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Abstract. A ubiquitous goal in plasma-enhanced chemical vapour deposition
(PECVD) is to describe the correlation between film properties and categorical
and quantitative input variables. The correlations within the high-dimensional
parameter space are described using a multivariate model. Bayesian group
analysis is employed to assess the grouping structures of the set of data vectors.
This allows to identify sub-groups or meta-groups of predefined groups of data
sets, e.g. with respect to source gases. Outliers can be identified by the necessity
to form a separate group. The Bayesian approach consistently allows the handling
of missing data. The grouping probabilities were compared with classical
approaches such as likelihood ratio tests, the Akaike information criterion and
a Bayesian variant called Bayesian information criterion. The method was
applied to PECVD data of rare-earth oxide film deposition and hydrocarbon film
deposition to study the evidence of grouping structures attributed to categorical
quantities such as rare-earth components or source gases and quantitative variates
such as bias voltage.
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1. Introduction

In many fields of research, a large collection of data is given for which a detailed theory is yet
missing. To gain insight into the underlying theoretical description, it is important to reveal the
interrelationship among the data. Such data sets typically consist of measurements on more than
one variable (variate). To find and describe the underlying data structure in high-dimensional
parameter space, it is usually necessary to supplement intuition with statistical techniques. Group
or cluster analyses were applied to sets of data to find group structures and to classify objects into
groups. The goal is to find groups of objects that have a small within-group variability relative
to the between-group variability. Classical measures for finding the most distinct and compact
groups can be found in [1].

A difference between group analysis and cluster analysis is given by the presence or absence
of external information on ‘natural’ structures, respectively. Group analysis enables one to find
evidence for genuine groups among the sample members on the basis of presence of external
structures. External structures are common in designed experiments where, for example, the
a priori information on preformed groups is given by different sets of input quantities. The goal
is to decide if the preformed groups form genuine groups or they can be pooled into larger
meta-structures (groupings) without loss of information. The decision to study groups of data
separately or together in a merged meta-group was expected to have an impact on the conclusions
to be drawn.

The present applications provide preformed groups by the design variates of the source
gas used and the bias voltage applied in plasma deposition. The bias voltage is a quantitative
variate that is characterized by a numerical value, whereas the source gas belongs to the class of
categorical or qualitative variates.

Classical grouping or clustering techniques are based on tests against a null hypothesis
where (maximum-likelihood) estimates for the group parameters enter. Bayesian group analysis
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allows one to calculate the evidence in favour of a hypothesis where the group parameters
are integrated out. The integration or marginalization of parameters takes into account
the full variability of parameter values for evidence of a grouping hypothesis. In contrast, the
classical approach validates hypotheses according to their compatibility with the single value
of the respective estimates. Details about classical cluster or group analysis techniques can
be found in [1].

Another difference between classical and Bayesian group analysis arises when one needs to
estimate parameters that are common to all groupings. Classically, parameters that are common
to all groupings and parameters that are meaningful only for individual groupings were estimated
for each grouping separately. This gives as many estimates for a common parameter as the number
of groupings that could be identified. The Bayesian method allows for an integration over the
parameters meaningful for individual groupings, which gives only one estimate for a common
parameter. Hence, the full grouping uncertainty propagates into the estimation uncertainty of the
common parameter.

The present paper starts with the methodology of Bayesian group analysis in a general
framework. The method can be applied to any set of data where one anticipates genuine groups
within an unstructured sample of measured data or where one has to decide if preformed
(‘natural’) groups should be analysed separately or pooled in larger groupings. Then, the method
of Bayesian group analysis is applied to typical examples from plasma-enhanced chemical vapour
deposition (PECVD).

The deposition of thin films by PECVD is an important technique, since film properties
such as density, composition and index of refraction can be controlled by input variables such as
type of gas and ion energy [2]. Material tailoring requires knowledge of the influence of input
variables on film properties. Parametric dependencies can be superposed by physical mechanisms
that change with the experimental design parameters, e.g. the source gas. An exhaustive scan
of all input variables becomes more and more prohibitive as the dimension of the input space
increases. Regularly, we have to analyse data where the sample number is small or similar
to the dimension of the parameter space. Estimating the relations between input and response
variates and, even more cumbersome, finding empirically different growth mechanisms become
progressively more difficult the sparser the data.

Data sets for film properties are often incomplete due to limited measurement resources,
limited sensitivity ranges of the measurement techniques or just due to the combination of
data from different databases. Usually, missing data are simply ignored by omitting incomplete
data vectors. However neglecting partially measured information makes the results less reliable
compared with the case where all data, complete and incomplete, are used. Analysing all data at
hand becomes even more important when the set of data vectors is mostly spoiled with missing
information or, to the extreme, when only data vectors with missing information are present,
e.g. owing to experimental constraints.

von Keudell et al [2] applied a multivariate analysis to noise-corrupted PECVD data for
the deposition of a-C:H films from an rf-plasma of methane. They used a multivariate normal
distribution to describe the sparse data set in the high-dimensional parameter space of input and
output variables. Although the multilinear relation may be too simple for a realistic physical
model, a more elaborate descriptive relation is not appropriate owing to the limited data set.
Dose [3] used a multivariate model for disclosing relations between the quantities determining the
properties of PECVD films of Al2O3 and rare-earth oxides. The technique of principle component
analysis and canonical relations was applied to analyse grouping structures of preformed groups.
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von der Linden et al [4] developed and applied a Bayesian approach to group analysis based
on multivariate models. Multivariate analysis is a powerful technique to identify linear
dependences between sets of data vectors. However, the restriction to linear models may be
inappropriate for strong non-linear data sets. To verify the linearity assumption, the prediction
of response variables from input variables can be compared with measured response variables
[2]. Many problems are globally or locally linear or can be made linear by appropriate parameter
transformations.

The present paper provides extensions to the Bayesian approach described in [4] and applies
the technique to PECVD data of rare-earth oxide films and a-C:H films. Instead of using a
common covariance structure for all groupings, we allow for independent covariance matrices
for different groupings. Secondly, we provide tools for handling missing data in the full Bayesian
framework and, more user-friendly, partial Bayesian solutions for analysing incomplete data.
Classical statistics fails to provide a consistent method to deal with missing data [1]. Results from
the Bayesian approach will be compared with classical hypothesis tests such as the likelihood
ratio test (LRT) and the Akaike information criterion (AIC). In addition, the Bayesian results are
compared with an approximation to the full Bayesian technique, namely the Bayesian information
criterion (BIC). Both AIC and BIC are easy to implement. Hence, they can easily be used for
fast checks of grouping probabilities whenever they provide good approximations to the full
Bayesian method.

