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Discussion of two dispersion relations

deduced from the Vlasov equation

E. Canobbio and R. Croci

Summary

In the present note we discuss two different dispersion relations derived

from the linearized Vlasov equation.

The dispersion relation for the system of n moment equations which is closed
by equating to zero the (n+l)—th moment in the n th equation yields unstable
solutions for n> 3.

On the contrary the dispersion relation obtained by expanding the distribution
function in series of orthogonal polynomials has always real roots if the
unperturbed distribution is given by a single-humped function, proving that
this state is stable. The method is then applied to the initial value problem
and Landau damping.




In the present note we are concerned with the discussion of two different

dispersion relations which can be derived when the linearized Vlasov equation

is approximated by a finite set of differential equations in ( ;?, t ). First

we consider the system of n moment equations, closed by equating to zero the
(n+1)~th moment in the n_th equation.

The dispersion relation which can be obtained in this way has complex roots

for n>3, ylelding unstable solutions which should not be possible in thermo-
dynamic equilibrium.

We show that the first three moment equations, which are the usual magnetohydro-
dynamic equations, correspond to a single-humped stable unperturbed distribution
funetion; the equations of higher order, on the contrary, correspond to an
unperturbed state with many streams of charges, yielding unstable oscillations;
they cannot, therefore, be used to approximate the Vlasov equation.

Then we generalize the method of Hermite Polynamials, and expand the distribution
function in series of general orthogonal polynomials. We derive a closed system
of equations for the coefficients S of the expansion by equating to zero all
the c,, from a certain n on. If the unperturbed state is given by a single-
humped distribution, all the roots of the dispersion relation are real, proving
that the state is stable. The method is applied to the initial values problem
and Landau damping. Some known results can be rapidly derived and clearly
discussed with this technique.

Moment egquations

Consider the one-dimensional, one-component Vlasov equation:
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(where e and m are the charge and the mass of the electron respectively, and

(1)

g; is the unperturbed electron and ion density). If we linearize it and set
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Multiplication by (v-=u) (n = 1,2,...) and integration over v give then the
well known moment equations
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The dispersion relation can now be obtained by setting

p -0 and p° =0 (=812,
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With the assumption po =0 (s=0,1,.. £ '"’-4)we obtain in the case n = 2N:
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We see from the above that
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If equation (5) is considered as an equation in W , it always has only one
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real positive root, the other being complex or negative (because the first
coefficient is positive and the others negative). Hence there are only two

real roots 004 h= 0.2‘ different from zero, and it follows that the solutions
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of equ. (2) are always unstable when n is greater than three. As an example

we give the roots of the first five dispersion relations:
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The fourth and fifth dispersion relations have two imaginary roots. It is

interesting to note that in the limit () = O the eguation D, = O has only

two non-vanishing roots, W = :tu)P. In the other limiting case, u)P= 0, all
the roots are equal to zero.

The results derived above (that the solutions of equ. (2) are unstable if

n >* 3) can be explained with the following considerations.

First of all, as a consequence of equations (3) we see that the distribution

function has the form'
I = z u) §C(1ﬁ%)("’ ®Cy 9;0 o

if all the moments P vanish when s ;; Sy +1le
This can be seen by expanding the distribution function in series of general

orthogonal polynomials an(v—u) corresponding to a weight function g (V-1
o)
— ~—
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We choose the normali-ing condition:
9
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If we set: M <
= X

Py =21 Fns

M =0
from (7) we get, with definition (2) for the moments:
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We remember now that

o, o = ifg! (P% (X))X
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and that (x %) =(-1) %(X)Z PC’Q)PCX
where Pni5>(/5)‘;0 E,#- S =M.

(equ. (8) is only apparently unsymmetrical, because for x=y both sides vanish).

(8)

We can conclude that
_So S ,
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The limit 55%cxiof equ. (6) is essentially a Taylor expansion with coefficients
given by the distribution function and its derivatives calculated at the tem-
perature T = 0.

The unperturbed distribution then has the following form:

$ SO a3 .J 0
{0 = 4.9 (W),
q, 0 (231,)’
because we have supposed that it is an even function.
When n is equal 2 or 3, f; 1is proportional to a delta function; and therefore
the solutions of equ. (2) are stable. When n is greater than 3, even order

derivatives of the delta function appear, which can be thought of as streams

of charges. This can be visualized as in fig. 1
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where some of the functions of the sequence used to define é‘CX) are sketched.
Such unperturbed states are of course unstable. We conclude that equ. (2) cannot

be used to describe stable plasma configurations.

