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Abstract:

Population balances play an important role in process and bioprocess engineering. They
represent PDEs which are often multidimensional. The numerical solution of these is quite
challenging in particular for high dimensional problems. For this reason the distribution
dynamics are usually represented by the respective moments. As the corresponding dynamic
moment equations can only be computed in a closed form under strict assumptions, approximate
moment methods have to be applied. However, existing techniques can not be implemented
efficiently for high dimensional problems. In this manuscript an efficient implementation of the
Direct Quadrature Method of Moments (DQMOM) is derived using monomial cubature rules.
Furthermore, application is demonstrated for a five dimensional PBE which is based on a single
cell model for viral replication in cell cultures. The algorithm is used to analyze the effects of
different model assumptions on the overall dynamics.
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1. INTRODUCTION

Multidimensional population balances can be found in
many applications from process and bioprocess engineer-
ing. Typical examples are shape evolution in crystalliza-
tion processes (Liu et al., 2010) and the characterization
of intracellular dynamics of cell cultures in bioprocess
engineering (Villadsen et al., 2011). Their dynamics can be
described conveniently using the framework of population
balance equations (PBEs) (Ramkrishna, 2000)

∂n(t,x)

∂t
+

d∑

k=1

∂

∂xk

{hk(t,x, c)n(t,x)} (1)

= B(t, n,x, c) −D(x, c, t)n(t,x) .

The resulting partial differential equations (PDEs) specify
the dynamics of the number density distribution n(t,x)
with respect to the vector of internal coordinates x =
[x1, . . . , xd]. The rates hk define the advection in direction
of internal coordinates while the right hand side comprises
sources and sinks. In general, the PBE for the so called
dispersed phase is coupled to a system of ODEs char-
acterizing the dynamics of the continuous phase vector
c = [c1, . . . , cde

]

dc

dt
= P (cin − c) + f(c, n) (2)
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with P being the dilution rate and f the integral exchange
with the dispersed phase. Population balance equations
are rarely solvable analytically. Most numerical solution
techniques can be assigned to one of the following classes.
Monte Carlo (MC) methods are based on the solution
of a corresponding stochastic problem formulation (Zhao
et al., 2007). Here, the number of simulated particles has
to be sufficiently high to come up with reliable results.
In consequence, for multidimensional problems the ap-
plication of MC techniques involves high computational
costs. In discretization-based algorithms like finite volume
methods (Ma et al., 2002) the space of internal coordinates
is discretized and a large set of ODEs is solved instead of
a PDE. Like MC methods, discretization-based methods
suffer from large numerical effort when being applied to
multidimensional problems. In contrast to these techniques
moment methods rely on specific integral quantities of the
distribution, the so called moments. These moments are
defined as

ml1,...,ld =

∫

X

xl1
1 . . . xld

d n(t,x) dx . (3)

They are directly related to important integral properties
of the distribution function like overall number of particles,
overall particle surface and overall particle mass. The
dynamic moment equations can be derived from the PBE
easily
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d

dt
ml1,...,ld = −

d�

k=1

�

X

xl1
1 . . . xld

d

∂

∂xk

{hk n} dx (4)

+

�

X

xl1
1 . . . xld

d (B −Dn) dx .

where the right hand side has to be expressed in terms
of moments. Computation of the dynamics using a closed
set of equations is only possible under strict assumptions.
However, an approximate closure can be found using ap-
proximate moment methods like the Quadrature Method
of Moments (QMOM) as presented by McGraw (1997) or
the Direct Quadrature Method of Moments (DQMOM) as
described by Marchisio and Fox (2005). These methods
have been applied to many processes governed by one-
or two-dimensional PBEs and are specifically suitable in
combination with CFD simulations. Multivariate exten-
sions have been developed (e.g. Buffo et al., 2013) but
are rarely applied to PBEs with more than two internal
coordinates. This is mainly due to two problems. First,
application of QMOM or DQMOM includes the solution
of possibly ill conditioned nonlinear (QMOM) or linear
(DQMOM) equation systems. This is further complicated
in the multidimensional setting. A second problem arises
from the choice of abscissas and weights for the approxi-
mation of the integral (3). Here, a good trade-off between
accuracy and numerical effort has to be found.

In the following, an alternative method is presented which
can be implemented efficiently, even for large dimensional
problems. Note, that this approach can be interpreted as
a generalzation of a recently presented algorithm of Dürr
and Kienle (2014). Furthermore, the algorithm is applied
to a structured and segregated model describing virus
replication in cell culture.

