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General Introduction





Chapter 1

Introduction

Bounded plasmas are never in a global thermodynamical equilibrium state. Sources of free
energy exist, manifesting in, e.g., electric fields, particle drifts, and parameter gradients [1].
This free energy can drive a number of different plasma instabilities mostly propagating
as waves [2]. A sub-class are gradient-driven instabilities in magnetized plasmas [3,4].
Owing to the strong drive, often, instead of single waves, fluctuations with continuous
signal power spectra are observed, i.e., turbulence. Turbulent fluctuations induce particle
transport perpendicular to the magnetic field [5], which is believed to be the origin of
the so-called anomalous transport in magnetized plasmas, where the particle transport is
much higher than expected from classical and neoclassical theories [6]. On the way towards
a working, affordable fusion reactor, the anomalous transport is a major challenge and
has thus been a subject of intense theoretical and experimental research during the last
decades [5–7].

The drift instability is probably the most promising candidate for causing anomalous
transport at the plasma edge [8]. It is driven by plasma pressure gradients perpendic-
ular to the ambient magnetic field and leads to perturbations, called drift waves. They
propagate in the direction perpendicular to the pressure gradient and the magnetic field
with a velocity close to the electron diamagnetic drift velocity, and much slower along
the magnetic field. Fluctuations caused by drift waves affect plasma density and poten-
tial, and occur in the low-frequency regime well below the ion cyclotron frequency. The
maximum fluctuation amplitude is localized in the region of the steepest pressure gradi-
ent. The dynamics perpendicular to the magnetic field are tightly coupled to the electron
dynamics along the magnetic field, the latter also determining the actual instability mech-
anism [9,10].

The first experimental observation of drift waves is attributed to d’Angelo et al. in the
early 1960s [11–13]. Since then, drift waves became a topic of various experiments [9,14–
17]. First theoretical work was done by Moiseev and Sagdeev [18], and Jukes [19].
Very soon after, Chen [20–24] and Lashinsky [25] identified the role of the microscopic
physical processes for the instability and its universal character. Here, linearized local
models (‘local slab’ models) were used [14,21,22,26] where the cylindrical geometry of the
laboratory plasma was replaced by local cartesian coordinates. Only a few years later,
the first non-local cylindrical models, assuming Gaussian density profiles, were used to
improve the theory [27,28]. Ellis, Marden-Marshall and coworkers showed that non-
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local cylindrical models are mandatory for quantitative agreement between experiment
and theory [9,29]. It is also important to take into consideration the static radial electric
field and the resulting E×B rotation of the plasma column [15].

Drift waves also occur in the edge of high-temperature fusion plasmas where the ex-
perimental access is sometimes limited [5,8]. Low-temperature plasmas with cylindrical
geometry allow to investigate drift waves without effects due to curved and inhomoge-
neous magnetic fields present in toroidal geometry. The drift instability has been studied
in many different plasma parameter regimes accessible in linear devices, comprising col-
lisionless [30] as well as collisional plasmas [10,14], weakly ionized [10] as well as fully
ionized plasmas [14]. Most of the experimental work on drift waves in laboratory plasmas
has been done in plasmas with β (the ratio of plasma pressure to magnetic-field pres-
sure) well below the electron-ion mass ratio me/M . In this low-β regime, drift waves
are electrostatic [3], whereas for higher β electromagnetic effects become important, i.e.
the parallel electron response becomes Alfvénic. Electromagnetic drift waves were first
observed by Nishida, Tang, Luhmann and coworkers in an arcjet plasma [31–33].

Helicon sources are efficient plasma sources [34]. Relatively high beta plasmas with β >
me/M can easily be sustained with only a few kW of RF power. Helicon plasma sources
allow for plasmas with peak densities of n = 1018−1020 m−3 at electron temperatures of a
few eV [34] and are nowadays widely established in research laboratories all over the world.
This plasma source was invented about 20 years ago, but the discharge mechanism itself
is still under intense scientific debate [35–40]. Radial density profiles of helicon produced
plasmas typically exhibit steep gradients that can drive instabilities. However, helicon
discharges have often been claimed to be quiescent [41,42]. Although numerous papers
have been published on helicon discharges, little was reported about the observation of low-
frequency instabilities. Degeling and coworkers observed relaxation oscillations in the
kHz-range, which were identified as global oscillations between different discharge modes,
though [43,44]. Light and coworkers found a low-frequency, electrostatic instability above
a critical magnetic field that might be responsible for saturation or decrease of plasma
density with increasing magnetic field [42,45]. The instability was identified as a hybrid
of resistive drift waves and Kelvin-Helmholtz instability. Recently, Tynan and coworkers
presented first observations of drift waves in the new CSDX device [46].

Within the course of the present thesis, a new experimental helicon device – VINETA1

– has been developed, constructed and put into operation. Soon after first operation of
VINETA, in the helicon wave sustained discharge mode, low-frequency fluctuations were
observed. Because of their localization in the density gradient region at the plasma edge,
drift-type instabilities were candidates from the beginning. In part I of the thesis, this
instability is investigated in some detail by characterization of its temporal and spatial
features. Our main objectives are the identification of the instability and of its chief
destabilization mechanisms. Proper control parameters provide the possibility to change
the dynamical state of the instability. The experiments are closely accompanied by a
numerical study of the drift wave dispersion. In particular, we compare theoretically
predicted frequencies to experimental observations and study the influence of plasma
parameters on mode frequencies and growth rates. Mode structures of coherent modes
in a plane perpendicular to the ambient magnetic field are investigated in the numerical

1Versatile Instrument for studies on Nonlinearity, Electromagnetism, Turbulence, and Applications
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model as well as in experiment.

Drift waves often occur not as a single mode but exhibit turbulent dynamics which means
that many modes interact nonlinearly. Drift wave turbulence is of considerable interest
because of its role in anomalous transport. It seems reasonable to assume that controlling
the drift wave dynamics also controls fluctuation-induced transport. Thus, active control
of the turbulent dynamics of drift waves is of great interest for improving the plasma
confinement in magnetic fusion devices. Already since the late 1960s, attempts to con-
trol drift wave dynamics and the associated transport have been made where feedback
techniques were used to suppress single drift modes [47–49]. Usually, fluctuations were
recorded, phase-shifted, amplified and fed back into the plasma via electrodes. Alterna-
tively, modulated microwaves at low power were used to suppress drift waves [50]. The
confinement could be improved by suppression of fluctuations, but each drift mode re-
quires separate feedback parameters for suppression. Consequently, it was not possible to
achieve suppression of broadband fluctuations. Promising results in fusion devices were
obtained with biasing techniques which suppress turbulence by sheared flow [51].

A different approach to change the drift wave dynamics is based on chaos control tech-
niques [52]. Here, the goal is the stabilization of preselected regular dynamical states,
not the total suppression. For drift wave chaos, successful control was recently demon-
strated [53]. However, drift wave chaos is rather an exception and exists only in a narrow
regime on the route to developed turbulence [54].

Drift wave dynamics are of spatiotemporal nature. Therefore, it can barely be expected
that a purely temporal or spatial control technique proves to be efficient and robust.
The full spatial component of the dynamics, however, was often ignored in the feedback
methods used. Part II of the thesis reports on experiments and computer simulations of
mode-selective synchronization of drift waves, using an open-loop control scheme acting
in space and time [55]. The aim is to suppress drift wave turbulence by driving preselected
drift modes at the expense of the broadband spectrum.

The thesis is organized as follows: The theoretical background of the drift instability is
briefly discussed in chapter 2. The data analysis methods that were used are described
in chapter 3. The results of the present work are presented in two parts. Part I reports
about investigations of the drift instability in a helicon plasma. The experimental device
VINETA and the plasma diagnostic tools are reviewed in chapter 4. The experimental
results are presented in chapters 5 and 6, and numerical results on the drift wave disper-
sion relation are presented in chapter 7. In chapter 8 conclusions on part I are drawn.
Part II reports about mode-selective synchronization of drift waves. Chapter 9 gives a
brief introduction into the concept of synchronization. The experimental arrangement is
described in chapter 10. Experimental results on the synchronization of drift waves are
presented in chapter 11 and compared to numerical results in chapter 12. Conclusions on
part II are drawn in chapter 13.
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Chapter 2

Theoretical background

This chapter gives a brief introduction into the physics of drift waves in cylindrical ho-
mogeneous magnetic field geometry. Linear drift wave models in the fluid picture are
described and typical observable features are summarized. The goal of part I of the
present thesis is the identification of observed low-frequency instabilities in the VINETA
device. Candidates for instabilities causing fluctuations are resistive drift waves as well as
related plasma instabilities like the Kelvin-Helmholtz instability and the Rayleigh-Taylor
instability [2]. This variety of instabilities is briefly introduced and criteria for their
distinction are given.

Drift waves have been investigated since the mid-1960s. In early theoretical work on
drift waves, cylindrical geometry, typical for many laboratory plasmas, was replaced by a
simpler cartesian geometry, at the local position of the fluctuations (so-called local slab
models) [14,22]. These models were useful for understanding the physical mechanisms.
However, it became clear that improved models are needed for a more quantitative com-
parison between theory and experiment, taking into account the cylindrical geometry [29].
Ellis, Marden-Marshall and co-workers developed a global, cylindrical, linear model
which includes a variety of physical mechanisms, e.g., parallel electron current and col-
lisions with neutrals [9,10,15]. Numerical results from this model have been in good
agreement with experimental results in linear magnetized devices [9,56].

The experimental parts of the present work are discussed along with numerical calcula-
tions, based on models and codes developed by Naulin1. Subsequently, the drift wave
equations are derived as a basis for the numerical models introduced in chapters 7 and
12.

2.1 Drift wave mechanism

In this section, a ‘pictorial’ description of the drift wave mechanism is given. The math-
ematical framework follows in the subsequent section.

Drift waves are low-frequency waves in magnetized plasmas, driven by a pressure gradient.
Temperature fluctuations and temperature gradients are neglected here, so that only

1Volker Naulin, Risø National Laboratory, Roskilde, Denmark
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Figure 2.1: The drift wave mechanism: a) sketch of the basic process [57]. ∇n is the direction
of the density gradient. ñ and φ̃ denote the density and potential perturbation, respectively.
vph denotes the net drift of the entire structure. b) sketch of the global situation in a cylinder
for an m = 2 mode, characterized by two maxima (+) and minima (−) of the perturbations on
one circumference. λ‖ is the parallel wavelength. The local cartesian coordinate system of a) is
also indicated.

density gradients provide the free energy which drives the instability. Key features of the
drift instability are the tight coupling of the dynamics parallel and perpendicular to the
ambient magnetic field, as well as the coupling between the ion and the electron dynamics.

Figure 2.1a) shows a schematic drawing of the basic drift wave mechanism in a local
slab (cartesian) coordinate system. Consider a plasma with a homogenous magnetic field
B = −Bez and a density gradient perpendicular to the ambient magnetic field in the
−x-direction. Assume a small density perturbation ñ which is electrically neutral in the
beginning. Due to their small mass, the electrons are much more mobile than the ions
and move almost instantly along the magnetic field B whereas the ions remain at their
position. This gives rise to a surplus of charge which causes a local increase of the plasma
potential φ̃ and thereby form an electric field distribution Ẽ. The temporally increasing
electric field leads to polarization drift of the ions, which ensures quasineutrality∇·J = 0.
Furthermore, the electric field perturbation Ẽ together with the ambient magnetic field
B gives rise to a local E×B drift around the density perturbation. Due to the density
gradient, the E×B drift convects more plasma in the +y–direction than in the opposite
(−y) direction. Hence, the perturbation propagates in the y–direction which is identical to
the direction of the diamagnetic electron drift vD,e = kBTe∇n×B/neB2 , perpendicular
to the density gradient and to the ambient magnetic field.

A stability analysis reveals that the situation is stable (that is no instability occurs) if the
density fluctuations ñ and the potential fluctuations φ̃ are exactly in phase [22]. This is
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the case for adiabatic electrons, i.e., if the (linearized) Boltzmann relation

ñ = n0 exp

(
φ̃

T[eV ]

)
≈ n0

φ̃

T[eV ]

(2.1)

holds2. For instability, there must be a (small) phase shift ](ñ, φ̃) > 0 while the density
fluctuations must develop ahead of the potential fluctuations in the drift direction [57].
This is already indicated in figure 2.1a). If the electron flow along B is impeded by
some extra mechanism (e.g. Landau damping [58], collisions [14] or inductance [33]), the
Boltzmann relation is violated which leads to a non-zero phase shift and a destabilization
of drift waves.

Figure 2.1b) depicts a drift wave in cylindrical geometry. The local cartesian coordinate
system of figure 2.1a) is also indicated. The transformation between cartesian and cylin-
drical coordinate system is done by r → x and θr → y. The plane perpendicular to the
magnetic field is referred to as the poloidal plane. The direction around the plasma center,
that is perpendicular to the ambient magnetic field as well as perpendicular to the radial
density gradient, is referred to as the poloidal direction. Parallel (‖) and perpendicular
(⊥) are always used in relation to the ambient magnetic field.

In cylindrical geometry, the density and potential perturbations propagate in the poloidal
direction. Due to the non-adiabatic electron response, the structure also evolves in the
direction parallel to the magnetic field, giving rise to a finite axial wavelength. The parallel
wavelength is much larger than the perpendicular wavelength. Note that the actual fluid
does not propagate but only the plasma perturbation. It is a typical wave phenomenon,
characterized by the angular frequency ω and the wave vector k = k⊥ +k‖. The periodic
boundary conditions in the poloidal direction restrict the possible poloidal wave number
kθ values for drift modes. The number of maxima (or minima) on one circumference is
referred to as the (poloidal) mode number m and is connected by the relation m = rkθ to
kθ (see figure 2.1b).

2.2 Derivation of the drift wave dispersion relation

There are three approaches to describe collective phenomena in magnetized plasmas [1].
The kinetic theory gives the most comprehensive description of a plasma. Here, the
probability distribution of particle velocities is fully taken into account. In the fluid
approximation, the plasma is considered to be composed of two or more interpenetrating
and interacting fluids, one for each particle species. Plasma parameters such as density,
velocity and temperature of each species enter the fluid equations which are the statistical
moments of the kinetic equations. The most simplifying picture is magnetohydrodynamics
where the plasma is treated as a single fluid. Drift waves must be described in the two-
fluid picture of a plasma because electron and ion dynamics have to be treated separately.

2T[eV ] is the electron temperature in eV. T[eV ] = kBTe/e with the electron temperature Te in K.
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Basic fluid equations

The basic two-fluid equations for the description of drift waves are:

• the electron continuity equation

∂tne +∇ · (neve) = 0 (2.2)

• the ion continuity equation

∂tni +∇ · (nivi) = 0 (2.3)

• the electron momentum transfer equation

nme dtv = −∇p− ne(E + v ×B) + nνeime(u− v)− nνenmev (2.4)

• the ion momentum transfer equation

nM dtu = −∇p+ ne(E + u×B)− nνinMu (2.5)

where ni,e are the densities of ions (i) and electrons (e), v is the electron velocity, u is
the ion velocity, me is the electron mass, M is the ion mass, E is the electric field, B is
the magnetic field, and p is the plasma pressure. ναβ are the collision frequencies between
species α and β (where the involved species are electrons e, ions i and neutrals n). For
the convective derivative the following notation is used

dt = ∂t + vE · ∇⊥ , (2.6)

where vE is the E×B drift velocity (see below).

From the continuity equations for both species (2.2) and (2.3), an equation for the current
divergency in a quasi-neutral plasma with n := ne = ni is obtained:

∇ · J = 0 . (2.7)

Splitting (2.7) into the components parallel and perpendicular to the ambient magnetic
field yields

∇⊥ · J⊥ = −∇‖ · J‖ . (2.8)

This equation governs the tight coupling between the parallel and the perpendicular drift
wave dynamics.

Electromagnetic effects

Electromagnetic effects can play a significant role in drift wave physics. The electrons
can easily flow along the magnetic field lines giving rise to a net parallel current. These
fluctuation currents induce magnetic fields perpendicular to the ambient magnetic field.
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From the parallel component of the electron momentum equation (2.4), it can be estimated
under which conditions magnetic field fluctuations become important:

−me

e
dtJ‖︸ ︷︷ ︸

(1)

= −∇‖p+ ne∇‖φ+ ne∂tψ︸ ︷︷ ︸
(2)

− meνe

e
J‖︸ ︷︷ ︸

(3)

(2.9)

where E‖ = −∇‖φ − ∂tψ, J = −env, dtJ ≈ −endtv, νe = νei + νen, ψ = A‖ and A
is the vector potential of the magnetic field B = ∇ ×A. If magnetic field fluctuations
are important, the magnetic induction term (2) is greater than the two terms (1) and (3)
which include the parallel current. Since for drift waves perpendicular scale lengths are
typically much smaller than parallel scale lengths, Ampere’s law can be used in the form
J‖ = (∇2

⊥ +∇2
‖)ψ/µ0 ≈ ∇2

⊥ψ/µ0. Replacing the derivatives with typical time and length

scales, the comparison of terms (1) and (2) leads to

ne∂tψ >
me

e
dt∇2

⊥ψ =⇒ neωψ >
me

e
ωk2

⊥ψ =⇒ M

2me

e2B2

kBTeM︸ ︷︷ ︸
1/ρ2

s

2nkBTeµ0

B2︸ ︷︷ ︸
β

> k2
⊥ ,

where the drift scale ρs and the plasma-β have been introduced. β is the ratio between
particle pressure and magnetic field pressure in the plasma while ρs is the ion gyro radius
taken at electron temperature. Since k2

⊥ρ
2
s is typically of the order of unity for drift waves,

the condition

β > 2k⊥ρs
me

M
≈ me

M
(2.10)

is obtained for non-negligible magnetic field fluctuations. In the literature this condition is
usually quoted for electrostatic fluctuations [4,33]. However, comparison of the induction
term (2) with the friction term (3) yields

ne∂θψ >
meνe

eµ0

∇2
⊥ψ =⇒ neωψ >

meνe

eµ0

k2
⊥ψ =⇒ M

2

e2B2

kBTeM︸ ︷︷ ︸
1/ρ2

s

2nkBTeµ0

B2︸ ︷︷ ︸
β

ω > meνek
2
⊥ .