2. Bayesian group analysis

An object is characterized by L continuous characteristics d = (d1, . . . , dL)T that are
represented by real numbers. Discrete characteristics are naturally used to preform groups such
as the type of a carrier gas. Assuming a group ν is characterized by a mean vector mν and a
covariance matrix Cν, the data points di

ν (i ∈ {1, . . . , Nν} in group ν) are i.i.d. multi-normal

p(di
ν | mν, Cν) = etr{− 1

2C
−1
ν (di

ν − mν)(d
i
ν − mν)

T}
|2πCν|1/2

, (1)

where etr{X} = exp(trace(X)) and |2πCν|1/2 = √
det(2πCν). Note that the identity

trace(XYZ) = trace(ZXY) = trace(YZX). The likelihood for all data points i = 1, . . . , Nν in
group ν is given by

p(Dν | mν, Cν) = |2πCν|−Nν/2etr{− 1
2C

−1
ν Cν}, (2)

Cν =
Nν∑
i=1

(di
ν − mν)(d

i
ν − mν)

T, (3)

where Dν represents all data points in group ν, {dν}. Cν is proportional to the sample covariance
of group ν. The covariance matrix Cν specifies the measurement errors and the linear relation
between the variates.
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2.1. Grouping hypotheses

The problem of grouping data according to the linear model translates into hypothesis Hn, which
contains the following information:

• The data belong to n different groups as specified by di
ν.

• The number of elements in group ν is Nν.
• Group ν has mean mν and covariance Cν.
• The means mν of different groups are different and unknown.
• The covariance matrices Cν can be known or unknown. They can be common or different for

all groups.

A known covariance matrix arises, e.g. for data which scatter only due to known measurement
errors. Covariance matrices for the present applications are unknown.

The probability for hypothesis Hn is according to the Bayes theorem

P(Hn | D) ∝ p(D | Hn)P(Hn). (4)

The posterior probability for grouping hypothesis Hn factors into a marginal likelihood
probability distribution function (pdf) p(D | Hn) and a prior pdf P(Hn). The likelihood is
marginalized with respect to the unknown parameters of the mean vectors mν and, if unknown,
to the covariance matrices Cν. The proportionality constant drops out in model comparison and
needs no further consideration.

2.2. Marginal likelihood for known covariances

We assume, for the moment, that the covariance matrices are known and marginalize over the
unknown mean vectors only. The marginal likelihood pdf for known covariance matrices is
given by

p(D | Hn, {Cν}) =
n∏

ν=1

∫
dLmν p(Dν | Hn, mν, Cν)p(mν | Hn)

≈ p({Dν} | Hn)(2π)L(n−N)/2
n∏

ν=1

(N−L/2
ν |Cν|(1−Nν)/2etr{− 1

2C
−1Cν}), (5)

where N = ∑n

ν=1 Nν is the total number of data points. The sample mean vector Dν for group
ν is

Dν = 1

Nν

Nν∑
i=1

di
ν. (6)

Equation (5) simplifies with the assumption of a common covariance matrix for all groups,
Cν = C, to

p(D | Hn, C) ≈ p({Dν} | Hn)(2π)L(n−N)/2

(
n∏

ν=1

N−L/2
ν

)
|C|(n−N)/2etr{− 1

2C
−1C(n)}, (7)
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where the definition of the global sample covariance C(n) is

C(n) =
n∑

ν=1

Cν. (8)

To avoid expressions that are difficult to read, the prefactors of the covariance matrices have
been chosen different from the standard form found in textbooks. The group sample covariance
matrices as well as the total sample covariance matrix depend on the grouping information
of Hn.

The approximations employed in equations (5) and (7) are based on the assumption that
the prior of the mean vectors p({mν} | Hn) is slowly varying when compared with the likelihood
[4]. We have chosen a flat prior for the mean within the range of the data. Hence, the prior for
the mean vectors p({mν} | Hn) is

p({mν} | Hn) =
∏n

ν=1 �[min(D) < mν < max(D)]

(
∏L

l=1 Vl)n
, (9)

where � = 1 (� = 0) if the argument is true (resp. false). The interval Vl = max(D(l)) −
min(D(l)) for the characteristic l arises from normalization. The constant prior for the mean
values over the range of the data is chosen, since estimated mean values are always within the
range of the data.

Note that, in [4], there are two typographical errors in the exponents of equation (6), which
has to be compared with equation (7) in the present paper.

2.3. Marginal likelihood for unknown covariances

For the most common cases where the covariance matrices are unknown, they have to be treated
as nuisance (hyper-) parameters. Within the Bayesian framework, the nuisance parameters are
marginalized. We distinguish two cases: first, we assume a common covariance matrix for all
groupings; second, we allow for different covariance matrices for different groupings.

When all groups are assumed to have a common unknown covariance matrix, the marginal
likelihood is

p(D | Hn) =
∫

dL×LC p(D | Hn, C)p(C)

≈ p({Dν} | Hn)π
nL/2+(L(L−1)−2NL)/4

(
n∏

ν=1

N−L/2
ν

)
|C(n)|(n−N)/2

×
[

L∏
l=1

�

(
N − n − l + 1

2

)]
, (10)

which is proportional to equation (11) in [4]. The prior p(C) is chosen to be a multivariate
Jeffreys’ prior

p(C) ∝ |C|−(L+1)/2, (11)

which is based on Jaynes’ transformation group approach on all possible similarity
transformations [5]. It provides a functional form, which is invariant under all transformations

New Journal of Physics 6 (2004) 25 (http://www.njp.org/)

http://www.njp.org/


7 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

that do not change our state of ignorance. The proportionality constant drops out in the posterior
odds ratio since it is the same for all hypotheses under consideration. The type of integral in
equation (10) is known from the inverse-Wishart distribution [6].

The group analysis of PECVD examples shown in the present paper is based on equation
(10) by assuming a common covariance matrix. The number of data vectors in some of the
preformed groups Nν is less than the number of characteristics L, i.e. Nν < L, which provides
insufficient information to estimate individual covariance matrices uniquely. Nevertheless, we
provide a marginal likelihood for the second case.

The improper multivariate Jeffreys’ prior can no longer be used where we have different
covariances for different groups. The proportionality constant does not drop out in the odds
ratio when we change the number of groupings. A useful proper prior for the covariances is
given by the inverse-Wishart distribution. The inverse-Wishart distribution is the conjugate prior
distribution for the multivariate normal covariance matrix [7].

