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Figure 1(a) shows the power spectrum of a family of toroidal Alfvén eigenmodes (TAEs) in

JET shot 40332, previously considered in Ref. [1]. Each TAE begins life as a single mode which

later develops sidebands. The TAEs are excited via a combination of NBI and ICRH heating.

The different TAEs have toroidal mode numbers in the range 5–12 and frequencies that are

Doppler-shifted due to plasma rotation. In the model analysis below, we concentrate on a single

excited mode. To analyse the experimentally observed structures, the slow frequency drift of

the modes (due to a slow change in the properties of the background plasma)is compensated

for by a nonlinear mapping, the result of which is shown in Fig. 1(b). This enables the power

spectrum to be compared at different times on the same frequency scale. Figure 2 shows two

cuts through the transformed power spectrum Fig. 1(b) att = 12.40s andt = 12.45s. We note

that each of the dominant peaks in panel 2(a) has developed sidebands in panel 2(b).

Figure 1: (a) Experimental observation of TAEs in JET plasma 40332 undergoingfrequency

splitting. The slow frequency drift is due to slow variation of macroscopic plasma parame-

ters. (b) Transformed power spectrum of JET plasma 40332. Frequency has been nonlinearly

stretched to eliminate the slow frequency drift. This transformation allows cross sections corre-

sponding to different times (as in Fig. 2) to be compared on the same frequency axis.
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Figure 2: Cuts through the transformed power spectrum shown in Fig. 1(b)at times (a)t =

12.40s and (b)t = 12.45s. Panel (a) displays four distinct modes. Panel (b) shows that sidebands

have formed beside the dominant modes.

The Berk-Breizman augmentation of the Vlasov-Maxwell system (“the VM(BB) system”)

self-consistently models the resonant nonlinear coupling between energetic particles and the

wave modes they excite. It is based on the one-dimensional electrostatic bump-on-tail model,

with particle distribution relaxation and background electric field damping. We cast the model

as follows [3], in terms of the particle distributionf (x,v, t) and the electric fieldE(x, t):

∂ f
∂ t

+v
∂ f
∂x

+E
∂ f
∂v

= −νa( f −F0) (1)

∂E
∂ t

+
∫

v( f − f0)dv= −γdE (2)

HereF0 denotes the combined particle source and loss function,νa the particle relaxation rate,

γd the combined effect of all background damping mechanisms that act on the electric field,

and f0 the spatial mean off . Spatial lengths are normalised to the Debye lengthλD; veloc-

ities to the thermal speedvth; time to the inverse plasma frequencyω−1
p ≡ λD/vth; andE to

mev2
th/eλD. The equations are solved using a code [4] which allows direct numerical solutions

of the fully nonlinear self-consistent VM(BB) system across the entirety of(γd,νa) parame-

ter space for anyF0(v). For both the simulations described in this paper, we initiate using a

bump-on-tail distributionF0(v) = Fbulk+Fbeamwhere(2π)
1
2Fbulk = (η/vc) exp

(

−v2/2v2
c

)

and

(2π)
1
2Fbeam= [(1−η)/vt ] exp

[

−(v−vb)
2/2v2

t

]

, and we chooseη = 0.9, vc = 1.0, vb = 4.5,

vt = 0.5, and spatial periodL = 2π/k0 wherek0 = 0.3. Initial conditions aref (x,v, t = 0) =

F0(v)(1+10−3cos(k0x)) andE(x, t = 0) = (10−3/k0)sin(k0x).

Let us study how the system proceeds from steady state (i.e. the field is a single mode with

constant amplitude) to chaos. This is achieved by choosing a cut in(γd,νa) parameter space,
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where one end corresponds to steady state and one to chaotic behavior. The cut chosen is the

straight line segmentγd = 1.0, 0.022≤ νa ≤ 0.05: withγd unchanged as we move along the cut,

νa = 0.05 andνa = 0.022 correspond to steady state and chaotic system behavior, respectively.

We have performed two numerical simulations: (a)νa = 0.06−10−7t and (b)νa = 0.0265−

10−8t. Spectra|Ẽ1(ω)| of the electric field componentE1(t) =
∫

E(x, t)exp(−ik0x)dx are shown

in Fig. 3. To examine the spectra in detail we take cross-sections of Fig. 3 at different fixed

values ofνa; a selection is shown in Fig. 4.

The results presented in this paper suggest that key aspects of the frequency splitting observed

in JET plasma 40332 are captured by the VM(BB) model in its fully nonlinear self-consistent

form (Eqs. 1 and 2) as implemented in the code of Refs. [3, 4]. Our results also provide strong

support for the conjecture that period doubling bifurcation underliesthe observed plasma phe-

nomenology. These results open the way to relating observations of frequencysplitting to the

two key model parameters(γd,νa) of the VM(BB) system. This work was supported by Euratom

and the UK EPSRC.

Figure 3: Field spectra|Ẽ1(ω)| as a function of time for the two simulations (a) and (b) described

in the text. Plot (a) shows, asνa decreases, the transition from a single mode, through a region

of complicated behavior, to a significant interval with a number of modes with well-defined

spacing, to a region where separate modes are indistinguishable. Plot (b) shows details that

cannot be observed in plot (a). It shows two period doublings, atνa = 0.0250 andνa = 0.0236.

At νa ≈ 0.02284 either a further period doubling or transition to chaos occurs.
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Figure 4: Cross sections through Fig. 3 showing power spectra for various values of the model

parameterνa: (a) (νa = 0.05) system is dominated by a single mode; (b) (νa = 0.045) distinct

sidebands have appeared; spectrum still dominated by the central mode; (c) (νa = 0.03) plural-

ity of significant sidebands; (d,e) (νa = 0.0245, 0.023) period-doubling bifurcations: distance

between sidebands is halved; (f) (νa = 0.022) the chaotic regime.
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