This gives the condition

β > 2 k2
⊥ρ

2
s

me

M

νe

ω
≈ me

M

νe

ω
(2.11)

for non-negligible magnetic field fluctuations compared to damping caused by the electron
friction. With k2

⊥ρ
2
s being of the order of unity and using a typical collision frequency

for the argon plasma of the VINETA device (see chapter 5) this condition reads to be
β & 10−5 ·1000 = 10−2, while the plasma β in the VINETA device is usually below 10−3.
This means that, due to the relatively high collisionality, the magnetic field fluctuations
are negligible in the VINETA device where the experiments of part I of this thesis are
conducted. In the MIRABELLE device (see part II of the present thesis), β � me/M
always holds. Thus, magnetic field fluctuations can be neglected for all experimental
conditions investigated in the present work and only electrostatic fluctuations must be
taken into account.
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singly charged positive ions A −→ A+ + e−

homogeneous magnetic field B = Bez

constant electron temperature Te = const ∇p = kBTe∇n

cold ions and neutrals Ti ≈ 0 Tn ≈ 0

constant parallel electron velocity V = const

no parallel ion and neutral velocities U ≈ 0 W ≈ 0

electrostatic fluctuations E = −∇φ

small frequencies ω � Ωci

propagation mainly perpendicular to B k‖/k⊥ � 1

collision frequencies radially dependent νei = νei(r) νen = νen(r), νin = νin(r)

Table 2.1: Summary of assumptions used for the electrostatic drift wave model.

Assumptions for the model

Starting with equations (2.2–2.8), a model describing drift waves is derived with the
assumptions given in table 2.1. Fluctuating plasma parameters are split into a time-
averaged value denoted by the index 0 and a fluctuating part denoted by a tilde ,̃ for
instance φ = φ0 + φ̃. The so-called drift ordering is assumed:

ω

Ωci

∼
k‖
k⊥

∼ φ̃

T[eV ]

∼ ñ

n0

∼ ρs

L⊥
∼ ε� 1 (2.12)

where Ωci = eB/M is the ion cyclotron frequency, φ denotes the potential and L⊥ is a
typical scale length of the density gradient. The particle drifts perpendicular to B of
both species are taken from the perpendicular part of the momentum transfer equations
(2.4) and (2.5). Under these assumptions, the model can be reduced to three equations:
the electron continuity equation (2.2), the parallel component of the electron momentum
equation (2.4) and the quasineutrality equation (2.8). These equations are normalized,
linearized and harmonic oscillations of a proper wave form are assumed.

Perpendicular drifts

The particle drifts perpendicular to the magnetic field are obtained by crossing the mo-
mentum equations with B. For the electrons the collision terms are neglected and one
obtains

v⊥ =
E ×B

B2︸ ︷︷ ︸
vE

+
kBTe

neB2
∇n×B︸ ︷︷ ︸

vD,e

− me

eB2
dtE︸ ︷︷ ︸

vp,e

≈ vE + vD,e .

(2.13)



2.2 Derivation of the drift wave dispersion relation 13

where the following drifts are introduced:

E×B drift: vE =
E ×B

B2
(2.14)

electron diamagnetic drift: vD,e =
kBTe

neB2
∇n×B (2.15)

electron polarization drift: vp,e = − me

eB2
dtE . (2.16)

The electron polarization drift is a higher order electron inertia effect and is much smaller
than both the E×B drift and the diamagnetic drift. It is neglected in the following.

The collision terms for the ions must be taken into account. One obtains

u⊥ =
E ×B

B2︸ ︷︷ ︸
uE

− kBTi

enB2
∇n×B︸ ︷︷ ︸

uD,i

+
M

eB2
dtE︸ ︷︷ ︸

up,i

− νinM

eB2
∇⊥φ︸ ︷︷ ︸

uPed

≈ uE + up,i + uPed .

(2.17)

Besides the E×B drift uE, the ion polarization drift up,i and the ion diamagnetic drift
uD,i, an extra term is found: uPed is a velocity corresponding to the so-called Pedersen
current [59] due to the ion-neutral collisions. The assumption of cold ions allows neglection
of the diamagnetic drift of the ions. The ion polarization drift is kept since it is the only
perpendicular drift with a non-vanishing divergence and therefore the only perpendicular
contribution to equation (2.8).

Normalization

The drift wave equations are made dimensionless by scaling the physical quantities with
length scales and frequencies typical for drift wave dynamics (table 2.2). Normalized
quantities and derivatives are indicated by a hat ˆ which is later omitted for simplicity.
N = lnn is introduced, with n = n0(1 + ñ) where n(t) is the total density and n0 is the
time-averaged density3. For the derivative with respect to ξ follows

dξN =
1

n
dξn . (2.18)

With the assumption ñ� 1 one obtains

dξ lnn = dξ ln [n0(1 + ñ)] ≈ dξ lnn0 + dξñ . (2.19)

With the introduced normalization and the above assumptions, a set of normalized equa-
tions can be derived (see appendix A). Defining V := v‖ for the parallel electron velocity
and introducing the vorticity Ω := ∇2φ, the normalized equations are

• electron momentum equation, from the parallel component of (2.4):

d̂tV̂ =
M

me

(
∇̂‖φ̂− ∇̂‖N

)
− (ν̂ei + ν̂en)V̂ (2.20)

3For the plasma density, two notations are used in the present work: in relation to measured quantities,
the notation n = n0 + ñ is used and in the theoretical model derived here n = n0(1 + ñ) is used. The
ratio ñ/n0 is always related to the notation n = n0 + ñ.
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quantity normalization factor norm. quantity norm. derivative

length drift scale ρs =

√
kBTeM

e2B2
l̂ =

l

ρs

∂̂l = ρs∂l

wave vector k̂ = ρsk

time ion cyclotron frequency Ωci =
eB

M
t̂ = Ωcit ∂̂t =

1

Ωci

∂t

frequency ν̂αβ =
ναβ

Ωci

velocity ion sound speed cs =

√
kBTe

M
v̂ = v/cs

potential electron temperature T[eV ] =
kBTe

e
φ̂ =

e

kBTe

φ

Table 2.2: Normalization of physical quantities in our model.

• electron continuity equation, from (2.2):

d̂tN = −V̂ ∇̂‖N − ∇̂‖V̂ (2.21)

• quasineutrality condition, from (2.8):

d̂tΩ̂ = ∇̂N · (−νin∇̂⊥φ̂− d̂t∇̂⊥φ̂)− νinΩ̂− ∇̂‖V̂ − V̂ ∇̂‖N . (2.22)

It is found that the normalized equations can be completely written in terms of the
logarithm of the density reflecting the fact that density cannot become negative.

Subsequently, the notationˆ for normalized quantities is dropped for convenience.

Linear Properties of a local slab model

The previous equations are independent of the coordinate system used. For further eval-
uation of the model equations, a coordinate system needs to be specified. Following the
historical development, a local slab model in cartesian coordinates is at first introduced.
The transformation between cartesian and cylindrical coordinate system is done by

r → x and θr → y . (2.23)

For the local slab model, the E×B background drift of the plasma column is neglected
(φ0 = const, Ω0 = 0). The equilibrium density gradient is in the x direction n0 = n0(x)
and is assumed to be constant. The background parallel electron drift is assumed to be
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electron diamagnetic drift frequency: effective electron collision frequency:

ω∗ := − ky

Ln

= −ky∂x lnn0 νe := νei + νen

normalized collision frequency: electron parallel drift frequency:

τ :=
M

meνe

ω1 := V0k‖

τe :=
M

mνe

k2
‖ b := k2

y

Table 2.3: Abbreviations used for the local slab model.

radially and axially constant V0 = const, corresponding to a constant electron current
through the discharge. Harmonic oscillations of the form

V,Ω, φ, n ∝ exp(−iωt+ ikyy + ik‖z) (2.24)

are assumed. This yields the derivatives: ∂t = −iω , ∂y = iky and ∂z = ik‖ . All compo-
nents of the wave vector k are assumed to be real, but the frequency ω = ωR + iωI is
a complex quantity. This allows for temporal growing or damping of the wave whereas
spatial growing and damping is excluded. Table 2.3 compiles abbreviations used for the
local slab model.

Linearization of equations (2.20–2.22) finally yields the dispersion relation for collisional
drift waves in the local slab model:

0 = bω2 + (iτe(1 + b) + ibνi − bω1)ω − τe(bνi + iω∗) + ω1(ω
∗ − ibνi) (2.25)

(see appendix A.3 for more details). This is equation (9) of reference [9]. For the limiting
case ω, ω1, ω

∗ � τe, the solution can be approximated as:

ωR =
ω∗

1 + b
, (2.26)

ωI =
ω∗

τe(1 + b)

(
bω∗

(1 + b)2
+ ω1

)
− b

1 + b
νin . (2.27)

Equation (2.26) shows that the frequency of the fluctuations ωR depends only on ω∗

and b. In physical units we have b = ρ2
sk

2
y, being a measure of finite ion inertia effects

perpendicular to the magnetic field. It is also a measure for finite Larmor radius effects
and it is found that these reduce the wave frequency [10].

Equation (2.27) gives some insight into the physical mechanisms which lead to stabi-
lization and destabilization of drift waves. For a growth rate ωI > 0 drift waves are
destabilized while for ωI < 0 they are stabilized, i.e. any perturbations are damped. It is
found:
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• For instability, a background density gradient is required such that ω∗ > 0. The
density gradient provides the free energy for the growth of the fluctuations.

• The instability vanishes if τe goes to infinity since ωI < 0. This means that drift
waves are stable for an adiabatic electron response.

• The parallel electron drift increases the growth rate since it affects the phase shift
between density and potential fluctuations (see equation (A.7)).

• Ion collisions lead to stabilization of drift waves.

• The dependency on b = k2
⊥ρ

2
s ∝ 1/B (in physical units) is more complex and yields

no monotonic increase or decrease of the growth rate. A careful analysis shows that
drift waves are destabilized only above a certain critical magnetic field [9].

For comparison between theory and the experimentally observed frequency ω, the mode
frequency ωR must be corrected to account for the Doppler shift due to the radial electric
field:

ω ≈ m

1 + b
ω∗ ± ωE (2.28)

where ωE = vE/r is the frequency related to the E×B drift. The sign depends on the
directions of electron diamagnetic drift and E×B drift.

Linear cylindrical model

For a model in cylindrical coordinates, again equations (2.20–2.22) are used. Different
from the local slab model, the background plasma potential φ0 = φ0(r) and the back-
ground plasma density n0 = n0(r) are explicitly considered. Harmonic oscillations of the
form

n, φ,Ω, V ∝ exp(−iωt+ ik‖z + imθ) (2.29)

are assumed where an arbitrary radial dependency of the fluctuation amplitude is allowed.
Derivatives read ∂t = −iω, ∂z = ik‖ and ∂θ = im, where m is the integer poloidal mode
number. The frequency ω = ωR + iωI is again a complex number to allow for temporal
growing/damping. Table 2.4 summarizes the abbreviations used for the cylindrical model.
Note that, different from the model of Ellis, Marden-Marshall and coworkers [9,10,
15], here the radial dependency of the collision frequencies ν(r) is taken into account.
Additionally, electron inertia is not fully neglected (i.e. dtv 6= 0) here, i.e. the poloidal
E×B drift of the electrons is taken into account in the convective derivative (2.6).

Evaluation of the linearized equations (2.20–2.22) with the given assumptions yields a
second-order differential equation:

∂rrφ+

(
1

r
− κ(r) +RD(r)

)
∂rφ+

(
Q(r)− m2

r2

)
φ = 0 , (2.30)

where Q is defined as

Q(r) :=
1

ω̃ + iνin

[
ω∗ +

m

r
Sp − ω̃

ω∗ + iP

ω̃ − ω1 + iP

]
(2.31)
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and the rotational drag term RD as

RD(r) := i
1

ω̃ + iνin

(
ω∗ + iP

ω̃ − ω1 + iP

)
νinrVp . (2.32)

(see appendix A for more details). A direct comparison to the dispersion relation obtained
in references [10,15] is not a straightforward procedure. In any case, the dispersion rela-
tions differ due to different approximations used (e.g. dtv = 0 was assumed there). If the
E×B rotation of the plasma column is neglected (Vp = Sp = 0), the dispersion relation
(2.30) for drift waves reduces to equation (12) of reference [9]. Model equations (2.30-
2.32) are used in the present work for the numerical solution of the drift wave dispersion
relation (see chapter 7).

The relation between density fluctuation n and potential fluctuations φ is given by

n =
ω∗ + iP

ω̃ − ω1 + iP
φ . (2.33)

This equation describes the phase shift between density and potential fluctuations. It
depends on several physical parameters (for instance the parallel wave vector, the elec-
tron collisions, the mode number and mode frequency and the parallel electron velocity).
Destabilization of drift waves due to a non-zero phase shift between density and potential
fluctuations can thus be established by different physical mechanisms.

effective electron collision frequency: electron parallel drift frequency:

νe(r) := νen(r) + νei(r) ω1 := V0k‖

inverse density gradient scale length electron diamagnetic drift frequency

κ(r) := −∂r lnn0 ω∗ :=
m

r
κ(r)

E×B velocity: curvature of flow profile:

Vp(r) :=
1

r
∂rφ0(r) Sp(r) := ∂rΩ0(r) = ∂r

(
1

r
∂r + ∂rr

)
φ0(r)

ω̃(r) := ω(r)−mVp(r) P (r) :=
M

me

k2
‖

νe + imVp

Table 2.4: Abbreviations used for the cylindrical model. ω∗ denotes the frequency correspond-
ing to the diamagnetic electron drift velocity. The collision frequencies νei, νen and νin, the wave
vector k = k⊥ + k‖, ω1, κ and ω∗ are real, whereas the wave frequency ω is a complex quantity.
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2.3 Experimentally observable features of drift waves

The dispersion relation of drift waves is complex and depends on a number of physical
quantities. Therefore, a direct quantitative comparison between theory and experiment
is usually difficult to do. However, there exist several characteristic features for drift
waves which allow for the identification of an observed instability as the drift instability.
Experimentally observable drift wave features are [14,60]:

1. ñ/n0 amplitude peaks at the maximum radial density gradient,

2. the magnitude of plasma density and potential fluctuations is similar, ñ/n0 ≈
φ̃/T[eV ],

3. the phase velocity (corrected for the Doppler shift due to E×B rotation of the entire
plasma column) points in the direction of the electron diamagnetic drift vD,e,

4. the phase velocity cannot be higher than the electron diamagnetic drift velocity and
for optimum growth rate vph ≈ 0.5 vD,e is estimated,

5. the parallel wavelength is finite, i.e. k‖ > 0, and typically of the order of the machine
length,

6. density fluctuations are ahead of the potential fluctuations with 0 < ](ñ, φ̃) < 45◦.

In chapter 6, criteria 1–6 are verified in the experimental observation.

2.4 Nonlinear drift wave models

Linear theory gives already some insight into the physical mechanisms of drift waves. It
can, however, not explain phenomena such as the saturation of linearly unstable modes,
the interaction between different modes or drift wave turbulence. With increasing com-
puter power, numerical simulations have become a useful tool to explore drift wave dy-
namics recently [8,57]. Simulations must be separated into two-dimensional (2D) and
three-dimensional (3D) geometry. A particular nonlinear, 2D model is the Hasegawa-
Mima model [61,62] which describes electrostatic drift wave turbulence with only one
variable, namely the electrostatic potential φ. It is based on the assumption of adiabatic
electrons and no instability mechanism is included in the model. Nevertheless, the model
has been extensively investigated because it allows one to study basic nonlinear mecha-
nisms [8]. In order to introduce instability, so-called iδ-models have been developed which
include a non-adiabatic electron response by introducing a relation in k-space of the form
ñk = (1− iδkφ̃k) [8]. The Terry-Horton model is such a nonlinear 2D model, retaining
the single field description [63]. Generally, in 2D turbulence models the energy is inversely
cascaded from short wavelengths to long wavelengths and large-scale fluctuation struc-
tures play an important role [17]. In 3D models, large-scale structures are less important
and a strict inverse energy cascade is generally not observed [58,64].

