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Abstract

A derivation from the Liouville equation of the
equations describing the irreversible evolution of the
N-momenta distribution function for a classical spatially-
homogeneous plasma (TI 153»1) 1s given. Collective effects
are included. This "superkinetic" description reduces to
the weak-coupling "master equation" of Brout and Prigogine
when collective effects are neglected. The results are given
in terms of a closed, coupled set of equations analogous
to those obtained by Bogoliubov for the kinetic description
of a plasma. The conditions under which this system reduces
to Bogoliubov's, and hence to the kinetic equation of
Balescu and Lenard, are derived. The origins of irreversibil-
ity in plasmas are discussed in the light of this and other
recent work, and the properties of the stationary solutions
of the superkinetic equations are analyzed.




I. Introduction

In the study of the logical relationship between the Liou-
ville eqguation of slatistical mechanics and the equations des-
cribing the irreversible evolution of classical N-body systems,
an important link is provided by the so-called "superkinetic"
description. In the case of weakly-coupled systems without
significant collective eflfects (screening, etc.) this description
has been given by a single equationl’g’JlL referred to as the
"weak-coupling master equation", which describes the time evolu-
tion of the distribution function for the whole set of N-momenta.
Since with a few additional assumptions the kinetic equation
2,5’
such a description provides a route alternative to the one
normally used 2*©:7:8:9( involving the BBGKY hierarchy )in
passihg from the Liouville equation to the kinetic regime.

of Landau can be derived from this superkinetic equation

Further insight is thus provided into the nature of irreversible
processes 1n gases.

To date no general superkinetic description for a plasma has
been made available. As mentioned above the weak-coupling master
equation of Brout and Prigogine does not include collective
effects. The purpose of the present paper is to propose for a
plasma a description of irreversible behavior at the superkinetic
level, taking account of those collective phenomena appropriate
to the macroscopically homogeneous case.

The existing superkinetic equation for weakly-coupled systems
is of fundamental importance in itself through the fact that,
although its derivation nowhere requires the assumption of mole-
cular chaos or statistical independence of the particles, the
equation is time irreversible. Thus,as emphasized by Prigogine
and Balescug, the phenomenon of irreversibility is seen to be
independent of any such assumption.

Recent work?’C?0: 729 has made it clear that irreversibility
arises rather through the appearance in many-body systems of
different phenomena occurring on very different time scales,
some fast, some slow. Before the "slow" processes can become




fully established, the "fast" processes reach their time-
asymptotic states, determining in effect the "initial" conditions
for the slow processes, and the evolution no longer can reverse
itself. (This holds, of course, only for systems with a
sufficiently large number of particles, so that the Poincare

recurrence time is essentially infinite and plays no role.)

The appearance of a multiplicity of time scales is a quite
general feature of many-body systems.a’5 In an ordinary simple
dilute gas with short-range forces, for example, these different
time scales can easily be visualized: the average interaction
time, the average time between interactions, the hydrodynamic
time, the diffusion time or time to reach thermodynamic equi-
librium. Although it is not a main point of the present paper,
use will be made of a technique recently developed 6,7,9 which
takes advantage of the natural appearance of this multiplicity
of time scales in treating the time-asymptotic behavior of the
governing equations for many-body systems. The connections be-
tween this technique and the ideas of Enskog in treating the
Boltzmann equation on the one hand, and those of Bogoliubov
in treating the Hierarchy on the other, have been demonstrated

in two previous papers.10’9

In the present article we are concerned with spatially-
homogeneous plasmas in which collective phenomena are important.
We éhall_later assume therefore that the number of particles
in a Debye sphere is very large. For simplicity we assume no
magnetic field to be present. Quantum effects are neglected;11
we describe our "plasma" in terms of a single charged species
(the electrons). The effect of the ions is included only through

the assumption of a neutralizing background of charge.

We shall be dealing in what follows with the limit of very
large systems. This is a critical point of the theory. In order
first to gain some insight into the meaning of this limit, we
shall discuss in the next Section the familiar BBGKY Hierarchy

and the normalization of its solutions for large systems.




IT. The BBGKY Hierarchy and Normalization.

