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1. Introduction

In this paper, we determine the low-energy limit of the five-point closed-string amplitudes

among massless type IIA and type IIB states using the pure spinor (PS) formalism [1,2].

The precise elaboration of overall coefficients confirms the predictions [3,4] based on the

non-perturbative S-duality of the type IIB effective action [5]. This complements previous

S-duality analyses of the five-point amplitudes at one-loop [6] as well as the four-point

amplitudes at two- [7,8] and three-loops [9].

S-duality constrains curvature couplings of the schematic form D2kRn (and their

supersymmetric completions) to depend on the scalar fields through modular invariant

functions and thereby relates different loop orders in perturbation theory. The subsequent

two-loop analysis probes the moduli-dependent coefficient of the D4R4 and D2R5 interac-

tions which was identified as the non-holomorphic Eisenstein series E5/2 in ten dimensions

[3,4]. Its perturbative terms relate the tree-level and two-loop contributions of the corre-

sponding graviton amplitudes and their R-symmetry conserving superpartners.

Likewise, R-symmetry violating closed-string amplitudes at different loop-orders (in-

volving, for instance, four gravitons and one dilaton) are interlocked by modular forms [10].

Given that R-symmetry violating four-point amplitudes vanish, the five-point amplitudes

in this work furnish the simplest perturbative fingerprints of their modular properties.

Specifically, the tree-level and two-loop results at the α′-order under discussion are ex-

pected to orginate from a certain modular derivative of E5/2.

We verify the expected ratios by explicit computation at the five-point level, i.e. by

extracting the type IIB components involving five gravitons as well as four gravitons and

one dilaton from the supersymmetric two-loop low-energy limit. This is the first perturba-

tive check at genus two for the S-duality properties of the five-point interaction D2R5 and

its R-symmetry violating counterparts.

Since the main objective of this work requires precise control over normalizations,

section 2 contains a detailed account on the conventions used (closely following [8,9]). In

sections 3 and 4, well-known amplitudes at tree-level and one-loop are recomputed using

the conventions of section 2 – not only to review their end result but also to verify the

reliability of the PS setup in keeping track of their overall normalizations. The novel result

on the two-loop five-point amplitude is derived in section 5. Finally, section 6 is devoted

to the S-duality analysis of the above results and is suitable for self-contained reading.
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2. Review of conventions

In this section the conventions used in the rest of the paper are presented. They closely

follow the conventions used in [8,9] but deviations were taken when deemed appropriate.

2.1. World-sheet fields

The world-sheet action for the left-moving sector in the non-minimal pure spinor formalism

is [2]

S =
1

2πα′

∫

d2z
(

∂xm∂xm + α′pα∂θ
α − α′wα∂λ

α − α′wα∂λα + α′sα∂rα
)

, (2.1)

where m = 0, 1 . . . , 9 and α = 1, . . . , 16 are the vector and spinorial indices of the ten-

dimensional Lorentz group, and α′ denotes the inverse string tension. In addition, λα and

λα are bosonic pure spinors and rα is a constrained fermionic variable,

(λγmλ) = 0, (λγmλ) = 0, (λγmr) = 0. (2.2)

The Green–Schwarz constraint dα(z) and the supersymmetric momentum Πm(z) are de-

fined by

dα(z) = pα − 1

α′
(γmθ)α∂xm − 1

4α′
(γmθ)α(θγm∂θ), Πm(z) = ∂xm +

1

2
(θγm∂θ) , (2.3)

while the BRST charge and the energy-momentum tensor,

Q =

∮

(λαdα+wαrα), T (z) = − 1

α′
∂xm∂xm−pα∂θ

α+wα∂λ
α+wα∂λα−sα∂rα , (2.4)

are related by {Q, b(z)} = T (z), with the following expression for the b-ghost [2]

b = sα∂λα +
1

4(λλ)

[

2Πm(λγmd)−Nmn(λγ
mn∂θ)− Jλ(λ∂θ)− (λ∂2θ)

]

(2.5)

+
(λγmnpr)

192(λλ)2

[α′

2
(dγmnpd) + 24NmnΠp

]

− α′

2

(rγmnpr)

16(λλ)3

[

(λγmd)Nnp − (λγpqrr)NmnNqr

8(λλ)

]

.

2.2. Scalar Green function and OPEs

The regularized scalar Green function G(z, w) is written in terms of the prime form E(z, w)

and the global holomorphic one-forms ωI(z) as [11]

G(z, w) = −α′

2
ln
∣

∣E(z, w)
∣

∣

2
+ α′π

g
∑

I,J=1

(Im

∫ w

z

ωI) (ImΩ)−1
IJ (Im

∫ w

z

ωJ ), (2.6)
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and satisfies

2

α′
∂z∂zG(z, w) = −2πδ(2)(z − w) + π

g
∑

I,J=1

ωI(z)(ImΩ)−1
IJ ωJ (z) (2.7)

2

α′
∂z∂wG(z, w) = 2πδ(2)(z − w)− π

g
∑

I,J=1

ωI(z)(ImΩ)−1
IJ ωJ (w) ,

where ΩIJ is the genus-g period matrix to be defined in section 2.5. Furthermore,

η(zi, zj) ≡ ηij ≡ − 2

α′

∂

∂zi
G(zi, zj). (2.8)

The genus-g OPEs are [12,13]

xm(z, z) xn(w,w) ∼ δmn G(z, w),

dα(z)dβ(w) ∼ − 2

α′
γm
αβΠmη(z, w),

dα(z)Π
m(w) ∼ γm

αβ∂θ
βη(z, w),

pα(z) θ
β(w) ∼ δβαη(z, w),

dα(z)f(x(w), θ(w)) ∼ Dαfη(z, w),

Πm(z)f(x(w), θ(w)) ∼ −α′

2
kmfη(z, w) ,

(2.9)

where Dα = ∂
∂θα + 1

2(γ
mθ)αkm is the supersymmetric derivative and f(x, θ) represents a

generic superfield.

It follows from (2.9) and (2.3) that

Πm(z)Π
n
(w) ∼ α′

2
ηmn

(

2πδ(2)(z − w)− π

g
∑

I,J=1

ωI(z)(ImΩ)−1
IJ ωJ (w)

)

. (2.10)

Left- and right-movers can be kept separated in the evaluation of the amplitude by ex-

panding Πm(z) = Π̂m(z) +
∑g

I=1 Π
m
I ωI(z) and computing the holomorphic square with

Πm
I Π

n

J = −α′

2
ηmnπ (ImΩ)−1

IJ . (2.11)

Using this prescription, contributions containing a single Πm
I or Π

m

I vanish.

2.3. SYM superfields and massless vertex operators

The closed-string massless vertex operators are related to the holomorphic square of the

open string vertex operators

V = λαAα(x, θ), U = ∂θαAα(x, θ) + ΠmAm(x, θ) +
α′

2
dαW

α(x, θ) +
α′

4
NmnF

mn(x, θ) ,

(2.12)

5



where Aα(x, θ), A
m(x, θ),Wα(x, θ) and Fmn(x, θ) are the super-Yang–Mills (SYM) super-

fields in ten dimensions. Their equations of motion [14]

DαAβ +DβAα = γm
αβAm, DαAm = (γmW )α + kmAα

DαFmn = 2k[m(γn]W )α, DαW
β =

1

4
(γmn)α

βFmn (2.13)

are solved by the θ-expansions in [15] involving gluon polarization vectors and gaugino

wave functions. More precisely, the closed-string vertex operators are given by

|V (z)|2 ≡ V (θ)⊗ Ṽ (θ)ek·x, |U(z)|2 ≡ U(θ)⊗ Ũ(θ)ek·x , (2.14)

where V (θ) and U(θ) are defined from (2.12) by stripping off the plane-wave factor, e.g.

U(z) = U(θ)ek·x. Furthermore, each massless vertex is normalized with a coefficient κ (see

e.g. [7]) so the n-point amplitude prescription contains an overall factor of κn. As shown

in appendix A, unitarity relates it to the other string parameters (such as the coupling

constant e−2λ) via κ2e−2λ = π/α′2.

2.4. Integration on pure spinor space

The zero-mode measures for the non-minimal pure spinor variables in a genus-g surface

have length dimension zero and are given by [8]

[dλ]Tα1...α5
= cλ ǫα1...α16

dλα6. . . dλα16

[dλ]T
α1...α5

= cλ ǫ
α1...α16dλα6

. . . dλα16

[dr] = cr T
α1...α5

ǫα1...α16
∂α6

r . . . ∂α16

r

[dθ] = cθ d
16θ

[dw] = cw Tα1...α5
ǫα1...α16dwα6

. . . dwα16

[dw]Tα1...α5
= cw ǫα1...α16

dwα6 . . . dwα16

[dsI ] = cs Tα1...α5
ǫα1...α16∂sI

α6
. . . ∂sI

α16

[ddI ] = cd d
16dI .

(2.15)

The normalizations are [8]

cλ =
(α′

2

)−2 1

11!

( Ag

4π2

)11/2

cλ =
(α′

2

)2 26

11!

( Ag

4π2

)11/2

cr =
(α′

2

)−2 R

11!5!

( 2π

Ag

)11/2

cθ =
(α′

2

)4( 2π

Ag

)16/2

cw =
(α′

2

)2 (2π)−11

11! 5!
Z−11/g
g

cw =
(α′

2

)−2 (λλ)3

11! (2π)11
Z−11/g
g

cs =
(α′

2

)2 (2π)11/2R−1

2611! 5! (λλ)3
Z11/g
g

cd =
(α′

2

)−4

(2π)16/2Z16/g
g ,

(2.16)
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where Ag =
∫

d2z
√
h denotes the area of the genus-g Riemann surface with metric h,

Zg =
1

√

det(2 ImΩ)
, g ≥ 1 , (2.17)

and R is an arbitrary parameter capturing the freedom to normalize the string tree-level

amplitudes1. As discussed in [8], the final expressions for multiloop amplitudes are inde-

pendent of the area Ag. The tensors Tα1...α5
and T

α1...α5

appearing in (2.15) are totally

antisymmetric due to the pure spinor constraint (2.2),

Tα1α2α3α4α5
= (λγm)α1

(λγn)α2
(λγp)α3

(γmnp)α4α5
, (2.18)

T
α1α2α3α4α5

= (λγm)α1(λγn)α2(λγp)α3(γmnp)
α4α5

and satisfy T · T = 5! 26(λλ)3.

One can show using the results of [16] that the integration over an arbitrary number

of pure spinors λα and λβ is given by

∫

[dλ][dλ]e−(λλ)(λλ)mλα1 · · ·λαnλβ1
· · ·λβn

=
(Ag

2π

)11Γ(8 +m+ n)

302400
T α1...αn

β1...βn
, (2.19)

where T α1...αn

β1...βn
are the γ-matrix traceless tensors discussed in [9]. From T α1...αp

α1...αp = 1 it

follows that [8]
∫

[dλ][dλ](λλ)ne−(λλ) =
(Ag

2π

)11Γ(8 + n)

7! 60
. (2.20)

For an arbitrary superfield M(λ, λ, θ, r) we define [8]

〈M(λ, λ, θ, r)〉(p,g) ≡
∫

[dθ][dr][dλ][dλ]
e−(λλ)−(rθ)

(λλ)3−p
M(λ, λ, θ, r) , (2.21)

and therefore the pure spinor measure (λγrθ)(λγsθ)(λγtθ)(θγrstθ) ≡ (λ3θ5) is mapped to

〈(λ3θ5)〉(p,g) = N(p,g)〈(λ3θ5)〉 , N(p,g) ≡ 27
R

P

( 2π

Ag

)5/2(α′

2

)2 Γ(8 + p)

7!
, (2.22)

and the identity factor 〈(λ3θ5)〉
P

= 1 keeps track of the normalization convention [1]

〈(λγrθ)(λγsθ)(λγtθ)(θγrstθ)〉 = P. (2.23)

1 In previous works [8,9] the choice R =
√
2/(216π) was made to match the tree-level con-

ventions of [7]. In this work we deviate from that motivation and the choice (2.24) will lead to

tree-level amplitudes (3.4) with unit overall coefficient.
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The choice P = 2880 is convenient in view of the factorization properties of pure spinor su-

perspace kinematic factors and has been observed in [17] to imply tree-level normalizations

compatible with RNS computations. Unless otherwise noted we use,

R2 =
π5

25
, P = 2880 . (2.24)

2.4.1. Abbreviations and (anti-)symmetrization combinatorics

The (anti)symmetrization over n indices includes a factor of 1/n!, the generalized Kronecker

delta is δα1...αn

β1...βn
≡ δ

[α1

β1
· · · δαn]

βn
and satisfies δα1...αn

α1...αn
=

(

d
n

)

where d = 10 (d = 16) for

vector (spinor) indices. The integration over θ is given by
∫

d16θ θα1 · · · θα16 = ǫα1...α16 and

ǫα1...α11γ1...γ5ǫα1...α11β1...β5
= 11!5! δγ1...γ5

β1...β5
.