2. APPROXIMATION OF MOMENTS USING THE
DIRECT QUADRATURE METHOD OF MOMENTS

The Direct Quadrature Method of Moments was intro-
duced by Marchisio and Fox (2005). It is assumed that
the integrals of the number distribution function can be
approximated as the following:

�

X

f(x)n dx ≈
nα�

α=1

wα(t) f(xα(t)) =

nα�

α=1

wα fα (5)

with wα the weight and xα the corresponding abscissa.
Thus moments (3) are approximated by

ml1,...,ld =

�

X

xl1
1 . . . xld

d n dx =

nα�

α=1

wα xl1
1,α . . . xld

d,α . (6)

As a consequence of effects like particle growth, the dis-
tribution and its corresponding moments undergo changes
during the process. Instead of describing the evolution of
any moment the main idea of DQMOM is to track the
evolution of abscissas and weights directly. Introducing

dwα

dt
= aα ,

dwα xi,α

dt
= bi,α (7)

for the dynamics of the weights and abscissas the following
equation for an arbitrary moment as defined in (3) can be
derived from the moment dynamics (4)

nα�

α=1

�
(1−

d�

k=1

lk)x
l1
1 . . . xld

d aα + (8)



l1 b1,α

...
ld bd,α




T

·



xl1−1
1,α xl2

2,α . . . xld
d,α

...

xl1
1,αx

l2
2,α . . . xld−1

d,α








= Sl

x
.

Here Sl

x
contains the right hand hand side of (4) and can

also be approximated using (5). In general, one has to
evaluate the equation for nα (d+ 1) distinct moments to
come up with a linear system which has to be solved for
the unknown expressions aα and bk,α.

A ·

�
a

b

�
= S (9)

Depending on the choice of moments different solutions
can be obtained. It is well known that A can become
ill-conditioned depending on the choice of moments, in
particular for a large nα and d.

However, if B = 0, a solution can be derived very effec-
tively by using only the zeroth and first order moments
of the distribution function. For the zeroth order moment
(i.e. l1 = . . . = ld = 0) (8) is simplified to

nα�

α=1

ak ≈ −
nα�

α=1

wαDα . (10)

Comparing the coefficients yields the resulting ODEs for
the dynamics of weights

dwα

dt
= −wαDα . (11)

In the next step (8) is solved for each first order moment
(i.e. li = 1 , lj = 0 , i, j = 1, . . . , 5 , i �= j). The resulting
equation is given by

nα�

α=1

bi,α ≈
nα�

α=1

wα (hi,α − xi,α Dα) . (12)

As in the previous case rearranging and comparison of the
coefficients yields

bi,α = wα (hi,α − xi,α Dα) . (13)

Combination of (7),(11) and (13) yields the dynamics of
the abscissas

dxi,α

dt
= hi,α . (14)

By using both derived equations the temporal evolution
of abscissas and weights can be calculated directly. The
abscissas move along the characteristic curves of (1) and
the overall algorithm is equivalent to the one presented in
Dürr and Kienle (2014).

3. CHOICE OF ABSCISSAS

In the previous section dynamic equations for weights and
abscissas have been derived. However, the actual choice of
abscissas for the approximation (5) is still unclear. Obvi-
ously, this is a crucial point with respect to the numerical
effort and accuracy of the whole approximate moment
method. The abscissas and weights are chosen based on the
initial distribution. There are numerous contributions that
present different rules for the numerical approximation of
multivariate integrals as summarized in Stroud (1971). In
general, these cubatures can be divided into two main
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Fig. 1. Abscissas for d = 3: PG3 (left) and NP3 (right)

classes. Product formulas are multivariate extensions of
one-dimensional quadrature formulas. Here, the size of the
abscissa set increases exponentially with the dimension of
the problem. In contrast, when using non-product formu-
las, a special shape of the initial distribution is assumed.
In this case the abscissa set increases polynomially with
the number of internal coordinates. Consequently, non-
product rules do not suffer from the curse of dimensionality
as significantly as product formulas.

In the following, the initial condition is assumed to be a
multidimensional Gaussian normal distribution

n(t = 0,x) = N (µ,Σ) (15)

with mean µ and covariance-matrixΣ. In this case, partic-
ularly efficient non-product rules can be found. The first
non-product rule is the square-root sigma-point rule as
presented for example in van der Merwe (2004). It is a third
degree monomial cubature (NP3) which is used extensively
in the core routine of the Unscented Kalman Filter. The
numerical effort by means of total number of abscissas is
given by nα = 2 d + 1. Hence, the size of the abscissa set
scales linearly with dimension d. Two additional cubature
formulas will be applied and compared to NP3 in the
following example. The first one is a fifth degree monomial
cubature formula (NP5) as described in Stroud (1971).
Here, the overall number of abscissas increases quadrati-
cally with the dimension: nα = 2n2 + 1. Furthermore, a
third degree Cartesian product Gauss formula (PG3) will
be applied. It can also be found in Stroud (1971). Here,
the overall number of abscissas is given by nα = 2d and
thus, the size of the abscissa set scales exponentially with
the dimension. In Fig. 1 the general distribution of the
abscissas for PG3 and NP3 for d = 3 can be seen.

