only one main program.

Subroutines are called by at least one other subroutine
and/or the main program, whereas the main program is not
called by any subroutine. Further the program 1s assumed

to be non-cyclic in the following sense: No subroutine

can be called by itself (i.e. no recursive calling of sub-
routines) nor are there cycles in a sequence of subroutines
so that a subroutine is indirectly called by itself. This
implies that there is at least one subroutine in the program,
which does not call any other subroutine. Such a subroutine
we shall call an elementary subroutine.

To determine whether there are cycles in a program or
not, we can proceed as follows: We start with the main
program and select one of the subroutines which are called
by the main program say the subroutine Sl' Then we take one
of the subroutines which are called by Sl’ say 82 and so
forth. If this sequence ends with an elementary subroutine
we call this sequence non-cyclic. If the same subroutine
occurs at least twice in the same sequence, we call this
sequence cyclic. If all possible sequences in a program

are non-cyclic, we call the program non-cyclic; if there is
only one cyclic sequence, the whole program is cyclic.

We may add the remark that in a non-cyclic program the
length of a sequence is always & N+1, the total number of
subroutines plus the main program. If the program is cyclic,
we may continue the sequence ad infinitum with the subroutines
in the cycle appearing periodically. Hence it 1is sufficient
to prove that all possible sequences are of length & N+l
to assure the non-cyclic property of the program.

To each subroutine may be attributed an integer called
the level of the subroutine, according to the following rules:

(1) The main program has level O

(2) A subroutine of level L, L 20, may call only
subroutines of level If)IU and, conversely, a
subroutine of level L may be called only by
subroutines of level ﬁ(L

(3) The level of a subroutine is the smallest integer
consistent with rule (2)

We now can state the following

Lemma : In a non-cycliec program there is always one
uniquely defined level for each subrouftine.

To prove this, we first define the transfer matrix Ti. (1 denot-

ing the rows and k the columns) by the following rule: Consider
the main program and the subroutines labelled by the N+1 integers
0,1,...N; without restriction we can make the main program to
have label O. Now

1 4if subroutine i calls subroutine k
Tie =

0O else

The dimensions of Ty, are i=0,N, and k=0,N+1. By this definition,
the rows and columns have the following meaning: For any 1 the
row gives all subroutines which are called by subroutine i,

and for any k the column givés all subroutines which call
subroutine k. In column N+1 we shall note the level of the
subroutines.

The first column of this matrix contains only zeros,
because, by definition, the main program has the property that
it is not called by,?ny subroutine.

This implies that {E__.';Tio = Q0.

Now we attribute level 1 to the subroutines which appear
in the first row. So, consistent with rule 2, all subroutines

called by the main program have level 1. At the same time

condition (3)is fulfilled. We note the levels in column N+1
of the matrix Tik , SO

level of subroutine i= Li = Ti,N+1

Now, for all i =1...,N for which Li L we select the sub-
routines k called by subroutine i. Their levels must be greater
than L; = L (rule 2). The smallest integer satisfying this
condition is L + 1 (rule 3). We note these levels in Tk,N+1.
If we have arrived at i=N we repeat this procedure with L
incremented by 1, and so on. Because the program is assumed

to be non-cyclic, we will find subroutinesli for which all

Tik =0, k=1,...,N. These are the elementary subroutines.

After a certain finite number of steps we have for all i=1,...,N,
and L :Iﬂ§N only elementary subroutines. Because if this
procedure were not finite the level of at least one subroutine
would grow unlimitedly. This is possible only if the program

is cyclic. It is also clear that Ifs N, the equal sign being
valid if and only if there is only one possible sequence 1in

the program with every subroutine calling only one other.
Because every subroutine of a program must be called (else

it would not belong to the program), it is, by this procedure,
assured that every subroutine will get a level. It is unique
because all numbers satisfying condition (2) have a unique

lower limitG.

Corollary:

There exists at least one subroutine in every level. To prove
this statement let us assume there are some subroutines in
1evel L but no subroutines in level L+1l. This is possible if
L:L? - then the subroutines of level L are all elementary.

If they are not, at least one of them calls a subroutine of
level L'> I+1. But in that case we can reduce the levels of
all these subroutines to I+1 without violating rule (2).
Hence, before doing this, rule > was violated, and there must

be at least one subroutine in level L+l1.

I
N
[

We now state the

Lemma: (a) In a non-cyclic program all subroutines of a
sequence may not share their working storage areas.

(b) This must hold for all sequences of the program.
(¢) Different subroutines in different sequences may
share their working storage.