Partitions of dα zero-modes are denoted by (p1, p2, . . . , pg)d, signaling the presence

of pI factors of dIα for I = 1, 2, . . . , g. Accordingly, contributions from the b-ghost will be

labeled by their partition of dα zero-modes as Bm1...mr

(p1,p2,...,pg)
, where the vector indices take

into account that those contributions need not be Lorentz scalars. Furthermore, we define

(ǫ · T · dI) ≡ ǫα1...α16Tα1...α5
dIα6

· · ·dIα16
, (λrdIdJ ) ≡ (λγmnpr)(dIγmnpd

J) (2.25)

Dm1m2...mr

(11+p1,11+p2,...,11+pg)
≡

∫ g
∏

I=1

[ddI ]
(ǫ · T · dI)

11! 5!
Bm1...mr

(p1,p2,...,pg)
. (2.26)

2.4.2. Frequent zero-mode integrals

Some integrals which are frequently used in the next sections are summarized here,

∫

[ddI ](ǫ · T · dI) dIα1
dIα2

dIα3
dIα4

dIα5
= 11! 5! cd Tα1α2α3α4α5

(2.27)

∫

[ddI ](ǫ · T · dI) dIα1
dIα2

dIα3
(dIγmnpdI) = 11! 5! 96 cd (λγ

[m)α1
(λγn)α2

(λγp])α3
,

∣

∣

∣

∫ g
∏

I=1

[dwI ][dwI ][dsI ] e−(wIwI)−(dIsI)
∣

∣

∣

2

=
(α′

2

)4g 1

(2π)16g22gZ22
g

∣

∣

∣

g
∏

I=1

(ǫ · T · dI)
(11! 5!)

∣

∣

∣

2

.

To prove the third integral one uses [16,8]

∫ g
∏

I=1

[dsI ] e−(dIsI) =
(α′

2

)2g (2π)11g/2Z11
g

Rg26g(λλ)3g

g
∏

I=1

(ǫ · T · dI)
(11! 5!)

,

∫ g
∏

I=1

[dwI ][dwI ] e−(wIwI) =
(λλ)3g

(2π)11g
Z−22
g . (2.28)
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2.5. Riemann surfaces and moduli space

A holomorphic field with conformal weight one in a genus-g Riemann surface Σ can be

expanded in a basis of holomorphic one-forms as φ(z) = φ̂(z) +
∑g

I=1 ωI(z)φ
I , and φI are

the zero-modes of φ(z). If {aI , bJ} are the generators of the H1(Σg,Z) = Z
2g homology

group, the holomorphic one-forms can be chosen such that for I, J = 1, 2, . . . , g

∫

aI

ωJ (z) dz = δIJ ,

∫

bI

ωJ (z) dz = ΩIJ ,

∫

d2z ωI ωJ = 2 ImΩIJ , (2.29)

where ΩIJ is the symmetric period matrix with g(g+1)/2 complex degrees of freedom and

d2z = idz ∧ dz = 2 dRe(z)dIm(z) [11]. We also define

∫

Σn

≡
∫ n

∏

i=1

d2zi , ∆ij ≡ ǫIJωI(zi)ωJ(zj) = ω1(zi)ω2(zj)− ω1(zj)ω2(zi) . (2.30)

The moduli space Mg is defined as the space of inequivalent complex structures τi on the

Riemann surface of genus g and has complex dimension 3g − 3, for g > 1. For genus two

and three, the dimension of the moduli space is the same as the dimension of the period

matrices (3g − 3 = g(g + 1)/2 for g = 2, 3) and the amplitudes can be parameterized by

the period matrix instead of the moduli coordinates; more explicitly for genus two [11],

∫

d2y ωI(y)ωJ(y)µi(y) =
δΩIJ

δτi
,

∫

M2

d2τ
∣

∣

∣
ǫi1i2i3

δΩ11

δτi1

δΩ12

δτi2

δΩ22

δτi3

∣

∣

∣

2

=

∫

F2

d2Ω , (2.31)

where d2τ ≡ ∏3g−3
j=1 d2τj , d

2Ω ≡ ∏g
I≤J d2ΩIJ and Fg denotes the fundamental domain of

Sp(2g,Z)/Z2. To avoid cluttering, the domains Mg and Fg will be henceforth omitted.

The Sp(2g,Z)-invariant measure for the genus-g moduli space and its volume are [18]2

dµg ≡ d2Ω

(det ImΩ)g+1
,

∫

dµg = 2

g
∏

k=1

(

2k

πk
Γ(k)ζ2k

)

. (2.32)

In particular,
∫

dµ1 =
2π

3
,

∫

dµ2 =
4π3

33 5
,

∫

dµ3 =
26π6

36 52 7
. (2.33)

2 The definition of d2Ω here is 2g(g+1)/2 bigger than in the original formula of [18].
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2.6. The amplitude prescription

The multiloop n-point closed-string amplitude prescription was given in [2]

M (1)
n = S1κ

n

∫

d2τ

∫

Σn−1

∣

∣

∣
〈〈N (1)(b, µ)V 1(0)U2(z2) · · ·Un(zn)〉〉

∣

∣

∣

2

, (2.34)

M (g)
n = Sgκ

ne(2g−2)λ

∫ 3g−3
∏

j=1

d2τj

∫

Σn

∣

∣

∣
〈〈N (g)(b, µj)U

1(z1) · · ·Un(zn)〉〉
∣

∣

∣

2

, g ≥ 2 .

The symmetry factors for the one- and two-loop amplitudes are S1 = 1/2 [19,20] and

S2 = 1/2 [21]. Furthermore, Sg = 1 for3 g > 2. The b-ghost insertion is

(b, µj) =
1

2π

∫

d2y b(y)µj(y), j = 1, . . . , 3g − 3 , (2.35)

where µj denotes the Beltrami differential for the modulus parameter τj , and N (g) is the

BRST regulator [2]

N (g) ≡ exp
(

− (λλ)− (rθ) +

g
∑

I=1

[

(wIwI) + (sIdI)
]

)

. (2.36)

The bracket 〈〈. . .〉〉 in (2.34) denotes the path integral which integrates out the non-zero

modes through OPEs and additionally contains the zero-mode integration measure

〈. . .〉 =
∫

[dθ][dr][dλ][dλ]

g
∏

I=1

[ddI ][dsI ][dwI ][dwI ] . . . (2.37)

After the integration over [ddI ][dsI ][dwI ][dwI ] has been performed, the remaining variables

λα, λβ , θ
δ and rα have conformal weight zero and therefore are the same ones which need

to be integrated in the prescription of the tree-level amplitudes. Using the Theorem 1

from [9] all correlators at this stage of the computation reduce to pure spinor superspace

expressions whose component expansions can be straightforwardly computed4 [23,24] from

the θ-expansions in [15]. In particular, the last correlator to evaluate is a combination of

the zero-mode integration of tree-level pure spinor variables (2.22) and xm [8]

N2
(p,g)

〈

n
∏

j=1

ek
j ·xj〉

= (2π)10δ10(k)
(α′

2

)−1 29R2

π5P 2

(

Γ(8 + p)

7!

)2

I(g)
n , (2.38)

3 We thank Edward Witten for emphasizing this point to us.
4 Note that rα variables are converted to Dα derivatives using rαe

−(rθ) = Dαe
−(rθ) [22].
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where δ10(k) ≡ δ10(
∑

i k
m
i ) and I(g)

n is the n-particle Koba–Nielsen factor

I(g)
n ≡ exp

(

n
∑

i<j

sijGij

)

, sij ≡ ki · kj . (2.39)

Some products which appear in later sections are

N2
(3,g)

〈

n
∏

j=1

ek
j ·xj〉

= (2π)10δ10(k)
(α′

2

)−1

I(g)
n (2.40)

N2
(2,g)

〈

n
∏

j=1

ek
j ·xj〉

= (2π)10δ10(k)
(α′

2

)−1 1

2252
I(g)
n

N2
(0,g)

〈

n
∏

j=1

ek
j ·xj〉

= (2π)10δ10(k)
(α′

2

)−1 1

283452
I(g)
n .

Given the above conventions in (2.47), the length dimension [. . .] of the closed-string n-

point amplitude is independent of the genus; [M
(g)
n ] = n(2 + [κ]). Since [κ] = −2 (see

appendix A) the amplitudes are dimensionless. Furthermore, in most of the calculations

below overall minus signs will not be rigorously tracked.

For four-point amplitudes it is convenient to use the following shorthand notation for

symmetric polynomials in Mandelstam invariants (2.39)

σk ≡
(α′

2

)k

(sk12 + sk13 + sk14) . (2.41)

2.7. Multiparticle fields

The five-point amplitudes at genus g = 1, 2 discussed in this work reconcile zero-mode

saturation with one OPE among the vertex operators of both left- and right-movers. The

systematics of OPEs has been studied using multiparticle fields in [25], starting with:

V1(z1)U2(z2) =
|z12|−

α′

2
s12

z21

(α′

2

)

[

V12 +Q(. . .)
]

(2.42)

U1(z1)U2(z2) =
|z12|−

α′

2
s12

z21

(α′

2

)

[

∂θαA12
α +ΠmAm

12 +
(α′

2

)

dαW
α
12 +

α′

4
NmnF

mn
12

]

+ ∂1,2(. . .) . (2.43)

The suppressed BRST-exact terms in (2.42) and worldsheet derivatives in (2.43) drop out

from the subsequent computations. The two-particle superfields of interest in this work are

Aα
12 ≡ −1

2

[

A1
α(k

1 ·A2) + A1
m(γmW 2)α − (1 ↔ 2)

]

Wα
12 ≡ 1

4
(γmnW 2)αF 1

mn +Wα
2 (k

2 ·A1)− (1 ↔ 2) (2.44)

Fmn
12 ≡ Fmn

2 (k2 ·A1) + F
[m
2 pF

n]p
1 + k

[m
12 (W1γ

n]W2)− (1 ↔ 2)

11



with a similar definition for Am
12, and

V12 ≡ λαA12
α , QV12 = s12V1V2 . (2.45)

Generalizations to p ≥ 3 particles, in particular the V12...p mentioned in the context of

tree amplitudes, can be found in [25]. In a notation where A,B,C, . . . denote multiparticle

labels such as A = 12 . . . p, the simplest class of one-loop kinematic factors are given by

TA,B,C ≡ 1

3

[

(λγmWA)(λγnWB)F
mn
C + (C ↔ A,B)

]

. (2.46)

They were firstly studied in the context of multiparticle open-string amplitudes at one-loop

[26] and identified as box-numerators in one-loop amplitudes of ten-dimensional SYM [27].

2.8. Length dimensions

For convenience, the length dimensions of various fields and constants used throughout

this work are summarized here,

[α′] = 2, [xm] = 1, [km] = −1, [κ] = −2, [G(z, w)] = 2, [ηij ] = 0 (2.47)

[θα, λα, wα, sα] =
1

2
, [pα, wα, λα, rα] = −1

2
, [Q] = [b] = [T ] = 0,

[A12...p
α ] =

3

2
− p, [A12...p

m ] = 1− p, [Wα
12...p] =

1

2
− p, [F 12...p

mn ] = −p,

[V (z)] = [U(z)] = 1, [AYM(1, 2, . . . , n)] = n− 4, [δ10(k)] = 10, [M (g)
n ] = 0 .

3. Tree-level closed-string amplitudes

In this section the tree-level amplitudes involving n = 3, 4, 5 closed-string states are re-

viewed and recomputed using the normalization conventions of section 2. This ensures

that the S-duality discussion of section 6 uses amplitudes computed with a uniform set of

conventions (which differ from [8,9]). For earlier references, see [28,29,30,31].

3.1. The amplitude prescription

The prescription to compute the n-point tree-level amplitude in the PS formalism is [2],

M (0)
n = κne−2λ

∫ n−2
∏

i=2

d2zi|〈〈N (0)V1(0)U2(z2) . . . Un−2(zn−2)Vn−1(1)Vn(∞)〉〉|2 , (3.1)

12



where N (0) = e−(λλ)−rθ is the zero-mode regulator at genus zero. As explained below

(2.36), 〈〈. . .〉〉 denotes the path integral which reduces to the integration over the zero-

modes of tree-level variables after the non-zero modes are integrated out through OPEs.