The Hasegawa-Wakatani model is a well established nonlinear two-field model which
is derived from the fluid equations [65]. It is a set of two coupled equations for the
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normalized potential fluctuations φ = φ̃/T[eV ] and the normalized density fluctuations
n = ñ/n0 that can be written in the form with retained parallel current as

∂

∂t
∇2
⊥φ+ vE · ∇∇2

⊥φ = ∇‖J‖ + µw∇4
⊥φ (2.34)

∂

∂t
n+ vE · ∇ (n0 + n) = ∇‖J‖ + µn∇2

⊥n (2.35)

where J‖ = −σ∇‖ (φ− n) is the current parallel to the ambient magnetic field, and
σ = ρsTe/mecsνei is the normalized parallel conductivity. The viscous terms µw∇4

⊥ and
µn∇2

⊥ have been artificially introduced to assure regularity of density and potential. Often,
this 3D model is reduced to a 2D model by introducing an effective wave length ∇2

‖ → k2
‖

[8]. This is motivated by the scale separation between parallel and perpendicular length
and reduces the computational efforts significantly. A 2D Hasegawa-Wakatani model
is used for numerical simulation of synchronization of drift waves (see chapter 12).

2.5 Other plasma instabilities localized in the gradi-

ent regions

Two further instabilities are briefly discussed, namely the Rayleigh-Taylor instability and
the Kelvin-Helmholtz instability [1]. As is the case with drift waves, for both instabilities
k⊥ � k‖ and, furthermore, density as well as potential fluctuations occur that are radially
located in the strong gradient region. Both instabilities are known from neutral fluids.
In part I of the present thesis, an instability observed in the VINETA device is to be
identified. It is thus important to have experimentally observable criteria to distinguish
the instabilities from each other. This is sometimes not straightforward to do. For
instance, Light and coworkers identified an instability occurring in the gradient region
of a helicon plasma as a complex combination of the resistive drift instability and the
Kelvin-Helmholtz instability [42,45].

The Kelvin-Helmholtz instability

The Kelvin-Helmholtz instability is well known from hydrodynamic systems and plays a
role, e.g., in meteorology [67]. The instability is driven by sheared flows. For two fluids on
either side of an interface and moving with different velocities, a ‘wrinkling’ effect occurs
at the interface [68]. A daily example of this phenomenon is the rippled surface of water
when wind blows on it. Figure 2.2 shows an example of two fluids streaming with different
velocities. In plasma physics, the Kelvin-Helmholtz instability has first been investigated
in Q-machines where a shear in the E×B rotation of the plasma column is located in the
edge regions [69].

The experimentally observable features of the Kelvin-Helmholtz instability in a plasma
are [60,70]:

1. the instability is driven by poloidal velocity shear (i.e. shear in vE),
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Figure 2.2: Boundary layer instability between two fluids. The vessel contains two immiscible
fluids and is tilted from it’s originally horizontal position. The fluids tend to reestablish a
horizontal interface which leads to a sheared flow. The resulting Kelvin-Helmholtz instability
leads to a curling which is well visible. From reference [66].

2. maxima of ñ/n0 and φ̃/T[eV ] are located in the velocity shear region,

3. the magnitude of potential fluctuations is much bigger than that of density fluctu-
ations: φ̃/T[eV ] � ñ/n0,

4. the parallel wavelength is infinite, i.e. k‖ ≈ 0,

5. the wave frequency is in the range of ω ≈ (0.2− 0.6) max(vE/r),

6. the local radial phase shift is ](ñ, φ̃) ≈ 90◦ − 180◦.

Rayleigh-Taylor instability

In neutral fluids, an instability occurs when a dense fluid is stratified on top of a less
dense fluid in a gravitational field. This instability is called Rayleigh-Taylor instability or
gravitational instability and was discovered at the end of the 19th century [68,71]. The
physical mechanism of this instability in a magnetized plasma is depicted in figure 2.3.
Imagine a more dense plasma on top of a less dense plasma in a gravitation field F g =
−mgey where m is the particle mass and g is the gravitational acceleration. An external
magnetic field is applied in the z-direction. The gravitational drift for the ions reads

vgr,i =
Mg ×B

eB2
(2.36)

and is directed in the negative x-direction (i.e. to the left). Since the electrons are
much lighter than the ions, their gravitational drift can be neglected. If a small wave-
like perturbation develops at the interface between a dense and a less dense plasma,
the ion gravitational drift leads to a separation of charges as shown in figure 2.3. As a
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x

y

Figure 2.3: Physical mechanism of the Rayleigh-Taylor instability. Taken from reference [71].

consequence, an electric field E1 develops which causes an E×B drift. This drift amplifies
the initial perturbation since it is directed upwards in regions where the interface has
already moved upwards and vice versa.

In a plasma, the effect of gravitational forces is generally negligible but other forces can
take the role of the gravitational force. In plasmas with a nonuniform magnetic field, the
∇B drift and the curvature drift lead to a related instability which is called interchange
instability. The Rayleigh-Taylor instability is also called flute instability or centrifugal
instability if the centrifugal force of a rotating plasma replaces the gravitational force. The
reason for the name flute instability is that in a cylindrical plasma the waves travel in the
poloidal direction only, and the surfaces of constant density resemble Greek columns.

Typical experimentally observable features are [60]:

1. the parallel wavelength is infinite, i.e. k‖ = 0,

2. maxima of ñ/n0 and φ̃/T[eV ] are localized at max(|1/n drn|),

3. the magnitude of potential fluctuations is much bigger than that of density fluctu-
ations: φ̃/T[eV ] � ñ/n0,

4. the local radial phase shift is ](ñ, φ̃) ≈ 45◦ − 90◦.
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Chapter 3

Methods of data analysis

The present work deals with instabilities in magnetized plasmas which are observable
by fluctuations of plasma parameters such as density and potential. Time series of the
fluctuations can be recorded using oscilloscopes or transient recorders. It is important to
know the spatial distribution of the fluctuations. This can be done using several probes
simultaneously or by performing subsequent measurements with a single probe. For the
time series analysis, statistical methods are used. This chapter provides a brief overview
of the analysis techniques used [72,73].

3.1 The probability density function

The amplitude distribution of a time series is characterized by the probability density
function (PDF). The probability p to find a continuous random variable X in an interval
[x, x+ dx] is

p[x < X ≤ x+ dx] =

∫ x+dx

x

P (X) dX , (3.1)

where P (X) is the probability density function. Two basic properties of the PDF are

P (X) ≥ 0, ∀X and

∫ ∞

−∞
P (X)dX = 1 . (3.2)

For discrete experimental data Xn, the PDF becomes a discrete function Pn and in all
equations the integral is replaced by a sum. The PDF is then estimated by binning the
points of a time series into equipartition intervals i and counting the number of events
found within an amplitude interval. When N is the total number of events and Ni is the
number of events found in an interval i, the probability to find a value Xi in the interval
i is

p(Xi) =
Ni

N
. (3.3)

The probability density function P is found by normalization to the interval width.

The central moments µj (j ∈ N) of a PDF are defined by

µj :=
∑

n

(Xn − 〈X〉)j Pn = 〈(X − 〈X〉)j〉 with 〈X〉 :=
∑

n

XnPn (3.4)
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and can be used to characterize its features. The first two moments are the most important
ones, but, for a complete description of the PDF, higher moments must be considered as
well. The first moment is the mean value

µ = 〈X〉 :=
∑

n

XnPn , (3.5)

and the second moment is the variance

σ2 :=
∑

n

(Xn − µ)2Pn = 〈X2〉 − 〈X〉2 . (3.6)

The square root of the variance is the standard deviation σ which describes the ‘spread’
of the distribution around the mean value, i.e., the mean deviation of Xn from µ.

For purely random processes the PDF is often given by a Gaussian distribution

P (X) =
1

2πσ2
exp

(
−(X − µ)2

2σ2

)
(3.7)

which is fully determined by the mean value and the variance.

For a purely sinusoidal signal f(t) = A sin(ωt), the PDF peaks at the amplitude values
±A and is rather flat and small between the peaks. If the signal is not fully coherent, but
noisy, the amplitude A can not easily be determined from the time series. The standard
deviation can always be estimated from a time series and is therefore used in this work
as a quantitative measure of the amplitude distribution of the fluctuations. For pure
sinusoidal signals the amplitude of the signal and the standard deviation are related as
A =

√
2σ.

3.2 Spectral analysis

Fourier methods are a standard tool for the description of the average temporal behavior
of time series of fluctuating quantities. The Fourier transform F (ω) of a time series and
the inverse Fourier transform f(t) are defined by

F (ω) =
1√
2π

∫ ∞

−∞
f(t) exp(−iωt)dt (3.8)

f(t) =
1√
2π

∫ ∞

−∞
F (ω) exp(iωt)dω . (3.9)

In an analog way the Fourier transform can be defined for multi-dimensional data, e.g.,
spatiotemporal data. The spectral power density of a fluctuating quantity is given by

S(k, ω) = 〈F ∗(k, ω)F (k, ω)〉 (3.10)

where 〈 〉 defines the ensemble average over statistically independent realizations und F ∗

denotes the complex-conjugate of F . For two fluctuating quantities f(t) and g(t) one can
define the cross power spectral density by

Sf,g(k, ω) = 〈F ∗(k, ω)G(k, ω)〉 (3.11)
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where Sf,g is a complex function. The magnitude |Sf,g(ω)| is a measure for the ‘similarity’
of both signals at each frequency. The phase shift between the two signals for each
frequency ω is given by the angle ](f, g) = ](Sf,g).

For numerical computation of the Fourier transform of discrete time series, the Fast
Fourier Transform Algorithm (FFT) is used [72] which reduces the numerical effort dra-
matically.

3.3 Cross correlation function

The phase coherence of two time signals recorded at different spatial positions can be
quantified by the cross correlation function

rf,g(d, τ) = 〈f(x, t)g(x+ d, t+ τ)〉 (3.12)

where rf,g is a function of the time lag τ and the spatial separation d only. The auto-
correlation function of a function f is defined as rf,f (d, τ).

The quantities f and g can have very different amplitudes. For quantitative compar-
isons of different cross correlations an appropriate normalization is useful. Usually, the
cross correlation is normalized to the geometrical mean of the respective auto-correlation
functions

Rf,g(d, τ) =
rf,g(d, τ)√

rf,f (0, 0)rg,g(0, 0)
(3.13)

Using this normalization the correlation function is bounded to the interval [−1 ≤ R ≤ 1].

By definition, the cross-correlation of identical time series is equivalent to an auto-
correlation of one of the time series and has a maximum R = 1 at τ = 0. If both
time series are shifted against each other by ts the maximum R = 1 is found at τ = ts. A
negative correlation R(τ = 0) = −1 is found if both signals behave contrary f(t) = −g(t).
The cross correlation function becomes zero for completely independent time series.

The numerical computation of the cross-correlation function according to equation (3.12)
is time consuming. A much more efficient way is to use the Wiener-Kintchine theorem [72]
which states that the cross-correlation function Rf,g is the inverse Fourier transform of
the cross-power spectral density Sf,g:

rf,g(τ) =

∫ ∞

−∞
Sf,g(ω) exp(iωt) dω . (3.14)

This can be computed fast using the FFT algorithm.
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Part I

Resistive drift waves in the VINETA
device





Chapter 4

The VINETA device: setup and
diagnostics

In this chapter, the VINETA device and the experimental techniques are described.
In particular, the experimental arrangement used for the investigation of drift waves is
discussed. Possibilities to change the plasma parameters are also briefly reviewed.

4.1 The VINETA device

The conception of the VINETA device aims at a flexible and versatile linear, magnetized
plasma device that allows for various experiments on the dynamics of plasma waves and
instabilities. The device is built in a modular way. It is comparatively easy to shorten
or lengthen the whole device by one or even more modules. At present, four modules are
installed. A schematic view of the device is given in figure 4.1 and a photograph of the
device is shown in figure 4.2.
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Figure 4.1: Schematic of the linear, magnetized plasma experiment VINETA in the configu-
ration used for this work. Shown are the four modules of the vacuum chamber, the equidistantly
spaced magnetic field coils (red) and the glass tube extensions with the surrounding RF antenna
on the right hand side. Each module has its own separate power supply for the coils. The
vacuum pumps are located on the left hand side of the sketch.
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poloidal probe positioning system

Figure 4.2: Picture of the VINETA device. The plasma source is on the right hand side of the
image, hidden from view by the metal RF shielding which surrounds it. The poloidal positioning
system is installed at module #4. The insets show an argon plasma in the helicon discharge
mode with its typical blue core.

4.1.1 Vacuum system

The vacuum chamber consists of four identical cylindrical stainless steel modules, each
1128mm in length and 400mm in diameter. A chamber module has two CF-63, 13 CF-40
flanges and two rectangular windows of 100mm in width and 260mm in height. The
rectangular flanges reach some centimeters into the chamber, such that the inner vessel
surface is not fully cylindrical. The modules are connected via ISO-K 400 flanges and are
placed on trolleys. This allows for easy handling of the chamber. A variety of different
diagnostics can be installed at different positions of the device.

As shown in figure 4.1, the pumping system is installed at one end of the device. The
system is pumped using a turbo pump in conjunction with a rotary pump. A base pressure
of approximately 5 · 10−5 Pa is reached without baking. A steel shield has been placed
around the pump for protection against stray magnetic fields. Between both pumps,
a valve is installed which closes automatically when the pumps are switched off. This
ensures that no oil from the rotary pump is sucked into the turbo pump and into the
vacuum chamber itself. Two different pressure gauges are used: a full range gauge and
a baratron. Both are installed in module #1 close to the pumps. The gas inlet is also
located in module #1. In principle, the VINETA can be operated with different gases.
Throughout this work, only argon has been used as a filling gas.
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4.1.2 Magnetic field

The magnetic field is created by a set of 36 coils (see figure 4.1). Each chamber module is
immersed in a set of eight coils. One extra coil is installed at the pump side of the device
to extend the region of the homogeneous magnetic field. The helicon plasma source is
immersed in three additional coils. All coils are identical and have 45 windings of water-
cooled copper wire. The coil size is optimized for the dimension of the vacuum chamber:
the inner diameter of the coils of 520mm is only slightly bigger than the chamber diameter
(extended by the rectangular windows). The maximum electric current through the coils
is 260A. This allows for a homogeneous magnetic field of up to 100mT.

The coils are installed on four stainless steel rods such that they can be moved in the axial
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Figure 4.3: Three examples of magnetic field configurations of the VINETA device: The
magnetic field |B| is shown color coded for a) homogenous magnetic field (I=260A for all coils),
b) magnetic field gradient created by different currents through the coils of the different modules
(I = 260A for coils of module #1, I = 100A for all other coils), c) magnetic field gradient created
by repositioning the coils of module #1 (I = 100A for all coils). Black lines indicate the position
of the vacuum vessel including the glass tube extension. Black squares indicate the positions of
the coils. Magnetic field lines are shown as solid blue lines.
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direction. Thus, the axial coil positions can be arbitrarily chosen within each module. The
coils of each module are powered by a separate 50 kW DC power supply. An additional
power supply is used for the three coils in the helicon source region. The magnetic
field of the VINETA device can be easily changed by changing the spacing between the
coils and/or by altering the coil currents per module. This allows the creation of very
different configurations of the magnetic field. Figure 4.3 shows calculated magnetic fields
for three exemplary configurations. Figure 4.3a) shows the magnetic field for equidistant
coil positions at modules #1 to #4 with the maximum possible current of 260A applied to
all coils. In this configuration, the axial component of the magnetic field is nearly constant
throughout the device, with an axial magnetic field ripple of less than 3%. Due to the
slightly larger distances between the coils in the plasma source region, the magnitude of
the magnetic field in this region drops to approximately 70% of the value in modules #1
to #4. Figures 4.3c,d) show two configurations which lead to a localized magnetic field
gradient in the plasma: In figure 4.3c) the coils are positioned as in figure 4.3a) but a
current of 260A is applied to module #1 while all other modules are maintained at 100A.
In figure 4.3d) the current through all coils is 100A, but all coils of module #1 have been
repositioned to be as close as possible to module #2. In this work, only the homogeneous
configuration (i.e. the same current applied to all coils) has been used in order to exclude
effects of the magnetic field geometry.

4.1.3 The plasma source

According to the conception of a highly flexible experimental device, the modular setup
of the VINETA provides the possibility of operation with different plasma sources such
as radio-frequency (RF) and direct current (DC) sources. In this section, only the helicon
source (which is a specialized RF source) is presented in more detail since only this source
was used for the present work. The helicon source is located opposite to the pump, see
figures 4.1 and 4.2.

