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1 Introduction

Magnetohydrodynamic (MHD) flows display turbulent behaviour when the conditions

l0vrms/µ ≫ 1 and l0vrms/ν ≫ 1 are satisfied. Here l0 is the integral length scale of the

flow, vrms is the rms velocity, ν is the kinematic viscosity and µ is the magnetic diffusivity.

Statistical investigations are frequently made by the construction of structure functions

Sp
l , defined here in terms of the Elsässer field variables z± ≡ v ±B(µ0ρ)−1/2:

Sp
l = 〈|(z±(x + l, t).l/l − z±(x, t).l/l|p〉 (1)

This measure is sensitive to spatial correlation via dependence on the differencing vector

l, and is weighted to events of greater intensity as the order parameter p increases.

Statistical self similarity is indicated by the scaling law Sp
l ∼ lζp. This can be expected

in the inertial range l0 ≫ l ≫ ld where ld is the dissipation scale. Here energy can

cascade between length scales without loss of energy, because these scales are sufficiently

far from the integral scale not to be affected by the driver, and are sufficiently far from

the dissipation scale not to be affected by viscosity. Numerical constraints inhibit the

appearance of an extensive inertial range in direct simulations, so the phenomenon of

extended self-similarity (ESS),

Sp
l ∼ (Sq

l )
ζp/ζq (2)

is instead considered. While this is found to extend scaling into the dissipation range

down to ≈ 5ld, only ratios of scaling exponents ζp/ζq can be directly measured. Scaling

arguments derived from generalised dimensional analyses predict the scaling exponents

ζp. However, these dimensional arguments cannot account for the spatially intermittent

distribution of eddy activity which is found to exist in both hydrodynamic and MHD

turbulence, so an intermittency correction is required. A currently favoured model for

intermittent turbulence is that of She and Leveque [1] (SL) which relates the scaling

exponents ζp to the geometry of those structures that are most intensely dissipating.

The argument relies on the refined similarity hypothesis, which provides a relationship

between the assumed statistical self-similarity in the local rate of disspation and that
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found in Sp
l . This hypothesis can be recast in terms of ESS as

Sp
l ∼ 〈ǫ

p/3

l 〉
(

S3

l

)p/3
or Sp

l ∼ 〈ǫ
p/4

l 〉
(

S4

l

)p/4
(3)

after Eq.(12) in [2]. The first example follows Kolmogorov (K41) [3] in that the non-

linear interaction dominating the cascade process is eddy scrambling, while the second

follows Iroshnikov and Kraichnan (IK) [4, 5] where the dominant process is Alfven wave

collisions. Both relations imply ESS in the local rate of dissipation: this was recently

recovered for the 3D incompressible MHD decaying turbulence simulation of Biskamp

and Müller, and was found to agree with the SL model [6]. However it was not possible

to verify Eq.(3), which links dissipative and fluid scaling, to high order. The present

work investigates this relationship. We study driven two dimensional (2D) turbulence,

because higher Reynolds numbers are attainable in 2D simulations, compared to 3D,

for given computational resources. These simulations are physically relevant to plasma

turbulence where the perturbed magnetic field is small compared to the mean magnetic

field, and is essentially perpendicular to it. We drive the simulations so as to maximise

our ability to harvest statistics over many eddy turnover times. However, we note that

driven simulations, as opposed to decaying ones, usually require longer run times to

harvest reliable statistics because of their more bursty nature. The 2D isothermal MHD

equations are solved on a periodic square grid using a finite difference method which is

sixth order in space and fourth order in time. Fourier modes of the magnetic and velocity

fields are initialised with random phase and a power spectrum peaking at the driving

wave number k0 taking the same form as the initial conditions in [7]. The simulation

is driven in the wave number range k0 ± 0.5 using a forcing function which forces shear

magnetic and velocity Fourier modes at random phase. A mode is selected randomly

within the shell k0 ± 0.5 for driving at each time step. Simulations presented here have

a resolution of 10242 grid points with k0 = 4. Once the magnetic and kinetic energies

have reached quasi equilibrium, statistics are gathered over a period of one hundred eddy

turnover times from snapshots separated by one eddy turnover time. Here we define an

eddy turnover time as 1/(k0ET
1/2

), where ET is the space averaged steady state magnetic

plus kinetic energies. The average Mach number of the flow, once in quasi equilibrium,

is ≈ 0.25 and the values of kinematic viscosity and magnetic diffusivity are set equal to

each other.