Since we have adopted the classical point of view, we start
from Liouville's fundamental law of conservation of probability

density in ph&ase space:
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The Liouville equation (1) guarantees that this normalization
is preserved for all time. In equation (1), as we have written
it, the ions do not appear because of the assumptions given

above, and “4’represents the effect of any external force field

and (in principle) the effects of the wa].ls.l2 6%fis the
spherically symmetric Coulomb interaction potential
| 5.
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while @ is the electronic charge and m the electron mass.

It is convenient for our purposes to write (1) (2) and (3)
and all subsequenf anaijnn in dimensionless form. Thus the

-1

variables Z})ﬂw { are replaced by X" 27 ¢t , measured

in units of 3 (9/,»11)’2, and ‘fé./(@ﬁu) “ respectlvely (The
mean energy per nleoian is 36/2 LL and ﬂV are replaced by Zl;”
and W , measured in units of 61/1" and e"’/'r‘?', r'espoctlvely,
while [——Nis replaced by F¥measured in units (9/”1)-3 /2 The

results are:
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where we have introduced the notatlon
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( If for a plasma we identify 1; as the Debye length, 1" (e/m,,e_z)‘
where 'HT-'N/V, we see that the parameter 6”‘9 is identlcally
GﬂTH*;B)Hi , 1.e. proportional to the inverse of the number of
electrons in the Debye sphere).

Since we are interested in bulk effects in homogeneous plasmas,
we neglect in what follows external fields and the effect of
walls, and put yK-E(). The neglect of edge effects is reasonable
so long as 1’3 /'V<<1. We shall discuss this approximation
further below.

The well-known BBGKY Hierarchy provides an infinite set of
coupled equations for the reduced functions

(%;;) N%NJZSH " C{z du;'ﬁ"' b, = (f‘d X

The Hierarchy is obtained by integration of equation (la) for

i
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each s with respect to the N-s "unwanted" phase variables, and .
by taking advantage of the symmetries and normalizability of Fr
The result can be written in dimensionless form:
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F° is symmetric to interchange of particles in the set s.

The importance of the reduced functions Fs, and hence of
the BBGKY Hierarchy, lies in the fact that the first member
of the set, Fj, is the kinetic function ( the single-particle
distribution function) while the last member is the probability
density 1in 6Al—dimensiona1 phase space, satisfying the Liouville
equation. Moreover, in the Hierarchy maximum advantage has already
been taken of the symmetries of the function F:N, and the parameter
N appears explicitly. Study of the properties of the Hierarchy
has provided considerable insight into the connection between

5:637:8!9 '

the Liouville equation and kinetic theory.

The normalization used in (4) in defining the reduced functions
FS is the same as that employed by BogoliubovB, since we have
obviously FN E(V/r;,’)ND; where )is the density in phase space
in his notation. In the limit of large systems, V94;3~500, f:N
remains finite, while ) —> O . The functions F° are to be

intérpreted as joint probability densities 1n phase space.

However, the Hierarchy is traditionally treated only 1n the
so-called "bulk limit" VYV —> e , N>, N/YV = N (fixed),
so that in each equation the factor(ﬁk;)/ﬁf is replaced simply
by M. ( We shall call this the "limit Hierarchy.") The limit
solutions obtained then do not, in general, identically satisfy
the normalization conditions originally supposed; the normalization
is preserved only in the limit N = o0

For example, in the case of a plasma, the classical equilibrium

solution with Debye screening gives 4
2/15°d3,) [ :2d . Ty E
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instead of {.

An interesting interpretation of this point has been suggested




by Frof.Schliiter.® We observe that one produces the limit
Hierarchy exactly by substituting for Fsin (5) the
renormalized reduced functions ﬁs = (N_‘/(N-.s),‘ N’) Fs . The
new functions are exactly the solutions of the limit Hierarchy
and go over into the original Fsas N = @ . Moreover,

for example, fF (1""‘('1 (f‘ ‘{,’) - 1_- 3

¥
s :
The F 3 thgn, are den31ty f‘unctlons, in fact the corr‘elatlon

function F=*~ FIF} is proportional to the charge density
relative to a singled-out election; and the value of its
integral, (- 4/N) insures complete screening.