Helicon source basics

Helicon waves are bounded plasma whistler waves in the frequency range well below the
electron cyclotron frequency ωce, but well above the ion cyclotron frequency Ωci [74].
Whistler waves are right-hand circular polarized electromagnetic waves in free space [1].
Their dispersion relation is given by

c2k2

ω2
= 1−

ω2
pe

ω(ω − ωce cos θ)
(4.1)

where ω is the angular frequency and k the wave number, ωp,e is the plasma frequency, ωc,e

is the electron cyclotron frequency in the uniform background magnetic field B, and θ is
the angle of k relative to B [75]. If whistler waves are confined to a cylinder, the boundary
conditions impose an eigenmode structure on the whistler wave. Their propagation and
polarization properties are also changed. In particular, left hand propagation becomes
possible. The eigenmodes are characterized by a poloidal mode number m, whereas
positive (negative) mode numbers correspond to global right (left) hand rotation of the
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wave pattern with respect to B [76]. In a bounded cylinder the dispersion relation can
be written as

n0

B
= α

k‖
ω

, (4.2)

where α is a constant given by the boundary conditions [77]. In practice, the frequency ω
of the excited helicon mode is constant and determined by the RF source. Assuming that
the parallel wavelength λ‖ = 2π/k‖ is determined by the antenna geometry, the plasma
density is proportional to the applied background magnetic field B. This is also seen in
the experiment [78]. Thus, from the dispersion relation equation (4.2) it is concluded that
the plasma density can be controlled by the externally applied magnetic field.

Helicon waves have been investigated since the 1960s in solid state plasmas [79,80] as well
as in gaseous plasmas [81]. In the mid-1980s, Boswell found that helicon waves can
be used to produce plasmas with a very high efficiency [34] and plasma densities up to
1020 m−3 can be reached with only a few kW of RF power. Nowadays, helicon sources are
widely used in research as well as in industrial plasma engineering [82,83]. Overviews of
helicon sources can be found in references [41,74,84].

Typically, a helicon source consists of an RF antenna which surrounds a cylindrical glass
tube, immersed into a magnetic field B. Generally, B is in the range 10–100mT but also
at low magnetic fields < 10 mT plasma generation can be achieved [85]. Different antenna
designs have been studied which lead to primary excitation of different helicon wave
eigenmodes [76,86]. In general, the right hand polarized waves (especially the m = +1
mode) are found to be preferentially excited [76]. Helical antennas usually show a distinct
directivity, such that one-sided plasmas are produced [87]. Despite all the efforts of the
permanently growing scientific community dealing with helicon sources, the mechanism of
the power absorption is still not well understood and it is a topic of intense research. The
Coulomb collision frequencies were found to be too small to explain the strong coupling
of the helicon waves to the plasma [34]. Three often discussed explanations for the power
transfer from the helicon wave to the plasma are the following:

1. A second wave – the so-called Trivelpiece-Gould (TG) mode – is excited at the
plasma boundary by the helicon wave. This secondary wave is efficiently absorbed
by the plasma [35,36].

2. The wave energy is transferred to electrons travelling with a velocity slightly lower
than the phase velocity of the helicon wave. These electrons are accelerated by
the wave due to Landau damping, which is a collisionless kinetic effect. In earlier
experiments, evidence for high energy electrons was indeed found [37], but more
recent experiments with more appropriate diagnostics techniques could not confirm
this [38].

3. Although already Boswell’s original paper [34] suggests that a resonance at the
lower hybrid frequency might be responsible for the efficiency of the plasma pro-
duction, this idea was neglected for a long time and has regained attention only
recently [39,40].
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matching unit RF power supply

glas tubeantenna

Figure 4.4: Schematic of the helicon source: The glass tube is surrounded by a helical antenna.
RF is fed to the antenna via a matching unit.

The helicon source of the VINETA device

The technical equipment of the helicon source consists of a radio frequency transmitter,
an amplifier, a matching network and the helicon antenna itself.

The transmitter was manufactured by ELMER/MAGNAVOX and was originally designed
for military use. The frequency that can be selected ranges from 2MHz to 30MHz and a
preamplifier generates an output power of up to 400W. An arbitrary wave form generator
is used to create the RF signal and only the preamplifier of the transmitter is used. The
RF signal is amplified by a HENRY 8K ULTRA amplifier. The frequency range of this
device is 1.8-30MHz and the maximum output power is 2.5 kW in steady state operation
or 6 kW in pulsed operation.

Opposite to the pumping system, the vacuum vessel is extended by a glass tube with a
diameter of 10 cm and a length of 40 cm. A helically twisted RF antenna of the so-called
‘Nagoya type’ [76] surrounds the glass tube (see figure 4.4). The antenna has a length of
31 cm, RF is fed to the antenna legs. A matching network consisting of two capacitors
is placed between the RF source and the antenna itself, to account for the mismatch
between the amplifier’s output impedance of 50 Ω and the low antenna impedance (see
figure 4.4). For RF powers & 1 kW, the antenna is overheated and the glass tube tends
to melt. Thus, the antenna is water-cooled and the source is usually operated in pulsed
mode. Pulse lengths of up to several seconds are possible without damage, if the duty
cycle is chosen accordingly. In this work, pulse lengths of typically 300− 600 ms are used.

With such an antenna setup, three different discharge modes can be established in the
VINETA device. For increasing RF power, the plasma heating changes from capacitively
to inductively to helicon wave sustained operation. At the same time, the density increases
by several orders of magnitude. The transition between these modes in the VINETA
device is described in reference [88]. For this work, the source was always operated in the
helicon mode.

4.1.4 Operation and Plasma Parameters

Typical operation and plasma parameters for an argon plasma produced with the helicon
source are given in table 4.1. A generic feature of helicon sources is that they produce a
rather dense plasma with electron temperatures of only a few eV. In the present config-
uration of the VINETA device, the helicon discharge mode cannot be maintained below
a neutral gas pressure of about 0.1 Pa. In principle, helicon discharges at neutral gas
pressures & 1 Pa can be maintained but have not been used here. The ion temperature
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parameter typical range

base pressure 1 · 10−4 Pa 5 · 10−5 − 2 · 10−4 Pa

neutral gas pressure (argon) 0.3 Pa 0.1− 1 Pa

magnetic field 75mT 10− 100mT

RF power 2.5 kW 1-5 kW

peak electron density 5 · 1018 m−3 1018 − 1020 m−3

electron temperature 2 eV 1− 5 eV

ion temperature 0.25 eV 0.2− 0.5 eV

Table 4.1: Typical operation and plasma parameters for the VINETA device operated in the
helicon discharge mode.

in argon plasmas has been measured by Laser Induced Fluorescence (LIF) as described
in reference [78]. Values in the range 0.05− 0.5 eV have been found [89].

Table 4.2 gives an overview of plasma parameters for typical experimental conditions.
Besides typical frequencies, lengths and velocities, the plasma β is also given. This is the
ratio between the particle pressure and the magnetic field pressure [1]. βµ is the ratio
between the plasma β and the mass ratio me/M . More details on the plasma parameters
are given in chapter 5 where experimental results on time-averaged parameter profiles are
presented.
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parameter formula
typical
value

range

electr. plasma frequency [rad/s] ωp,e =

√
ne2

ε0me

1.3 · 1011 (5− 50) · 1010

ion plasma frequency [rad/s] ωp,i =

√
Z2ne2

ε0M
4.5 · 108 (2− 20) · 108

electron gyrofrequency [rad/s] ωc,e =
eB

me

1.2 · 1010 (0.9− 1.8) · 1010

ion gyrofrequency [rad/s] Ωci =
eB

M
1.7 · 105 (1.2− 2.4) · 105

electron gyro radius [mm] rc,e =
vth,e

ωc,e

0.05 0.02− 0.1

ion gyro radius [mm] rc,i =
vth,i

ωc,i

4.5 3− 9

effective gyro radius [mm] ρs =

√
kBTeM

e2B2
13 6− 29

Debye length [mm] λD =

√
ε0kBTe

ne2
0.005 0.0007− 0.017

thermal electron velocity [m/s] vth,e =

√
kBTe

me

590 000 420 000− 940 000

thermal ion velocity [m/s] vth,i =

√
kBTi

M
770 700− 1000

ion sound velocity [m/s] cs =

√
kBTe

M
2600 2000− 3600

diamagn. el. drift velocity [m/s] vD,e = −kBTe

eB

∂rn

n
1500 < 3000

plasma β β =
2µ0nkBTe

B2
8 · 10−4 4 · 10−5 − 8 · 10−2

βµ βµ =
β

me/M
60 3− 6000

Table 4.2: Plasma parameters for an argon helicon discharge in the VINETA device. Typical
parameters are calculated for Te = 2 eV, Ti = 0.25 eV, n = 5 · 1018 m−3, B = 70mT. Parameter
ranges are calculated for Te = 1−5 eV, Ti = 0.2−0.5 eV, n = 1018−1020 m−3, B = 50−100 mT.
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4.2 Diagnostics

Adequate diagnostics tools are essential for the characterization of the time-averaged
plasma as well as of any waves and instabilities occurring in the VINETA plasma. Mea-
surements of propagation and dispersion properties call for diagnostics with appropriate
spatial as well as temporal resolution. Electrostatic (or Langmuir) probes are an es-
tablished technique to accomplish this [90,91] and are the chief diagnostic tool of the
present work. The technique itself, as well as special setups, are described in detail in sec-
tions 4.2.1 and 4.2.2. Electrostatic probes are intrusive diagnostics and therefore always
impose a certain disturbance to the plasma. Non-intrusive techniques would be preferable
but their spatial resolution is often not good enough.

Other diagnostics techniques have been established as well at the VINETA device and
shall be briefly mentioned here. Laser Induced Fluorescence (LIF) is used for the measure-
ment of ion distribution functions [78] and allows the determination of the ion temperature
if the distribution is a Maxwellian. For line integrated density measurements, it is planned
to use a microwave interferometer in near future [78]. Magnetic fluctuations at frequencies
≥ 100 kHz have been measured with so-called Ḃ-probes [92]. For lower frequencies, Hall
detectors shall be used for which operation up to 100 kHz was recently reported [93].

4.2.1 Langmuir Probes

A Langmuir probe is basically a conducting electrode inserted into the plasma. In the mid
1920s, Mott-Smith and Langmuir described electrostatic probes for the first time [94].
They are easy to build and to operate. To obtain plasma parameters like density, electron
temperature or plasma potential, the probe is biased with respect to ground (i.e. the
vacuum vessel) and the current-voltage characteristic is measured in an external electrical
circuit. For successful operation of Langmuir probes two requirements must be fulfilled:
On the one hand, the probe must be able to withstand the heat load caused by the
plasma. (For low-temperature plasmas this is usually not a problem.) On the other hand,
the probe must be small enough in relation to typical plasma scale lengths such that it
does not perturb the plasma too much.

The biggest advantage of Langmuir probes is that they allow for a high spatial and
temporal resolution, much better than that of many other diagnostics methods used in
plasma physics. The spatial resolution of the probe is limited by the thickness of sheath
and presheath which form around the probe and which can extend to several Debye
lengths (see table 4.2). The accuracy of absolute values measured with Langmuir probes
is usually not very good and calibration with other measurement methods is required for
better results. However, relative measurements are often sufficient.

Figure 4.5a) shows a schematic of a simple cylindrical Langmuir probe. The probe tips
are made of tungsten and are typically 0.1–0.3mm in diameter and 2–5mm in length.
They are connected via a copper wire to the external measurement circuit. In order to
insulate the copper supply wire from the plasma, the wire is immersed into a ceramic
tube and connected to the probe tip. The ceramic tubes are kept as small as possible.
In figure 4.5c), a typical circuit for the measurement of a probe characteristic is shown.
The probe is biased by a DC power supply which is controlled by a PC. The current is
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Figure 4.5: Schematic picture of a) cylindrical Langmuir probe, b) RF compensated Langmuir
probe. c) Circuit for measurement of probe characteristic.

measured as the voltage drop over a shunt resistor and the amplified signal is fed back
into the PC.

It has been known for decades that a plasma oscillating in the RF range distorts the
probe characteristic and additionally complicates its interpretation [90]. The time-varying
plasma potential leads to an averaging over the probe characteristic. Since the character-
istic is strongly nonlinear, this averaging changes the characteristic and leads, for instance,
to a systematic overestimation of the electron temperature. The influence of RF oscilla-
tions can be compensated by special probe designs. Here, a technique proposed by Sudit
and Chen is used [95,96] which is schematically shown in figure 4.5b). Close to the probe
tip, a floating electrode is exposed to the plasma in order to sample the local plasma
potential fluctuations. The electrode is coupled to the probe tip through a capacitor such
that the probe tip follows the local potential fluctuations. Additionally, RF chokes are
connected close to the probe tip which present a large impedance to RF signals but not to
low-frequency signals. Indeed, in the VINETA device, operated in the helicon discharge
mode, such compensated probes were found to give different results from uncompensated
ones. Thus, for measurements of the background (time-averaged) plasma profiles, com-
pensated probes have been used. On the other hand, it is quite challenging to choose
proper filters and coupling capacitors such that low-frequency signals can be detected
correctly using the same setup [95]. Therefore, uncompensated probes have been used for
fluctuation measurements.

Unfortunately, the analysis of the probe characteristics is often much more complicated
than the probe operation. For different experimental conditions, different probe theories
are needed [97]. The operation and the interpretation of probe characteristics is still
a field of intense research [98–100]. In the VINETA device, besides the necessary RF
compensation one deals with further difficulties:

1. The magnetic field introduces anisotropy in the plasma which complicates the the-
oretical description of probes [97].
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Figure 4.6: Idealized Langmuir probe characteristics.

2. Helicon sources produce plasmas with a comparably high plasma density, but with
electron temperatures of only a few eV. For these conditions, the collisionality of
the plasma is not negligible. Thus, methods to interpret Langmuir probe charac-
teristics in collisionless plasmas are no longer valid [101].

Subsequently, a basic, simplified theory for collisionless, unmagnetized plasmas, and an
advanced kinetic theory developed for weakly ionized, magnetized plasmas, are briefly
discussed and the resulting plasma parameters are compared.

Langmuir theory for an unmagnetized, collisionless plasma

The theory is simplified and strictly holds only for unmagnetized, collisionless plasmas.
An idealized I-U characteristic of a cylindrical Langmuir probe is shown in figure 4.6.
Three different regions are distinguished [90,91]:

Ion saturation current regime: If the probe is negatively biased with respect to the
plasma potential (U < (5 . . . 10) kBTe/e), even the fastest electrons are repelled by
the probe and the probe collects only positively charged ions. The ion saturation
current is determined by the Bohm-criterion [98] and is given by

Ii,sat = 0.61neA

√
kBTe

M
(4.3)

where A is the effective probe surface and the factor 0.61 is a geometry factor [90,91].
Apparently, the ion saturation current of a given probe depends only on the plasma
density n and the electron temperature Te.

Electron saturation current regime: At a probe bias above the plasma potential,
the ions are repelled and only electrons reach the probe. The electron saturation
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current at the plasma potential is given by

Ie,sat = −neA
√
kBTe

2πme

. (4.4)

This depends (for a given probe geometry) only on the density n and the electron
temperature Te. In contrast to the ion saturation regime, the electron saturation
current depends on the shape of the probe. A real saturation is observed only for
an ideal planar probe, whereas, for real planar probes, as well as for cylindrical and
spherical probes, the electron saturation current increases monotonically with the
bias voltage due to expansion of the sheath [91].

Transition region: In between the two saturation regimes, increasingly more electrons
can reach the probe for increasing probe bias. For a Maxwellian electron velocity
distribution, the electron current in this regime depends exponentially on the applied
probe voltage U

Ie = Ie,sat exp

(
−e(U − φp)

kBTe

)
. (4.5)

The voltage at which the net current is zero is called the floating potential φf . The electron
temperature can be obtained using equation (4.5). To get the pure electron current, the

−5 0 5 10 15 20

−150

−100

−50

0

U [V]

I [
m

A
]

probe characteristic

fit range

probe characteristic
electron current
fitted electron current

−5 0 5 10 15 20

−30

−20

−10

0

U [V]

dI
/d

U
  [

m
A

/V
]

derivative of probe characteristic

φ
p,1

φ
p,2

fit range

Figure 4.7: Exponential Langmuir fit for a measured I-U characteristic. Evaluation gives
φp,1 = 13.4 V, φp,2 = 14.1 V, φf = 6.0 V, n = 8.1 · 1017 m−3, Te = 2.3 eV.
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measured total current is corrected by the extrapolated ion current Ie = I − Ii,sat. In
case of a Maxwellian distribution, the electron current upon probe voltage is a straight
line in the transition region when plotted semi-logarithmically. The temperature can be
obtained directly from the slope of this curve.

The plasma density can be extracted from the saturation current if the electron temper-
ature and the probe size are known. The plasma potential φp is usually obtained from
the knee of the probe characteristic. In practice there are two methods: The first one
takes the point where Ie starts to deviate from exponential growth. That is the case when
dIe/dU is minimal or d2Ie/dU

2 is zero.The second method takes the intersection of an
exponential fitting the transition region and a straight line fitting the electron saturation
current [102]. Floating potential and plasma potential are related by φp = φf +αTe where
α is a constant that depends, among other things, on the gas used and the geometry of
the probe (for argon α ≈ 5.4).