2 Results

Figure 1 shows the power spectrum of the z+ and z− Elsässer field variables (labelled

E+ and E− respectively). Both spectra overlie perfectly, suggesting that the overall

alignment of v with B is small. This is desirable since a high degree of field alignment
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Fig. 1: Power spectra of the z+ and z− Elsässer
field variables (labelled E+ and E− respectively).
Marked on the spectra are the driving shell at k0 =
4 showing enhanced power, and the Kolmogorov
dissipation scale where the power falls off rapidly.
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Fig. 2: ESS obtained from z− Elsässer field vari-
ables orders p = 6 to p = 1 top to bottom (exclud-
ing p = 3 since this necessarily gives perfect scal-
ing). The y axis is normalised by ζp/ζ3 obtained
from linear regression on a log-log plot. Error bars
show the standard error present in the time aver-
aging process.

kills the turbulent dynamics. Marked on the spectra are the driving shell at k0 = 4

showing enhanced power, and the Kolmogorov dissipation scale where the power falls

off rapidly. Structure functions Sp
l are constructed from the Elsässer field variables, and

ESS is used to extract the ratio of scaling exponents ζp/ζ3 in line with Eq.(2). These

scaling relations are shown in Fig. 2, where perfect self-similar scaling would appear

as a horizontal line. Errors are estimated as the standard error in the time averaging

process. Standard procedure is to compare these ratios of scaling exponents to a model

of turbulence. Currently favoured is the SL model mentioned above, which relies on

scaling relations of the form Eq.(3) for theoretical consistency. We are able to test these

relations directly, and present preliminary results here.

We calculate 〈ǫp
l 〉 directly from our simulation using the gradient squared one dimen-

sional proxy as in [6, 8], and combine this with calculations of Sp
l in line with Eq.(3).

Table 1 then shows the scaling relations found by evaluating Eqs.(3).The values in the

table correspond to the gradient recovered when plotting the scaling relations Eq.(3) on

a log-log plot as p is varied: an entry of 1 represents perfect agreement. Neither the K41

nor the IK variants of the refined similarity hypothesis fit our data perfectly, since a

trend can be observed in the gradient as p is increased. However it is reasonable to place

greater emphasis on our low order results, since we have greater statistical confidence

in these. This suggests that the K41 variant of the refined similarity hypothesis is more

appropriate for 2D MHD turbulence than the IK variant.
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- - p = 1 p = 2 p = 3 p = 4 p = 5
K41 + 1.02 1.01 —– 0.97 0.93
K41 − 1.02 1.02 —– 0.96 0.91
IK + 1.12 1.10 1.06 —– 0.94
IK − 1.14 1.11 1.07 —– 0.93

Table 1: Test of the refined similarity hypothesis as modified for consistency with extended self-
similarity. IK or K41 refers to the versions of this hypothesis Eq.(3). The symbols + or − represent
scaling derived from the z+ and z− Elsässer field variables respectively. Perfect agreement would be
indicated by a value of 1.0 across all columns

3 Conclusions

We have extended our investigation [6] of the self-consistency of an SL interpretation

of the scaling of the Elsässer field variables for MHD turbulence. Development of a

2D driven numerical simulation has now enabled us to address the combined scaling

properties of dissipation and field variables. We find that the ESS-adjusted refined

similarity hypothesis Eq.(3) can be tested directly using this simulation. Neither the

Kolmogorov (K41) or Iroshnikov-Kraichnan (IK) phenomenologies of this hypothesis

agree with our numerical results perfectly. However the low order investigations, for

which statistical confidence levels are higher, are better approximated by the K41 variant

of the hypothesis than by the IK version. Some previous high resolution simulations of

2D MHD turbulence report [7] that the scaling exponent of the third order structure

function ζ3 has a value considerably less than 1, (ζ3 = 1 is a necessary condition of

K41). Biskamp and Schwartz report that the power law index of the energy spectrum is

very close to −3/2 which suggests that the IK phenomenology is more appropriate for

2D MHD turbulence [7]. The Reynolds numbers we have simulated so far are not high

enough for direct tests of these scaling laws, which do not rely on ESS. A satisfactory SL

model for the scaling exponents ζp has not yet been agreed upon for 2D MHD turbulence,

and perhaps the theoretical divergence uncovered here may contribute to this. Definite

conclusions will require simulation runs at resolutions sufficiently high that non-ESS

scaling relations can be evaluated.
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