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Abstract

For complex measurement systems, modelling of uncertainties amd irifleence on
extracted physical parameters requires the use of probabiliyytheyond simple linear error
propagation of statistical uncertainties. In this paper we desarimodel for the analysis of
spectrometer data, where uncertainties in addition to photon couigticgatsuch as
instrument function, dispersion and intensity calibration, akentainto account by a
comprehensive modelling of the whole measurement process.

1. Introduction

To increase accuracy of inferred plasma parameters, aen@onsistency problems between
diagnostics, and facilitate integrated analysis [1,2mefasurements, individual diagnostic
models need to pay more principled attention to inherent systeamticell as statistical
uncertainties in the instrument and measurement procedures. parsdescribes a model for
extraction of physics parameters from spectrometer datarewdngcertainty in auxiliary
models of instrument function, dispersion and intensity calibratienncorporated by joining
these models together with the spectral model. In se2texpressions for detector response
functions are derived which rely on models of instrument functi@persion and intensity
calibration defined in section 3. In section 4 this mught together in a joint model.

2. Detector Response

For a monochromatic light source, the response on the detectoh(whitiere assume is a
row of pixels on a CCD chip, or a measurement binned into a siogleof pixels) is
proportional to the normalised instrument function

v(p-p°(A). (1)
The position of this function on the detector is given by

p°(1) = p + ﬁom 0

wherep® is the pixel position of some chosen reference tpofnthe instrument function
corresponding to monochromatic light of wavelengdtf. (1) is the dispersion (nm/pixel)
curve of the spectrometer. For light with spectealiances(A) the detector response for a
wavelength intervadlA, centred om will then be

dr(p) =v(p- p°(A)s(A)c, (A)TdA ®3)
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counts per pixel. Her& is the exposure time amg(4) is the calibration coefficient for pixel
p, relating detected counts to radiance. Summindritoations from all wavelengths then
gives:

r(p) =T [v(p- p°(A)s(A)c, (A)dA (4)

counts per pixel. For the expected number of colanta specific pixel, this will give:

1
p+=

d, =T[s(A)c,(A) [v(p-p°(1))dpd (5)

P

If the instrument function is broad the integrakpwa pixel could be replaced by the central
value of that pixel. If kept, this integral enabthe accommodation also of narrow instrument
functions.

For a given spectrum ) the likelihood of the observed counts is, assigmnormal
approximation of the photon statistics with stadddeviation equal tar, =,/d g, (g being

the gain, or number of electrons per count; foraersophisticated model of the CCD noise
see [3])

({dp}k® k" kK% et e ( C _d;)z) (6)
i) EH H = X u
Pie l;l J2no, g 207

where d;is the observed number of counts for pigpelk® k", k“ k¢ are vectors of free

parameters for the spectral model, instrument fancdispersion relationship, and intensity
calibration respectively. The expression (6) whlu$ depend through expression (5) on the
free parameters not only of the given spectral hs@g, but also on the internal model of the
instrument function through the parameterisatiorf19f the dispersion function through (2),
and calibration functions through the calibratioonstants in (3). The positioning of a
spectrum on the chip is here always done througip'th/ A pair in the instrument function
position (2), where normally’® is free whileA is an arbitrary constant and does not need to
be related to a specific line.

3. Inclusion of instrument function, dispersion and intensity calibration

The data from a specific spectrum will certainlyt give much information on the instrument
function, dispersion relationship and intensityilmation parameters in (6), so the separate
measurement of these quantities must also be ot into the model. For the calibration
factors, we have used a simple model based onghengption that the largest source of
uncertainty is a shift of the calibration lamp aeireaused by systematic uncertainties of the
irradiance and reflectance of the standard lamd tsealibrate the calibration lamp, together
with nonlinearity of detectors/amplifiers:

q)lamp,tab - rccplamp (7)
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where ®""™*js the tabulated, wavelength dependent radiandbeotalibration lamp, and

®'"*™the underlying true value, with®being a nuisance parameter having a normal prior
distribution with mean one and a standard deviagigual to the stated error of the calibration

lamp radiance. For long exposure times during catilbn measurements, the photon noise
can be made negligibly small, and the calibratiactdrs, as here defined, will be directly

given by

c

dp
Cp(/]i)_T;iA/]pq)lm(/li) ) (8)

being measured for each pixeht a number of wavelenghis.
For the instrument function, a parameterisatior(1pf specific to the instrument, is used (e.g.
box function, sum of Gaussians etc.). Using (5hws(A) = d"o(A” - 1), A’ being the

wavelength of the light used, the expression fergkpected number of counts for pipebf
an instrument function measurement is

1
P*E
dy =T, (1)®" ju(p)dp 9)
1
o1
2

The integral over a pixel is neccessary only fetrumment functions that are narrow or have a
detailed structure. The likelihood for the instrurhiinction data is

(d) -d¥)?

Npix 1
k¥ k) = expl 10
) |p_l \/Emp pe 7 ) (10)

p

pdy}

conditioned on the free parameters of the instrarherction model, and intensity calibration
model.

The spectrometer dispersion is measured by usimyraber of line pairs with known

wavelengths. From the pixel distance between simeh pairs, the dispersion relationship
a(A)in (2) can be inferred:

L _ mn A, 1
a)(/1)—mf—ng(\/cosz¢ (—2 ) 2mng/1tan¢5) (11)

wherelL is the size of a pixeln the grating ordern, the number of grooves per mm of the

grating. The focal lengthand anglep between the normal to the grating fAd@der position

and the entrance mirror, are usually the free dispe model parameters fitted to the data [4].
In this case the expected measurements will be

2
Ap. 1

= |——dA 12
=law (12)
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where Ap, is the measured pixel distance between the twes livith wavelengthst'and A°.
The corresponding likelihood is

p((a 1K) = [ —exp- P20 (13

4. Joint Model

The joint likelihood for the data from the actuglestrum, instrument function, dispersion
measurement and intensity calibration will now be

pd h {dy (AP K K,k k) = pd }k®, k", k?, k) p({d; K" k) pAp; [K®)
(14)

The joint posterior for all free parameters of thedel is then (withD ={{d },{d}'},{Ap}} )

p(D|k® k", k? k)p(k® k", k? k)

p(k®,k”,k® k¢ |D) =
p(D)

(15)

The inference of the spectral features is then doypemarginalizing over the nuisance
parameters we are not interested in:

p(k® | D) =jj p(k®,k* ,k® k¢ | D)dk"dk“dk® (16)

Normally we are interested in posteriors for singllements in the vectdk® giving directly
the probability distributions for specific spectfahtures with all uncertainties in the joint
system taken into account through the integral. (16)

Practically, the integral (16) is carried out thgbuMarkov Chain Monte Carlo (MCMC)
sampling from the posterior (15). A numericallyteasmethod is to approximate (15) with a
multivariate normal distribution centred at the imaxm of the posterior distribution (15) and
then carrying out the marginalization integrals)(dectly.

The number of extra free parameters that has totlmeluced in order to take into account the
error sources we have been describing, is aboart & §aussian instrument function, which is
not excessive, considering that spectra can easi)e many times that number of free
parameters.
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