Since in the Hierarchy the behavior of the s-body cluster
is coupled to a "typical" s+1 -body cluster, the problem
of solving the Hierarchy is one of achieving a reasonable closure
of the system of equations. Closure is usually achieved by
assuming ( but only in the initial conditions) a certain amount
of statistical independence of the particles, and, in the case
of a plasma, a related cluster expansion in terms of the two-body

5

in terms of the FS » Which are the solutions actually obtained

correlations. Weﬂsee that such an expansion is best interpreted
from the limit Hierarchy. The true joint probabilibites can
then be interpreted from the deflnitions rglating Es and FS
For example, one has, while Fi F" F2 = N‘ [—

If we expect a solution of tl‘f form F FF + gg, ’

then we should write for F

SF'Fly e7 + O (1/N)
and note that this implles

sfﬁ:j‘f"dr Y = O(1N)

instead of zero, as in the usual treatment.

This point of view enables us to interpret the limit of
large systems slightly differently from the usual formal
"bulk 1imit", and in a manner more appropriate to plasmas. We
must remember that even though the limit Hierarchy can be
obtained "exactly" through renormalization of (4) and (5),
still implies the approximation (gs/v) - ) (say) where
A—> O , through the neglect of the effect of the walls.

On the other hand, in a plasma we assume, as already mentioned,

T

¥ The author is alsc indebted to D.Pfirsch and P.Schram for
several illuminating discussions on this subject. >




e., a cross term in the two separate expansions. We can avoila

interference between the two expansions only if we assume }
sufficiently small compared to € ( in the limit, transcendentally
small). It is however most convenient in what follows simply to
keep track of the error terms in the manner indicated above.

In our treatment of the superkinetic description we shall then
not require functions analogous to the i and the symbols -2

etc., will have meaning also in the limit of large systems. J*!

III. The Generalized Hierarchy

In our study of the superkinetic description of plasmas we

are interested primarily in the distributions of a large number
of bodies in momentum space, with relatively less importance to
be attached to configuration space. We consider therefore the

generalized set of reduced functions:
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The setff}is always contained in the set{}}; the number s may
be quite large. Starting either with (la) or with (5) one obtains
the generalized hierarchy, valid in the limit CT‘3//‘r)'—%>()

?ﬁmf‘—fgr”fs”;

= S {8 sy o8 i

D

or

(9)

2 12 $+4,VH -}
. E 4, (541,742
+G—5 -I-v‘-/_—' L Lc 541 f({‘} sl phsit) + Z. jf > 511 f@'},ﬂilf”}, ist1)



o

sy
Study of the properties of the functions j?) and their related

hierarchy (9) should be expected to provide insight into the

relationship between the Liouville equation and the superkinetic

as well as kinetic descriptions of a plasma. We note that if
§=) ,eq.(9) reduces to the usual Hierarchy (5).

For the superkinetic equation we are interested first of all
in the distribution function for all N momenta, ;f””(ﬁ,nlf)
It is then sufficient to investigate (9) for the case s=N:
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This hierarchy for the functions ;F - was first given by Higgins.

N,»
Each function-f ’is a function of all N momenta; however, for
)I¥C)it is symmetric to interchange of particles only within the
sets {p} or“{N p]‘ and not to interchange between the sets.

We note that tho superkinetic function f" is coupled only to
JENZ , while F *1s coupled to fw and fN’ , etc. (The relationship
between this hierarchy and the Fourier description of Prigogine
and Balescu is readily apparentl?) The evolution of:fMoin momentum
space is determined by the development of the two-body correlations

in configuration sSpace:
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We note for future use that whenever ;F (;\r f X,
0, X (X,
we have the identity
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Moreover, from the symmetry of LZQ’ , the spatially-homogeneous
parts of the functions }M5P make no contribution to the integrals
in (10) or (11).

IV. Approximate Closure - The "Cluster" Expansion.

We seek an approximate closure of the hierarchy (10) under
limiting conditions appropriate for a plasma. We have already
assumed 1}i/wf to be very small in order to neglect edge effects
( see above discussion ); we shall have further use for this
approximation below.In the bulk of the plasma we expect the
average interaction between particles to be weak. We express this
by the assumption

2
(12) £ cp« 1
e

which, as already pointed out, implies
y 3_ |
(13) 4T nt," = = » 1
? &
3
We see that if Ii
N to be very large (of order ‘//hfg ), and we therefore expect

is very small, the inequality (13) requires

the Poincare recurrence time to be longer than any other time
of interest.