The pure spinor computation of the n-point tree-level correlator can be found in [32],

〈K(0)(z2, . . . , zn−2)〉 ≡ 〈〈V1(z1)U2(z2) · · ·Un−2(zn−2)Vn−1(zn−1)Vn(zn)〉〉 (3.2)

=
(α′

2

)n−3 n−2
∑

p=1

〈V12...p Vn−1,n−2,...,p+1Vn〉
(z12z23 · · · zp−1,p)(zn−1,n−2 · · · zp+2,p+1)

+ P(2, . . . , n− 2) ,

where P(2, . . . , n− 2) instructs to sum over all permutations of 2, . . . , n− 2. The Möbius

symmetry of the genus-zero worldsheet has been fixed by setting {z1, zn−1, zn} = {0, 1,∞}.
The correlator (3.2) was later identified as a superposition of SYM tree amplitudes [32]

(see [33] for their pure spinor superspace representation),

〈K(0)(z2, . . . , zn−2)〉 =
(α′

2

)n−3 s12
z12

(

s13
z13

+
s23
z23

)

· · ·
(

s12
z12

+ · · ·+ s1,n−2

z1,n−2

)

(3.3)

× AYM(1, 2, . . . , n− 1, n) + P(2, . . . , n− 2) .

The multiparticle superfields V12 and V12...p in (3.2) are defined in (2.45) and [25], respec-

tively. Therefore, the prescription (3.1) yields,

M (0)
n = κne−2λ

∫ n−2
∏

i=2

d2zi|〈K(0)(z2, . . . , zn−2)〉(3,0)|2
〈

n
∏

j=1

ek
j ·xj

〉

(3.4)

= (2π)10δ10(k)
(α′

2

)−1

κne−2λ

∫ n−2
∏

i=2

d2zi|〈K(0)(z2, . . . , zn−2)〉|2I(0)
n ,

where we used (2.22) and (2.40). Note that the Koba-Nielsen factor (2.39) simplifies to

I(0)
n =

∏n
i<j |zij |−α′sij at genus zero.

3.2. The three-point amplitude

Using the formula (3.4) and taking I(0)
3 = 1 into account, the three-point amplitude can

be written down immediately

M
(0)
3 = (2π)10δ10(k)

(α′

2

)−1

κ3e−2λK(0)
3 , (3.5)

where K(0)
3 ≡ |〈V1V2V3〉|2 = |AYM(1, 2, 3)|2 and (note [K(0)

3 ] = −2)

〈V1V2V3〉 = (e1 · e2)(k2 · e3) + e1m(χ2γ
mχ3) + cyc(1, 2, 3) . (3.6)

The component expressions are derived from the θ-expansions of [15] and involve transverse

polarization vectors ei of the gluon as well as chiral spinor wave functions χi of the gluino.
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3.3. The four-point amplitude

Similarly, using the formula (3.4) the four-point amplitude becomes

M
(0)
4 = (2π)10δ10(k)

(α′

2

)−1

κ4e−2λ

∫

d2z2|〈K(0)(z2)〉|2I(0)
4 , (3.7)

where the correlator is [32] (see also [34])

〈K(0)(z2)〉 = 〈〈V1(z1)U2(z2)V3(z3)V4(z4)〉〉 =
(α′

2

)[ 〈V12V3V4〉
z12

+
〈V1V32V4〉

z32

]

(3.8)

=
(α′

2

) s12
z12

AYM(1, 2, 3, 4) ,

and we used the following representation for the color-ordered tree-level SYM amplitude,

AYM(1, 2, 3, 4) =
1

s12
〈V12V3V4〉+

1

s23
〈V1V23V4〉 . (3.9)

Furthermore, using the explicit form I(0)
4 = |z2|−α′s12 |1 − z2|−α′s23 of the Koba–Nielsen

factor at {z1, z3, z4} = {0, 1,∞}, the integral in (3.7) boils down to [7]
∫

d2z2z
−α′

2
s12−1

2 z
−α′

2
s12−1

2 (1− z2)
−α′

2
s23(1− z2)

−α′

2
s23 = 2πs223

(α′

2

)2

B0 (3.10)

with

B0 ≡ Γ(−α′

2 s12)Γ(−α′

2 s13)Γ(−α′

2 s14)

Γ(1 + α′

2 s12)Γ(1 +
α′

2 s13)Γ(1 +
α′

2 s14)
=

3

σ3
+ 2ζ3 + ζ5σ2 +

2

3
ζ23σ3 + · · · . (3.11)

Hence, the four-point amplitude (3.7) is given by

M
(0)
4 = (2π)10δ10(k)

(α′

2

)3

κ4e−2λ 2πK(0)
4 B0 , (3.12)

where (note [K(0)
4 ] = −8)

K(0)
4 ≡ |s12s23AYM(1, 2, 3, 4)|2 = |s23〈V12V3V4〉+ s12〈V1V23V4〉|2 . (3.13)

3.3.1. The low-energy limit

From B0 = (2/α′)3/(s12s13s14) + · · · and AYM(1, 2, 3, 4) = 〈V12V3V4〉/s12 + 〈V1V23V4〉/s23
the kinematic factor in the amplitude (3.12) becomes

−
(α′

2

)3

K(0)
4 B0 = −|s12s23AYM(1, 2, 3, 4)|2

s12s13s14
=

|〈V12V3V4〉|2
s12

+
|〈V31V2V4〉|2

s13
+

|〈V23V1V4〉|2
s23

(3.14)

where we used 〈V12V3V4〉+ 〈V23V1V4〉+ 〈V31V2V4〉 = 0 [35]. Therefore the low-energy limit

of (3.12) is given by

M
(0)
4 = (2π)10δ10(k)κ4e−2λ 2π

[ |〈V12V3V4〉|2
s12

+
|〈V31V2V4〉|2

s13
+

|〈V23V1V4〉|2
s23

]

+O(α′3) .

(3.15)
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3.4. The five-point amplitude

According to the formula (3.4), the five-point amplitude is given by

M
(0)
5 = (2π)10δ10(k)

(α′

2

)−1

κ5e−2λ

∫ 3
∏

i=2

d2zi|〈K(0)(z2, z3)〉|2I(0)
5 , (3.16)

where

〈K(0)(z2, z3)〉 = 〈〈V1U2(z2)U3(z3)V4V5〉〉 (3.17)

=
(α′

2

)2[ 〈V123V4V5〉
z12z23

+
〈V12V43V5〉

z12z43
+

〈V1V432V5〉
z43z32

+ (2 ↔ 3)
]

=
(α′

2

)2 s12s34
z12z34

AYM(1, 2, 3, 4, 5) + (2 ↔ 3) .

After inserting (3.17) into (3.16), the α′-expansion of the resulting integrals can be obtained

through the KLT procedure [29] and arranged in the form [36]

M
(0)
5 = (2π)10δ10(k)

(α′

2

)

κ5e−2λ(2π)2K(0)
5 (3.18)

K(0)
5 ≡ ÃT

54 ·S0 ·
[

1 + 2ζ3

(α′

2

)3

M3 + 2ζ5

(α′

2

)5

M5 + 2ζ23

(α′

2

)6

M2
3 +O(α′7)

]

·A45 ,(3.19)

where ÃT
54 and A45 are two-component vectors of SYM tree-amplitudes

Ã54 ≡
(

ÃYM(1, 2, 3, 5, 4)
ÃYM(1, 3, 2, 5, 4)

)

, A45 ≡
(

AYM(1, 2, 3, 4, 5)
AYM(1, 3, 2, 4, 5)

)

, (3.20)

and S0 denotes the momentum kernel [37], a convenient basis choice for the Mandelstam

invariants in the KLT relations [29]

S0 ≡
(

s12(s13 + s23) s12s13
s12s13 s13(s12 + s23)

)

. (3.21)

The 2 × 2 matrices M2n+1 introduced in [36] describe the momentum dependence of the

α′-corrections and should not be confused with the amplitudes M
(g)
n . Their entries are

degree 2n+ 1 polynomials in Mandelstam invariants, e.g. (see also [30,38])

M3 ≡
(

m11 m12

m21 m22

)

,
m12 = −s13s24(s1 + s2 + s3 + s4 + s5) (3.22)

m11 = s3[−s1(s1 + 2s2 + s3) + s3s4 + s24] + s1s5(s1 + s5)

with m21 = m12

∣

∣

2↔3
and m22 = m11

∣

∣

2↔3
as well as si ≡ si,i+1 subject to s5 = s15.

Higher-order analogues such as M5 relevant for the comparison with the two-loop five-

point amplitude are available for download at the website [39]. The overall coefficient of

the five-point amplitude (3.18) will be verified by factorization at the lowest order in α′ in

the appendix A.

15



4. One-loop closed-string amplitudes

In this section the overall coefficients of the four- and five-point one-loop amplitudes are

computed using the conventions of section 2, ensuring that the S-duality analysis of sec-

tion 6 is unaffected by different conventions in the literature. Although the coefficient of the

five-point amplitude can be derived from factorization (see appendix A), its computation

from first principles as done in section 4.3 is novel and validates the general method devel-

oped in [8]. For earlier references, see [40] for the original four-point derivation, [20,41,7,8]

for discussions on its overall coefficient and [42,43,44,45,4,46,26] for related extensions.

4.1. The amplitude prescription

According to (2.34), the n-point closed-string one-loop prescription is

M (1)
n =

1

2
κn

∫

d2τ

∫

Σn−1

∣

∣〈〈N (1)(b, µ)V 1(z1)U
2(z2) · · ·Un(zn)〉〉

∣

∣

2
, (4.1)

where N (1) is the genus-one instance of the zero-mode regulator (2.36) and the b-ghost

insertion (2.35) reads

(b, µ) =
1

2π

∫

d2y b(y)µ(y) , (4.2)

where µ is the Beltrami differential for the modulus parameter τ . In terms of the genus-one

period matrix Ω, equation (2.31) implies
∫

d2τ
∣

∣

∣

∫

d2y ω1(y)ω1(y)µ(y)
∣

∣

∣

2

=

∫

d2Ω . (4.3)

At genus one, there are (16)d zero-modes of dα and (11)s zero-modes of sα. Since there are

no sα variables in the vertex operators, and the term sα∂λα from the b-ghost (2.5) does

not contribute in absence of sources for wα, the zero-modes of sα are entirely saturated

by the regulator through the factor N (1) → (s1d1)11. The remaining (5)d zero-modes must

come from the b-ghost and the external vertices.

There are two canonical b-ghost contributions to saturate the fermionic zero-modes

of dα, with either one or two zero-modes. Expanding Πm(y) = Π1
mω1(y) + Π̂m(y) and

dα(y) = d1αω1(y) + d̂α(y) where ω1(z)dz = dz is the genus-one holomorphic one-form, one

can show that amplitudes up to (and including) five-points receive zero-mode contributions

from only two terms5 in the b-ghost (2.5)
∫

d2τ |(b, µ)|2 =
(α′

2

)2 1

(2π)2
1

1922

∫

d2Ω
∣

∣B(2) +Π1
mBm

(1) + · · ·
∣

∣

2
, (4.4)

5 Terms containing a single Nmn zero-mode vanish upon integration over [dw][dw] [9].
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where the ellipsis represents terms relevant at (n ≥ 6) points and

B(2) ≡
1

(λλ)2
(λγmnpr)(d1γmnpd

1), Bm
(1) ≡

( 2

α′

) 96

(λλ)
(λγmd1) . (4.5)

Since the vertex operators are independent of wα, w
α and sα, the integration over the

zero-modes [dw1][dw1][ds1] is readily performed using (2.27) and yields

∣

∣

∫

[ds1][dw1][dw1] e−(d1s1)−(w1w1)
∣

∣

2
=

(α′

2

)4 1

(2π)1622Z22
1

∣

∣

∣

(ǫ · T · d1)
(11! 5!)

∣

∣

∣

2

. (4.6)

Defining

D(13) ≡
∫

[dd1]
(ǫ · T · d1)
(11! 5!)

B(2), Dm
(12) ≡

∫

[dd1]
(ǫ · T · d1)
(11! 5!)