(a) follows immediately from the definition of a
sequence. If (b) were not necessary, one could construct a
case in contradiction to (a). (a) and (b) are also sufficient
as criterion for proper storage allocation, because a sub-
routine is only called inside a sequence and all sequences
are considered by (b). (¢) is true because two different
subroutines in two different sequences cannot call each
other or else they would belong to the same sequence.

We shall now adopt the following procedure for storage
allocation. Let us denote by Si the number of storage locations
needed for subroutine i, i=o,1,...,N (i=o is for the main
program), by Ui the first used storage locations of, and by
Fi the first free storage location behind, subroutine 1.

For the main program we have

Yo

F

Il

first location of working storage area

il
=]
+
[#2]

o O 0o

Then we have for level 1 simply

=1
il
eS|

14 o]
F, _ U , 8 =F,+38 a1l 1y
1 4 4 4

where i1 are all subroutines of level 1. Let us assume that Ui
and Fi for all subroutines of all levels L'« L are known. For
every subroutine iL of level L we find with the help of the
transfer matrix all subroutines ‘k*which call subroutine iL'
Then it is sufficient for the independence of the storage of
subroutine iL of all calling subroutines k*to make

S
]

;= MAX (Fy, » @ll k¥ for which Ty, 4 -1)

i
+ S, +

Il
==

F.

So we have determined the storage needs for all subroutines
of level L and can proceed to level L+l,L+2,...,I%

The storage needed by the whole program is given by

Stotal = MAX (FiL, all 1.) = Uo

By the procedure as explalined above the storage needs
for a program are as far as possible minimized, by only
considering the logical connection of the subroutines of a
program at the time the program is brought into storage. I1f
during execution a subroutine is not called at all, a certain
amount of storage locations may be wasted. On the other hand,
this could be avoided only by a dynamic storage relocation,
which has disadvantages of its own. This procedure of storage
allocation at loading time is relatively simple and will not
consume much computing time.

Level

[o R E I

1.--..

2...‘.

3-.--0

4---.-

5-..00

An example of a program with a main program (label 0) and a certain
number of subroutines (labelled arbitrarily from 1 to 26).

=4y ooogL =1g Z

@oomv ooyi] ooz ¥ ¥¢ L L 9¢
oCyef coggl oGL |¢ ¢ 1 Ge
cog9¢| oogz| cooy |Gl ¢ ve
000} 06§ | 0G 4 ¢ L ¢z
oGLijoog | 066 |2 Z L L g
oGeclogee| ooy |Gj G Lz
oG6ezf ozl 0oG V| ¥ L L L oz
oo/ {oo| | o009 L L Lo b
oopLiool [oooy | L i
0Gf { oog | oG} 2 2 L L "
0GgLjoGh [oog ¢l ¢ L -
ocogLfoGLL| oG Gl G ¢ o
ocog jooL | ool l L L i
oofLjoggL| og ¢l g2 |t ¢l
ooigjoogLjoog || ¥ ! zl
oG¢LjooL oGzl |1 L l Lk
ooggjoog |o0GL |2 g L L o
oog¢foGhz| oGy |Gl ¢§ ¢
oogg|oogzloog || V¢ i 8
cooffogez|o0goL |Si6 /
ocog |00, |oo/ L L L "] 9
cog |00} oo} A b ! ¢
oGLL|ooL |osty |2 Z L 5
066 [oog |0GL |2 4 L ¢
006 || 009 || 0O¢ Glg 2
0ogL| 0GLL{ 0 4 b F b
o0} |o ooL |o o Lol L L b o
g 15 9 WE,.HWHM 9z GZ ¥z €2 22 Lz 92 6L 8L LL 9L GL VL gL 2L LLoL6 8 L 9 6 vV ¢ ¢ L ©
— i _..r T=2n2) |

The transfer matrix of the program shown in Fig. 1.
The last column is split up into the different states

Fig. 2.

i

Y .

Fig. 3

e — Tt °
S il e |
11 19 14 18 '3
|
-
J= L_. 1 '
y F :’T 11?
/ I [723 F4eco
L I e | j
! I / :
/ 22 i
““““ J1 = - 'I I’
2€l | | ! i
- \\\\ J ; | !
2 T 1 | | .
15 :l\ , Lo h
12| \ | L
2 \\ ,‘ | ~ 2000
\ I L ‘
. I
\‘ o5 ! i
\ g | sy R
20 [
ST .]
= 3000
Y
7 L1 i
4 T |
- 4000

by the described procedure.

Storage chart for the program of Fig.2, evaluated