The marginal likelihood p(D | Hn) substituted into equation (4) using the inverse-Wishart
distribution as prior for Cν is

p(D | Hn) =
∫ (

n∏
ν=1

dL×LCν

)
p(D | Hn, {Cν})

(
n∏

ν=1

p(Cν)

)

≈ p({Dν} | Hn)π
L(n−N)/2|S|nµ/2

×
n∏

ν=1

{
N−L/2

ν |S + Cν|−(µ+Nν−1)/2

[
L∏

l=1

�((µ + Nν − l)/2)

�((µ + 1 − l)/2)

]}
(12)

where the degree of freedom µ and the scale matrix S are parameters of the inverse-Wishart
distribution. To avoid a degenerate form, the degree of freedom must fulfil the criterion µ � L.
Details on the inverse-Wishart distribution can be found in [6, 7].

2.4. Splitting or combining groups

Now we are prepared to answer the key question of the introduction: what is the best classification
of data points into different groups? Are there outliers which form a separate group with only a
single data point? We start with the evaluation of preselected groups.

Figure 1 shows the transition from hypothesis Hn into hypothesis Hn+1. One of the
preselected groups, group η with Nη data points, is split into two sub-groups η1 and η2 with
Nη1 and Nη2 data points.

The comparison of the two hypotheses Hn and Hn+1 is accomplished with the posterior odds
ratio

P(Hn+1 | D)

P(Hn | D)
= P(Hn+1)

P(Hn)

P(D | Hn+1)

P(D | Hn)
. (13)

The prior odds quantifies the weighting we want to give in favour of one of the two alternatives
independent of the data. Throughout the paper, we have chosen the prior odds to be unity since
we lack the knowledge to favour one hypothesis over the other. Results can easily be updated
subsequently if expert knowledge favours one grouping over another. Note that model complexity
cannot be completely attributed to prior odds. Model complexity is automatically attributed to the
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N

N

η,2

N

η

η+1

η,1N

Nη−1

Figure 1. Schematic illustration of the splitting of group η.

marginal likelihoods according to the volume of the prior covered by the likelihood distribution.
The ratio of marginal likelihoods is called Bayes factor. Thus, the posterior odds ratio equals
the ratio of the prior odds times the Bayes factor. An increase in prior volume, e.g. due to
additional parameters, is automatically penalized (Occam’s razor) if the data fit does not benefit
significantly from this extra parameter space.

The posterior odds ratio for marginalized mean vectors and a marginalized common
covariance matrix for all groupings [4] is given by

P(Hn+1 | D)

P(Hn | D)
= P(Hn+1)

P(Hn)

P({Dν} | Hn+1)

P({Dν} | Hn)

(
π

Nη

Nη1Nη2

)L/2

|C(n)|1/2

× �((N + n − L)/2)

�((N − n)/2)

(
1 − Nη1Nη2

Nη

Md

)−(N−n−1)/2

. (14)

The odds ratio contains the multivariate Student’s t distribution, which depends essentially on
the Mahalanobis distance Md = �DT

η (C
(n))−1�Dη [1]. The difference in the sample means of

the new sub-groups is �Dη = Dη2 − Dη1.
The posterior odds ratio for marginalized mean vectors and heterogeneous covariance

matrices according to equation (12) is given by

P(Hn+1 | D)

P(Hn | D)
= P(Hn+1)

P(Hn)

P({Dν} | Hn+1)

P({Dν} | Hn)

(
π

Nη

Nη1Nη2

)L/2

|S|µ/2

×
[

L∏
l=1

�

(
µ + 1 − l

2

)]−1 { L∏
l=1

�((µ + Nη1 − l)/2)�((µ + Nη2 − l)/2)

�((µ + Nη − l)/2)

}

× |S + Cη|(µ+Nη−1)/2

|S + Cη1|(µ+Nη1−1)/2|S + Cη2|(µ+Nη2−1)/2
. (15)

This completes the formulae for Bayesian group analysis assuming we do not have missing data.

2.5. Outlier detection

Outlier detection is a special case of equations (14) and (15). Group η is split into two groups
with Nη1 = 1 and Nη2 = Nη − 1. A numerical test example can be found in [4].
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2.6. Missing data

The data sets used so far are assumed to be observed completely. In this section, we consider the
Bayesian approach for data with partially unobserved (missing) characteristics. We decompose
the total data set, Dtot, into data vectors that are completely measured, namely Dcmp, and data
vectors that have unmeasured characteristics, namely Dinc; Dtot = (Dcmp, Dinc). The traditional
method to deal with missing data is to simply omit those data vectors where only partial
characteristics are measured. However one has to be aware that, by neglecting partially measured
information, the results are at best less reliable compared with the case where all data are used.
Analysing the complete data set is important in cases where the data set mostly contains missing
information or, to the extreme, where only data vectors with missing information can be measured,
e.g. owing to experimental constraints.

The Bayesian method to deal with missing data Dmis is given by marginalizing over the
unobserved data,

P(Dobs | θ) =
∫

P(Dobs, Dmis | θ) dDmis, (16)

where θ represents the parameters. The incomplete data vector Dinc = (Dobs, Dmis) is split
into an observed and a missing sub-vector of dimensions (Lobs, Lmis). Again, we assume that
the data vector Dinc,νi of grouping ν is multi-normal-distributed with mean vector mν and
covariance Cν,

p(Dobs,νi, Dmis,νi | mν, Cν) = |2πCν|−1/2 exp{− 1
2(Dinc,νi − mν)

TC−1
ν (Dinc,νi − mν)}. (17)

We split the inverse covariance matrix C−1
ν into four sub-matrices Uνi, Vνi and Wνi, where Uνi (Vνi)

denotes the square sub-matrix pertaining to Dobs,νi (resp. Dmis,νi), and Wνi denotes the rectangular
sub-matrix of C−1

ν pertaining to the correlation between Dobs,νi and Dmis,νi. The marginalized
likelihood (equation (16)) reads

p(Dobs,νi | mν, Cν) = (2π)−Lobs,νi/2|Ũνi|1/2 exp{− 1
2z

T
νi,obsŨνizνi,obs}, (18)

where zνi,obs = Dobs,νi − mνi,obs, the projection matrix Ũνi = Uνi − WT
νiV

−1
νi Wνi and mνi,obs is

the sub-vector of mν pertaining to Dobs,νi.
For calculating the grouping probabilities, we have to combine the missing-data likelihood

(equation (18)) with the complete-data likelihood (equation (1)) and marginalize over the mean
values mν and the covariance matrix elements entering C−1

ν , Uν, Vν and Wν. Note that the residual
mean values (mνi,obs) and the sub-matrices (U, V, W ) depend on the indices of the missing
values of the incomplete data vectors, which may differ for the various incomplete data vectors.
Since this multidimensional integration can no longer be performed analytically, we have to use
either Monte Carlo techniques or approximate the integration with partial maximum-likelihood
estimates for the missing-data likelihoods. We have chosen the second approach since the partial
maximum-likelihood approach is easy to implement and we do not expect the full approach to
modify the results for the present applications significantly.