As implied by (13), although the average interaction between
pairs is weak, the number of particles simultaneously interacting
in a plasma can be very large. Thus the terms appearing in the
sums on the 7418 of (10) can act in concert; we shall demonstrate

that it is exactly these terms which in equilibrium provide the ,
usual Debye screening. Thus we assume, for example, Z_a‘z O(N),ﬁ'-‘O(Nz) :
for the purposes of ordering terms in our expansion{:horeove;i }Vﬂ” |
can approach a product of N functions (as for example, in equili-

brium), so we assume % = O(N) when operating on ﬁ”’y .

Thus in an expansion in the small parameter & , we may neglect in

lowest order (at least for each Y sufficiently small compared to N)

the interaction term on the fAs in (10), but we must retain the

terms on the right.

With this ordering in mind we make the observation,. based on the




symmetry of QG'already mentioned, that to zeroth order in &

3
and fb/ﬁ] , even including the collective terms, the hierarchy (10)
is solved for each V<< N by the assumption

w061 0(8) r 06E)

provided this is compatible with the-initial conditions. This
means physically that the interactions between particles cannot
produce spatial correlations(or, more simply, inhomogeneities)
of a magnitude larger than 0(6)

We thus limit ourselves to initial conditions of the type (14)
and seek solutions of (10) in the form

(15) PP % er® s 0(F)

where the functions ),AﬁP thus defined must have the property

(16) £ /( de) = 0(%)

and satisfy the hierarchy (correct to ()(?) ):
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From (11) we note that f is determined by
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To achieve a closure of the system given by (17) and (18) we
require a general expression relating )’NP to a/lV,Z (and, in
general, fN’o ). This relationship should hold for each ))
(sufficiently small compared to N) and produce, when substituted

%13 =
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(17), a unique relationship between )/ and f independent
of ¥ , to the order of &£ in question.

In his treatment of the BBGKY Hierarchy for the spatially-
homogeneous plasma, Bogjollubov) noticed at this point that a

cluster expansion of the type ( see previous discussion )
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where the two—bod;yr correlation function y(‘J) Y2 ( RN ‘.)y-,)
is defined by d 4
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solves the (limit) Hierarchy, producing a unique integral equation

for ?'?J"L , independent of )

In our present problem, if we 1limit ourselves to the case of

a spatially-homogeneous plasma, we notice that an analogous ex-

pansion in the form

{r}
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also solves the entire "% -hierarchy" (17), producing a unique
equation for YNJzin terms of fNJo

To see this, we note first that in the spatially-homogeneous

N2 :
case the functions Y‘-v‘ can only depend on the difference coordinates

X,z Ao- _- and with (19) each pair (¢ ).in the set [y} occurs
once. Thus the operators K’v can be written in that case
2 >
=2 v ,;,
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and also, generally,
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Moreover, the general requirement, according to definition,
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is satisfied in the spatially-homogeneous case by (19) since
from (16) we have for spatial-homogeneity
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Substitution of (19) in (17) gives
ir}
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We now consider the terms on the right side of (22) in order.

The first term vanishes unless/9 J from the symmetry of I
and thus reduces to J

i 3 WF R
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Similarly, the first integral in the bracket vanishes unless
o= ¢ and (3-*- ]
% v} sv7 u-} NP}

Thus using Z Z ‘I‘ZZ 1+ Z , and
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neglecting terms of order (et;f/v)u’: O%}, we obtain
(23)
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Finally, since Y..= -X,), j/Eéjéﬂ' Ty :J/L&- .
inally ) Y (z, XJ) % 4’,‘_(/133;/ 4 I‘JJ;/

and we obtain cancellation in (23) when o =¢ . For each p

equations (22) can therefore be written
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where we define ru= 0

Hence, with the error indicated, substitution of the cluster-
type expansion (19) yields for each member of the )’«hierarchy
the same equation for &; . We have therefore obtained the
desired approximate closure of the set of equations (17) ard (18)
appropriate for a spatially-homogeneous plasma with collective
effects.