Bm
(1) , (4.7)

as a special case of (2.26), the amplitude (4.1) becomes

M (1)
n =

(α′

2

)6 κn

(2π)18215 32

∫

d2Ω

Z22
1

∫

Σn−1

|〈〈K(1)
[d] (z2, . . . , zn)〉〉(3,1)|2

〈

n
∏

j=1

ek
j ·xj

〉

. (4.8)

The subscript [d] of the kinematic factor

K(1)
[d] (z2, . . . , zn) ≡ (D(13) +Πm

1 Dm
(12) + · · ·)V1U2(z2) · · ·Un(zn) (4.9)

emphasizes the remaining integration over the dα zero-modes. The ellipsis along with

Πm
1 Dm

(12) refers to b-ghost contributions which do not affect (n ≤ 5)-point amplitudes.

4.1.1. Scalar and vector building blocks at genus one

The integration over the zero-mode d1α in (4.9) can be done using (2.27) and gives

D(13)VA(d
1WB)(d

1WC)(d
1WD) = 96 cdTA|B,C,D(λ, λ), (4.10)

Dm
(12)VA(d

1WB)(d
1WC)(d

1WD)(d1WE) = 96 cd

( 2

α′

)

Sm
A|B,C,D,E(λ, λ) ,

where

TA|B,C,D(λ, λ) ≡ (λγmnpr)

(λλ)2
VA(λγ

mWB)(λγ
nWC)(λγ

pWD), (4.11)

Sm
A|B,C,D,E(λ, λ) ≡

(λγmγrλ)

(λλ)
VA(λγ

sWB)(λγ
tWC)(WDγrstWE)

with multiparticle labels A,B, . . . (see section 2.7).
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At this stage the Theorem 1 from [9] can be used to factorize (λλ) from the expressions

in (4.11). For a general kinematic factor one then defines KA|B,...(λ, λ) = (λλ)pKA|B,... for

some power p as the result of this procedure. Doing this for (4.11) leads to

〈TA|B,C,D(λ, λ)〉(3,1) = 〈TA|B,C,D〉(2,1), (4.12)

〈Sm
A|B,C,D,E(λ, λ)〉(3,1) = 〈Sm

A|B,C,D,E〉(3,1) = 10〈Sm
A|B,C,D,E〉(2,1) ,

where symmetry of TA|B,C,D and Sm
A|B,C,D,E in (B,C,D) and (B,C,D,E), respectively, is

inherited from (4.10). Note that any appearance of Sm
A|B,C,D,E in (n ≥ 5)-point one-loop

amplitudes occurs in the combination6

Tm
A|B,C,D,E ≡ Am

BTA|C,D,E + Am
C TA|B,D,E +Am

DTA|B,C,E + Am
ETA|B,C,D + 10Sm

A|B,C,D,E ,

(4.13)

where the factor of 10 is due to the conversion from 〈. . .〉(3,1) = 10〈. . .〉(2,1) in (4.12).

4.2. The four-point amplitude

According to the formula (4.8), the four-point amplitude is given by

M
(1)
4 =

(α′

2

)6 κ4

(2π)18215 32

∫

d2Ω

Z22
1

∫

Σ3

|〈〈K(1)
[d] (z2, z3, z4)〉〉(3,1)|2

〈

4
∏

j=1

ek
j ·xj

〉

. (4.14)

It is easy to see that D(13) is the only non-vanishing contribution from the b-ghost since

the external vertices cannot provide four dα zero-modes to saturate the Dm
(12) integral [2].

The integration over [dd1] is readily performed via (4.10) followed by (4.12),

〈〈K(1)
[d] (z2, z3, z4)〉〉(3,1) = 96cd

(α′

2

)3

〈T1|2,3,4〉(2,1) . (4.15)

Note that the right-hand side is independent on the vertex insertion points z2, z3 and z4

because only the zero-modes entered the computation. A straightforward application of

(2.40) then implies

M
(1)
4 = (2π)10δ10(k)

(α′

2

)3 κ4

214 52π2
|〈T1|2,3,4〉|2

∫

d2Ω

(ImΩ)5

∫

Σ3

I(1)
4 , (4.16)

= (2π)10δ10(k)
(α′

2

)3 κ4

28π2
K(1)

4

∫

d2Ω

(ImΩ)5

∫

Σ3

I(1)
4 ,

6 Writing the term Am
1 T2|3,4,5 is an abuse of notation since when computing its component

expansion the variables rα in the definition of T2|3,4,5(λ, λ) become covariant derivatives Dα (see

[22]) and must also act upon the superfield Am
1 .
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where in the second line we used [47] (note [K(1)
4 ] = −8)

〈T1|2,3,4〉 = 40〈V1T2,3,4〉, K(1)
4 ≡ |〈V1T2,3,4〉|2 . (4.17)

Note that the tree-level (3.13) and one-loop (4.17) kinematic factors are related by [34]

K(1)
4 = K(0)

4 , (4.18)

a well-known result first obtained by Green and Schwarz [40].

4.2.1. The α′-expansion of the four-point amplitude

The α′-expansion of the four-point amplitude7 has been extensively studied in a series of

papers [41], where the subleading term in

∫

d2Ω

(ImΩ)5

∫

Σ3

I(1)
4 =

24π

3

(

1 +
ζ3
3
σ3 + · · ·

)

(4.19)

signals the absence of D4R4 interactions at one-loop in ten dimensions. Therefore, plugging

the above result in the four-point amplitude (4.16) leads to

M
(1)
4 = (2π)10δ10(k)

(α′

2

)3 κ4

24 3π
K(1)

4 +O(α′6) . (4.20)

4.3. The five-point amplitude

Using the general result (4.8) the five-point amplitude (4.1) becomes

M
(1)
5 =

κ5

(2π)18215 32

(α′

2

)6
∫

d2Ω

Z22
1

∫

Σ4

|〈〈K(1)
[d] (z2, . . . , z5)〉〉(3,1)|2

〈

5
∏

j=1

ek
j ·xj

〉

, (4.21)

where

K(1)
[d] (z2, . . . , z5) = (D(13) +Π1

mDm
(12))V1U2(z2) · · ·U5(z5) . (4.22)

7 In addition to the analytic momentum dependence shown in (4.19), threshold singularities

arise from the integration region where ImΩ → ∞. A careful treatment of these non-analytic

terms can be found in [41].
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The [dd1] integration with the operators of (4.7) picks up the terms with four and three

dα zero-modes from the vertices, respectively. Using the multiparticle superfields of [25,48]

one arrives at

V1U2U3U4U5

∣

∣

∣

d4

=
(α′

2

)4

V1(d
1W2)(d

1W3)(d
1W4)(d

1W5) (4.23)

V1U2U3U4U5

∣

∣

∣

d3

=
(α′

2

)4

V12(d
1W3)(d

1W4)(d
1W5)η12 + (2|2, 3, 4, 5)

+
(α′

2

)4

V1(d
1W23)(d

1W4)(d
1W5)η23 + (2, 3|2, 3, 4, 5)

+
(α′

2

)3

Π1
mV1A

m
2 (d1W3)(d

1W4)(d
1W5) + (2|2, 3, 4, 5) ,

where the notation (A1, A2, . . . , Ap |A1, A2, . . . , An) instructs to sum over all possible ways

to choose p elements A1, A2, . . . , Ap from the set {A1, . . ., An}, for a total of
(

n
p

)

terms.

We have ω1(z)dz = dz for the genus-one surface, and ηij = 1
zij

+ O(zij) defined by (2.8)

accounts for the singularity from the OPEs among vertex operators. According to (2.42)

and (2.43), they introduce multiparticle superfields Wα
23 and V12 defined in (2.44) and

(2.45), respectively.

The integration over the zero-modes of dα uses the formulas (4.10) and (4.12) to yield

〈〈K(1)
[d] (z2, . . . , z5)〉〉(3,1) = 96 cd

(α′

2

)3

〈K(1)(z2, . . . , z5)〉(2,1) , (4.24)

where

K(1)(z2, . . . , z5) ≡
(α′

2

)

[

η12T12|3,4,5 + (2|2, 3, 4, 5)
]

(4.25)

+
(α′

2

)

[

η23T1|23,4,5 + (2, 3|2, 3, 4, 5)
]

+Π1
mTm

1|2,3,4,5 ,

see (4.13) for the definition of Tm
1|2,3,4,5. Upon discarding Π1

m → 0 and adjoining the Koba-

Nielsen factor, this is precisely the open-string correlation function for the five-point pure

spinor one-loop amplitude [46,26] (for the RNS derivation, see [42,44]).

Therefore, the closed-string amplitude (4.21) becomes

M
(1)
5 =

κ5

27π2

(α′

2

)4
∫

d2Ω

Z−10
1

∫

Σ4

∣

∣〈K(1)(z2, . . . , z5)〉(2,1)
∣

∣

2
〈

5
∏

j=1

ek
j ·xj

〉

= (2π)10δ10(k)
κ5

214 52π2

(α′

2

)3
∫

d2Ω

(ImΩ)5

∫

Σ4

∣

∣〈K(1)(z2, . . . , z5)〉
∣

∣

2I(1)
5 , (4.26)

where we used Z−10
1 = (2 ImΩ)5 and the identity (2.40) on the second line. Integration

by parts identities [4,6] allow to express (4.26) in terms of 37 basis integrals with BRST-

invariant kinematic numerators. The α′-expansion of these integrals was analyzed in [4,6]

and confirms the absence of D2R5 interactions at one-loop in ten dimensions.
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4.3.1. The leading-order contribution

The low-energy behavior of the Σ4 integral over
∣

∣〈K(1)(z2, . . . , z5)〉
∣

∣

2I(1)
5 in (4.26) is gov-

erned by two kinds of contributions [4,6]:

(i) zero-mode contractions Π1
mΠ

1

n → −ηmn

(

α′

2

)

π
ImΩ following (2.11) at g = 1

(ii) kinematic poles8 from the residue of the pole η12η12 ∼ |z12|−2

η12η12I(g)
n = −

( 2

α′

)2π

s12
δ2(z1 − z2)I(g)

n +O(α′0) . (4.27)

Non-diagonal products of Green functions such as η12η13 or η12η34 do not contribute to

the leading order in α′. Hence, we have

∫

Σ4

∣

∣〈K(1)(z2, . . . , z5)〉
∣

∣

2I(1)
5 = −

(α′

2

) π

ImΩ
K(1)

5

∫

Σ4

+O(α′2) , (4.28)

where the kinematic factor K(1)
5 is defined by (note [K(1)

5 ] = −8)

K(1)
5 ≡

[ |〈T12|3,4,5〉|2
s12

+(2|2, 3, 4, 5)
]

+
[ |〈T1|23,4,5〉|2

s23
+(2, 3|2, 3, 4, 5)

]

+|〈Tm
1|2,3,4,5〉|2 , (4.29)

and the integration over Σ4 gives
∫

Σ4

= 24 ImΩ4. This leads to the following result for the

one-loop five-point amplitude (recall that
∫

dµ1 = 2π/3)

M
(1)
5 = (2π)10δ10(k)

(α′

2

)4 κ5

29 52 3
K(1)

5 +O(α′5) , (4.30)

In the appendix A the overall coefficient in (4.30) will be validated by factorization.

4.3.2. Components in type IIB and type IIA

The type IIB components of the kinematic factor (4.29) are related to the first α′-correction

of the five-point tree-level amplitude (3.18) and (3.19) [23]:

K(1)
5

∣

∣

∣

IIB
= 25 52

(α′

2

)−3

K(0)
5

∣

∣

∣

ζ3
×
{

1 : five gravitons
−1

3
: four gravitons, one dilaton

(4.31)

8 Strictly speaking, the identity (4.27) is valid under integration over one of z1, z2 and results

from the behavior of the Koba-Nielsen factor I(g)
n ∼ |z12|−α′sij as z1 → z2:

∫

d2z2η12η12I(g)
n = 4π

∫

|z12|d|z12|
1

|z12|2
|z12|−α′s12 +O(α′0) = − 4π

α′s12
+O(α′0)

This only depends on the local properties of the worldsheet and therefore holds at any genus.
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The relative factor between the tree-level and one-loop amplitudes at order α′4 turns

out to depend on the charges of the external states under the R-symmetry of type IIB

supergravity, as has already been observed in [6]. Components with the same R-symmetry

violation as four gravitons and one dilaton give rise to an additional relative factor of −1
3
.

This will be explained in section 6.3 from an S-duality point of view. Since R-symmetry

violating four-point amplitudes vanish [10], the five-point amplitudes in this work provide

the simplest context to study the S-duality properties of interactions with R-charge. Also,

five-point amplitudes that violate R-charge by more units than caused by a single dilaton

insertion vanish at any loop-order.