The missing-data likelihood is evaluated at the maximum-likelihood estimates of the
sample mean vector m∗

ν = Dcmp,ν and the sample covariance matrix C∗
ν = (1/Nν)

∑Nν

i (Dcmp,νi −
Dcmp,ν)(Dcmp,νi − Dcmp,ν)

T, where the estimates are calculated only from the complete data sets
in group ν, Dcmp,ν. For a singular sample covariance C∗

ν in group ν, e.g. for Nν < L, we have to
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assume a common covariance structure for all groups. The estimate for a common covariance
matrix is given by C∗ = (1/N)

∑n

ν NνC
∗
ν . In principle, the estimates m∗

ν and C∗
ν can be evaluated

from all data vectors Dtot, but the numerics is less straightforward.
For obtaining the marginal likelihood, we have to multiply equation (10) or (12) with the

maximum-likelihood replacement of the missing-data likelihood,

P(Dtot | Hn) ≈ P(Dcmp | Hn) × P(Dobs | Hn, {m∗
ν, C

∗
ν}). (19)

The posterior odds ratio for the complete and incomplete data vectors is given by equations
(14) and (15) multiplied by the ratio of the maximum-likelihood replacement of the missing-
data likelihoods. The maximum-likelihood approximation accounts for the incomplete data in the
grouping probability similar to statistical LRTs. But LRT does not account for the full parameter
space in model comparison as done with posterior odds ratios. LRT is a test on a single point
defined from the estimates, whereas the Bayesian approach marginalizes over the parameter
space.

The combination of Bayesian and classical statistical model comparison tests in the present
paper forms a trade-off between full Bayesian methods and practicability aspects. For data sets
where most or all data vectors have unobserved characteristics, it may become necessary to
establish the full Bayesian formalism using Monte Carlo integration techniques.

2.7. AIC and BIC

Results of the Bayesian analysis will be compared with two frequently used methods for
hypothesis testing and model selection. The likelihood probability increases with the number of
groups provided, since an increase in the number of parameters allows for a better fit to the data.
The LRT statistics measures the gain in fitting the data with the maximum-likelihood estimates.
LRT does not account for model parsimony. An information criterion (IC) is used to favour
models with a reduced number of parameters. Both AIC and BIC [8] penalize model complexity
by adding an additional term to the maximized log-likelihood,

IC = −2 ln(p(D | m∗, C∗)) + k ∗ Np, (20)

where k = 2 for AIC and k = ln Nd for BIC. Np denotes the number of estimated parameters
and Nd the number of observed data. Here, Nd is the number of data characteristics, i.e.
Nd = NL, and not the number of data vectors N. Evidence in favour of a model increases
with decrease in the value of AIC or BIC.

It has been shown that AIC tends to overestimate the number of parameters needed (see [9]
and references therein). Comparing the penalizing terms of AIC and BIC indicates that BIC tends
to favour simpler models than those chosen by AIC. A convention for calibrating BIC differences
is shown in table 1. The difference in the BIC values for two models may be viewed as a rough
approximation to minus twice the logarithm of the Bayes factor for unspecified prior densities.
On practical grounds BIC has been proven to be more justified than any other IC. Details of the
performance of AIC and BIC can be found in [9].

The approaches LRT,AIC and BIC can be consistently applied only to complete data vectors.
They do not provide a unique extension for dealing with missing data [1].
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Table 1. Calibration of BIC differences in terms of evidence [9].

BIC difference <2 2–6 6–10 >10
Evidence Weak Positive Strong Very strong

Table 2. Twenty measurements of rare-earth oxide film deposition [10].

Run Rare Carrier Tsub Prf R̄dep C content Metal content
earth gas (◦C) (W cm−2) (µg cm−2 min−1) (%) (rel. theor. value)

12 Y Ar/H2O 350 1.0 5.15 3.25 0.9504
13 Y Ar/H2O 350 1.5 2.2 2.05 0.9949
14 Y Ar/H2O 375 1.0 4.35 1.6 0.9670
15 Y Ar/H2O 400 1.0 3.45 1.55 0.9886
16 Y Ar/H2O 400 1.5 4.8 1.0 0.9975
19 Dy Ar/H2O 400 0.75 4.05 3.7 0.9219
20 Dy Ar/H2O 400 1.5 4.0 1.0 0.9770
21 Er Ar/H2O 400 1.5 3.2 1.0 0.9703
22 Y N2O 350 1.0 3.75 5.3 0.8933
23 Y N2O 350 1.5 3.3 1.0 0.9720
24 Y N2O 400 1.0 3.0 2.3 0.9161
25 Y N2O 400 1.5 3.5 1.0 0.9644
27 Dy N2O 350 1.5 4.05 3.9 0.9460
28 Dy N2O 400 1.0 6.5 6.5 0.9265
29 Dy N2O 400 1.5 3.5 1.0 0.9816
30 Er N2O 350 1.5 3.35 2.8 0.9291
31 Er N2O 400 1.5 4.8 3.3 0.9829
32 Y CO2 400 1.5 1.75 11.3 0.9931
34 Dy CO2 400 1.5 3.35 2.85 0.9506
35 Er CO2 400 1.5 4.1 3.5 0.9543

3. Results

3.1. Rare-earth oxide film deposition

In rare-earth oxide film deposition, Weber et al [10] have taken 25 measurements with rare-
earth components of yttrium, dysprosium and erbium, and the carrier gases carbon dioxide,
nitrous oxide and argon/water vapour. Table 2 shows the 20 data vectors with measurements
for the metal content. As depicted in table 3, the whole set of data may be arranged either
according to the rare-earth species or according to the carrier gas, in either case leading to n = 3
groupings of otherwise identical data. The dimension of the data characteristics is L = 5. Some
predefined groups have fewer data points than data characteristics, i.e. Nν � L, which makes
us choose a common covariance structure for all groups. In principle, sparsely occupied groups
can be allowed to have the same covariance structure, whereas densely occupied groups may
have different covariances. The marginal likelihoods for this situation can be calculated easily,
although this is beyond the scope of the present paper.