V. Time - Asymptotic Analysis.

The equation (18) and (24) form a closed set from which we wish
to obtain the superkinetic description of a plasma. Although the
analysis can be extended to higher orders, as the equations stand
they are valid only to first order in £ for fﬂﬁoand zeroth order
in £ for 3/ . Thus, in terms of an expansion in £

(5
f’=j0°+ Ep s 527"»&
W
For = gire(pr 2 )t

xc{:i
we may treat with our present equations only the coefficients ;ﬂ}

d and 2/ . We note that in their present form the equations

are still time reversible.

(5]




We notice, however, that our equations actually contain very
different time scales. It is clear, for example, that JQAAO
evolves much more slowly than aﬁ@ ; lndeed, the zeroth-order
approximation for eguation (18) is simply (a}w’a/?t)o: O
If, however, ?”}(f”F) is treated strictly as independent of time,
the first correction, SPI , can readily be seen to grow in time
without bound, rendering the expansion invalid after a short time.
The physical reason for this "secular" behavior has been discussed
in the introduction. To avoid this problem, we must adopt a method
for making time-asymptotic analysis in the presence of multi-
plicity of time scales.

The method we shall use has been discussed extensively else-

617’9,]‘0

where We adopt the formalism of Sandri 7 and treat the

coefficients of our expansion as extended functions of the inde-

pendeg} time variables T;,Y,)... where in reduction to physical
space,

Y
(26) Za

This leads, in addition to (25), to an expansion of the time
derivatives in the form

Pj_mi 22’04 . (gg;o +§%')+m
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(27)
Qap - Mg,
0t '

The relation of this expansion to the ideas of Enskog and

Bogoliubov can be made quite exp]icit.g’lo

% Tt should be noted that the reduction equations (26) given here,
and our simple treatment of the initial conditions, are not in ge-
neral adequate to go on to higher orders in the expansion.lSMore
refined analysis is required to obtain corrections to the kinetic
or superkinetic results,l19 but this will cause no trouble here.
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By treating our functions in terms of several time scales we
have, of course, introduced an arbitrariness in the expansion.
The essence of the method as given by Frieman6 and Sandri7 is to
remove this arbitrariness by demanding that the coefficients of

the expansion remain bounded for long times.

In our present problem, using (25) and (27), we may write
our equations as:

(28) gj‘ﬁo =0

to
PN / 2 N
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In order to avoid secular behavior, we must have Qfﬁ’i_'p —>0
for large 2} ; thus the requirement that fo’ remain bounded
yields the equation X

De® >
(31) fa-/%, = fc{xv 3 d[ =%, ‘U“')

We therefore need the solution of (30) for large ¢, in order
to complete the superkinetic description of the plasma:

Y
iy (2) = By (2= 2,5,) = iy, [ %0 (0,1,..)

Kgd | er',;’-—-’N !_
+ - 5 ¥ ' . foo v .D
fe ?Q{){\};{Sjﬁ (‘f,) + V}é, f—-/ (l;d%/( )+‘£/J';())

o

(32)

£ It may be atso noted in passing that (29), together with (31),
yields an equation for the transient behavior of

- {6 -



The equations (31) and (32), taken together, form our proposed
superkinetic description of a plasma; valid on the long-time scale
f}= £l . These equations are no longer time reversibie; our
replacement of Z; by its asymptotic value for large 2; has
destroyed the time-reversal invariance of the system.

VI. Transformed Equations.

It seems natural to asuume4the initial spatial-correlations }'Q)
to have a finite range in confipguration space. Therefore, except
for the possibility of singular behavior in small relative ve-
locities, 1 ,7’19the initial value of‘{'plays no role for large
7, and can Ge omitted in (%2). (See, however, footnote,p.l4)

We may rewrite (21) and (?2) in terms of the Fourler transforms

of dP and l[a(l . We introduce

(33) F{; tf,..,y,,) = fc(zq{,e = );F (zd J,.,)

and

| _ ke
(34) ¢lk) = fdzc,%ﬂ =%y LT (12))

The'indiqes on f’ are still necessary because the velocity variables
}Q and l% are not interchangeable with the remaining N-2
variables. From the reality of 3( we have the property

INORIMEY

We then obtain in Fourier representation
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where C}is the imaginary part of the solution of (37), and we
have introduced the notation

2 92
(38) P,{;f o7 'ix?,,)

Using, the Dirac identity

Am 03*-' + T J(x)

(39) pot *"f‘

where ﬂ)indicates the Cauchy principal value, one immediately
recognizes the weak-coupling master equation in the form given

by Prigogine and Balescug’a, if the sum on the right representing
collective effects 1s dropped:

0¢° "
we O{A b k& Jéj& _D,,( We.
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However, when collective effects are included a closed-form
solution of (37), giving r1 as a functional of 0, is not readi-
ly available ( except in the case of stationary solutions, dis-
cussed below).