Type IIA components of the five-point low-energy limit (4.30) cannot be expressed in

terms of AYM bilinears. Instead, we have

K(1)
5

∣

∣

∣

5 gravitons

IIA
= 25 52

(α′

2

)−3 [

K(0)
5

∣

∣

∣

ζ3
−

∣

∣ǫme1k2e2k3e3k4e4k5e5
∣

∣

2
]

, (4.32)

where the notation ǫme1k2e2k3e3k4e4k5e5 ≡ ǫmnp2q2...p5q5
10 e1nk

2
p2
e2q2 . . . k

5
p5
e5q5 has been used

and the free vector index m is contracted between the left- and right-moving factors in

the holomorphic square. The parity-violating type IIA component with a B-field and four

gravitons has been evaluated in [6].

Upon insertion into (4.30), the kinematic factors (4.31) and (4.32) give rise to the

following low-energy limits for the five-graviton amplitudes:

M
(1)
5

∣

∣

α′4

IIB gravitons
= (2π)10δ10(k)

(α′

2

) κ5

243
K(0)

5

∣

∣

∣

ζ3
(4.33)

M
(1)
5

∣

∣

α′4

IIA gravitons
= (2π)10δ10(k)

(α′

2

) κ5

243

[

K(0)
5

∣

∣

∣

ζ3
−

∣

∣ǫme1k2e2k3e3k4e4k5e5
∣

∣

2
]

.

According to (4.31), the R-symmetry violating type IIB components (e.g. four gravitons

and one dilaton) carry an extra factor of −1
3 .

5. Two-loop closed-string amplitudes

In this section we compute the low-energy limit of the two-loop five-point amplitude in-

cluding its overall coefficient from first principles. This includes a recomputation of the

four-point amplitude using the conventions of section 2. For previous two-loop four-point

results see [49,50,51,7,8].
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5.1. The amplitude prescription

The n-point two-loop amplitude prescription (4.1) is given by

M (2)
n =

1

2
κne2λ

∫ 3
∏

j=1

d2τj

∫

Σn

∣

∣〈〈N (2)(b, µj)U
1(z1) · · ·Un(zn)〉〉

∣

∣

2
, (5.1)

where the zero-mode regulator N (2) is defined in (2.36), and the b-ghost insertion was

specified in (4.2). At genus two, there are (16, 16)d zero-modes of dα and (11, 11)s zero-

modes of sα. The latter are entirely saturated by the regulator through the factor N (2) →
(s1d1)11(s2d2)11, see the discussion below (4.3).

In presence of five vertex operators, it is easy to see that the total number of dα

zero-modes from the b-ghosts can be distributed as (p, q) such that p + q is either 5 or 6.

These two contributions can be separately computed using the zero-mode expansion

(dγmnpd)(z) → (d1γmnpd
1)ω1(z)ω1(z) + 2(d1γmnpd

2)ω1(z)ω2(z) + (d2γmnpd
2)ω2(z)ω2(z)

and the general formulas (2.31) as follows

∫ 3
∏

j=1

d2τj

∣

∣

∣
(b, µj)

∣

∣

∣

2

=
(α′

2

)6 1

(2π)61926

∫

d2Ω
∣

∣B(3,3) +
(

Π1
mBm

(2,3) +Π2
mBm

(3,2)

)

+ · · ·
∣

∣

2
.

(5.2)

The shorthands for different b-ghost contributions are defined by9

B(3,3) ≡
1

(λλ)6

[

2(λrd1d1)(λrd1d2)(λrd2d2)
]

(5.3)

Bm
(2,3) ≡

( 2

α′

) 96

(λλ)5

[

2(λγmd1)(λrd1d2)(λrd2d2)− (λγmd2)(λrd1d1)(λrd2d2)
]

Bm
(3,2) ≡

( 2

α′

) 96

(λλ)5

[

2(λγmd2)(λrd1d1)(λrd1d2)− (λγmd1)(λrd1d1)(λrd2d2)
]

with the convention that (λrdIdJ ) ≡ (λγmnpr)(dIγmnpd
J ). Note that B(3,3) → −B(3,3)

and Bm
(2,3) ↔ −Bm

(3,2) under the interchange of zero-mode labels d1 ↔ d2. As indicated

9 The (5, 5)d zero-modes from the b-ghosts and the vertices can in principle be saturated

by a b-ghost contribution Bm
(1,4) ∼ (d2d2)(d1d2)(Πmd2). However, the integration over the b-ghost

insertions via (2.31) yields a τj integrand ∼ ǫi1i2i3
δΩ22

δτi1

δΩ12

δτi2

(

Πm
1

δΩ12

δτi3
+Πm

2
δΩ22

δτi3

)

whose summands

do not depend on all entries of the period matrix and which vanish upon contraction with the

antisymmetric ǫi1i2i3 . The same mechanism suppresses Π2
mBm

(2,3) and Π1
mBm

(3,2) from (5.2).
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by the ellipsis in (5.2), two-loop amplitudes involving n ≥ 6 closed-string states allow for

additional b-ghost contributions with fewer zero-modes of dα.

Since the vertex operators are independent of wI
α, w

α
I and sαI , the integration over

their zero-modes can be performed at an early stage using (2.27),

∣

∣

∣

∫ 2
∏

I=1

[dwI ][dwI ][dsI ] e−(wIwI)−(dIsI)
∣

∣

∣

2

=
(α′

2

)8 1

(2π)3224Z22
2

∣

∣

∣

2
∏

I=1

(ǫ · T · dI)
(11! 5!)

∣

∣

∣

2

. (5.4)

The tensor structure (ǫ · T · dI) is captured by the operators D(14,14) and Dm
(14,13) defined

in (2.26). They allow to rewrite the amplitude (5.1) as

M (2)
n =

(α′

2

)14 κne2λ

(2π)38251926

∫

d2Ω

Z22
2

∫

Σn

∣

∣〈〈K(2)
[d] (z1, . . . , zn)〉〉(3,2)

∣

∣

2
〈

n
∏

j=1

ek
j ·xj

〉

, (5.5)

where

K(2)
[d] (z1, . . . , zn) ≡

(

D(14,14) +Π1
mDm

(13,14) +Π2
mDm

(14,13) + · · ·
)

U1(z1) · · ·Un(zn) . (5.6)

The ellipsis along with Π2
mDm

(14,13) accounts for b-ghost zero-mode contributions which

drop out from the subsequent four- and five-point computations.

5.1.1. Scalar and vector building blocks at genus two

We shall now evaluate (5.6) on the part of the vertex operators which contribute zero-modes

d1, d2. One can show that

D(14,14)(d
1WA)(d

1WB)(d
2WC)(d

2WD) = 962c2d TA,B|C,D(λ, λ) (5.7)

Dm
(13,14)(d

1WA)(d
1WB)(d

1WC)(d
2WD)(d2WE) =

( 2

α′

)

962c2d S
m
A,B,C|D,E(λ, λ)

Dm
(14,13)(d

2WA)(d
2WB)(d

2WC)(d
1WD)(d1WE) =

( 2

α′

)

962c2d S
m
A,B,C|D,E(λ, λ)

with multiparticle labels A,B, . . . and scalar building block

TA,B|C,D(λ, λ) ≡ 2

(λλ)6
(λγm1n1p1

r)(λγdefr)(λγm2n2p2
r)(λγm1defm2λ) (5.8)

× (λγn1WA)(λγ
p1WB)(λγ

n2WC)(λγ
p2WD) .

The two zero-mode patterns (λγmd1)(λrd1d2)(λrd2d2) and (λγmd2)(λrd1d1)(λrd2d2) in

the b-ghost contribution Bm
(3,2) given by (5.3) lead to distinct tensor structures S

(1)m
A,B,C|D,E

and S
(2)m
A,B,C|D,E such that

Sm
A,B,C|D,E ≡ S

(1)m
A,B,C|D,E + S

(2)m
A,B,C|D,E (5.9)
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with

S
(1)m
A,B,C|D,E(λ, λ) ≡ − 2

(λλ)5
(λγmγa1λ)(λγm1n1p1

r)(λγm2n2p2
r)(λγa2m1n1p1m2λ)

× (WAγa1a2a3
WB)(λγ

a3WC)(λγ
n2WD)(λγp2WE) , (5.10)

S
(2)m
A,B,C|D,E(λ, λ) ≡

96

(λλ)5
(λγmγb1λ)(λγa1a2a3

r)(λγb1b2b3r)

× (λγa1WA)(λγ
a2WB)(λγ

a3WC)(λγ
b2WD)(λγb3WE) . (5.11)

Note that the integrals of Dm
(13,14) and Dm

(14,13) give rise to the same kinematic structure

Sm
A,B,C|D,E because Dm

(13,14) ↔ Dm
(14,13) under the interchange of zero-modes d1α ↔ d2α.

5.1.2. Kinematic symmetry properties at genus two

The above definitions in (5.7) manifest the symmetry properties

TA,B|C,D(λ, λ) = T(A,B)|(C,D)(λ, λ) , S
(j)m
A,B,C|D,E(λ, λ) = S

(j)m
(A,B,C)|(D,E)(λ, λ)(5.12)

with j = 1, 2. As demonstrated in the appendix C, gamma-matrix manipulations and the

pure spinor constraint imply that the kinematic factor (5.8) can be rewritten as

TA,B|C,D(λ, λ) = − 192

(λλ)4
(λγamnr)(rγapqr)(λγ

mWA)(λγ
nWB)(λγ

pWC)(λγ
qWD) (5.13)

and satisfies the Jacobi identity,

TA,B|C,D(λ, λ) + TA,D|B,C(λ, λ) + TA,C|D,B(λ, λ) = 0 . (5.14)

The symmetry (5.14) assembles the holomorphic one-forms in the antisymmetric combi-

nations ∆ij = ǫIJωI(zi)ωJ(zj),

D(14,14)(dWA)(zA)(dWB)(zB)(dWC)(zC)(dWD)(zD)

= 962c2d

(

TA,B|C,D(λ, λ)
[

ω1(zA)ω1(zB)ω2(zC)ω2(zD) + ω2(zA)ω2(zB)ω1(zC)ω1(zD)
]

+ TA,C|B,D(λ, λ)
[

ω1(zA)ω1(zC)ω2(zB)ω2(zD) + ω2(zA)ω2(zC)ω1(zB)ω1(zD)
]

+ TA,D|B,C(λ, λ)
[

ω1(zA)ω1(zD)ω2(zB)ω2(zC) + ω2(zA)ω2(zD)ω1(zB)ω1(zC)
]

)

= −962c2d
[

TA,B|C,D(λ, λ)∆DA∆BC + TD,A|B,C(λ, λ)∆AB∆CD

]

. (5.15)

As will become clear later, the appearance of ∆ij in (5.15) is a crucial requirement for

modular invariance of the amplitude.
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Furthermore, it is shown in appendix C that S
(1)m
A,B,C|D,E can be eliminated in favor of

S
(2)m
A,B,C|D,E to yield

Sm
A,B,C|D,E(λ, λ) = 2S

(2)m
A,B,C|D,E(λ, λ)+S

(2)m
A,D,E|B,C(λ, λ)+S

(2)m
B,D,E|A,C(λ, λ)+S

(2)m
C,D,E|A,B(λ, λ).

(5.16)

Together with the ten-term identity10

S
(2)m
A,B,C|D,E(λ, λ) + (D,E|A,B,C,D,E) = 0 , (5.17)

one can show that (5.16) implies a vector generalization of the scalar Jacobi identity (5.14)

Sm
A,B,C|D,E(λ, λ) = Sm

C,D,E|A,B(λ, λ) + Sm
B,D,E|A,C(λ, λ) + Sm

A,D,E|B,C(λ, λ) . (5.18)

This is instrumental to identify ∆ij in the following permutation sum:

(Π1
mDm

(13,14) +Π2
mDm

(14,13))(dWA)(zA)(dWB)(zB)(dWC)(zC)(dWD)(zD)(dWE)(zE)

= 962c2d

( 2

α′

)

Sm
A,B,C|D,E(λ, λ)

[

Π1
mω1(zA)ω1(zB)ω1(zC)ω2(zD)ω2(zE)

+ Π2
mω2(zA)ω2(zB)ω2(zC)ω1(zD)ω1(zE)

]

+ (D,E|A,B,C,D,E)

= 962c2d

( 2

α′

)

Sm
A,B,C|D,E(λ, λ)

2
∑

I=1

∆EAωI(zB)∆CDΠI
m + cyc(A,B,C,D,E) . (5.19)

Applying the Theorem 1 of [9] to the expressions (5.8) and (5.9)

TA,B|C,D(λ, λ) ≡ 1

(λλ)3
TA,B|C,D, Sm

A,B,C|D,E(λ, λ) ≡
1

(λλ)2
Sm
A,B,C|D,E , (5.20)

leads to

〈TA,B|C,D(λ, λ)〉(3,2) = 〈TA,B|C,D〉(0,2), 〈Sm
A,B,C|D,E(λ, λ)〉(3,2) = 8〈Sm

A,B,C|D,E〉(0,2) ,
(5.21)

where the factor 8 comes from 〈. . .〉(1,2) = 8〈. . .〉(0,2). As we will see, the vector building

block contributing to two-loop amplitudes with five or more particles is

Tm
A,B,C|D,E ≡ Am

ATB,C|D,E +Am
BTA,C|D,E +Am

C TA,B|D,E + 8Sm
A,B,C|D,E , (5.22)

where the factor of 8 is due to the use of (5.21). By (5.14) and (5.18), it obeys the same

symmetry properties as Sm
A,B,C|D,E(λ, λ),

Tm
A,B,C|D,E = Tm

(A,B,C)|(D,E) , Tm
B,D,E|A,C = Tm

A,B,C|D,E − Tm
A,D,E|B,C − Tm

C,D,E|A,B .