In figure 4.7, an experimentally obtained probe characteristic is shown together with its
first derivative and the fitted curve in the exponential region. In this case, the difference
between the plasma potential values obtained with the two methods is ∆φp = 0.7 V.
Generally, a systematic error < 1 V can be assumed. Subsequently, the plasma potential
is taken as the minimum of the first derivative of the probe characteristic when the I-U
characteristic is analyzed according to the Langmuir theory.

Kinetic theory for a strongly magnetized, weakly ionized plasma

In magnetized plasmas, the anisotropy between the directions parallel and perpendicular
to the the magnetic field further complicates the theoretical description of probes. If the
probe collects electrons, the flux tube is ‘emptied’ and has to be refilled by cross-field
transport. Thus, the electron current is usually smaller than that in an unmagnetized
plasma. The energy distribution function of the electrons is anisotropic which makes the
modelling of the sheath surrounding the probe very complicated.

A comparatively simple analysis scheme for strongly magnetized plasmas was recently
given by Demidov and coworkers [97,103]. It is based on a kinetic theory by Arslan-
bekov [104]. In this theory the Boltzmann equation [1] is solved for probes in the nonlocal
regime λε � d + h � λe where λε is the energy relaxation length, λe is the mean free
path of the electrons, d is the characteristic probe dimension and h is the sheath thick-
ness. In that theory, the electron distribution function is directly connected to the first
derivative of the electron current density. For a cylindrical probe oriented perpendicular
to the magnetic field the relation

dje
dV

= − 8πe3rc,eV

3m2
eR ln πL

4R

f(W ) (4.6)

is derived where je is the electron current density, V is the voltage with respect to the
plasma potential, rc,e(V ) is the electron Larmor radius and W is the electron energy (in
eV). R and L denote the probe radius and length, respectively. Assuming a Maxwellian
distribution [103]

f(W ) = n

(
me

2πT[eV ]

)3/2

exp

(
−W
T[eV ]

)
(4.7)
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Figure 4.8: Kinetic fit for the same probe characteristic as in figure 4.7. Evaluation gives
φp = 15.5 V, φf = 6.0 V, n = 4.7 · 1018 m−3, Te = 1.4 eV.

equation (4.6) can be fitted to the derivative of the measured je by varying the parameters
T[eV ], n and φp. The plasma potential φp is a fitting parameter because V = U − φp is
the probe voltage with respect to the plasma potential. In this kinetic theory it is found
that the plasma potential is not located at the minimum of the first derivative of the
electron current, but where the fitted theoretical curve crosses zero [97]. This implies that
application of this theory to a given probe characteristic always yields a higher plasma
potential than analyzing the same probe characteristic using the Langmuir theory [97].
In figure 4.8 the same probe characteristic as in figure 4.7 is shown, this time analyzed
according to this kinetic theory. Here, for the plasma potential φp = 15.5 V is obtained
and thus the difference between the plasma potential values obtained by applying the three
methods of its determination is ∆φp = 2.1 V (and thereby ∆φp/φp ≈ 15%). Generally,
the minimum of the first derivative yields the lowest value for φp and the kinetic theory
yields the highest value. Also, from the kinetic theory it is found that the electron current
grows more slowly with V than exponential, in particular close to the plasma potential.
Thus, although ln Ie(V ) behaves like a straight line for high negative potentials, the slope
of the curve is smaller than in the Langmuir case. For this reason, an overestimation of
the electron temperature of up to 30% is possible when the Langmuir theory is applied
instead [97].
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Regime Condition

Collisionless λe � d+ h

Nonlocal λε � d+ h� λe

Hydrodynamic (local) d+ h� λε

Table 4.3: The main regimes for electrons in a weakly ionized unmagnetized plasma according
to reference [97]. λε is the energy relaxation length, λe is the mean free path of the electrons, d
is the characteristic probe dimension and h is the sheath thickness. For a magnetized plasma,
parallel and perpendicular parameters should be compared, respectively.

Applicability of the probe theories

Table 4.3 shows the three main operation parameter regimes in a weakly ionized plasma
according to reference [97]. Langmuir’s simple probe theory is strictly valid only in
collisionless, unmagnetized plasmas. The kinetic theory of Demidov was developed for
magnetized plasmas in the nonlocal regime which requires that electron neutral collisions
dominate over electron-electron collisions. This condition is not fulfilled in the plasma
center of the VINETA device. Strictly speaking, a theory for the hydrodynamic regime
must be applied instead. However, to the best of our knowledge, no applicable theory
for this regime in a magnetized plasma exists. For the plasma edge, the conditions for
application of the kinetic theory are fulfilled. Appealing advantages of the kinetic theory
are that the magnetic field is appropriately accounted for, and it is relatively simple to
apply.

Figure 4.9 shows the result of a radial scan of probe characteristics, analyzed with both
methods discussed above. It is found that, in this example, the maximum density is very
similar for both evaluation methods (figure 4.9a). The profile obtained using Demidov’s
kinetic theory is slightly smoother as well as broader compared with the Langmuir the-
ory. The electron temperature obtained with the kinetic theory is systematically smaller
than that using the Langmuir theory (figure 4.9b). That is an inherent feature of
Demidov’s theory, as discussed above. However, the shape of both curves is similar. The
kinetic theory yields higher plasma potentials than the Langmuir theory, if both theo-
ries are applied to the same probe characteristic. This is indeed confirmed in figure 4.9c).
Again, the shape of the radial profiles is similar, although the kinetic theory gives higher
gradients. For the investigation of drift waves, knowledge about the radial electric field
is of importance in order to determine the poloidal E×B velocity. Radial electric field
profiles obtained from the spline fitted plasma potential profiles of figure 4.9c) are shown
in figure 4.10. It is found that the maximum electric field is about 30% higher if the probe
characteristic is evaluated according to Demindov’s kinetic theory. In addition, the posi-
tion of the maximum electric field is found at higher radial positions if the kinetic theory
is used. Figure 4.9d) shows the floating potential which is by definition independent of
the probe theory applied.

In conclusion, it is found that the differences between the two evaluation methods are
acceptable. The shapes of the curves are similar for all parameters shown in figure 4.9.
In the VINETA device, the conditions for the kinetic theory are better satisfied than for
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Figure 4.10: Comparison of resulting radial electric field profiles for plasma potential profiles
of figure 4.9c).

the simple Langmuir theory because the measurements are conducted in a magnetized
collisional plasma and it is desirable to take at least the magnetic field into account.
Therefore, the kinetic theory is used to obtain plasma parameters for measurements in
the helicon mode of the VINETA device.
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Fluctuation measurements

For fluctuation measurements, recordings of the entire probe characteristic are usually
avoided, since the time needed for the acquisition of the complete characteristic has to
be shorter than the time scale of the fluctuations. This is technically quite challenging
and investigated elsewhere [105]. Two operation modes are very common in cases where
temperature fluctuations are negligible:

1. As described above, the ion saturation current is proportional to n
√
Te. With the

assumption of small temperature fluctuations (T̃e/T̄e � ñ/n0 � 1), the fluctuations
of plasma density can be approximated by the fluctuations of the ion saturation
current:

Ii,sat = 0.61eA

√
kB

M︸ ︷︷ ︸
γ

(n0 + ñ)

√
T̄e + T̃e ≈ γn0

√
T̄e + γn0

√
T̄e

(
ñ

n0

+
1

2

T̃e

T̄e

)

≈ γn0

√
T̄e︸ ︷︷ ︸

Īi,sat

+ γ
√
T̄e ñ︸ ︷︷ ︸

Ĩi,sat

and thereby Ĩi,sat ∝ ñ.

2. With the same assumption of small temperature fluctuations the floating potential
fluctuations are proportional to plasma potential fluctuations:

φ̃p = φ̃f + αT̃e ≈ φ̃f .

4.2.2 Diagnostic setup

Drift wave dynamics is a spatiotemporal phenomenon with important dynamics occuring
in the poloidal plane perpendicular to the magnetic field. Ideally, one would be able to
measure dynamical evolution with both high spatial as well as high temporal resolution.
In reality, this is impossible, of course. There are two possibilities to do measurements
with a good spatial resolution. Firstly, it is possible to move a limited number of probes
with probe positioning systems and measure fluctuations at a discrete number of points
in space. Statistical methods can be used to reconstruct the dynamics in the whole plane.
Secondly, a large number of probes can be installed in a fixed configuration. This gives
the possibility to do simultaneous measurements at a discrete number of points in space.

The poloidal probe array COURONNE

Figure 4.11 shows a schematic of the probe array COURONNE, used for spatiotemporal
measurements in the poloidal direction. Similar probe arrays have been used before in
the experimental devices KIWI and MIRABELLE1 [106]. The probe array consists of
a circular arrangement of 64 equally spaced cylindrical Langmuir probes. The probes are

1More information on these devices is given in chapters 5 and 10.
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Figure 4.11: a) CAD-drawing of the 64 probe array COURONNE installed inside the vacuum
vessel of the VINETA device. b) Picture of the probe array.
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Figure 4.12: Block diagram of the data acquisition setup of the poloidal probe array
couronne.

mounted on an aluminum ring with an inner diameter of 30 cm. The radial position of the
probes is chosen in such a way that the probe tips are in the region of high fluctuations
(i.e. in the gradient region of the plasma). Great care was taken to allow for exchange of
probe tips. It turned out that probe tips of tungsten wire of 0.1mm diameter were not
able to withstand the permanent heat load in the argon helicon plasma in the VINETA
device. Therefore, the probe tips are made of tungsten wire of 0.2mm diameter and 4mm
length, separated by 4mm poloidally. The tungsten wire is insulated from the plasma by
ceramic tubes with an outer diameter of 0.6mm. The electrical connection between the
64 probes and the outer electronic controls is achieved by use of 64 small coaxial cables
(teflon insulation) that lead to two 50pin vacuum feedthrough SUB-D connectors (whereas
only 32 pins are used per connector) installed in one rectangular flange. Two purpose-
built adapter cables are used for the connection between the vacuum feedthroughs and
the eight 9pin SUB-D inputs of the data acquisition system.

The data acquisition system consists of three devices as shown in figure 4.12. It is pos-
sible to measure (electron or ion) saturation current fluctuations or floating potential
fluctuations with the probe array. At present, only an interface for measuring saturation
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currents has been built which allows to bias all 64 probes to the same voltage (typically
−100 . . .−50 V for ion saturation). The saturation current is measured as the voltage drop
over a 100 Ω shunt resistor. A good resolution of the fluctuating part of the saturation
current is achieved by coupling the signal out of the interface box via an 1 nF capacitor,
such that the DC part of the time series is filtered out.

A second interface has been installed between the measurement interface and the transient
recorder in order to protect the transient recorder from too high (and therefore possibly
damaging) input voltages. In this protection interface, the input signals are amplified by
a factor of 2 and output signals are limited to ±15V.

The data is stored with a PC based 12 bit transient recorder, designed by the company
JET-Systemtechnik GmbH. It consists of eight T112-8 boards, each with 8 channels.
Measurement ranges are between ±200mV and ±5V. The incoming signals are DC cou-
pled. The maximum input voltage is 50V. The sampling frequency can be chosen up to
1.25MHz corresponding to a Nyquist frequency of more than 500 kHz. Time series of up
to 512 kS per channel can be stored, but typically only 8 kS are used. All 64 channels are
operated in a way that time series are recorded simultaneously, triggered by an external
trigger signal.

Positioning systems

Consistent with the concept of having a very flexible experimental device, several probe
positioning systems have been built for the VINETA device. Probes can be moved with
computer controlled servo motors. The accuracy of the positioning is better than 1mm.

Poloidal (2D) positioning system: A poloidal probe positioning system is mount-
able to any one of the large rectangular windows of the vacuum chamber. It allows
for measurements with high spatial resolution in a plane perpendicular to the ambi-
ent magnetic field (independent motion 200mm in vertical and 260mm in horizontal
direction). The system itself is mounted outside the vacuum chamber and only the
probe is immersed into the plasma. For the measurements presented in the present
work, this poloidal positioning system has always been installed at module #4, close
to the helicon antenna.

Radial (1D) positioning system: A radial positioning system can be mounted to any
of the horizontal CF-40 flanges. The probe can be moved horizontally throughout
the whole vacuum chamber. As for the poloidal system, only the probe itself is
placed into the cylindrical vacuum chamber.

Horizontal (2D) probe positioning system: Different from the two probe position-
ing systems described above, this system is installed completely inside the vacuum
chamber, with only the two servo motors installed outside the vacuum and connected
via rotational vacuum feedthroughs to the positioning system. The probes can be
positioned in a horizontal plane parallel to the ambient magnetic field (200mm in
radial and about 3m in axial direction). The carriage, on which probes can be
mounted, is only 70mm in height and is therefore quite far away from the plasma
core.
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Figure 4.13: Experimental arrangement for cross correlation measurements for reconstruction
of the poloidal mode structures. The reference probe is maintained at a fixed position. The
other probe measures time series subsequently at a discrete number of points on a poloidal grid.
The observed signals for an ideal sinusoidal m = 2 mode at different positions in the poloidal
plane are shown. R is the value of the cross correlation function R(d, τ) for the signals at these
positions.

The horizontal positioning system has been used only for measurements of the time-
averaged plasma (see chapter 5) because it was found to have an unexpected high and
undesired influence on the observed low-frequency fluctuations. For fluctuation measure-
ments both the poloidal and the radial positioning systems have been used.

Measurement of poloidal mode structures

As mentioned earlier, statistical methods provide a reconstruction of fluctuation dynamics
in space and time, even if not observed simultaneously for all positions. For the case of
coherent modes with only one dominating frequency, the cross correlation (see chapter 3)
between signals of a movable probe and a reference probe can be used. Figure 4.13 shows
the experimental setup for this measurement. A fixed reference probe is placed in the
region of highest fluctuations, axially 0.5−1.5 m apart from the poloidal probe positioning
system. Here, another probe is installed and moved to a number of points on a grid in
a poloidal plane. At each point, time series of the signals of both probes are recorded
simultaneously.

The cross correlation is a measure of the ‘similarity’ of two signals at a certain time lag
τ . Imagine an ideal m = 2 mode with two maxima and minima in the poloidal plane.
Figure 4.13 indicates the principle of such a measurement. For a fixed time lag there are
two positions in the plane separated by 180◦ (positions ’a’ and ’c’ in the figure), where
the time series measured with the movable probe are in phase with the shifted reference
signal and therefore have their maxima at the same time. For these positions the cross
correlation function is R(d, τ) = 1. For positions 90◦ separated from here (’b’ and ’d’ in
the figure), the time signal will be 180◦ phase-shifted and therefore we have R(d, τ) = −1.
In between the two positions, one finds a smooth transition from R = 1 to R = −1.
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For a different time lag, the positions of the maxima will be different. If the time lag is
changed step by step from τ = 0 to one period of the signal τ = T one finds that the
obtained pattern of the cross correlation function makes one full rotation in the plane
which reflects the rotation of the mode structure itself. Results obtained by using the
correlation method are presented in section 6.4.

Measurement of parallel wavelength

For wavelength measurements one usually measures phase differences between the signals
at two or more different positions. In the poloidal direction the 64 probe array is used to
measure the poloidal wavelength (or the mode number). However, in the axial direction
(parallel to the magnetic field) a measurement of the wavelength is quite challenging,
because for gradient-driven instabilities the wavelength is typically quite long, of the
order of several meter. Therefore, the probes need to be arranged at a certain distance
from each other, but must be aligned properly since a small misalignment in radial or
poloidal direction can cause large systematic errors in the estimation of the wavelength
due to the small poloidal wavelength. In the VINETA device this has been achieved
in the following way: One emissive probe and one Langmuir probe are used without
plasma. The emissive probe is placed in the region where maximal ion saturation current
fluctuations are observed in plasma operation. It is heated such that the glowing probe
emits electrons. The other probe is mounted on the poloidal probe positioning system
and both probes are roughly aligned by eye. This is possible with an accuracy of 1-2 cm
in each direction. With a Keithley source meter, the current between this movable probe
on the poloidal probe positioning system and ground is measured with magnetic field,
but without plasma. If the two probes are on one magnetic field line, a (small) current

reference probe

B

I

probe on poloidal
positioning system

Figure 4.14: Experimental setup for the alignment of two axially separated probes. One
emissive probe is placed in the region of the highest fluctuations. A second probe on the poloidal
positioning system is roughly aligned by eye. Without plasma, the current between this probe
and ground is measured. In a magnetic field a very localized regions shows an increase of the
measured current of several orders of magnitude.
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Figure 4.15: The result of the alignment of two axially separated probes: In a very small region
the observed current is by two orders of magnitude higher than at neighboring positions. The
size of this region agrees quite well with the size of the emissive probe.

is expected to flow. This measurement is repeated for every point on a two-dimensional
poloidal grid (2cm x 2cm) with only 1mm between the measurement points. Indeed, in
a very small region, the detected current rises into the 10−4 A-range, in contrast, outside
this position, the current is below 10−6 A. This is shown in figure 4.15.