VII. Stationary Solutions and Equilibrium.

Making use of the identity (39), we decompose the equation for

£

: ¢ _LN AR AR
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into its real and imaginary parts: ( See also,lgus (12) and (13))
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Inspection of these equations shows that a stationary solution
of (36) and (37) is given by

N

(1) f°= C"e = T M)
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where M('U':) = ce / is the Maxwellian distribution, since
then it follows from (37a) that

I
(43) [l =0
- P
This 1s of course the familiar canonical distribution for
thermodynamic equilibrium of a classical plasma; substitution of
(%1) and (42) in (37b) shows that

(44 Gr) = = L&)
I+ BR) /4w
Since ¢ (k) = 4‘"—/‘&2 —_ |
= 417’/31151 from (3a) and (34%), this solution represents the
familiar Debye screening in the classical approximation.
However, since our system (36) and (37) is linear, it is clear

that further stationary solutions of the type

(45) AN A Gy

My = [(4K)
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can be constructed by superposition. We require only that [ﬂ

o
and jp be normalizable.(See Appendix.)

Investigating solutions of this type, we find indeed from
I
(37a) that f; = () , and, moreover, from (37b):

(46) ["'(L)K) = ¢ (k) {fo/(f() + 4—7;—,;?—"{1}

4
where () denotes differentiation with respect to the argument
K . But the general solution of (46) is

A ) ._JCK
(47) = F(&,o)e“_ 4re FK [ d ‘ 7 162

0

where ¢(ﬁ) has been replaced by its value 47?'4‘. Imposing the
requirement of normalizability of f1 in-& and K space leads to the

conclusion that
T Y <Y,
(48) F(k;0)=4’n’/dl< e jp" (k?)
o
so that we may write finally
. a0
oy [M(kK) = »mr/ dle
o

which clgar-ly exists whenever y is normalizable.

- 4&*A

f"’(p K)

The existence of this broad class of stationary solutions
corresponds to the result of Prig;ogine}‘l that any function of the
total kinetic energy, K, is a stationary solution of the weak-
coupling master equation (eq.(%0)). Indeed, Prlgogine has given

an H -theorem in that case, showing that = d f(dl!’) %Ywaf
£ 0 , and that (dﬂ/d{)=00nlx if f_o jf’wc(K)

It seems likely, of course, that an f{— thicorem muslt hold also
when collective effects are included, although a complete proof
is not yet available.

o
The exact form of the stationary solutions (W)Mskmre arbitrary,
(aside from normalizability) and will depend on the initial con-

ditions and the type of system to be described,as in ordinary

20

ensemble theory However, for the bulk properties of a plasma

L]




we should not expect to find a significant dependence on the
particular form of ?K). That this is indeed so is shown

in the Appendix, in which we find that the single-particle
distribution function itself calculated from a very general

class of (7 ?ﬁj, is always the Maxwellian distribution
in the limit N->% ;| and, moreover,_/(dy)NF(b)K) approaches
the familiar Debye result (44) in the same limit.

Moreover, consistent with this result we note here a simple
but important general property of eq. (49). The spatial average
of )&F is given, of course, by r:P (Cﬁl() . We see that our
general stationary solution (49) yields in every case

(50) (oK)= - 41rjo°(;<)
SO that (ij',?/v) ,—'(0_, K) = _fo/N , in accordance with our

expectations, as discussed in Section II. ( Compare also eqns.(16)

and (21) ). This result implies in dimensional variables

(51) -nef(dé)”fdf“F (594{3) = +e

a property which is shared, of course, by the usual Debye screening
solution. That is to say, each of the stationary solutions (49)
implies complete screening, with the appropriate amount of charge

( absence of negetive charge) distributed symmetrically about any
singled-out electron.