(5.23)

Hence, the manipulations shown in (5.19) carry over to Sm
A,B,C|D,E(λ, λ) → Tm

A,B,C|D,E .

10 The identity (5.17) was checked to hold for its bosonic (gluon) components [23], and it is

believed to hold at the superfield level using similar manipulations seen in the appendix C.
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5.2. The four-point amplitude

According to the general formula (5.5) the four-point amplitude at two loops is given by

M
(2)
4 =

(α′

2

)14 κ4e2λ

(2π)38251926

∫

d2Ω

Z22
2

∫

Σ4

|〈D(14,14)U1U2U3U4〉(3,2)|2
〈

4
∏

j=1

ek
j ·xj

〉

, (5.24)

since the four vertices cannot provide enough dα zero-modes to saturate the terms with

Dm
(13,14) and Dm

(14,13) in (5.6) [2]. Using the formula (5.7), the Jacobi identity (5.14) and

the definitions (5.21) it is straightforward to verify that (see (5.15))

〈D(14,14)U1U2U3U4〉(3,2) = −962c2d

(α′

2

)4
[

〈T1,2|3,4〉(0,2)∆41∆23 + 〈T1,4|2,3〉(0,2)∆12∆34

]

.

(5.25)

Together with (2.40) and (5.21), this implies that

M
(2)
4 = (2π)10δ10(k)

(α′

2

)5 κ4e2λ

245 36 52π6

∫

d2Ω

(det ImΩ)5

∫

Σ4

|〈K(2)(z1, . . . , z4)〉|2 I(2)
4 , (5.26)

where

〈K(2)(z1, . . . , z4)〉 ≡ 〈T1,2|3,4〉∆41∆23 + 〈T1,4|2,3〉∆12∆34 . (5.27)

In absence of singularities |zij |−2, using Riemann’s bilinear identity (2.29) in the form of

∫

Σ4

∆12∆34∆12∆34 = 26(det ImΩ)2 ,

∫

Σ4

∆12∆34∆41∆23 = 25(det ImΩ)2 , (5.28)

leads to the following low-energy limit

∫

Σ4

|〈K(2)(z1, . . . , z4)〉|2 I(2)
4 = 25(det ImΩ)2 K(2)

4 +O(α′2) , (5.29)

where (note [K(2)
4 ] = −12)

K(2)
4 = |〈T1,2|3,4〉|2 + |〈T1,4|2,3〉|2 + |〈T1,3|4,2〉|2 . (5.30)

Finally, using the volume of the genus-two moduli space
∫

dµ2 = 22π3/(33 5), one arrives

at the following low-energy limit

M
(2)
4 = (2π)10δ10(k)

(α′

2

)5 κ4e2λ

238 39 53π3
K(2)

4 +O(α′6)

= (2π)10δ10(k)
(α′

2

)5 κ4e2λ

210 33 5 π3
(s212 + s213 + s214)K(1)

4 +O(α′6) . (5.31)
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In the second line we used the BRST cohomology manipulation [8,34]11

〈T1,2|3,4〉 = 214335 s12〈V1T2,3,4〉 (5.32)

together with the definition (4.17) of the one-loop kinematic factor K(1)
4 (which in turn

agrees with the tree-level kinematic factor (3.13)).

An alternative presentation of the four-point two-loop amplitude follows by plugging

the result (5.32) in (5.26) and using the definition [7]

Y(z1, . . . , z4) ≡ s12∆41∆23 + s14∆12∆34 (5.33)

to obtain

M
(2)
4 = (2π)10δ10(k)

(α′

2

)5 κ4e2λ

217π6
K(1)

4

∫

d2Ω

(det ImΩ)5

∫

Σ4

|Y(z1, . . . , z4)|2I(2)
4 . (5.34)

In the low-energy limit where I(2)
4 → 1, using [7]

∫

Σ4

|Y(z1, . . . , z4)|2 = 25(s212 + s213 + s214)(det ImΩ)2 (5.35)

and
∫

dµ2 = 22π3/(33 5) leads to the same answer (5.31).

5.3. The five-point amplitude

The five-point amplitude following from the general formula (5.5) is given by

M
(2)
5 =

(α′

2

)14 κ5e2λ

(2π)38 25 1926

∫

d2Ω

Z22
2

∫

Σ5

|〈〈K(2)
[d] (z1, . . . , z5)〉〉(3,2)|2

〈

5
∏

j=1

ek
j ·xj

〉

, (5.36)

where

K(2)
[d] (z1, . . . , z5) =

(

D(14,14) +Π1
mDm

(13,14) +Π2
mDm

(14,13)

)

U1(z1)U2(z2) · · ·U5(z5) . (5.37)

For the first term in (5.37), the external vertices must contribute four dα(z) variables to

saturate the remaining (2, 2)d zero-modes required by the D(14,14) integration. This admits

one OPE (2.43) resulting in a two-particle superfield Wα
ij from (2.44) accompanied by the

singular function ηij ∼ z−1
ij defined in (2.8).

11 The normalization of T1,2|3,4 here is two times bigger than in [8], see definition (5.8).
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However, the OPE (2.43) only determines the residue of the simple pole z−1
ij and

allows for two inequivalent functions of the worldsheet positions; either ∂iGijωI(zj) or

−∂jGijωI(zi). Their difference is regular in zij and drops out from the low-energy behavior

of the amplitude due to the factor of δ2(zi − zj) in (4.27). Since the ambiguity does not

affect the subsequent low-energy analysis, we will use the notation (dWij)ηij to leave the

subtlety in the exact dependence on zi, zj undetermined.

Another possible obstruction to extend the current analysis beyond the low-energy

limit might stem from OPE singularities between the b-ghost and the vertex operators (see

for instance [52,53]). By arguments similar to [9], these might affect the two-loop five-point

amplitude at order D4R5.

Similarly, for the last two terms in (5.37), the vertices must provide five dα variables

to saturate either (2, 3)d or (3, 2)d zero-modes. Together with the contributions from the

previous paragraph, we arrive at

U1U2U3U4U5

∣

∣

d4
=

(α′

2

)5
[

(dW12)(dW3)(dW4)(dW5) η12 + (1, 2|1, 2, 3, 4, 5)
]

(5.38)

+
(α′

2

)4
2

∑

I=1

Πm
I ωI(z1)A

1
m(dW 2)(dW 3)(dW 4)(dW 5) + (1 ↔ 2, 3, 4, 5) ,

U1U2U3U4U5

∣

∣

d5
=

(α′

2

)5

(dW1)(dW2)(dW3)(dW4)(dW5) .

Using the formulas in (5.7) a long but straightforward calculation leads to

〈〈K(2)
[d] (z1, . . . , z5)〉〉(3,2) =

(α′

2

)4

962c2d 〈K(2)(z1, . . . , z5)〉(0,2) , (5.39)

where

K(2)(z1, . . . , z5) ≡
[

Tm
1,2,3|4,5

2
∑

I=1

∆51ωI(z2)∆34Π
I
m + cyc(12345)

]

(5.40)

+
(α′

2

)[

η12(T12,3|4,5∆24∆35 + T12,4|3,5∆23∆45) + (1, 2|1, 2, 3, 4, 5)
]

,

and Tm
1,2,3|4,5 is defined in (5.22). As detailed in (5.19), the symmetry property (5.23) of

Tm
1,2,3|4,5 is crucial to obtain the first line of (5.40) in terms of two factors of ∆ij . After

discarding ΠI
m → 0, (5.40) is the low-energy regime of the open-string worldsheet integrand

for the five-point two-loop amplitude.
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Collecting the above results, the low-energy regime of the two-loop amplitude reads

M
(2)
5 =

(α′

2

)6 κ5e2λ

237 32 π6

∫

d2Ω

(det ImΩ)5

∫

Σ5

∣

∣〈K(2)(z1, . . . , z5)〉(0,2)
∣

∣

2
〈

5
∏

j=1

ek
j ·xj

〉

+O(α′7)

= (2π)10δ10(k)
(α′

2

)5 κ5e2λ

245 36 52 π6

∫

d2Ω

(det ImΩ)5

∫

Σ5

∣

∣〈K(2)(z1, . . . , z5)〉
∣

∣

2I(2)
5 +O(α′7) ,

(5.41)

where in the second line we used (2.40).

5.3.1. The low-energy limit

The low-energy limit of the genus-two integral in (5.41) can be extracted along the same

lines as done at genus one. First of all, (2.11) allows to perform contractions among left-

and right-moving zero-modes of Πm which can be integrated over Σ5 using

∫

Σ5

∆12

2
∑

I=1

ΠI
mωI(z3)∆45 ×∆12

2
∑

J=1

Π
J

nωJ(z3)∆45 = −28π
(α′

2

)

ηmn(det ImΩ)2

∫

Σ5

∆12

2
∑

I=1

ΠI
mωI(z3)∆45 ×∆34

2
∑

J=1

Π
J

nωJ(z5)∆12 = 27π
(α′

2

)

ηmn(det ImΩ)2 (5.42)

∫

Σ5

∆12

2
∑

I=1

ΠI
mωI(z3)∆45 ×∆23

2
∑

J=1

Π
J

nωJ(z4)∆51 = −26π
(α′

2

)

ηmn(det ImΩ)2

and cyclic permutations. Then, the subset of the terms ∼ ηijηpq in (5.41) with “diagonal”

labels i = p and j = q contributes according to (4.27), resulting in ten permutations of

∫

Σ4

∣

∣〈T12,3|4,5〉∆24∆35 + 〈T12,4|3,5〉∆23∆45

∣

∣

2
= 25(det ImΩ)2

[

|〈T12,3|4,5〉|2 + cyc(3, 4, 5)
]

,

where the integrals are identical to the four-point case (5.29). Permutations of η12η13 or

η12η34 from the holomorphic square in (5.40) do not contribute to the low-energy limit

(5.41).

By assembling the two sectors with and without contractions between left- and right-

movers, one can show that the leading-order terms of the five-point two-loop amplitude

(5.41) are given by

∫

Σ5

|〈K(2)(z1, . . . , z5)〉|2I(2)
5 = 26π

(α′

2

)

(det ImΩ)2 K(2)
5 +O(α′2) , (5.43)
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with kinematic factor (note [K(2)
5 ] = −12)

K(2)
5 ≡

∣

∣〈T12,3|4,5〉
∣

∣

2

s12
+

∣

∣〈T12,4|3,5〉
∣

∣

2

s12
+

∣

∣〈T12,5|3,4〉
∣

∣

2

s12
+
∣

∣〈Tm
3,4,5|1,2〉

∣

∣

2
+(1, 2|1, 2, 3, 4, 5) . (5.44)

Hence, using
∫

dµ2 = 22π3/(33 5) implies the following low-energy limit of (5.41),

M
(2)
5 = (2π)10δ10(k)

(α′

2

)6 κ5e2λ

237 39 53 π2
K(2)

5 +O(α′7) . (5.45)

5.3.2. Components in type IIB and type IIA

A long and tedious calculation [23] identifies the type IIB components of the two-loop

kinematic factor (5.44) with the α′-correction ∼ ζ5 of the five-point tree-level amplitude

(3.18) and (3.19):

K(2)
5

∣

∣

IIB
= −228 36 52

(α′

2

)−5

K(0)
5

∣

∣

∣

ζ5
×

{

1 : five gravitons
−3

5 : four gravitons, one dilaton
(5.46)

Similar to the kinematic factor (4.31) in the one-loop low-energy limit, the relative coeffi-

cient to the tree-amplitude depends on the total R-symmetry charge of the external states,

in lines with S-duality. The components considered in (5.46) extend to a variety of further

state combinations of alike R-symmetry charges by linearized supersymmetry.