For the measurement of the parallel wavelength of pressure gradient driven waves, a
coherent state is usually established. Time series of both probes are recorded and the
phase ϕ between both time series is determined by using either cross-correlation or cross-
power spectrum analysis (see chapter 3). Practically, the cross-power spectrum is preferred
because it also allows the determination of the phase for different frequencies. The axial
wavelength is then determined from λz = 2π∆z/ϕ, where ∆z is is the axial distance of
the probes.



Chapter 5

Plasma parameters in VINETA

The VINETA device is a new experimental device with a unique setup that was built
in the course of the present thesis. Soon after first operation in the helicon discharge
mode, an instability with frequencies well below the ion cyclotron frequency was ob-
served, showing characteristic features of drift instabilities. A detailed characterization
of the instability is given in the next chapter. For a clear identification of this instabil-
ity, background plasma parameters are of crucial importance. Experimental results on
time-averaged plasma parameters are presented and subsequently discussed1.

The following issues are of importance for drift wave dynamics:

• Gradient-driven instabilities show the highest fluctuation level in the region of the
steepest gradients. This demands for detailed knowledge of gradients of plasma
density, electron temperature and plasma potential in both the direction parallel
and perpendicular to the ambient magnetic field.

• Density and potential profiles determine the electron diamagnetic drift as well as the
E×B drift which are of importance for a quantitative comparison with drift wave
dispersion.

• Operation parameters like magnetic field and neutral gas pressure influence plasma
parameters and parameter profiles.

5.1 Axial variation

Figure 5.1 shows radial profiles of plasma density, electron temperature, plasma potential
and floating potential for four axial positions in the range z ∼ 1.5−2.5 m where z denotes
the distance from the helicon antenna.

The density profiles in figure 5.1a) are peaked with maximum densities of about 7·1018 m−3

for all four z-positions. The bulk plasma is radially restricted to less than the antenna
region, suggesting that the helicon discharge mechanism deposits its power mainly in
the center of the antenna. At the edge region, the density is still in the range of

1Here, time-averaged stands for an averaging over a time much longer than the time scales of the
low-frequency instability. The typical averaging time is between several 10 ms and several 100 ms.
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Figure 5.1: Radial plasma parameter profiles at different axial positions for B = 71 mT,
pAr = 0.3 Pa and PRF = 2.5 kW. z is the distance from the antenna edge. The gray lines
indicate the radial position of the antenna. a) plasma density, b) electron temperature, c) plasma
potential, d) floating potential. A compensated probe on the horizontal probe positioning system
was used for the measurement.

1016 . . . 1017 m−3. For some discharge conditions, density profiles are found to be close
to Gaussian, but often profiles are broader. Figure 5.1a) shows that the density profiles
remain very similar over an axial distance of 1m.

Figure 5.1b) shows the corresponding electron temperature profiles. Different from the
density profiles, there is a clear dependence of the electron temperature on the axial
position. In the center of the plasma column the electron temperature decreases with
increasing distance from the plasma source. For the curves in the range z = 1470 −
2070 mm, the profiles have a plateau in the center and drop towards the edge. The curve
for z = 2470 mm has a different shape: the electron temperature in the plasma center
is lower than at the edge. Extrapolating the linear decrease of the temperature to the
antenna position (figure 5.2), one obtains an electron temperature of 4− 4.5 eV.

Plasma potential profiles are shown in figure 5.1c). The maximum is always in the center
of the plasma column. The profiles decrease monotonically towards the edge. As is the
case for the electron temperature, the plasma potential was also observed to depend on
the distance from the antenna. The plasma potential is found to be smaller for greater
distances from the antenna (∆φp ≈ 3 V for ∆z = 1 m). The potential profile gradients in
the edge region are slightly steeper for positions closer to the antenna.

The floating potential profiles in figure 5.1d) also have a maximum in the center of the
plasma column and decrease towards the plasma edge. The floating potential in the
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Figure 5.2: Extrapolation of the peak electron temperature of figure 5.1b) towards the antenna.
The dotted points indicate the four measurement points. The antenna edge is at z = 0. The
poloidal positioning system is at 650mm as indicated by the vertical line.

plasma center becomes higher with increased distance from the helicon source.

5.2 Variation with the magnetic field

An important external control parameter of the VINETA is the magnetic field which
influences a number of physical quantities. Radial lengths (drift scale ρs, the ion gyro
radius) as well as the perpendicular drift velocities depend explicitly on the magnetic
field. From the dispersion relation of helicon waves it is expected that the plasma density
increases with increasing magnetic field (see equation (4.2)). Also, diffusion lengths both
parallel and perpendicular to the ambient magnetic field depend on the magnetic field
strength, which also influences the density gradients in the plasma.

As already introduced in chapter 2, the radial density and plasma potential profiles deter-
mine the electron diamagnetic drift vD,e and the E×B drift, respectively. In cylindrical
geometry one obtains

vD,e = −kBTe

eB

1

n

∂n

∂r
eθ and vE =

1

B

∂φ

∂r
eθ . (5.1)

The corresponding frequencies are

fD,e = vD,e/2πr and fE = vE/2πr . (5.2)

For a Gaussian density profile the diamagnetic drift increases linearly with radius, which
corresponds to a frequency independent of the radial position. The frequency related to
the E×B drift is independent of radial position for potential profiles of the functional
form φ(r) = a r2 + b. Under this condition, the plasma column rotates as a rigid body. In
the VINETA device both conditions are usually not fulfilled, thus velocity and frequency
profiles are found to depend on the radial position (also called ‘velocity shear’).

In figure 5.3, radial density and potential profiles are shown together with the derived
velocities and frequencies. The measurement points are indicated by circles, the lines
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are fitted curves of the form f(r) = a exp(−|r/b|c) + d. Velocities and frequencies are
calculated from the fitted curves. From the shape of the density and potential profiles it
is found that electron diamagnetic drift and E×B drift are in opposite directions.

Figure 5.3a) shows that the plasma density increases with increasing magnetic field, as
expected for a helicon discharge. At 78mT, the peak is close to or even below the density
at 71mT, i.e. a saturation of the density is observed. The highest density gradient is
found at radial positions r = 30 − 35 mm for all three cases shown. Unlike the density
profiles, the electron diamagnetic drift velocity (figure 5.3b) is fairly independent on the
magnetic field for |r| 6 40 mm. vD,e radially increases monotonically up to values in the
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Figure 5.3: Radial plasma parameter profiles at different magnetic fields (◦ measured points,
– fitted / derived curve): a) plasma density , b) electron diamagnetic drift, c) frequency cor-
responding to the electron diamagnetic drift, d) plasma potential, e) E×B drift, f) frequency
corresponding to the E×B drift. A compensated probe on the horizontal probe positioning sys-
tem at z = 2470mm was used. The signs of the velocities (indicating the direction) are omitted.
The discharge parameters are pAr = 0.3 Pa, PRF = 2.5 kW, Te ≈ 1.4 eV for all magnetic fields.
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range of 1700− 2000 ms−1 at the plasma edge. The electron diamagnetic drift velocity is
radially sheared such that the corresponding frequency (figure 5.3c) depends on r as well.
It increases towards the plasma edge and in the relevant gradient region, fD,e ≈ 3−4 kHz.
Figure 5.3d) shows radial plasma potential profiles. It is found that the plasma potential
rises monotonically with increasing magnetic field. For higher magnetic field, the plateau
in the center is broader than for lower magnetic fields. The steepest gradients are found
at radii r = 30 − 35 mm for B = 64 mT and B = 71 mT and at r ≈ 45 mm for 78mT.
The derived E×B drift velocity is shown in figure 5.3e). Its magnitude is comparable
to that of the electron diamagnetic drift velocity. The highest E×B velocities are in the
range of 1500 − 2600 ms−1 and are found at radial positions r = 30 − 45 mm. Here,
the position depends on the magnetic field, corresponding to the different widths of the
potential profiles. The corresponding frequencies in figure 5.3f) have maxima in the range
of 5−18 kHz, whereas the radial position of the maximum again depends on the magnetic
field. In any case, the maxima are found at lower radii than for the electron diamagnetic
drift frequency. Whereas the latter is nearly independent of the ambient magnetic field,
the E×B drift frequency shows a decrease with increasing magnetic field.

5.3 Variation with the neutral gas pressure

The neutral gas pressure is a different external control parameter of the experiment.
Collision frequencies and thereby classical diffusion are determined by the neutral gas
pressure.

Figure 5.4 shows the dependencies of radial density and potential profiles and, using
these, the derived velocities and corresponding frequencies on the neutral gas pressure
(see also figure 5.3). The density profiles are insensitive to neutral gas pressure changes
(figure 5.4a). The steepest density gradients are always at r ≈ 30 mm. However, small
deviations in the far edge region lead to a slightly different shape of the sheared electron
diamagnetic velocity profiles in figure 5.4b). The peak values are around 3000 ms−1 at
the plasma edge. The corresponding frequencies also depend on the radial position and
values in the range 8–10 kHz are found in the region of the steepest density gradients
(figure 5.4c).

The potential profiles for the two different neutral gas pressure values are shown in fig-
ure 5.4d). For higher neutral gas pressure, the plasma potential is found to be higher. We
note that the measurements are more scattered and seem to form a hollow profile. Never-
theless, for sake of simplicity and owing to relatively high uncertainties, a flat-top profile
is fitted to the measured points. The derived E×B velocities are shown in figure 5.4e).
The velocity is strongly sheared and increases towards the plasma edge to peak values of
2000− 2500 ms−1. In the relevant density gradient region, the E×B drift frequencies are
in the range 4-7 kHz (figure 5.4f).
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Figure 5.4: Radial parameter profile at different neutral gas pressure: a) plasma density (◦
measured points, – fitted curve), b) electron diamagnetic drift, c) frequency corresponding to
the electron diamagnetic drift, d) plasma potential (◦ measured points, – fitted curve), e) E×B
drift, f) frequency corresponding to the E×B drift. A compensated probe on the horizontal
probe positioning system at z = 1770mm was used for the measurement. Discharge parameters:
B = 67mT, PRF = 2.2 kW, Te ≈ 2 eV for both pressures.

5.4 Discussion

Prior to the discussion, we give a brief summary of the most important findings:

• The plasma density is peaked in the plasma center with maximum densities in the
range of 1018 . . . 1020 m−3. The radial density gradient is located at r = 10− 40 mm.
The electron temperature profiles are relatively flat and radial temperature gradients
can be neglected to first order. The plasma potential has a similar shape as the
density but it is flat in the center. The location of strong potential gradients depends
more on discharge parameters such as the ambient magnetic field and the neutral



5.4 Discussion 57

gas pressure. The density gradient region often coincides with the potential gradient
region and a clear distinction between both regions is in general not possible.

• The radial density profiles remain axially unchanged over a distance of 1m. The
electron temperature decreases linearly with increasing distance from the plasma
source. Te = 2 eV is observed approximately 2m away from the antenna and is
taken as a mean value. The plasma potential and the radial electric field also
decrease with increasing distance from the antenna.

• Both the electron diamagnetic drift and the E×B drift are sheared and have peak
values in the range 1500 − 3000 ms−1. Both drifts are in opposite directions. The
corresponding frequencies have peak values in the range 5− 15 kHz.

• The plasma density increases with increasing magnetic field and saturates for higher
magnetic field. The electron temperature is nearly independent of the magnetic field
and neutral gas pressure. The plasma potential increases with increasing magnetic
field as well as with increasing pressure. The radial electric field and thereby the
E×B drift frequency decrease with increasing magnetic field. The electron diamag-
netic drift frequency is nearly independent of the magnetic field and the neutral gas
pressure.

Ionization degree

The ionization degree ni/(ni + nn) is an important quantity referred to in the following
discussion of collision processes. To date, no measurements of neutral densities have been
performed for the VINETA device. The gas temperature and neutral density profiles
can be estimated as follows:

Assuming that the neutral gas is at room temperature, it is determined from the equation
for an ideal gas p = nkBT , that the neutral density is connected to the neutral gas
pressure by ng = 2.5 · 1020 p [Pa] m−3. At a pressure of 0.1Pa the neutral gas density is
2.5·1019 m−3 which is close to the observed peak plasma densities. In other helicon devices,
heating of the neutral gas up to 1000K has been observed [107], as well as a depletion of
neutral gas in the plasma center due to neutral pumping [34,107]. Both lead to a further
reduction of the neutral gas density and suggest ionization degrees close to 100% in the
plasma center, especially at low neutral gas pressures. This is supported by the observed
breakdown of the helicon discharge for neutral gas pressures below 0.1Pa. The helicon
wave dispersion relates the plasma density with the ambient magnetic field and the axial
wavelength of the helicon wave (see equation (4.2)). If the neutral gas density ng is less
than the corresponding plasma density, the helicon discharge cannot be sustained.

On the other hand, a big reservoir of neutral gas is present around the plasma core. This
should provide refilling with neutral gas from the surrounding reservoir and the neutral
gas density would remain essentially constant, leading to ionization degrees of several 10%
in the plasma center. Such a gas plenum was proposed to further increase the densities
achievable with helicon discharges [108]. The breakdown of the helicon mode for pressures
below 0.1Pa suggest that this does not happen effectively enough in the VINETA device.
This might be due to the position of the gas feed (opposite to the plasma source). In any
case, the ionization degree in the center is much higher than 1%, of the order of several
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Figure 5.5: Color coded ratio between Coulomb collision frequency νei and frequency νen for
collisions between electrons and neutrals. Argon pressure and plasma density are the parameters.
Te is kept fixed at 2 eV and the neutral gas temperature is kept fixed at Tg = 300K = 0.025 eV.
Note the logarithmic scale. The black line indicates νei = νen. The operation regime of the
VINETA device is indicated by the black rectangle. The yellow rectangle indicates the operation
regime of the DLPD device and triple-plasma devices KIWI and MIRABELLE (see below).

10% up to 100% in the plasma center. Under these conditions, not only electron collisions
with neutrals, but also Coulomb collisions must be accounted for.

Collision frequencies

Collision frequencies are not easily determined and the values depend to a large extent
on the atomic data used, especially for collisions with neutrals. The formulas used in this
thesis to estimate collision frequencies are provided in appendix B.

For Coulomb collisions between electrons and ions, the collision frequency varies between
νei = 106 s−1 at edge densities of 1017 m−3 and νei = 108 s−1 at core densities of 1019 m−3

(assuming Te = 2 eV). The combination of high plasma density at low electron tem-
perature is responsible for these high collision frequencies. The collision frequency for
electron-neutral collisions is in the range νen = 106 s−1 for a neutral gas pressure of 0.1 Pa
and νen = 107 s−1 for 0.8Pa.

Figure 5.5 shows the ratio between Coulomb collision frequency νei and electron-neutral
collision frequency νen as a function of the neutral gas pressure and the plasma density.
Electron temperature Te and neutral gas temperature Tg are kept fixed at Te = 2 eV
and Tg = 0.025 eV. The plot is color coded with logarithmic scale. The gas pressure is
chosen to be between 0.1Pa and 0.65Pa. The plasma density is 1018 − 1020 m−3 in the
plasma center and 1016−1017 m−3 at the edge. The parameter regime determined by these
density and neutral gas pressure ranges is indicated by the black square. In the plasma
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center, Coulomb collisions clearly dominate for all pressures, however, at the plasma
edge, collisions with neutrals play a significant role. For higher neutral gas temperatures,
Coulomb collisions are even more dominant.

The yellow rectangle indicates a parameter regime which is achieved in three other devices
where drift waves have been studied in argon plasmas. These devices are the Darthmouth
Linear Plasma Device (DLPD) [9,10], KIWI and MIRABELLE [109,110], and in these,
collisions with neutrals clearly dominate.

The discharge equilibrium

The discharge equilibrium2 is determined by plasma sources and sinks, and also by trans-
port processes parallel and perpendicular to the ambient magnetic field. A comprehensive
discussion of the discharge equilibrium is beyond the scope of the present thesis and only a
few remarks are given subsequently. The helicon source produces a radially peaked plasma
profile, localized within the antenna region. This is typical for helicon sources with helical
antenna coupling and indicates that in the helicon discharge mode the plasma production
occurs detached from the antenna [76,111]. This is in contrast to capacitive coupling
where the highest densities are found close to the antenna [78]. Electrons and ions are
lost by diffusion to the walls. Electron and ion motion parallel to the magnetic field is not
affected by the Lorentz force, but is slowed down by collisions. Across the magnetic field,
collisions lead to diffusion and the perpendicular diffusion is thus dependent on the colli-
sion frequencies [1]. Diffusion processes also determine the density profiles. The plasma
density remains axially constant in the considered region, but a decay of the plasma
density further downstream is likely due to perpendicular diffusion and possibly volume
recombination. If the total particle fluxes of electrons and ions would differ significantly,
a serious charge imbalance would soon arise [1]. Thus, diffusion rates of electrons and ions
must adjust themselves by creation of self-consistent electric fields (and thereby potential
profiles). Furthermore, a sheath forming in front of the grounded endplate determines the
plasma potential [98]. The electron temperature is found to decrease monotonically with
distance from the antenna. In references [112,113], the axial profile of the electron tem-
perature in a helicon discharge is quantitatively explained by classical heat conduction.
It was found that the electrons are heated only in a region within a helicon wavelength of
the antenna. The Te decay length is determined by heat conduction and electron cooling
by inelastic collisions (such as excitation and ionization collisions with neutrals).