In table 3, the log-probabilities for the permutations of the preformed data groups are given
relative to the case where all data belong to one group. The carrier gases (rare-earth components)
in curly braces indicate which preformed groups are combined to one group, respectively.
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Table 3. Group analysis of rare-earth oxide film deposition data. Data vectors
for components within curly braces form groups. {Nν}, number of data vectors in
group ν; n, number of groups; Np, number of parameters; Pg, grouping probability;
PML

g , maximum-likelihood probability.

Choice {Nν} n Np ln Pg ln PML
g −AIC −BIC

One group 20 1 20 0 0 0 0

{Ar/H2O, N2O} {CO2} 17, 3 2 25 2.9 7.2 4.5 −8.6
{Ar/H2O} {N2O, CO2} 8, 12 2 25 2.8 8.8 7.6 −5.4
{Ar/H2O, CO2} {N2O} 11, 9 2 25 −1.5 4.1 −1.7 −14.8
{Ar/H2O} {N2O} {CO2} 8, 9, 3 3 30 4.3 14.8 9.6 −16.5

{Y, Dy} {Er} 16, 4 2 25 −1.8 2.6 −4.9 −17.9
{Y} {Dy, Er} 10, 10 2 25 0.1 5.9 1.8 −11.2
{Y, Er} {Dy} 14, 6 2 25 −3.0 2.0 −6.0 −19.0
{Y} {Dy} {Er} 10, 6, 4 3 30 −2.7 6.9 −6.2 −32.3

Results for the posterior odds, Pg (where g stands for grouping), show that the different
groupings have similar probabilities. Using the calibration of the BIC differences, where ln Pg

has to doubled, three separate groupings with respect to carrier gases show strong evidence
(2 × 4.3) and groupings with respect to rare-earth components show positive evidence in favour
of all-in-one group (2 × (−1.8 . . . − 3.0)). Despite this evidence, the difference in probabilities
is small compared with results from other applications [4]. A sensitivity study shows that the
posterior odds values for this application depend crucially on the volume of the prior of the mean
vectors. We assume that the true mean value of the groups is within the interval spanned by the
data. Increasing the prior interval for the mean values by a moderate factor of 2 decreases the
grouping probabilities for two or more groups in favour of an all-in-one grouping. Hence,
the sensitivity study shows that the different groupings are not well separated. This indicates
that the small number of data is not sufficient to favour clearly one grouping over another.

Nevertheless, a trend can be seen. Groupings with respect to carrier gases have more evidence
compared with groupings with respect to rare-earth components. There might be a sub-structure
related to the carrier gases. In fact, the three-group situation where each carrier gas forms a
separate group has the highest probability. However, assuming that we have a certain grouping
and inferring physical parameters from that may, therefore, be misleading.

To gain more confidence in our interpretation, the Bayesian results will be compared with
the frequently used approaches of LRT,AIC and BIC. Table 3 shows the maximum log-likelihood
values (ln PML

g ) and the negative AIC and BIC quantities (negative for maximization) relative
to the values for all-in-one grouping. The maximum log-likelihood values increase with the
number of parameters Np, as expected. AIC penalizes model complexity proportional to the
number of parameters. The ordering of groupings according to AIC follows the Bayesian result.
In particular, the grouping where the three carrier gases form separate groups shows the largest
maximum log-likelihood, which is not overruled by the penalizing term. In contrast, BIC never
favours individual groups. According to the BIC calibration convention, there is at least positive
(5.4) to very strong evidence (32) that all data should be grouped together. The reason is that
BIC does not consider explicit prior assumptions. Our prior for the covariance matrix is chosen
to be uninformative, but the prior for the mean values is chosen to be informative. As addressed
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above, we assume that the true mean value of the groups is within the interval of the observed
data values. BIC represents an approximation to the Bayes factor with large prior volumes.
In this sense, BIC gives a conservative estimate of model complexity in the sense of being
most economical of all parameters. Hence, evidence from BIC for less parsimonious
groupings is rather robust, although support for less complex groupings does not necessarily
mean we have to favour them. Informative prior pdfs may overrule the parsimony criteria provided
by BIC.

The search for instructive combinations of preformed groups will fail when the initial groups
are misclassified. A misclassified initial grouping can be identified by looking for the outlier
probability of individual data points. The largest outlier probability of value very close to 1 is
found for measurement (run) 32 for all grouping structures proposed, owing to the large carbon
content compared with the distribution of others. Measurement 32 can be treated as a separate
group. Separation of measurement 32 into a fourth group shows that measurement 13 is also a
candidate for an outlier in the sense that it does not fit into the rest of the preformed groups. This
is due to the small value of R̄dep. The rest of the data vectors do fit within one grouping.

In conclusion, the data set provides a rather poor basis for learning from groupings. This
may be due to the fact that we have, in the mean, only six data points within a group of five
characteristics. On the one hand, pooling data into one group may conceal valuable physical
processes; on the other, an analysis of separated groups of data may imply significance where
there is none. Bayesian group analysis helps us to learn about the significant amount of
information provided by the data.

3.2. Hydrocarbon film deposition

Schwarz-Selinger et al [11] have studied PECVD of hydrocarbon films on single-crystalline
silicon substrates to examine the dependence of film properties on deposition parameters as well
as on the choice of the source gas. Table 4 shows the 21 data vectors with measurements for
seven hydrocarbon source gases (methane (CH4), ethane (C2H6), propane (C3H8), n-butane
(n-C4H10), iso-butane (iso-C4H10), ethylene (C2H4), acetylene (C2H2)) and the dc self-bias
voltage Vb that correlates with the ion energy. The source gases differ in hydrogen to carbon ratio
(H/C in gas), carbon chain length and hybridization of the carbon atoms. The film properties were
characterized by real-time in situ ellipsometry, and the composition of the films was determined
quantitatively by ion-beam analysis. np, ns and kp, ks represent the parallel (p) and perpendicular
(s) components of the real (n) and imaginary (k) parts of the refractive index. The density (ρ) is
calculated from the stoichiometry and film thickness. nH+C represents the total particle number
density. Details on the experiment can be found in [11]. In addition, Schwarz-Selinger [12]
provided data I(k) for the integral of the extinction coefficient k of the C–H stretching vibration
over the wavelength range 2700–3200 cm−1 for layers deposited at various bias voltages Vb and
source gases (see figure 5 in [11]).