Similar to the analogous one-loop result (4.32), type IIA components involve additional

tensor structures as compared to the AYM bilinears in the tree-amplitude,

K(2)
5

∣

∣

5 gravitons

IIA
= −228 36 52

(α′

2

)−5[

K(0)
5

∣

∣

∣

ζ5
− 1

2

5
∑

1≤i<j

s2ij
∣

∣ǫme1k2e2k3e3k4e4k5e5
∣

∣

2
]

, (5.47)

where ǫme1k2e2k3e3k4e4k5e5 ≡ ǫmnp2q2...p5q5
10 e1nk

2
p2
e2q2 . . . k

5
p5
e5q5 .

Upon insertion into (5.45), the kinematic factors (5.46) and (5.47) give rise to the

following low-energy limits for the five-graviton amplitudes:

M
(2)
5

∣

∣

α′6

IIB gravitons
= (2π)10δ10(k)

(α′

2

) κ5e2λ

29 33 5 π2
K(0)

5

∣

∣

∣

ζ5
(5.48)

M
(2)
5

∣

∣

α′6

IIA gravitons
= (2π)10δ10(k)

(α′

2

) κ5e2λ

29 33 5 π2

[

K(0)
5

∣

∣

∣

ζ5
− 1

2

5
∑

1≤i<j

s2ij
∣

∣ǫme1k2e2k3e3k4e4k5e5
∣

∣

2
]

According to (5.46), the R-symmetry violating type IIB components (e.g. four gravitons

and one dilaton) carry an extra factor of −3
5 .
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6. S-duality properties

In this section we are going to show that the type IIB five-point amplitudes computed with

the non-minimal pure spinor formalism agree with expectations based on S-duality.

6.1. Review of four-point S-duality

In the string frame, the SL(2,Z)-duality prediction for the perturbative four-graviton type

IIB effective action is given by [54,3,55]

S4pt
IIB =

∫

d10x
√−g

[

R4(2ζ3e
−2φ + 4ζ2) +D4R4(2ζ5e

−2φ +
8

3
ζ4e

2φ) (6.1)

+D6R4(4ζ23e
−2φ + 8ζ2ζ3 +

48

5
ζ22e

2φ +
8

9
ζ6e

4φ) + · · ·
]

,

where the ellipsis refers to terms of higher order D≥8R4. A dilaton dependence of the

form e(2g−2)φ is associated with the g-loop order in string perturbation theory. The tensor

structure of the covariant derivativesD and Riemann curvature tensors R suppressed in the

shorthands R4, D4R4 and D6R4 will not be important in the following. The coefficients of

the R4 andD4R4 interactions can be identified with the zero-modes of the non-holomorphic

Eisenstein series

E3/2(Φ,Φ) ≡ 2ζ3e
−3φ/2 + 4ζ2e

φ/2 + · · · (6.2)

E5/2(Φ,Φ) ≡ 2ζ5e
−5φ/2 +

8

3
ζ4e

3φ/2 + · · · (6.3)

depending on the complex axio-dilaton field Φ ≡ C0+ie−φ. A relative factor of e±φ/2 stems

from the transformation between string frame and Einstein frame. The Fourier modes in

the ellipsis of (6.2) and (6.3) describe the non-perturbative completion of the type IIB

action [54,3] and ensure modular invariance w.r.t. Φ. The prefactor of the D6R4 operator

in (6.1) was firstly predicted in [55] and descends from a modular-invariant function which

is made explicit in [56].

The four-point amplitudes reviewed in the previous sections exhibit the following low-

energy behavior (in both type IIB and type IIA theory):

M
(0)
4 = (2π)10δ10(k)

(α′

2

)3

κ4e−2λ 2πK(0)
4

( 3

σ3
+ 2ζ3 + ζ5σ2 +

2

3
ζ23σ3 + · · ·

)

M
(1)
4 = (2π)10δ10(k)

(α′

2

)3 κ4

24 3π
K(0)

4

(

1 +
ζ3
3
σ3 + · · ·

)

(6.4)

M
(2)
4 = (2π)10δ10(k)

(α′

2

)3 κ4e2λ

210 33 5π3
K(0)

4

(

σ2 + · · ·
)
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The loop- and α′-orders are in one-to-one correspondence with the curvature couplings

e(2g−2)φD2kR4 in the action (6.1). Matching the ratio of the R4 interactions ∼ ζ3 and ∼ ζ2

with the values computed in (6.4) relates the coupling constants eφ and eλ,

e2φπ2

3ζ3
=

e2λ

26 3π2ζ3
→ e2λ = 26π4 e2φ . (6.5)

Furthermore, one can verify using the conversion factor (6.5) that the ratio of all the

interactions match between their predicted values in the action (6.1) and the explicit

amplitude computations summarized in (6.4). The first perturbative verification of the

expressions in (6.1) was achieved in [54,41] for genus one, in [49,7,57] for genus two and

[9] for genus three.

6.2. S-duality at five-points for graviton couplings

We will now check if the above ratios predicted for the four-point amplitudes at different

loop orders also hold for their corresponding five-point amplitudes at one- and two-loops.

The extension of the type IIB effective action (6.1) beyond the four-point level complements

the four-curvature corrections D2kR4 by a tail of operators12 D2(k−l)R4+l with higher

powers of curvature l = 1, 2, . . . , k required by non-linear supersymmetry.

The result for the two-loop five-point amplitude confirms that the five-field comple-

tion (D4R4 +D2R5) is accompanied uniformly by the zero-modes of E5/2 given in (6.3).

Similarly, the compatibility of the E3/2R
4 interaction with five-point amplitudes was ver-

ified through the one-loop analysis in [6]. These checks are based on the α′-expansion of

the five-point IIB amplitudes at tree-level, one- and two-loop computed in the previous

sections,

M
(0)
5 = (2π)10δ10(k)

(α′

2

)

κ5e−2λ(2π)2K(0)
5 (6.6)

M
(1)
5

∣

∣

α′4

IIB
= (2π)10δ10(k)

(α′

2

) κ5

243
K(0)

5

∣

∣

∣

ζ3
×

{

1 : five gravitons
−1

3 : four gravitons, one dilaton

M
(2)
5

∣

∣

α′6

IIB
= (2π)10δ10(k)

(α′

2

) κ5e2λ

29 33 5 π2
K(0)

5

∣

∣

∣

ζ5
×

{

1 : five gravitons
−3

5 : four gravitons, one dilaton
,

12 In addition, novel couplings of the form D2kR≥5 without a four-field representative in their

supersymmetric completion might arise, e.g. the D6R5 interaction identified at one-loop [6].
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where the tree-level factor K(0)
5 is given by (3.19) [36]. Hence, the ratios of the corresponding

five-point interactions at one-loop are easily checked to agree with the perturbative terms

in the Eisenstein series (6.2) and (6.3),

M
(1)
5

M
(0)
5

∣

∣

∣

α′4

IIB gravitons
=

e2λ

26 3 π2ζ3
=

2e2φζ2
ζ3

, (6.7)

and similarly at two-loops (recall that ζ2 = π2

6 and ζ4 = π4

90 ),

M
(2)
5

M
(0)
5

∣

∣

∣

α′6

IIB gravitons
=

e4λ

211 33 5π4ζ5
=

4e4φζ4
3ζ5

. (6.8)

By modular invariance of the Eisenstein series, (6.7) and (6.8) confirm S-duality at the

five-point level.

6.3. S-duality at five-points for dilaton couplings

The ratios of tree-level and loop-amplitudes seen in (6.6) depend on the external type

IIB states, i.e. trading one of the five gravitons for a dilaton introduces additional factors

of −1
3 and −3

5 into the comparison of low-energy limits. These numbers have a natural

explanation from the Einstein frame presentation of the leading terms in (6.1),

R4E3/2(Φ,Φ) + (D4R4 +D2R5)E5/2(Φ,Φ) + · · · , (6.9)

see (6.2) and (6.3) for their perturbative contributions.

Processes which violate the R-symmetry of type IIB supergravity (such as the scat-

tering of four gravitons and one dilaton) are associated with operators which transform

with modular weight under S-duality [10]. Hence, by modular invariance of the type IIB

action, they must accompanied by modular forms of opposite weights. The latter can be

obtained from modular invariant functions such as Es by acting with the modular covariant

derivative

D : eqφ → q · eqφ . (6.10)

The modular forms obtained from E3/2 and E5/2 are characterized by the following per-

turbative terms (with Fourier-modes in the ellipsis):

DE3/2(Φ,Φ) =
(

− 3

2

)

2ζ3e
−3φ/2 +

(1

2

)

4ζ2e
φ/2 + · · · (6.11)

DE5/2(Φ,Φ) =
(

− 5

2

)

2ζ5e
−5φ/2 +

(3

2

)8

3
ζ4e

3φ/2 + · · · . (6.12)
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In comparison with (6.2) and (6.3), the ratio between tree-level and higher-genus contri-

butions is deformed by the covariant derivative in (6.10), namely by −1
3
and −3

5
in cases

of E3/2 and E5/2, respectively. The modular forms in (6.11) and (6.12) multiply the R-

symmetry violating counterparts of R4 and (D4R4 + D2R5) interactions which in turn

describe the dilatonic amplitude components in (6.6). Hence, the covariant derivative in

(6.10) holds the key for the S-duality origin of the relative factors between graviton and

dilaton amplitudes in (6.6). It would be interesting to extend the analysis to higher or-

ders in α′ and to compare the ratios between amplitudes at tree-level and two-loops for

higher derivative operators with and without R-symmetry charges, as it was done in [6] at

one-loop up to order (α′)9.

7. Conclusion

As the main result of this work, we have computed the low-energy limit of the five-point

two-loop amplitude among massless type II closed-string states. The superspace represen-

tation of the result is given in (5.44) with prefactors made precise in (5.45). The type

IIB components involving five gravitons as well as four gravitons and one dilaton were

found to match the tree-level amplitude at the corresponding order in α′, see (5.46). The

determined ratios tie in with the S-duality expectation based on the E5/2 coefficient of

the (D4R4 + D2R5) operator in the effective action [3] and its counterpart DE5/2 with

modular weight, see (6.12).

The computation was performed using the non-minimal pure spinor formalism [2]

where the normalizations can be reliably kept track of and where the b-ghost is explicitly

known. However, subtle issues regarding possible OPE singularities between the b-ghost

and the vertex operators (see for instance [52]) currently prevent the determination of

the five-point two-loop amplitude to all orders in α′. These subtleties did not affect the

two-loop low-energy analysis of this work, but it would certainly be desirable to extend

the five-point correlator in (5.40) to all orders in the low-energy expansion. Starting from

the Zhang-Kawazumi invariant expected at the subleading order in α′ [57], the systematics

of the low-energy expansion and the threshold corrections deserve to be studied along the

lines of the one-loop results in [41]. The α′-expansion of the corresponding open string

amplitudes at two-loops calls for a higher-genus generalization of the elliptic multiple zeta

values [58] which were studied in the context of planar one-loop amplitudes in [59].
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Fig. 1 The factorization of the tree-level four-point amplitude in the massless pole s12
in terms of three-point amplitudes. This condition was used to fix the normalization

constant κ2 = πe2λ

α′2 in equation (A.7).

Also, it would be rewarding to cast the kinematic factors into the language of the

minimal pure spinor superspace of [1] and to bypass the computational steps required by

the extra worldsheet variables of the non-minimal pure spinor formalism. In particular,

this concerns the evaluation of covariant derivatives originating from rα and the tensor

manipulations required to arrange the λα into contractions with λα. For the three-loop

four-point kinematic factors of [9], a much simpler BRST-equivalent representation in

terms of (minimal) pure spinor superspace has recently been found [48].
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Appendix A. Worldsheet factorization of the amplitudes

In this appendix we show that five-point multiloop amplitudes computed in main body of

this work factorize correctly on their massless poles as required by unitarity. We first fix

the overall normalization κ of the vertex operators by imposing unitarity for the four-point

amplitude at tree-level. After that there is no freedom left to adjust parameters and we

proceed to check the factorization of the higher-loop amplitudes.
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A.1. Factorization of the four-point tree-level amplitude

The factorization constraint for the massless pole s12 in the four-point amplitude reads

M
(0)
4

∣

∣

∣

s12
= α′4

∫

d10k

(2π)10

∑

x

M
(0)
3 (1, 2, x)M

(0)
3 (−x, 3, 4)

k2x
(A.1)

where the notation
∣

∣

s12
projects to the pole in s12 and discards regular terms in s12, the

sum
∑

x runs over all states x in the supergravity multiplet and −x represents the state x

at momentum −kx and complex conjugate polarization. This is depicted in fig. 1.