4. A STRUCTURED POPULATION BALANCE
MODEL FOR VIRUS REPLICATION IN CELL

CULTURES

Influenza vaccine production in mammalian cell cultures
constitutes a great example of a biotechnological process
that is characterized by a heterogeneous population of
cells. Besides the obvious discrimination between unin-
fected and infected cells, a further differentiation of the
subpopulation of infected cells allows for the consideration
of the innate cell-to-cell variability and, thereby, facilitates
the explanation of characteristic dynamic phenomena of
the overall process. This has been shown recently by Dürr
et al. (2012) and Müller et al. (2013) for the production of
different influenza A virus strains. Therein infected cells
have been differentiated with respect to the intracellular
amount of accumulated viral nucleoprotein NP, which was
measured via flow cytometry. Although the corresponding
non-structured, segregated model is able to reproduce the

essential dynamic effects, its predictive capacity is limited.
In order to improve this situation a more detailed descrip-
tion of the intracellular viral replication kinetics seems
appropriate.

As mentioned earlier, the solution of the emerging high
dimensional PDEs is challenging. Our aim is to use the
DQMOM in combination with special cubature rules to
efficiently solve a more detailed intracellular viral replica-
tion mechanism which is taken from Haseltine et al. (2005)
and integrated in a corresponding multidimensional PBE.
In Fig. 2 the basic intracellular reaction scheme is depicted.
Upon infection of an uninfected cell viral genomic nucleic
acid [gen] is inserted. In the next step template viral
nucleic acid [tem] is produced from the viral genome. In
turn, these templates are used for the production of viral
genome and viral structural protein [str]. Virus progeny
are assembled from structural protein and viral genome in
order to be released into the medium. Furthermore, it is
assumed, that the production of templates and structural
protein is catalyzed by the intracellular enzymes v1 and
v2.

The intracellular states

x = ([tem], [gen], [str], [v1], [v2])
T

(16)

directly translate to internal coordinates of a correspond-
ing PBE which characterizes the dynamics of the number
density distribution of infected cells

∂n(t,x)

∂t
= −

5�

k=1

∂

∂xk

{hk(t,x, c)n(t,x)} (17)

+kinf UC V Ninf (µ,Σ)− kcd,Ic n(t,x) .

The vector of advection velocities results from balancing
of the compounds on the single cell level (Villadsen et al.,
2011):

h =




k1[v1][gen]
k3[tem]− k1[gen][v1]− k5[gen][str]
k2[tem][v2]− k4[str] − k5[gen][str]

fv1
fv2


 . (18)

Here, fv1 and fv2 are the enzyme production/degeneration
rates. Newly infected cells are generated by infection
of uninfected cells Uc by free virions V . It is assumed
that infected cells are spawned into the space of internal
properties according to a normal distribution Ninf (µ,Σ)
and infected cells die with rate kcd. The dynamics of the
uninfected cells and the free virions are given by

dUC

d t
= −kinf UC V + kgro − kcd,UC

UC (19)

d V

d t
=

�

X

rrel(x)n dx − kinf UC V − kdeg V

with the virus release rate depending on the intracellular
composition of each cell

rrel(x) = k5 [gen] [str] . (20)

5. RESULTS

5.1 Implementation Issues

For the numerical solution the dynamic equations for
the whole set of weights (11) and abscissas (14) have to
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Fig. 2. Single cell scheme for viral replication

be applied simultaneously to the ODEs (19). This also
involves the simultaneous solution of (9).

However, for this special type of example an even more
effective solution can be implemented. The main idea is
the following: instead of the full problem (18) a series of
subproblems is solved. Each subproblem corresponds to

∂ñ(ξ,x)

∂ξ
= −

5∑

k=1

∂

∂xk

{hk(ξ,x) ñ(ξ,x)} (21)

− kcd,Ic ñ(ξ,x)

ñ(ξ = 0,x) = kinf UC(t)V (t)Ninf .

Thus, the overall virus release is given by

Rrel(t) =

∫

X

rrel(x)n(t,x) dx (22)

=

t∫

0

∫

X

rrel(x) ñ(ξ,x) dx dξ .

Approximate computation of this and other integrals or
moments for each subproblem can be performed efficiently
using (11) and (14) in combination with monomial cuba-
tures. Furthermore, as the intracellular kinetics (18) are
decoupled from extracellular dynamics, the characteristic
curves on which the abscissas are moving, are the same
for each subproblem. Thus, the approximate evolution of
moments or other integrals can be computed once for a
scaled initial condition and be used further for the compu-
tation of the extracellular dynamics similar to the method
described by Haseltine et al. (2008).

