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Abstract 
 
For complex measurement systems, modelling of uncertainties and their influence on 
extracted physical parameters requires the use of probability theory beyond simple linear error 
propagation of statistical uncertainties. In this paper we describe a model for the analysis of 
spectrometer data, where uncertainties in addition to photon count statistics, such as 
instrument function, dispersion and intensity calibration, are taken into account by a  
comprehensive modelling of the whole measurement process.  
 
 
1. Introduction 
 
To increase accuracy of inferred plasma parameters, alleviate inconsistency problems between 
diagnostics, and facilitate integrated analysis [1,2] of measurements, individual diagnostic 
models need to pay more principled attention to inherent systematic as well as statistical 
uncertainties in the instrument and measurement procedures. This paper describes a model for 
extraction of physics parameters from spectrometer data, where uncertainty in auxiliary 
models of instrument function, dispersion and intensity calibration are incorporated by joining 
these models together with the spectral model.  In section 2 expressions for detector response 
functions are derived which rely on models of instrument function, dispersion and intensity 
calibration defined in section 3. In section 4 this is brought together in a joint model. 
 
 
2. Detector Response 
 
For a monochromatic light source, the response on the detector (which we here assume is a 
row of pixels on a CCD chip, or a measurement binned into a single row of pixels) is 
proportional to the normalised instrument function 
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The position of this function on the detector is given by 
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where pref is the pixel position of some chosen reference point of the instrument function 
corresponding to monochromatic light of wavelength λref. ω(λ) is the dispersion (nm/pixel) 
curve of the spectrometer. For light with spectral radiance s(λ) the detector response for a 
wavelength interval dλ, centred on λ will then be 
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counts per pixel. Here T is the exposure time and cp(λ) is the calibration coefficient for pixel 
p, relating detected counts to radiance. Summing contributions from all wavelengths then  
gives:  
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counts per pixel. For the expected number of counts for a specific pixel, this will give: 
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If the instrument function is broad the integral over a pixel could be replaced by the central 
value of that pixel. If kept, this integral enables the accommodation also of narrow instrument 
functions.  
For a given spectrum s(λ), the likelihood of the observed counts is, assuming normal 

approximation of the photon statistics with standard deviation equal to gd pp =σ , (g being 

the gain, or number of electrons per count; for a more sophisticated model of the CCD noise 
see [3]) 
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where *

pd is the observed number of counts for pixel p. ckkkk s ,,, ων  are vectors of free 

parameters for the spectral model, instrument function, dispersion relationship, and intensity 
calibration respectively. The expression (6) will thus depend through expression (5) on the 
free parameters not only of the given spectral model s(λ), but also on the internal model of the 
instrument function through the parameterisation of (1), the dispersion function through (2), 
and calibration functions through the calibration constants in (3). The positioning of a 
spectrum on the chip is here always done through the pref / λref pair in the instrument function 
position (2), where normally pref is free while λref is an arbitrary constant and does not need to 
be related to a specific line. 
 
 
3. Inclusion of instrument function, dispersion and intensity calibration 
 
The data from a specific spectrum will certainly not give much information on the instrument 
function, dispersion relationship and intensity calibration parameters in (6), so the separate 
measurement of these quantities must also be incorporated into the model. For the calibration 
factors, we have used a simple model based on the assumption that the largest  source of 
uncertainty is a shift of the calibration lamp curve, caused by systematic uncertainties of the 
irradiance and reflectance of the standard lamp used to calibrate the calibration lamp, together 
with nonlinearity of detectors/amplifiers: 
 
 lampctablamp r Φ=Φ ,                    (7) 
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where tablamp,Φ is the tabulated, wavelength dependent radiance of the calibration lamp, and 

lampΦ the underlying true value, with cr being a nuisance parameter having a normal prior 
distribution with mean one and a standard deviation equal to the stated error of the calibration 
lamp radiance. For long exposure times during calibration measurements, the photon noise 
can be made negligibly small, and the calibration factors, as here defined, will be directly 
given by 
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being measured for each pixel p at a number of wavelenghts iλ . 
For the instrument function, a parameterisation  of (1), specific to the instrument, is used (e.g. 
box function,  sum of Gaussians etc.). Using (5) with )()( λλδλ νν −Φ=s , νλ  being the 
wavelength of the light used, the expression for the expected number of counts for pixel p of 
an instrument function measurement is 
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The integral over a pixel is neccessary only for instrument functions that are narrow or have a 
detailed structure. The likelihood for the instrument function data is 
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conditioned on the free parameters of the instrument function model, and intensity calibration 
model. 
The spectrometer dispersion is measured by using a number of line pairs with known 
wavelengths. From the pixel distance between such line pairs, the dispersion relationship 

)(λω in (2) can be inferred: 
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where L is the size of a pixel, m the grating order, gn the number of grooves per mm of the 

grating. The focal length f and angle ϕ  between the normal to the grating in 0th order position 
and the entrance mirror, are usually the free dispersion model parameters fitted to the data [4]. 
In this case the expected measurements will be 
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where ip∆ is the measured pixel distance between the two lines with wavelengths 1λ and 2λ . 

The corresponding likelihood is 
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4. Joint Model 
 
The joint likelihood for the data from the actual spectrum, instrument function, dispersion 
measurement and intensity calibration will now be 
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The joint posterior for all free parameters of the model is then (with }}{},{},{{ ***

ipp pddD ∆= ν ) 
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The inference of the spectral features is then done by marginalizing over the nuisance 
parameters we are not interested in: 
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Normally we are interested in posteriors for single elements in the vector sk giving directly 
the probability distributions for specific spectral features with all uncertainties in the joint 
system taken into account through the integral (16).  
Practically, the integral (16) is carried out through Markov Chain Monte Carlo (MCMC) 
sampling from the posterior (15). A numerically faster method is to approximate (15) with a 
multivariate normal distribution centred at the maximum of the posterior distribution (15) and 
then carrying out the marginalization integrals (16) directly. 
The number of extra free parameters that has to be introduced in order to take into account the 
error sources we have been describing, is about 7 for a gaussian instrument function, which is 
not excessive, considering that spectra can easily have many times that number of free 
parameters.  
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