On the one hand, recall the low-energy limit (3.15) of the four-point amplitude

M
(0)
4

∣

∣

∣

s12
= (2π)10δ10(k)κ4e−2λ 2π

|〈V12V3V4〉|2
s12

. (A.2)

On the other hand, a short computation using the factorization constraint (A.1) yields

M
(0)
4

∣

∣

∣

s12
= α′4

∫

d10k

(2π)10

∑

x

M
(0)
3 (1, 2, x)M

(0)
3 (−x, 3, 4)

k2x

= (2π)10δ10(k)κ6e−4λ
(α′

2

)−2

α′4 1

2s12
|〈V12V3V4〉|2 , (A.3)

where the three-point amplitude is given by

M
(0)
3 (1, 2, x) = (2π)10δ10(k1 + k2 + kx)

(α′

2

)−1

κ3e−2λ |〈V1V2Vx〉|2 . (A.4)

and we used
∫

d10k
δ10(k1 + k2 + kx)δ10(−kx + k3 + · · ·+ kn)

k2x
=

1

2s12
δ10(k1+k2+k3+· · ·+kn) (A.5)

together with the explicit component sum [23]

∑

x

〈V1V2Vx〉〈VxV3V4〉 = 〈V12V3V4〉+O(s12) . (A.6)

Therefore equating (A.2) and (A.3) leads to

κ2e−2λ =
π

α′2
. (A.7)

A.2. Factorization of the five-point tree-level amplitude

The normalization of the five-point tree amplitude (3.18) will be checked through its fac-

torization on the massless s12 pole according to

M
(0)
5

∣

∣

∣

s12
= α′4

∫

d10k

(2π)10

∑

x

M
(0)
3 (1, 2, x)M

(0)
4 (−x, 3, 4, 5)

k2x
, (A.8)
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where the three-point amplitude was recalled in (A.4) and

M
(0)
4 (−x, 3, 4, 5) = (2π)10δ10(−kx + k3 + k4 + k5) κ4e−2λ (A.9)

× 2π
[ |〈VxV3V45〉|2

s45
+

|〈VxV4V35〉|2
s35

+
|〈VxV5V34〉|2

s34

]

+O(α′3) .

Using (A.7) and

∑

x

〈V1V2Vx〉〈VxV3V45〉 = 〈V12V3V45〉+O(s12, s45) (A.10)

the factorization constraint (A.8) gives

M
(0)
5

∣

∣

∣

s12
= (2π)10δ10(k)

(α′

2

)

κ5e−2λ(2π)2 (A.11)

×
[ |〈V12V3V45〉|2

s12s45
+

|〈V12V35V4〉|2
s12s35

+
|〈V12V5V34〉|2

s12s34

]

∣

∣

s12
+O(α′3) .

This ties in with a component comparison of the terms with a pole in s12,

ÃT
54 · S0 ·A45

∣

∣

s12
=

[ |〈V12V3V45〉|2
s12s45

+
|〈V12V35V4〉|2

s12s35
+

|〈V12V5V34〉|2
s12s34

]

∣

∣

s12
, (A.12)

which confirms the normalization of the five-point closed-string amplitude (3.18).

A.3. Factorization of the five-point one-loop amplitude

From the low-energy limit of the five-point amplitude (4.30), it follows that

M
(1)
5

∣

∣

∣

s12
= (2π)10δ10(k)

(α′

2

)4 κ5

29 52 3

|〈T12|3,4,5〉|2
s12

+O(α′5) ,

= (2π)10δ10(k)
(α′

2

)4 κ5

23 3

|〈V12T3,4,5〉|2
s12

+O(α′5) (A.13) ,

where in the second line we used 〈T12|3,4,5〉 = 40
[

〈V12T3,4,5〉 − s12
11 〈A12|3,4,5〉

]

(as shown in

the appendix B) and discarded the contact term since it does not contribute to the s12

pole.

One the other hand, given the three-point tree (A.4) and the low-energy limit of (4.16),

M
(1)
4 = (2π)10δ10(k)

κ4

24 3 π

(α′

2

)3

|〈V1T2,3,4〉|2 +O(α′4) , (A.14)

the factorization constraint

M
(1)
5

∣

∣

∣

s12
= α′4

∫

d10k

(2π)10

∑

x

M
(0)
3 (1, 2, x)M

(1)
4 (−x, 3, 4, 5)

k2x
(A.15)
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Fig. 2 Factorization channel of the five-point two-loop amplitude into a tree-level three-

point and a four-point two-loop amplitude.

together with (A.5) yields

M
(1)
5

∣

∣

∣

s12
= (2π)10δ10(k)α′4

(α′

2

)2 κ7e−2λ

25 3 π

1

s12

∑

x

|〈V1V2Vx〉|2|〈VxT3,4,5〉|2+O(α′7) . (A.16)

One can show via a component expansion that the kinematic factors satisfies [23]

∑

x

〈V1V2Vx〉〈VxT3,4,5〉 = 〈V12T3,4,5〉+O(s12) . (A.17)

By (A.7), one finally arrives at

M
(1)
5

∣

∣

∣

s12
= (2π)10δ10(k)

(α′

2

)4 κ5

23 3

|〈V12T3,4,5〉|2
s12

+O(α′5) , (A.18)

in complete agreement with the expression (A.13).

A.4. Factorization of the five-point two-loop amplitude

In the low-energy limit of the five-point two-loop amplitude (5.45), the terms with a pole

in s12 are given by

M
(2)
5

∣

∣

∣

s12
= (2π)10δ10(k)

(α′

2

)6 κ5e2λ

237 39 53 π2

[ |〈T12,3|4,5〉|2
s12

+
|〈T12,4|3,5〉|2

s12
+

|〈T12,5|3,4〉|2
s12

]

.

(A.19)

The s12-channel factorization constraint in the low-energy limit

M
(2)
5

∣

∣

∣

s12
= α′4

∫

d10k

(2π)10

∑

x

M
(0)
3 (1, 2, x)M

(2)
4 (−x, 3, 4, 5)

k2x
(A.20)

39



for the factorization into a tree-level three-point amplitude (3.5) and a two-loop four-point

amplitude (5.31)

M
(0)
3 = (2π)10δ10(k)

(α′

2

)−1

κ3e−2λ |〈V1V2V3〉|2 (A.21)

M
(2)
4 = (2π)10δ10(k)

(α′

2

)5 κ4e2λ

238 39 53π3

[

|〈T1,2|3,4〉|2 + |〈T1,4|2,3〉|2 + |〈T1,3|4,2〉|2
]

+O(α′6) ,

yields

M
(2)
5

∣

∣

∣

s12
= (2π)10δ10(k)

(α′

2

)4 α′4κ7

239 39 53π3

[ |〈T12,3|4,5〉|2
s12

+
|〈T12,4|3,5〉|2

s12
+

|〈T12,5|3,4〉|2
s12

]

(A.22)

where we used (A.5) and [23]

∑

x

〈V1V2Vx〉〈Tx,3|4,5〉 = 〈T12,3|4,5〉+O(s12) (A.23)

Therefore the constraint (A.7) (α′2κ2 = πe2λ) implies the agreement of (A.22) with (A.19)

and establishes the correct factorization of the five-point two-loop amplitude.

Appendix B. One-loop kinematic factors: NMPS versus MPS representation

From equations (3.7) and (4.7) of [46] and using the definitions (2.46) it follows that

T12|3,4,5 = (λλ)V12[36T3,4,5 + 4(λγmW4)(λγ
nW5)F

3
mn] + s12J12|3,4,5 (B.1)

T1|23,4,5 = (λλ)V1

[

36T23,4,5 + 4(λγmW23)(λγ
nW4)F

5
mn

]

+ s23(J13|2,4,5 − J12|3,4,5)

J12|3,4,5 ≡ (λγmW4)(λγ
nW5)

[

V1V2(λγmnW3) + 2(λλ)V2(A1γmnW3)− (1 ↔ 2)
]

.

Since (4.11) is totally symmetric in (345) it is possible to rewrite (B.1) more conveniently

by averaging it over its permutations and using the Theorem 1 of [9] to factor out (λλ),

T12|3,4,5 = 40(λλ)
[

V12T3,4,5 −
1

11
s12A12|3,4,5

]

(B.2)

T1|23,4,5 = 40(λλ)
[

V1T23,4,5 −
1

11
s23(A13|2,4,5 −A12|3,4,5)

]

,

where

A12|3,4,5 ≡
1

6
[V 1(A2γmnW 3)− V 2(A1γmnW 3)](λγmW 4)(λγnW

5) + (3 ↔ 4, 5). (B.3)

Note that the admixtures of (B.3) drop out from BRST invariant combinations of (B.2)

such as 〈T1|23,4,5

s23
+

T12|3,4,5

s12
− T13|2,4,5

s13
〉, that is why the amplitudes obtained from the minimal

[26] and the non-minimal pure spinor formalism [46] agree.
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Appendix C. Symmetries of two-loop kinematic factors

This appendix collects the superspace manipulations responsible for some of the symmetry

properties of the two-loop scalar and vectorial kinematic factors.

C.1. The Jacobi-like identity of scalar kinematic factors

The kinematic factor (5.8)

TA,B|C,D(λ, λ) =
2

(λλ)6
(λγm1n1p1

r)(λγdefr)(λγm2n2p2
r)(λγm1defm2λ)

×
[

(λγn1WA)(λγ
p1WB)(λγ

n2WC)(λγ
p2WD)

]

,

is now demonstrated to satisfy the identity

TA,B|C,D(λ, λ) + TA,D|B,C(λ, λ) + TA,C|D,B(λ, λ) = 0. (C.1)

To see this one uses the gamma matrix identity

(λγdefr)(λγ
m1defm2λ) = 48(λλ)(λγm1γm2r)− 48(λγm1γm2λ)(λr) (C.2)

together with (λγm2n2p2
r) = (λγm2γn2γp2r) and (λγm2)α(λγm2

)β = 0 to obtain

(λγm2n2p2
r)(λγdefr)(λγ

m1defm2λ) = 48(λλ)(λγm2n2p2
r)(λγm1γm2r) (C.3)

= 48(λλ)(λγm2γm1λ)(rγm2n2p2r) ,

where the cyclic identity γm2

α(βγ
m2

γδ) = 0 and the constraint (λγmr) = 0 were used to arrive

at the second line. Therefore,

(λγm1n1p1
r)(λγm2n2p2

r)(λγdefr)(λγ
m1defm2λ) = 96(λλ)2(λγan1p1r)(rγan2p2r) . (C.4)

After using (C.4), the identity (C.1) follows by noting that it is equivalent to

(λγan1p1r)(rγan2p2r) + (λγap2p1r)(rγan1n2r) + (λγan2p1r)(rγap2n1r) = 0 , (C.5)

and (C.5) can be shown using γa
α(βγ

a
γδ) = 0.
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C.2. Relating vector kinematic factors

In order to prove the symmetry (5.16) of the vectorial kinematic factor in (5.10) and (5.11),

the pure spinor constraint can be invoked to decompose the gamma matrices in the factor

(WAγ
a1a2a3WB)(λγ

a2m1n1p1m2λ) = −(WAγ
a2γa1γa3WB)(λγ

a2γm1γn1γp1γm2λ)

contained in (5.10). The identity

(WAγ
a2γa1γa3WB)(λγ

a2γm1γn1γp1γm2λ) = −(WAγ
a2γm1γn1γp1γm2λ)(λγa2γa1γa3WB)

−(WAγ
a2λ)(λγm2γp1γn1γm1γa2γa1γa3WB)

then allows applications of the pure spinor constraint in the form of (λγr)α(λγ
r)β = 0;

ultimately leading to

S
(1)m
A,B,C|D,E(λ, λ) = S

(2)m
A,B,C|D,E(λ, λ)+S

(2)m
A,D,E|B,C(λ, λ)+S

(2)m
B,D,E|A,C(λ, λ)+S

(2)m
C,D,E|A,B(λ, λ)

which implies (5.16).
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