5.2 Scenario I: No enzyme degradation

In a first scenario it is assumed that there is no enzyme
degradation. For this reason

fv1 = fv2 = 0 (23)

and, thus, the intracellular levels of v1 and v2 are constant
for each cell.

The resulting system is solved with the previously de-
scribed procedure using the three introduced cubature
formulas. Simulations show that all cubature rules produce
nearly the same results. As an example, in Fig. 3 overall
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Fig. 3. Comparison of virus release rates for different
cubatures

viral release rates Rrel,i for the three rules and their
relative differences are shown using PG3 as a reference

ei =
Rrel,i −Rrel,PG3

Rrel,PG3
. (24)

It can be seen that no significant error exists. For this
reason cubature rule NP3 is used in the following as it has
the lowest computational cost.
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Fig. 4. Viral and cell dynamics without enzyme degrada-
tion

In Fig. 4 the resulting concentration of free virions and
the overall number of cells is depicted. Initially, free virus
particles attach to uninfected cells and infect them. Note,
that the overall virus concentration stays low until a
significant number of infected cells starts to produce viral
components in a sufficiently high amount to facilitate
the release of new virus particles. Afterwards, the virus
concentration increases exponentially until the production
slows down again and settles at a steady state as soon as
the continuous supply and infection of uninfected cells as
well as the death of infected cells are in balance.

In Fig. 5 the means and variances for the intracellular
compounds

µi =

∫
X

xi n dx

∫
X

n dx
vari =

∫
X

x2
i n dx

∫
X

n dx
− µ2

i

are depicted. These oscillate for the first 200 days as
several waves of viral infection follow in succession. Note,
that due to the scale of the ordinate oscillations of the
variances are not always visible. After about 200 days
the continuous release of free virus particles causes a
rapid decline of the number of uninfected cells and a
simultaneous incline of the number of infected cells in order
to reach a steady state after 400 days.

5.3 Scenario II: Degradation of intracellular enzymes

The second scenario features a degradation of the enzymes
after infection. It is assumed, that upon infection cells
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Fig. 5. Dynamics of means (solid) and variances (dashed)
w.r.t. intracellular coordinates without enzyme degra-
dation
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Fig. 6. Cell dynamics with enzyme degradation

lose their ability to sustain proper conditions for virus
replication as they suffer from virus induced stress. This
is expressed by a decreased capability to produce virus
particles due to the loss of enzyme functionality:

fv1 = −a1v1 , fv2 = −a2v2 . (25)

In Fig. 6 and 7 the temporal change of the concentrations
of uninfected and infected cells as well as free virus par-
ticles are shown, respectively. Due to enzyme degradation
virus release proceeds at a lower rate. In consequence, the
distinctive drop of the number of uninfected cells occurs
at a later time and the steady state is reached later,
too. This is mirrored by the dynamics of the intracellular
components (see Fig. 8). The mean and variance of the
intracellular content of structural protein is decreased and
the variance of the intracellular content of viral genome
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Fig. 7. Comparison of virus dynamics without (solid) and
with enzyme degradation (dashed)
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Fig. 8. Dynamics of means (solid) and variances (dashed)
w.r.t. intracellular coordinates with enzyme degrada-
tion

is increased in comparison to the first scenario without
enzyme degradation.

6. SUMMARY AND OUTLOOK

An effective and robust method for approximate computa-
tion of moments for multidimensional PBEs was presented.
The algorithm is based on DQMOM. Furthermore, the
technique can be implemented efficiently even for higher
dimensional problems by using non-product cubature for-
mulas. In contrast to product formulas these do not suffer
from the curse of dimensionality up to a certain degree.
Our method was applied to a five dimensional PBE de-
scribing viral replication in cell culture. It was shown,
that the algorithm is suitable for analyzing the effects of
resource limitations on important states like the overall
number of released virus particles.
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In the future, this efficient moment approximation algo-
rithm will be applied to a more detailed model of influenza
virus replication (see, e.g., Heldt et al., 2012), which de-
scribes intracellular dynamics much more in depth than
the model presented here. By using the presented tech-
nique one is enabled to analyze the effects of intracellular
enzyme degradation, resource limitations (e.g. Zhdanov,
2009) etc. on a macroscopic level in order to predict
the final virus yield, which is most desirable in influenza
vaccine production. In addition, the possibility of direct
comparison with flow cytometric measurements of several
intracellular components is provided.

Furthermore, the technique itself will be extended to deal
with other particulate effects like agglomeration or non-
Gaussian initial conditions.
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