Three data vectors have missing characteristics and they are, at first, dismissed. In a second
step, they will be considered.

Predefined groups are naturally given by the categorical variable of the source gas and the
quantitative variable of Vb. The categorical variable of the source gas can be transformed into a
quantitative variable by exploiting the H/C ratio. However, one has to be aware of the fact that
the H/C ratios provide only partial information about the source gases since the hybridization
differs too. There are three input values for Vb that can be combined in five ways for having an
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Table 4. Twenty-one measurements of hydrocarbon film deposition [11] for the
source gases methane (m), ethane (e), propane (p), n-butane (nb), iso-butane (ib),
ethylene (ey) and acetylene (ay). The measured quantities are the dc self-bias
voltage Vb (V), the parallel (p) and perpendicular (s) components of the real (n)
and imaginary (k) parts of the refractive index, the density ρ (g cm−3), the total
particle number density nH+C (1028 m−3), the ratios H/C and H/(H + C) in the film
and the integral of the extinction coefficient k of a C–H stretching vibration.

Gas H/C Vb np ns kp ks ρ nH+C H/C H/(H + C) I(k)

in gas in film in film

m 4 0 1.565 1.580 0.0005 0.0009 1.0 8.5 0.79 0.44 6.61
e 3 0 1.615 1.616 0.0010 0.0015 1.1 9.1 0.75 0.43 6.20
p 2.66 0 1.595 1.6 0.0007 0.0009 1.0 8.5 0.79 0.44 6.88
nb 2.5 0 1.59 1.60 0.0007 0.0009 0.9 8.2 0.89 0.47 7.11
ib 2.5 0 1.59 1.60 0.0015 0.002 1.1 8.9 0.92 0.48 7.06
ey 2 0 1.72 1.74 0.0018 0.0032 1.1 9.5 0.79 0.44 5.99
ay 1 0 1.800 1.805 0.014 0.015 1.4 11.1 0.69 0.41 4.12
m 4 −30 1.807 1.825 0.0165 0.0185 1.5 12.0 0.69 0.41 4.96
e 3 −30 1.845 1.86 0.02 0.022 1.6 12.8 0.69 0.41 4.50
p 2.66 −30 1.72 1.75 0.006 0.0085 – – – – –
nb 2.5 −30 1.729 1.74 0.0017 0.0022 – – – – 6.23
ib 2.5 −30 1.69 1.71 0.0006 0.0008 – – – – 6.41
ey 2 −30 1.945 1.96 0.019 0.021 1.7 13.7 0.64 0.39 4.44
ay 1 −30 2.09 2.1 0.037 0.045 1.8 14.0 0.54 0.35 2.63
m 4 −200 2.1 2.20 0.075 0.10 1.7 12.1 0.43 0.33 2.55
e 3 −200 2.22 2.29 0.1 0.11 1.9 13.2 0.47 0.32 2.95
p 2.66 −200 2.23 2.23 0.096 0.14 2.2 14.8 0.41 0.29 2.70
nb 2.5 −200 2.25 2.3 0.086 0.13 2.1 14.6 0.45 0.31 2.70
ib 2.5 −200 2.26 2.28 0.085 0.10 1.9 13.2 0.43 0.30 2.59
ey 2 −200 2.335 2.4 0.1 0.15 2.2 14.8 0.37 0.27 2.11
ay 1 −200 2.455 2.5 0.13 0.14 2.4 14.6 0.27 0.21 1.35

all-in-one grouping up to having three single groups. For the seven source gases, the number of
combinations is 877, which, for practical reasons, restricts the number of combinations that can
be shown explicitly.

Table 5 shows a subset of possible arrangements of the source gases and all arrangements
with respect to Vb. The dimension of the data characteristics is L = 8. From the first two
characteristics, ‘H/C in gas’ is used for groupings w.r.t. Vb and the characteristic Vb is used
for groupings w.r.t. the source gases. Only two of the four characteristics ρ, nH+C, ‘H/C in film’
and ‘H/(H + C) in film’ are independent. From the four dependent values, the density nH+C and
the ratio ‘H/C in film’ are chosen as the independent data for group analysis. As in the previous
example, some of the predefined groups have fewer data vectors than data characteristics, i.e.
Nν � L, which makes us choose a common covariance structure for all groupings. Figure 2
depicts the probabilities shown in table 5 w.r.t. the choice (grouping) number.

There is clear evidence that the groups sorted w.r.t. Vb have to be treated as separate groups.
Among the groupings 1–5, the maximum at ln Pg = 23 is for choice 5 (see also the first five closed
circles in figure 2). This result is insensitive to changes in the prior support and is supported by
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Table 5. Group analysis of hydrocarbon film deposition data. Data vectors for
components within curly braces form groups. Pmis

g , grouping probability including
data vectors with missing information.

Choice {Nν} n Np ln Pg ln Pmis
g ln PML

g −AIC −BIC

1. One group 18 1 35 0 0 0 0 0

2. {0, −30} {−200} 11, 7 2 42 15 21 36 55 31
3. {0} {−30, −200} 7, 11 2 42 12 −17 32 48 24
4. {0, −200} {−30} 14, 4 2 42 4.3 −1.3 22 28 3.9
5. {0} {−30} {−200} 7, 4, 7 3 49 23 −24 64 95 48

6. {e, p, nb, ib, ey, ay} {m} 15, 3 2 42 −8.7 −8.1 7.0 −2.0 −26
7. {m, p, nb, ib, ey, ay} {e} 15, 3 2 42 −12 −12 3.1 −9.8 −34
8. {m, e, nb, ib, ey, ay} {p} 16, 2 2 42 −8.0 −13 6.4 −3.3 −27
9. {m, e, p, ib, ey, ay} {nb} 16, 2 2 42 −11 −10 3.3 −9.4 −33

10. {m, e, p, nb, ey, ay} {ib} 16, 2 2 42 −7.1 −11 7.4 −1.3 −25
11. {m, e, p, nb, ib, ay} {ey} 15, 3 2 42 −7.2 −16 8.8 1.5 −22
12. {m, e, p, nb, ib, ey} {ay} 15, 3 2 42 6.6 4.7 24 32 8.7
13. {m, e, p, ey, ay} {nb, ib} 14, 4 2 42 −5.9 −7.2 11 6.3 −17
14. {p} {nb} {ib} {ey} {ay} {m, e} 3, 2, 2, 2, 3, 6 6 70 −18 −72 71 63 −57
15. {m} {e} {p} {ib} {ey} {nb, ay} 3, 3, 2, 2, 3, 5 6 70 −40 −65 39 −2.6 −121
16. {m} {e} {p} {ey} {ay} {nb, ib} 3, 3, 2, 3, 3, 4 6 70 −19 −74 71 62 −57
17. {m} {e} {p} {nb} {ib} {ey} {ay} 3, 3, 2, 2, 2, 3, 3 7 77 −29 −88 76 56 −88
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Figure 2. Group analysis of hydrocarbon film deposition data.