Parallel electron drift

A parallel electron drift is one of the destabilizing factors for the drift instability (see
equation (2.27)) [114]. The drift velocity V can be roughly estimated from the parallel
component of equation (2.4):

0 = −∇‖kBTen− neE‖ − nνemeV . (5.3)

2In this context, the term equilibrium does not mean a thermodynamical equilibrium which is nearly
never reached in laboratory plasmas. Instead, the equilibrium between plasma production and plasma
loss is meant which leads to nearly constant conditions within a short time (� pulse length).
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From figure 5.1 it is found that n(z) ≈ const., ∇‖Te ≈ −1 eV/m and E‖ = −∇‖φp ≈
3 V/m. With the electron collision frequency νe ≈ 108 s−1 (see above) this leads to

V =
1

nνeme

(
−ne∇‖TeV − neE‖

)
≈ e

νeme

2V/m = 3500m/s . (5.4)

This value for the parallel electron velocity V is close to the ion sound speed cs, differing
by only 35% from the typical value cs ≈ 2600 m/s which was given in chapter 4. In
comparison to the electron thermal velocity, V ≈ 0.006 vth,e. Thus, as expected for a
helicon discharge [113], a relatively small axial flow of electrons occurs. Assuming for
simplicity a radially constant axial electron drift and a radially constant plasma density
of 5 · 1018 m−3 up to a radius of 30mm, the current density J‖ = enV is then estimated

to be J‖ = 2800 A/m2. With the same assumptions, the electron current is estimated to
be I = J‖A ≈ 8 A. Due to the high plasma density, this value is much higher than in
other discharges, where the parallel electron drift velocity is much higher but the plasma
densities are lower by orders of magnitudes [9,115].

Comparison to other drift wave experiments

Drift waves have been investigated in different plasmas since the 1960s. In table 5.1,
plasma parameters of the VINETA device are compared to the parameters of three
other linear magnetized plasma devices in which experiments on drift waves have been
conducted. The MIRABELLE device [109,116] and the KIWI device [110] are triple-
plasma devices. The DLPD is a single-sided device used by Ellis, Marden-Marshall
and coworkers [9,10]. In all devices, argon is used as filling gas.

In all four devices, the values for the ion cyclotron frequency Ωci, the drift scale ρs and
the ion sound velocity cs are quite similar. In the VINETA device Coulomb collisions
dominate. In the other three devices electron-neutral collisions dominate due to the much
lower degree of ionization. The effective electron collision frequency νe = νei + νen is
two orders of magnitude higher in the VINETA device than in the other devices. Also
the ion collision frequency is one order of magnitude higher in the our device if neutral
depletion effects are neglected. This means that the VINETA plasma has a much higher
collisionality than the plasma in other devices used for drift wave studies.

The plasma β is 750 times larger in the VINETA device than in MIRABELLE and
KIWI, and 4000 times larger than in the DLPD. Consequently, β exceeds the mass ratio
me/M by a factor of 60, whereas in the other devices β is well below the mass ratio. In
low-β plasmas (i.e. βµ < 1), electromagnetic effects can generally be neglected. Although
in our device βµ > 1, the high collisionality leads to negligible magnetic field fluctuations
(see chapter 2).

We note a further difference: the parallel electron velocity V . As estimated above, V
is an order of magnitude lower in the VINETA device than in the other devices where
the parallel electron drift is considered as an important destabilizing effect. On the other
hand, in the VINETA device, the destabilization due to the parallel electron drift is
a less important factor while the destabilizing role of electron collisions is significant.
Consequences on the drift wave physics will be discussed in more detail in chapter 7.
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parameter VINETA MIRABELLE KIWI DLPD

peak plasma density [m−3] 1 · 1019 2 · 1015 1 · 1016 1 · 1016

electron temperature [eV] 2 2 1.5 2

gas pressure [Pa] 0.3 0.01 0.1 0.1

magnetic field [mT] 70mT 40mT 70mT 200mT

ionization degree [%] 10-100 0.1 0.1 0.3

Ωci [rad/s] 1.7 · 105 1.0 · 105 1.8 · 105 4.8 · 105

ρs [mm] 13 23 11 5

cs [m/s] 2600 2500 1900 2500

νen [1/s] 5 · 106 2.5 · 105 1 · 106 2 · 106

νen/Ωci 30 2.5 5.5 4

νei [1/s] 1 · 108 3 · 104 2 · 105 1 · 105

νei/Ωci 600 0.3 1.1 0.2

νin [1/s] 6 · 104 9 · 102 6 · 103 6 · 103

νin/Ωci 0.3 0.01 0.03 0.01

plasma β 8 · 10−4 1 · 10−6 1 · 10−6 2 · 10−7

βµ = β/(me/M) 60 0.07 0.09 0.01

V/cs 1 −1 40 50

Table 5.1: Comparison between different experimental devices in which experimental investi-
gations on drift waves have been conducted. In all devices, argon is used and the neutrals are
assumed to be at room temperature. Values for the MIRABELLE device from reference [116],
for the KIWI device from reference [115] and for the DLPD from references [9,10].
1 No data available. Due to the similarity between KIWI and MIRABELLE, V is expected to
be of similar magnitude in both devices.
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Chapter 6

Low-frequency instability in
VINETA

A low-frequency instability with frequencies well below the ion cyclotron frequency is
observed in the helicon plasma of the VINETA device. Because of its edge-localization
it was suggested to be a drift-type instability right from the beginning. The main goal
is thus the identification and systematic control of this instability. Main features of drift
waves for non-ambiguous identification are the following:

• highest fluctuation levels are in the density gradient regions.

• normalized density and potential fluctuations are similar in magnitude:
ñ/n ≈ φ̃p/T[eV ].

• phase angle between ñ and φ̃ is non-zero with ñ leading φ̃.

• phase velocity is in the electron diamagnetic drift direction.

• parallel wavelength λ‖ = 2π/k‖ is non-zero and k‖ ∼ (machine length)−1 � k⊥.

• frequencies and wavelengths are compatible with drift wave theory.

Different dynamical states of the instability can be observed in the VINETA device. It
is sometimes of advantage to consider single saturated modes which are characterized by
poloidal mode number and frequency. Subsequently, also the poloidal mode structure of
saturated modes is discussed. Nonlinear interaction of different modes and turbulence
have also been observed and some examples are shown.

Typical length scales for the drift wave dynamics, such as the ion gyro radius and drift
scale ρs, depend on the ambient magnetic field B. Neutral collision frequencies depend
on the neutral gas pressure pg. The E×B drift was found to depend on both, the ambient
magnetic field and the neutral gas pressure. It is thus reasonable to expect that the
discharge parameters determine the drift wave dynamics. This allows one to control the
drift wave dynamics. The variation of the drift wave dynamics also gives some insight
into important physical mechanisms, especially the dominating destabilization effects.
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For drift waves, plasma density and plasma potential fluctuate interdependently. To gain
good spatial and temporal resolution of both quantities, ion saturation current fluctua-
tions Ĩi,sat are taken to be proportional to density fluctuations ñ and floating potential
fluctuations φ̃f are taken to be proportional to plasma potential fluctuations φ̃p. As out-
lined in section 4.2.1, these assumptions are valid for negligible temperature fluctuations
T̃e, which may be assumed in the VINETA device.

6.1 Time evolution

The helicon discharge was operated in pulsed mode with typical pulse length 300−500 ms.
For ensemble averaging, a sequence of pulses at the same operation parameters is recorded.
It is thus essential to consider the evolution of the fluctuation dynamics during a pulse as
well as the reproducibility for subsequent plasma pulses.

Figure 6.1a) shows a typical time series of the ion saturation current for a 500ms pulse.
After triggering the plasma, the ion saturation current raises within ∼ 4 ms up to a certain
level where fluctuations are already visible. About 15ms after the plasma is switched on,
the ion saturation current increases again and within ∼ 25 ms reaches a mean level where
it remains rather constant for the rest of the pulse, as seen in the moving average curve.
The exact shape of the start-up phase is very different for different discharge parameters.
While the mean density is constant over several 100ms, during the whole pulse the ion
saturation current shows strong fluctuations discussed below. When the RF power is
switched off at 500ms, the plasma decays within a few ms.

By inspecting the pulse in figure 6.1a) one gets the impression that the fluctuation dy-
namics change at least twice after the start-up phase. The time instants where fluctuation
changes occur are indicated by arrows. At 105ms, the fluctuation degree suddenly in-
creases, at 335ms the same happens again. Figures 6.1b-j) give more insight into the
fluctuation dynamics for the three indicated time intervals. For each, a 5ms sample in-
terval of the time series is shown in figures 6.1b-d). Frequency power spectra and PDF’s
for each indicated 40ms interval are shown in figures 6.1e-j).

In interval I, the time series has a certain periodicity but the amplitude is rather irregular
(figure 6.1b). This is seen in the power spectrum where a peak at 4.4 kHz is embedded
into a broad background with a number of smaller peaks. The PDF is double humped
and nearly symmetric, as expected for sinusoidal signals. For interval II, the minima
of the fluctuations remain at nearly the same level while the maxima are systematically
higher and show more irregularity if compared to I (figure 6.1c). This is clearly seen in
the corresponding PDF in figure 6.1i), showing a peak for amplitudes below the mean.
The PDF for amplitudes above the mean is flat and broadened. The power spectrum in
figure 6.1f) is similar to the one in figure 6.1e). Figure 6.1d) shows that in interval III the
fluctuation amplitude increases again. The PDF is broader and again asymmetric with a
peak for amplitudes below the mean value (figure 6.1j). The power spectrum still shows
a pronounced peak, but at a different frequency, 3.6 kHz. This corresponds to one of the
smaller peaks in figures 6.1e,f), which means that a different mode took over.

Figure 6.1 reveals that even within one pulse the fluctuation dynamics can change signif-
icantly with respect to amplitude and spectrum. It has been found that the fluctuation
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Figure 6.1: Time series for a 500 ms plasma pulse. a) time series of the entire pulse. The
white line shows the moving average of the time series. The arrows indicate the points where
the fluctuation dynamics obviously change while the gray boxes indicate the time windows
for which the fluctuation dynamics are shown in more detail in the subplots b-j): b-d): 5ms
sample time series from the three indicated time windows. e-g): Power spectra for the three
indicated time windows. h-j): PDF for the three indicated time windows. Discharge parameters:
B = 82mT, pAr = 0.25 Pa, PRF = 3.1 kW.

dynamics within subsequent pulses are very similar (the same frequencies and mode num-
bers are observed) and sudden changes of the dynamics are found at nearly the same
time instants. The cause of these sudden but reproducible changes of the fluctuation dy-
namics can only be speculated. The slow neutrals might play a role here. Consequently,
for ensemble averaging, a certain time window out of the entire pulse is chosen where
the fluctuation dynamics remain stationary. Usually, these time windows are chosen to
be at least several tens of ms after the start of the pulse. For measurements with the
probe array (where usually only time series of several 10ms are recorded), care has been
taken to choose a proper delay time for triggering. From simultaneous measurements with
probes located at different axial and radial positions it has been found that the fluctua-
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tion dynamics are global, which means that throughout the machine the features of the
fluctuations are similar.

6.2 Localization of fluctuations

One of the most obvious characteristics of gradient driven instabilities is that the fluc-
tuation degree peaks in the region of maximum gradient. For drift waves, a localization
in the region of highest density gradients is expected. These are at radial positions
r = 25− 35 mm in the VINETA device.

In figure 6.2a) a radial profile of the mean ion saturation current is shown1. Assuming
Ii,sat ∝ n one finds that within 50mm from the plasma center the density decreases to less

1The mean values of ion saturation current as well as the fluctuating part of the ion saturation current
are normalized to the peak value of the mean ion saturation current.
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Figure 6.2: Radial localization of ion saturation current fluctuations. a) shows a time-averaged
profile of the ion saturation current. For five marked radial positions, time series starting 200ms
after the start of the pulse (b-f), and power spectra (g-k) are given. The ion saturation current
is normalized to the peak value in the center of the plasma column. Discharge parameters:
B = 82mT, pAr = 0.25 Pa, PRF = 3.1 kW.
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than 10% of the peak value. The profile is not completely symmetric and looks a little
flatter for positive r. For five marked radial positions, time series and power spectra are
shown in figures 6.2b-k). The positions are symmetric around the plasma center.

At the plasma far edge, at r = ±50 mm (figure 6.2b,f,g and k), the plasma is relatively
quiet. Small fluctuations are observed with amplitudes of up to 3% of the peak density.
At r = +50 mm, they have slightly higher amplitude than at r = −50 mm. Small peaks
are found in the power spectrum, whereas the most pronounced peak is at 4.4 kHz, ac-
companied by higher harmonics of this frequency. In the gradient region r = ±30 mm,
the observed fluctuations become large with amplitudes up to 10% of the peak density
(figure 6.2c,e) which corresponds to 30% of the local plasma density. The corresponding
power spectra in figure 6.2h,j) show a single pronounced, narrow peak at 4.4 kHz and
higher harmonics. Besides the 4.4 kHz peak a number of smaller peaks are found, some
of these are sidebands of the main peak. In the center of the plasma, no fluctuations are
observed (figure 6.2d,i). The spectral power is much smaller, although a small peak at
4.4 kHz remains.
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Figure 6.3: Localization of the observed fluctuations. a) Radial ion saturation profile nor-
malized to its peak value. b) Radial profiles of the standard deviation (std) of ion saturation
current fluctuations and floating potential fluctuations. Floating potential is measured in V,
while ion saturation current fluctuations are normalized to the peak value of the background
profile. The arrow indicates the position where the phase shift between ion saturation cur-
rent fluctuations and floating potential fluctuations is measured (see section 6.3). Discharge
parameters: B = 78mT, pAr = 0.25 Pa, PRF = 3.1 kW.
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saturation current normalized to its peak value, b) standard deviation of ion saturation current
normalized to the peak value of the time-averaged profile. The circles indicate the region where
fluctuations are significant. Discharge parameters: B = 67mT, pAr = 0.45 Pa, PRF = 2.5 kW.

Figure 6.3b) shows radial profiles of standard deviations2 of ion saturation current fluctu-
ations and floating potential fluctuations for a coherent mode with a frequency of 3.5 kHz.
For comparison, a profile of the mean ion saturation is given in figure 6.3a). Both density
and potential fluctuations are found to have a maximum in a region between r = 15 mm
and r = 40 mm, the region of steepest density gradients. In the center of the plasma col-
umn the fluctuations are much smaller. The potential fluctuations do not become much
smaller at the edge of the plasma, density fluctuations decrease significantly towards the
edge.

For the position indicated by the arrow one finds a density fluctuation level of ñ/n ≈ 0.13.
The electron temperature is estimated to be 2.5 eV (see figure 5.2)3 which leads to a
potential fluctuation level of φ̃/T[eV ] ≈ 0.15. Thus, both fluctuation levels are equal. At
r = −25 mm, where density fluctuations are highest but floating potential fluctuations are
smaller, it is found that φ̃/T[eV ] ≈ 1.8 ñ/n. In conclusion, the relative fluctuation levels

of density (ñ/n) and potential (φ̃/T[eV ]) are of similar magnitude in the strong gradient
regions.

Figure 6.4 shows color coded poloidal profiles of the mean ion saturation current and the
standard deviation of ion saturation current fluctuations. They are measured by a single
movable probe and averaged over a series of plasma pulses. The ion saturation current
is normalized to its peak value. Time series were recorded with a spatial resolution

2Note that this differs from the amplitude of the fluctuations, e.g. for a purely sinusoidal signal the
amplitude is by a factor of

√
2 ≈ 1.4 higher than the standard deviation.

3The measurement was conducted close to z = 1500 mm.
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of 10mm. This picture confirms that the fluctuations are localized within the density
gradient region of the plasma. The white circles indicate the ring around the plasma
center where the fluctuation degree is above ∼ 30% of the maximum fluctuation degree.
While the plasma density profile looks rather symmetric, the fluctuation profile is found
to be slightly asymmetric. This is, however, mainly a measurement artefact. The probe
is moved inwards from the left side of the diagram and extends far into the plasma
for measurements at the right hand side of the picture which might disturb the plasma
dynamics. Nevertheless, this does not explain the up-down asymmetry which has been
observed during other measurements as well4. A possible explanation is that the plasma
source does not produce a fully symmetric plasma. In reference [78], such asymmetries
were reported for magnetic fluctuations.

6.3 Phase between density and potential fluctuations

For the observed instability, the spectral features of density and potential fluctuations are
generally similar. From drift wave theory a small phase shift between density and poten-
tial fluctuations is expected. The density fluctuations should be ahead of the potential
fluctuations (see chapter 2).