Orthogonal polynomials

In the last section we have seen that it is not possible to approximate the
Vlasov equation with a set of moment equations (2) for n>3. In this section
we shall write a finite set of equations approximating the Vlasov equation by
means of the following expansion of the distribution function in series of

general orthogonal polynomials:

SIS

g(x) is the weight function and the polynomials P obey the recurrence formula
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Multiply now equ. (la) by Ehv(un) and integrate over v; then we get:
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If we suppose that (’IF 0’0) % 0 £ ( (that is, that f, 1s a single-humped

function) we can set v
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With this definition the last term in equ. (lo) becomes
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and the coefficient 34 vanishes. In fact, from recurrence formula (9), written
forn=1,
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The dispersion relation obtained from (lo) by setting g = ©
(p=0,1;:44) 1s then:
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Due to the structure of the determinant, the polynomials D ((;J( Vo ) are
orthogonal @ef (1) p. 374),and therefore the roots of the dispersion relation

are real and simple. These last two properties can be proved directly by using

the recurrence formula for the polynomials Dm, (i‘i(‘-’_\]a):

A
L [AM+4 (* ’T) M+ =~ Xu +4D’k-1 %trfj 5; (13)
Ai = A.S .S d""t J A’] = AD__ -

(]
Suppose that the zeros of Dm y are real and simple, and that they separate
the zeros of D,W; then the zeros of D i have the same property with respect
to D’h+-1 5
Dy -4 and that in the zeros of D, the sign of DM‘H, is opposite to the sign

due to the fact that DAH_A goes to infinity with the same sign as

of D -4s @S the recurrence formula show (see fig. 2). Moreover it ecan be seen

that this property holds for D Q_and D3 .

g%—d D
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fig. 2
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A consequence of the reality of the roots is that all unperturbed functions
such that Cﬁiiﬁy4 %;QP can be used as weight function (that is, all single-
humped distribution %ﬁhctions) are stable.

Now we shall establish some properties of the distribution of the zeros of the
dispersion relation which will be necessary in the discussion of the initial
values problem and Landau damping (section 3).

We write the polynomials D&v in the following way:

& Bty N -
- (B -G, Qo

where the polynomial QAL;S obtained from D, omitting the first row and the
first column.

Note that the polynomials of degree n-r (r=0,l,..,n), which can be derived
from determinant (12) omitting the first r rows and columns, are orthogonal
polynomials for a fixed n  as can be deduced from ngg_j;lmp. 274.

As a consequence, the zeros of Qm-4 Separate the zeros of E, ; therefore the
zeros of Dhtseparate the zeros of P;Pand are greater (smaller) than the

corresponding ones of B, if %),VO (HK_ < Vg ) (see fig. 3).

[‘L,/ /DM,
AR TAT G a 7N
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If €= 0 (i.e. if there is no electrostatic interaction between the particles)
the polynomials QM'
to raise the eigen-frequencies of the system, but without essential modifications

of their distribution.

reduce to P, ; the effect of the interaction is therefore

For example, when the distance between two consecutive zeros of P vanishes

asymptotically, the same happens to the zeros of qu.




A significant and important case is that of the Maxwellian; in this case the
polynomials P are Hermite polynomials and the asymptotic distribution of the
zeros can be deducedwfrom the equatlon (Ref. (l) p. 198)

b He) = & lin )i 200 o (g, x - w LY, K< M

H> R M=y 0 'r(M +4)

A formula of the same type holds for X o \m+g

The roocts of the first five dispersion relations are:

lst: W= o
e e
ond: w= F\Wp + L1

2
3rd: W= 0 Jituﬂ.‘va43jl _
f"‘”P +6 (0" Vw?+~4il4 (15)

4th: W= \
{ \/wp_,_«r{)f)_ +\/wp 8w9ﬂ+4-0ﬂ4

5th: W= ()

Landau damping

In this section we shall study the asymptotic hehaviour of the density in
relation with the initial value of the distribution function. First, we write
the general solution of equ. (1) as a superposition of the elementary solutions

dinb) -t Mt g ClaIPL)

MSR 4z4

where W, (j=1,2,.M) are the roots of the equation D = 0; the coefficients
hwm myq

C,, Can be identified with the polynomials
(l)'/wl.—
ELb ( 1 H.in{) )
K

as they have the same recurrence formula and Cp can be set equal to [%.