AIC and BIC values (stars and triangles in figure 2). The logarithms of the maximum-likelihood
probabilities ln PML

g (crosses) only reflect the fit to the data, which becomes better the more
parameters are provided, but does not include a term penalizing model complexity.

The support for three individual groups is due to the large distance between the mean values
of the eight characteristics compared with the correlation lengths within the groups. The strong
evidence for individual groups should not necessarily be interpreted as due to the presence of
a hidden mechanism for film deposition that distinguishes different Vb values. The result can
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be interpreted as a consequence of the large difference in Vb values between the groups. This
interpretation is supported by the large probabilities for combinations of data for neighbouring
Vb values as compared with the data set where Vb = 0 V and Vb = −200 V are grouped. The
grouping only reflects the dependence of the film properties on Vb, which is not evenly covered.
For learning more about covariances related to changes in the self-bias voltage Vb, additional
measurements covering the intermediate values are necessary. In this regard, Bayesian group
analysis helps to identify the experimental design parameters, which should be measured on a
finer grid to avoid physical misinterpretation of clusters of data that are only due to the choice
of the design parameters.

The situation changes when the partially observed data vectors are added. Separate groups
with respect to Vb are no longer supported. There is clear evidence only for the grouping {0, -30}
{-200}. The reasons are that the incomplete data values are not within the range of other data
values in that group and that there is a large overlap of the refractive index of the data with
Vb = 0 V and the incomplete data with Vb = −30 V. The approaches LRT, AIC and BIC are not
useful here, since they do not provide a reasonable extension for dealing with missing data.

There is no evidence that the data pre-sorted with respect to the source gases form
separate groups, except for grouping number 12. Acetylene (ay, C2H2) has to be sorted into
a separate group. The reason is given by the characteristic I(k), which is systematically smaller
for acetylene compared with other source gases.

The same data set without I(k) provides no clear evidence for acetylene forming a separate
group in the sense of a positive value for ln Pg. However, even for this reduced data set, there is
weak evidence for acetylene playing a special role, since ln Pg is approximately 4–8 times larger
for acetylene in a separate group than that for other source gases (values not shown in table 5).
The extinction coefficient of the C–H stretching vibrations for the films deposited from acetylene
is mainly responsible for forming a separate group in acetylene.

Separating other source gases than acetylene from the joint group yields smaller grouping
probabilities. Separating all source gases into individual groups or combining only two source
gases within one group is clearly ruled out by small grouping probabilities; the largest and
smallest grouping probability for six groups is explicitly shown in table 5. There is no evidence
of a separate group consisting of n-butane (nb) and iso-butane (ib). In contrast with the groupings
w.r.t. Vb, the results for groupings w.r.t. the source gases are not affected by the missing data
vectors. Including incomplete data vectors still supports acetylene forming a separate group.

The physical reason for acetylene forming a separate group is given by the decreased H/C
ratio. The physical properties of the adsorbed films mainly depend on the H/C film ratio, which
depends on the H/C ratio of the source gas [11]. Although the data set contains the ‘H/C in film’
characteristic, the interdependence between I(k) and the H/C ratio of the source gas is most
prominent.

AIC favours individual groups and provides strongest evidence for some groupings with six
and seven groups. AIC fails to penalize model complexity properly, owing to the well-known
behaviour of overestimating the number of parameters when the number of data is high. In
addition, AIC shows a large scatter of the evidences compared with results from the Bayesian
approach (cf ln Pg with −AIC). This can be clearly seen for the groupings 13–17. This is due
to the fact that the AIC evidence is calculated at a single point, i.e. the maximum-likelihood
value (ln PML

g ) for the parameters. The Bayesian approach marginalizes over the parameters.
This takes into account the full variability of the parameter values, which are consistent with
the data.
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BIC confirms the full Bayesian result with even stronger evidence. As explained above, this
is due to an uninformative prior pdf implicitly used in deriving BIC. BIC seems to provide a
suitable approximation to the full Bayesian approach at least for the present applications.

The result for the hydrocarbon film deposition is that the present data set does not support
different deposition mechanisms depending on the type of source gas. This quantitative result
based on grouping probabilities with multivariate distributions coincides with the conclusions
of Schwarz-Selinger et al [11]. The choice of the source gas has, indeed, a distinct influence on
the optical properties of the PECVD hydrocarbon films. However, ‘all films can be characterized
by their unique correlation between their hydrogen content H/(H + C) and other film properties
such as optical constants, density, etc. On the basis of a given film structure, it is therefore not
possible to deduce the precursor gas used for deposition . . .’ . Bayesian probability theory allows
one to quantify this statement with grouping probabilities using complete and incomplete data
vectors.

4. Discussion

A major question in the two applications of Bayesian group analysis on PECVD data is the
evidence for genuine groups. Is it necessary to pool the data or are there indications for real
groups which have to be studied separately? The relation of the within-group variability to the
between-group variability determines if the groups can be treated as compact and distinct.
The significance for individual groups increases with the separation of the groups with respect to
the group extensions. A central goal of the present applications was to clarify if different physical
mechanisms can be identified for the various choices of experimental design parameters. Both
the rare-earth oxide and the hydrocarbon film deposition data do not support different deposition
mechanisms depending on the type of source gas (acetylene will be discussed below). The reason
may be a lack of real groups or a sample size that is too small. Both applications show a rather
poor ratio of the number of data points to the number of characteristics. In designing future
experiments to find real grouping structures, significant sample size relative to the dimension of
the parameter space should be considered. Bayesian group analysis on simulated data sets may
help in identifying reasonable design parameters.