Indeed, performing the inverse transformation of eq.(49) we
find the general expression for this charge'distribution in the

fform
0 4
?765 dA -1"/4,‘1 o/
(52) —het€l, (""K) o © (A+K)
o

where we have used 7% for [7(“(3’. ( If g’ = (_', e

one obtains exactly the Debye splution );P = - C K(c 1ﬂ/‘f") )
As in the Debye case, the general expression (52) is singular at

= 0 ; however, it has recently been shown that the corresponding
divergence at small distances can be removed (for an "electron

dstein, Tables, No.32a84




plasma") by proper inclusion of the neglected "Boltzmann" term
in the Bogoliubov equation for the two-body correlations at
small " . We need not concern ourselves with this divergence
here.

VIII. Reduction to Kinetic Regime

In a spatially-homogeneous gas the single-particle distribution
function is independent of position One may therefore obtain [75
by appropriate integration of jCN , since f?’ ‘f: in that case.
We therefore integrate (36) with respect to (N-1) and (37) with
respect to (N-2) momenta:

oFwy 2P F

. |
(53) ——— (k) 4 h)
7, Y (Jﬂj34TTN [ fc”l?" “}v 1 (’(

Pf”“

where

1 Dy fe,m,)

(5%) J“f’ (k)= f(ﬂ'dlf EROE f&:‘; J 2

tf‘,P N * 2
; ! 32y 9 3
“an Z,[ AR Wﬁgﬂr*)

and
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Iin (52) we observe that the terms in the sum on the right are
the same for eachﬂ » S0 the sum is simply proportional to
N-1 = N . we may therefore write

0)’

DF fi, ) _ g I
(56) ot 6212)417‘[0% db Jh) 4 - '&(?“I‘

Similarly, the collective behavior becomes explicit also in (54),
so that (1/411N)E can be replaced by (41]')_1
The I"UI’ICLJ..CJ)I’I 302,0 1s the zeroth-approximation to the space
average of the two-body distribution function F-2 . We assume,
therefore, to this order
(9 ), ©,

(57) yf:’o(y;,)lz'/,) = F! (v.) Ft (%)

2
The functions 53 {(’2) are the Fourier transforms with respect
to Z“(, of the functions
30

3,2 _ 55%—
(58) ey (z,lga,lf}-lzwp) = f

The latter are symmetric to interchange of greek indices but not
to interchange between latin and greek indices, and are clearly
obtained from the symmetric functions g¥ ¥~ = fj:'g-f?'a

by integration:

3 33
(59) y 2% 2 i) dx - Bﬁf,'
«ﬁj Lf d d

Following Bogoliubov, we introduce the cluster expansion

(60) (0 (0 4 :
er= ¢ F)(v“) + F)o.r X, + Fw) [;(-940(6:)

A
2 2,2 2,0 A 1a
where Eb’z’ = )( )—{ ? . E 3/;) (Section IV) and b’ ar-e identical

Lr J_“)"zf'}" to second order in g ]




We see from (21) that in the same approximation

(m

= F (1,3)

’4
(61) “(’J
24 Lo

)
Jaj = F () g r"(“

where the latter relationship follows from the definitions of

Jopl) = iy

Thus, having imposed the additional assumptions (57) and

(60) of a cluster-like expansion in terms of the two-body

correlation functions, we obtain finally the integral equation

of Bogoliubov {or the functions g:

) o (9) | DF'
(62) ? ,&m he {D V)I'(E;) 4‘}ralf /d‘}g(‘htﬁ)'

T poot b “f*“‘" %, |
_ 1 9F
AT v, g () }

solved independently by Balescu10 and by

This equation has been
the kinetic eguation

Lenard® ! to yield in combination with (56)

for a spatially-homogeneous plasma. We see that the superkinetic

description (36) and (37) implies the kinetic description when
additional approximations are imposed.

an
By givjngfﬁ-theorem for these equations Lenard has shown that the
stavionary solution of (56) with (62) is the classical equilibrium
Debye-screening solution, with 2t the Maxwellian distribution.
Compare also, the Appendix).
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IX. Conclusions.