Then, using equ. (14), we substitute equ. (16) with the equation

A E ) 3 (ﬁm
af@'t -{a (W)e ;@rj (2-%)P, (M) d w +;« 5% (al e [)“" VEQ(K(l;Ei w

where & ((U) can be thought of as the product of an arbitrary function determined
by the initial conditions and a function which gives the distribution of the
zeros of the dispersion realtion.

Now we integrate (17) over v and, noting that the integral in the last term on
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the right is equal to zero because the series does not contain Po , we find the

following expression for the density:

L ()= o fawe

(W) is therefore the Fourier transform of the density.

__Lu)td

w

We can simplify equation (17) if we remember that the series

G ()2 B(8-)BLT- )

(18)
is equal to J( ---'\T) The expr'ess1on
w7 P (v=v,
2}@ (~-w})i Qo 4 D)’”(' D) (19)
can be calculated by substituting equ. (16) into equ. (la); we obtain:
V-Vo W T, Z =) = 0
. +PK re* Oﬂ/ w)( ) Q ( ) ( D)# (20)
that is é_(
W-Vp A , do(KT~w
s A () Q (BB P&+ )
Q
o

The constant ¢ is determined by the equation

¢ g(—‘%) AL Pfuzo

KO-w

which follows from (20) after multiplication by g(v) and integration over v.
Using the above relations for the series (18) and (19), equ. (17) simplifies
to:

ot P
LK w) w ;
%W t) = e K’“(WJ"'J&{CE ) PJ Tz i MCK‘% KW= Ni(o1)

If we set ¢=0 in equ. (21) we get the following equatlon for a{(lﬂr

{t@-t*) ko((KIT) Ane .F(@PJLL—/ + ol (KDY P ‘wtib_u-k A

We take now the Hilbert transform of this equation, and remembering the con-

volution theorem, we have
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(23)
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From equ. (19) and (20) we get finally

)= KT Lo 4 f
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We note that expression
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1s never zero, because f, is a single humped function. In fact, if f ( Q5

(24)

where

and

is equal to zero at the point “%, f’ (.J) is negative definite, because {’fvj
K .-0—4‘-"

is never positive. K - Ye K

At this point we shall examine very briefly how far the form of the unperturbed
distribution function limits the arbitrariness in the choice of the initial

perturbation.

If the distance between two consecutive zeros of the orthogonal polynomials
associated with ﬂﬁicvﬂﬂy44gﬁjgoes asymptotically to zero, there is no limitation
on the form of -{1@{}t==0). An example is given by the Maxwellian. In general,
we can say that this happens for all the functions f, (v) which have no interval
of constancy gﬁif. (1) p. 50). If the unperturbed distribution function is

different from zero only in a finite interval, then f; too can be different
from zero only in the same interval.

If the unperturbed disgtribution function is a step function, the function

ck%v) igs a linear combination of delta functions, and the other possible cases
are easlly deduced from these.

We can now devine some conclusiocns about the asymptotic behavibur of the density.

When the unperturbed distribution function is a step function, the function

o (W) is a linear combination of delta functf%s, and therefore the density

is not damped.

In general we can say that there is no damping only when the function &(W})
contains delta functlons or other generalized functions. An interesting example
is provided by the function o({(W) oL Co4 ( 92- ). The Fourier transform of
this funetion is defined as (Ref. (2) p. 49)
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hence the density comes out to be proportional to
1

= t :
e (2577

Except these rather special cases, the density goes to zero as t goes to
infinity. More exactly, it goes at least as £~@—4 , if the nsth derivative

of & (W) exist; that is, from equ. (24), if f§ (v) and £4 (v,t=0) are n times
differentiable.

Finally,it is obvious that no damping can be expected from a set of n equations
like equ. (8). In fact the general solution is, in this case, a linear super-
position of n periodic solutions. In addition it is evident from equ. (15)
that,in the case of the Maxwellian distribution, the distribution of the eigen-
frequencies is not appropriate to approxinate a damping even for a short time,

because for small n, the frequencies are dense around W= o and not around W= W

P
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