The reason for acetylene forming a separate group is the large relative distance of the H/C
ratio of acetylene to the H/C ratio of the other hydrocarbons. It is expected that an extended data
set including hydrocarbons with H/C ratios between 1 and 2 would fill up the gap and would
pool all data into one group. The same is expected to occur if the self-bias voltage is sampled on
a finer grid. The analysis shows that neither the carbon chain length nor the hybridization of the
carbon atoms is identified to cause a real group structure.

Irrespective of the lack of evidence of physically real groups, the method found outliers.
Outliers are identified by the necessity to form a separate group. Auxiliary methods to identify
outliers with their subsequent deletion are not required. Outliers are self-consistently treated
along with the regular data.

Bayesian group analysis, like Bayesian model selection in general, is readily understandable
by even non-statisticians, since interpretation is based on probabilities. Bayesian model selection
allows one to find evidence in favour of a model or hypothesis, whereas classical approaches
such as p values test a model against a null hypothesis. It is well known that classical model
selection schemes are difficult to interpret properly [13]. In addition, classical model selection
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tools, such as p values and AIC, do not guarantee consistency. The Bayesian scheme guarantees
selection of the true model if the true model is among the studied models and if enough data are
observed. A general discussion of the Bayesian approach to model selection in comparison with
classical schemes can be found in [13].

The present work compares the full Bayesian approach, which integrates over parameter
space, with two frequently used methods for hypothesis testing and model comparison, namely
AIC and BIC. The classical approaches work at the single point of the most probable parameter
value, neglecting the parameter space with smaller posterior probabilities. Since the most
probable value is not the true parameter value but only an estimate of the true value, the complete
parameter space compatible with the grouping structure has to be considered for the validation
of grouping. Additionally, integration over the parameter space introduces a property called
Occam’s razor, which automatically penalizes model complexity in favour of simpler models.
Both the classical method AIC and the approximate Bayesian method BIC provide an additional
penalizing term for model complexity. Results from the present applications show that AIC
provides a poor criterion for decreasing the number of parameters properly. As is known from
the literature [9], AIC tends to overestimate the number of parameters needed. Hence, it is not
useful for group analysis. Comparison of the penalizing terms of AIC and BIC indicates that BIC
performs better in decreasing the number of parameters. However, the approximate Bayesian
model selection scheme BIC is known to be conservative, since it may underestimate the number
of parameters (groups). The present applications provide informative prior knowledge of the
mean values of the groups. Informative prior knowledge of parameters weakens the penalizing
Occam factor in Bayes factors, which may result in support for more groups than estimated from
BIC. Nevertheless, BIC can be used for a fast check of grouping structures if the approximative
Bayesian criterion is calibrated for the typical application to be analysed.

The drawback of BIC (similar to AIC) is that it cannot be applied to incomplete data sets.
BIC does not provide a recipe for dealing with missing data. As shown in the second application,
considering data vectors with missing entries may alter the conclusions drawn from complete data
sets only. Incomplete measurements may be of special importance, since the physical situation
can be at an operational threshold such that only parts of the characteristics can be measured
reliably. In the present case, the in situ measurements could be performed, but the ex situ
measurements were no longer possible due to the fragility of the deposited films. Furthermore,
combining data sets from various experiments or combining recent experiments with historical
data typically results in incomplete data sets. In those situations, a combined analysis is possible
only with a consistent approach for handling missing data. The Bayesian method introduces and
marginalizes the missing data values to propagate their full uncertainties into the final results.
The observed parts of the incomplete data vectors do, at least, increase the reliability of the result,
but can also change the evidence of grouping structures as observed with the hydrocarbon film
deposition data.

5. Conclusion

Bayesian probability theory was applied to quantify the grouping probabilities of a set of data
vectors within a multivariate model. The approach was extended to allow for arbitrary covariance
matrices for different groups and to handle missing data. Outliers can be identified by the necessity
to form a separate group. The grouping probabilities are compared with classical approaches of
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LRTs and AIC and a Bayesian variant called BIC. At least for the present applications, BIC has
proven to be a useful and easy to implement tool for group analysis. The method was applied to
PECVD data of rare-earth oxide film deposition and hydrocarbon film deposition to study the
evidence of grouping structures attributed to categorical quantities such as rare-earth components
or source gases and quantitative variates as bias voltage.

Finally, Bayesian group analysis provides a quantification of the evidence of structures
within a set of (incomplete) data vectors. These structures are often identified by naked eye or
by simple two-parameter plots in the case of low-dimensional parameter spaces. Bayesian group
analysis is consistent with intuition; however, in high-dimensional parameter spaces, intuition
has to be supplemented with a Bayesian approach.

Acknowledgments

The author is indebted to V Dose, W Jacob and T Schwarz-Selinger for stimulating discussions
and the latter two for providing the data. S Gori is also acknowledged for solving the combinatorial
problem on ‘How many groupings can be performed with N elements’.

References

[1] Krzanowski W J 1988 Principles of Multivariate Analysis (Oxford: Clarendon)
[2] von Keudell A, Annen A and Dose V 1997 Thin Solid Films 307 65
[3] Dose V 1993 Appl. Phys. A 56 471
[4] von der Linden W, Dose V and Ramaswami A 1998 Maximum Entropy and Bayesian Methods ed

G J Erickson, J T Rychert and C R Smith (Dordrecht: Kluwer) p 87
[5] Jaynes E T 1983 E T Jaynes: Papers on Probability, Statistics and Statistical Physics ed R D Rosenkrantz

(Dordrecht: Reidel) p 114
[6] O’Hagan A 1994 Kendall’s Advanced Theory of Statistics, Bayesian Inference 1st edn (New York: Wiley)

p 293ff
[7] Gelman A, Carlin J B, Stern H S and Rubin D B 1995 Bayesian Data Analysis (London: Chapman and Hall)
[8] Schwarz G 1978 Ann. Stat. 6 461
[9] Kass R E and Raftery A E 1995 J. Am. Stat. Assoc. 90 773

[10] Weber A, Suhr H, Schumann H and Köhn R 1990 Appl. Phys. A 51 520
[11] Schwarz-Selinger T, von Keudell A and Jacob W 1999 J. Appl. Phys. 86 3988
[12] Schwarz-Selinger T 2003 private communication
[13] Berger J and Pericchi L 2001 Model Selection ed P Lahiri (Institute of Mathematical Statistics Lecture

Notes—Monograph Series vol 38) (Beachwood, OH: Institute of Mathematical Statistics) p 135

New Journal of Physics 6 (2004) 25 (http://www.njp.org/)

http://www.njp.org/