Starting from the Liouville equation, we have been
able to derive, under conditions appropriate for a spatially-
homogenecus plasma in which collective effects are important,
a closed set of equations describing the irreversible behavior
of the distribution function in 3N-momentum space. In the
derivation it is necessary tc assume only that the initial
correlations in configuration space are small, of the same
order as the average two-particle interaction strength. No
assumption of statistical independence of the particles in
momentum space is necessary. We conclude that irreversibility
of the equations arises because of the presence in the system
o' both fast and slow processes; the fast processes relax so
rapidly as to effectively determine the "initial" conditions
of the slower phenomena in such a way that the evolution
cannot reverse itself.

We have further shown that there exists a broad class
of normalizable stationary solutions of these "superkinetic"
equations, each member corresponding to thermodynamic equili-
brium and providing complete screening around any singled out
charged particle.
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Appendix

o
Although the (positive) functions d?pﬂkj are otherwise
arbitrary, they are subject to the folldwing two normalization
conditions, written here in /( -space and in dimensionless form:
Fh4 x

J’r) o a-ﬁ-j

(A.1) { = L——7 ) g (K)A* “dK (number)

20

(A.2 6322—— . : inetic ener
a2y <K)= ) f(x)/rw/c (kinet &y)

where /-; (X) is the Gamma function, /Fé (X+I) = x! . Moreover

the relative energy dispersion is given by

<K-<kR)*D ) )t

20
9K %g"(xa-(gﬂ )*)a

(A.3) :
<K e’_f_V)‘p(zﬂ)
" 3 ol 2
e) +*
There exists an extremely general class of .3 for which,

as,/v becomes large, the integrand in (A.1) or (A.2) becomes

very sharply peaked, the important contribution to the integral

coming in the neighborhood }(: %y . This class of ﬂjboﬂs. then
has the property that the relative energy dispersio (eq.(n.3)

goes to zero as fV -_ o .
We note, in fact, that two very different distributions,

( one corresponding to a macrocanonical ensemble, the other

to a microcanonical ensemble) namely, 5p &?ﬂj ~K
°. IN . = w"’ - zd—
7 {C(s:)/(n)“ (2)* } § (k-7 )

Pathological" cases are, of course, excluded from this
statement. For example, a sum of two delta- functions, centered on
two engergy surfaces far from K= 3&/1 can satisfy (A.1) anad
(A.2), but the energy dispersicn in (A.3) will not in general
vanish as N > ¢ . In that case F}(y*) converges to two

separate Maxwellians of different "temperatures.

and

Fn

= 97 =
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n

e
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both satisfy (A.1) and (a. 2), both give (at least in the limit
N> o0 ) zero for the quantity in (A.3), and both give the
same (Maxwellian) result for F (V‘} in the limit A - oo.

Let us,therefore, consider fr(ﬁf%)computﬂd Tfrom this
general class of jP (ff) . Defining /(;/ = - ’/GL.
we have
p 3N
- & v, 2
(A.3) F (v?) = 7 , (/{ » 4 4/{/
55_ _

It we let /) be the width of the sharp peak in (A.1) or (A.2)
at K= 3N/& , we have

17(%)
(;?T)JN( 5/

(.4) jﬂo_(f%")ﬁ\ ~

and, therefore,
IN _ 5

J - 3V P( Y) U/a_jo‘- T
(A.5) Fiv?) = (” ) /v(w )(, N/z

With Stirling's formula, we have in the limit N - a0

so that [F(%)/F(%l“g‘)] ~ (JN/J)a/'z
wer  FUn) 52 @0 e s )

x a
where we have of course used fbﬂb ( I+ ) =
o~ o

Thus, for the "typical single particle, the Maxwellian
distribution is seen here to be the natural consequence for
very large systems of nearly all those stationary solutions
that depend only on the total kinetic energy .

This result suggests further that the spatial correlatiors
for any (K)should also be essentially the same as the

classical Debye result.

In fact, we find

(i) <["(/a)>£ ((li,i)N/ﬂ(é)K) =

- D8 .
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where we have used equ. (49) integrated once by parts and
where we have also used (A.1). Once again, using the small-

ness of' the energy dispersion in the f( integration, we find

<P = = 41 (1 2 [d2 & (F+02)

/
R*+ 1

in agreement with the Debye solution (44).

(A.8)

= —4Y
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