The average phase shift between ion saturation current fluctuations and floating potential
fluctuations at one position is measured for a coherent mode. A pair of axially separated
uncompensated Langmuir probes is used, which are arranged as shown in figure 4.13.
Both probes are located at fixed positions in the region of strongest fluctuations. Probe
#1 serves as a reference probe and records time series of the ion saturation current.
With probe #2, located at r = −35 mm (see figure 6.3), time series of ion saturation
current and floating potential are recorded successively. Time series of reference signal 1
and the floating potential were recorded simultaneously. Afterwards, simultaneous time
series of reference signal 2 and of ion saturation current were recorded. The two reference
signals are time shifted such that they have zero phase shift (see figure 6.5a). The time
series of ion saturation current and of floating potential are accordingly time shifted.
The result is depicted in figure 6.5b). We note here that the ion saturation current
fluctuations are much more regular than the floating potential fluctuations. In figure 6.5b)
it is clearly observed that a small average phase shift between fluctuations of the ion
saturation current and the floating potential exists. The ion saturation fluctuations are
ahead of the floating potential fluctuations. From the cross power spectrum figure 6.5c),
a value of about 10◦ = π/18 is found for the phase shift. Repeated measurements for
different plasma parameters yielded phase shifts of up to 35◦ ≈ π/5 in the region of
the strongest fluctuations. The phase shift dependency on the radial position was not
investigated here.

4This asymmetry is also found independent of whether or not the horizontal probe positioning is
installed inside the vacuum chamber.
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Figure 6.5: For an estimation of the phase shift between density and potential fluctuations,
time series for ion saturation current fluctuations and floating potential fluctuations have been
measured successively. a) Adjusted time series of the reference probe. b) Time series of ion
saturation and potential fluctuations. The floating potential was measured simultaneously with
reference signal 1, ion saturation with reference signal 2. Time series of reference signal 2 and
ion saturation current are shifted in time in order to get zero phase shift between reference
signals. c) Magnitude and phase of the cross power spectrum between the two adjusted time
series. Discharge parameters: B = 78mT, pAr = 0.25 Pa, PRF = 3.1 kW.
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6.4 Poloidal Mode structure

Drift waves propagate mainly in poloidal direction. The observation of the dynamics in
the poloidal plane allows one to analyze mode numbers, propagation velocities, and also
the mode structure itself. Two methods are used for measurements in the poloidal plane
(see also chapter 4). With the poloidal 64 probe array, time series on one circle in the
poloidal plane can be measured simultaneously which gives immediate access to mode
numbers and phase velocities. A poloidal probe positioning system allows for subsequent
measurements of time series in the entire poloidal plane. Statistical methods are used to
reconstruct poloidal mode structures.

Figure 6.6 shows the results of measurements with the poloidal probe array COURONNE
for three different dynamical states, obtained for different discharge conditions. In fig-
ure 6.6a), the space-time diagram for a single saturated m = 6 mode is plotted. Minima
(blue) and maxima (red) of the ion saturation current form a regular stripe pattern. The
probe signals are normalized to their standard deviation. A pronounced peak is found
in the corresponding frequency-mode-number spectrum (figure 6.6b). The ‘sidebands’
are due to the limited number of points in the spatial direction (spectral leakage [117]).
Figures 6.6c,d) show a state with a number of interacting modes. There is still a reg-
ularity in the stripe pattern but it is modulated and sometimes broken. The slope of
the striations differs for different positions in space and time, indicating non-constant
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Figure 6.6: Spatiotemporal dynamics measured with the probe array COURONNE for
three exemplary dynamical states. First row: color coded space-time diagrams. Second row:
frequency-mode-number spectra (linear scale). a,b) saturated m = 6 mode. (Discharge param-
eters: B = 82mT, pAr = 0.25 Pa, PRF = 3.1 kW) c,d) state with interacting modes. (Discharge
parameters: B = 46 mT, pAr = 0.18 Pa, PRF = 3.6 kW) e,f) weakly turbulent state. (Discharge
parameters: B = 69mT, pAr = 0.30 Pa, PRF = 2.6 kW)
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poloidal propagation. Similar dynamics have been observed in other linear devices and
were explained in terms of modulated monochromatic travelling waves [118]. The as-
sociated frequency-mode-number spectrum shows a number of broadened peaks for at
least two different frequency ranges, around 4 kHz and below 1 kHz. In the third column
(figures 6.6e,f), a weakly developed turbulent state is shown. The spatiotemporal plot
reveals structures that are irregular and non-periodic in time. This means that large scale
fluctuation structures dominate, propagating in the same direction as coherent modes,
but with a certain velocity spread. Similar dynamics have been observed in other ex-
periments [17,119]. In the frequency-mode-number spectrum, no pronounced peaks are
found. Instead, the spectral power is scattered over a broad region in frequency and mode
numbers.

From the space-time diagram the phase velocity of the wave can be estimated. For the
m = 6 mode in figure 6.6a), a phase velocity of 180 m/s ≈ 0.1 vD,e is found (see figures 5.3,
5.4 and 6.14). The propagation direction of the wave can also be easily deduced from these
diagrams. It is always found that the observed instability propagates in the electron
diamagnetic drift direction.

In figure 6.7, poloidal mode structures are shown. Cross correlations between time series
of a fixed reference probe and a probe on the poloidal positioning system are shown in
a color coded diagram for nine different time lags (see also section 4.2.2). For maximum
cross-correlation (yellow regions), the time series of both probes are shifted against each
other by the respective time lag. This means that here time series have coinciding maxima
and minima. Accordingly, for positions with minimum cross correlation (blue regions),
time series have coinciding maxima and minima as well. Note that in the cross correlation
analysis only phase information is retained.

The two circles around the plasma center indicate the region of highest fluctuation levels
(see figure 6.4). We note that also small fluctuations outside this region show a high
correlation, especially in the left half of the plots. On both circles, a black bullet follows
a maximum of the correlation function. There are five spiral arms on one circumference,
indicating an m = 5 mode structure. This is confirmed by measurements with the poloidal
probe array. There is a distortion at the right hand side of the plots which is probably
an effect of the intrusive probe extending far into the plasma.

Striking is the spiral structure observed. The ‘arms’ of maximum and minimum cross
correlation do not extend just radially outward, as one might naively expect. Instead,
they are strongly bent clockwise. The same holds true for other modes with different
mode numbers. In the following, these structures are referred to as sheared structures. In
chapter 7 it is shown that also in the numerical solution of the linear dispersion relation
similar sheared structures are found.

The comparison of the entire sequence of plots yields that for increasing time lag the
structure rotates anti-clockwise until for a time lag of 320ms the maxima and minima
of the structure are found to be at the same positions as for zero time lag. This time
corresponds well to the frequency peak at 3.1 kHz obtained from the time series. Since
the bullets on both circles are rotated by 9◦ between each two subsequent plots, it is
concluded that the sheared structure rotates rigidly. After 320ms the arm of the structure
has rotated by 72◦ which is 1/5 of one full rotation, consistent with mode number m = 5.

Figure 6.7 contains no information about the amplitude of the fluctuations. A more real-
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between subsequent plots. Discharge parameters: B = 65mT, pAr = 0.36 Pa, PRF = 2.8 kW.

istic picture of the actual poloidal mode structure can be obtained if the cross correlation
is pointwise multiplied with the poloidal fluctuation profile. A fluctuation profile similar
to the one in figure 6.4b) was measured. However, the asymmetry of the observed fluctu-
ation profiles makes it difficult to distinguish between amplitude and phase information
in the resulting profile. Therefore, only a radial fluctuation profile was considered and
rotated in the poloidal plane to obtain a rotationally symmetric fluctuation profile. The
result is shown in figure 6.8. The shear of the mode structure is still there but the arms
do not extend anymore into the far plasma edge due to the small fluctuation amplitudes
there. In the plasma center the mode structure vanishes for the same reason.
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6.5 Parallel Wavelength

Drift waves have a long but finite parallel wave length. This provides a non-ambiguous
distinction to flute-like modes which have infinite parallel wavelength. The measurement
of the parallel wavelength is thus important for the identification of drift waves. In the
VINETA device the parallel wavelength of the observed instability has been measured
as described in section 4.2.2. Two probes are axially aligned along the magnetic field and
time series of both probes are measured simultaneously. Figure 6.9 shows a cross power
spectrum between the signals of both probes for an m = 6 mode. The magnitude of
the cross power is peaked at 4.4 kHz. The cross power phase spuriously fluctuates within
the full ±π range at most frequencies, but the phase is constant around the frequency
4.4 kHz. From this, the phase shift between the two signals is found to be 23◦ ± 3◦ =
(0.064 ± 0.008) × 2π. The distance between the two probes was (30 ± 0.5) cm. This
yields an value of (4.7 ± 0.7) m for the parallel wavelength, which agrees very well with
the device length (about 5m between the grounded endplate and the end of the glass
tube). For other measurements, the axial distance between the two probes was changed
to (85± 2) cm. Similar results were obtained for both probe distances.

A number of measurements were carried out for modes with mode numbers m = 4 − 6.
The obtained wavelengths are plotted in figure 6.10 with error bars. The wavelength
values are not arbitrarily scattered but fall into two groups indicated by the gray bars:
five measurements gave wavelengths between 4.3m and 6.1m, two were close to 11m.
In one single case, an unusually long wavelength of (30 ± 10) m was measured. From
these measurements no clear relationship between the different wavelengths and the mode
numbers and frequencies could be established. For the two cases where λz ≈ 11 m was
obtained, the frequencies were slightly lower (with a deviation of less than 15%) than
for other modes with λz ≈ 5 m, having the same mode number at similar experimental
conditions. Given by the axial boundary conditions, one can expect that the parallel
wavelength is determined by the machine length. Either one wavelength or half the
wavelength fit well the device length. To conclude, the observed instability clearly has a
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Figure 6.10: Result of the measurements of the parallel wavelength. The measured wavelength
are plotted with error bars. The boxes indicate the grouping of the measured values.

finite parallel wavelength.

6.6 Dependency on magnetic field

There are two reasons for interest in the dependency of fluctuation dynamics on discharge
parameters. On the one hand, it is useful to identify control parameters which allow for
changing the fluctuation dynamics within certain limits. On the other hand, it gives some
insight into mechanisms that influence the fluctuation dynamics.

Figures 6.11 and 6.12 show the change of the fluctuation dynamics due to variation of
the ambient magnetic field. The probe array was used for measurement of the fluctuation
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Figure 6.11: Dependency on magnetic field: Dynamics for six different values of the background
magnetic field. The first column shows color coded space-time diagrams measured with the probe
array. The second column shows frequency-mode-number spectra in linear scale while the third
row shows a logarithmical power spectrum obtained from a time series of one probe of the probe
array. Discharge parameters: pAr = 0.35 Pa, PRF = 2.2 kW.
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dynamics. For magnetic fields below ∼ 50 mT the plasma is generally very quiescent.
Figures 6.11a-c) show fluctuation dynamics for an ambient magnetic field of 60mT. Fluc-
tuations are noise-like at low fluctuation levels. The frequency-mode-number spectrum
shows that the spectral power is scattered over a wide range of frequencies and mode num-
bers. Also, the (logarithmically plotted) frequency power spectrum of one single probe
shows a broadband spectrum with significant power only in the low-frequency range up
to 5 kHz.

For ambient magnetic field 71mT, a totally different situation is found (figures 6.11d-f).
The space-time diagram shows a regular stripe pattern, slightly bent and indicating an
m = 5 mode. The frequency-mode-number spectrum confirms a dominant m = 5 mode
at a frequency of 3.1 kHz. Beside this, a small peak is observed at m = 1 and f ≈ 0.7 kHz,
consistent with a small amplitude and phase modulation observed in figure 6.11d . This
peak is also seen in the frequency spectrum and leads to modulation sidebands of the
3.2 kHz peak.

If the magnetic field is further increased to 75mT, the fluctuations become more irregular
as shown in figure 6.11g-i). The m = 5 mode is still present, but the phase fronts break
occasionally. As above, also a spatiotemporal modulation is observed. The frequency-
mode-number spectrum (figure 6.11h) still shows a peak at m = 5 with a corresponding
frequency of 3.1 kHz but there is a broadband background, also seen in the frequency
power spectrum 6.11i).

For a magnetic field of 78mT, the situation has again changed, shown in figures 6.11j-l).
It is similar to the case for 75mT, except that now an m = 6 mode at 3.9 kHz is found to
be the strongest mode, still embedded within a broad noise-like spectrum. A remaining
small peak of the m = 5 mode is also observed.

If the magnetic field is further increased, the m = 6 mode becomes more and more
dominant. In figures 6.11m-o), at B = 86 mT, one finds very regular fluctuation dynamics
while the noisy background in the power spectra has nearly completely vanished. Besides
the m = 6 mode at 4.5 kHz, there is also a smaller peak at m = 5 and frequency 3.5 kHz.
The nonlinear interaction of these two modes leads to a picket fence of peaks in the
frequency power spectrum figure 6.11o). Also the higher harmonics of the m = 6 mode
are pronounced.

The last case, figures 6.11p-r), shows the fluctuation dynamics at 97mT, close to the
highest possible magnetic field in the VINETA device. Another mode has taken over,
with mode number m = 8 and frequency 8.5 kHz. The fluctuations are very regular and
the noise level is rather low. There are fewer sideband peaks than for 86mT. The m = 8
mode is the mode with the highest mode number observed.

Figure 6.12 summarizes the evolution of the power spectrum with variation of the ambient
magnetic field. The bars on top of the diagram indicate the dominating mode. The black
bullets mark the peak values of the spectral power. It is found that the frequencies of the
observed m = 5 and m = 6 modes increase with increasing magnetic field. Only at 75mT,
the frequency of the m = 5 mode decreases slightly which might be an effect of strong
nonlinear interaction with other modes. After onset of the first mode, i.e. for B & 64 mT,
the fluctuation level remains relatively constant (the highest peaks in the power spectra
are close to 50 dB).
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fields. The bars atop the diagram indicate the dominating mode while the black dots indicate
the maximum of each spectrum. The discharge parameters are identical to those of figure 6.11.

Variation of the ambient magnetic field does not only change the fluctuation dynamics
but also the mean plasma profiles. Figure 6.13 shows radial profiles of plasma density, ion
saturation current, plasma potential and electron temperature for increasing magnetic
field. The probe characteristics for a magnetic field above 60mT could not be fully
evaluated for the gradient regions of the plasma. Here, only ion saturation current profiles
are shown.

From figure 6.13a,c) one finds that the plasma density increases with increasing magnetic
field (see also figure 5.3). At the same time, the profiles become steeper. The plasma
potential increases with increasing magnetic field. The electron temperature increases
slightly with increasing magnetic field, but remains almost constant for magnetic fields
above 56mT.

For the three magnetic field values at which fluctuations are observed, drift velocities and
frequencies are calculated and shown in figure 6.14. The measured ion saturation current
profiles were fitted numerically to a Gaussian of the form f(r) = a · exp(−r2/b2) + c
(figure 6.14a). The potential profiles were fitted to f(r) = a · exp(−|(r/b)3|)+ c, shown in
figure 6.14b). In the case of potential profiles, only those at 56mT and 75mT have been
analyzed since for 93mT too few points could be measured.

The results obtained are similar to previous ones shown in figure 5.3. The electron dia-
magnetic drift raises nearly linearly up to a radius of about 40mm and then decreases
(figure 6.14c). The curves for the three magnetic fields are relatively close to each other,
having their maxima in the range 2200 . . . 2500 ms−1. The E×B drift (figure 6.14d) has
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Figure 6.13: Dependency of time-averaged profiles on the magnetic field: a) plasma density, b)
plasma potential c) ion saturation current, d) electron temperature. The discharge parameters
are identical to those of figure 6.11.

a Maxwellian shape with maximum between r = 25 mm and r = 30 mm. At 56mT the
maximum velocity is about 2300 ms−1, close to the value found for the electron diamag-
netic drift. These two curves confirm the previous finding that the E×B drift decreases
with increasing magnetic field (see figure 5.3d).

The frequency related to the electron diamagnetic drift velocity is shown in figure 6.14e).
The three curves nearly coincide and frequencies in the range of 11− 12 kHz are found in
all three cases for radial positions . 40 mm. The profiles in figure 5.3 show a more sheared
electron diamagnetic drift, which is either due to the electron temperature influence on
the ion saturation current or due to uncertainties in the fit. It is concluded that the
diamagnetic drift is nearly insensitive to changes of the magnetic field.

The E×B drift frequency is non-constant over the whole radius, with a maximum around
r = 20 mm. The maximum frequency is again close to the electron diamagnetic drift
frequency. The E×B drift frequency decreases with increasing magnetic field.

Considering the values for the electron diamagnetic drift frequency and the E×B drift
frequency at ambient magnetic field 75mT, it is found that the local slab model (2.28)
yields mode frequencies several times higher than the observed frequencies. A local slab
model is thus inconsistent with observation. For a better agreement, a cylindrical model
has been applied (see chapter 7).
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Figure 6.14: Dependency on the ambient magnetic field: From the ion saturation profile and
the potential profile, absolute values of the poloidal drifts and corresponding frequencies are
calculated. Note that electron diamagnetic drift and E×B drift are in opposite direction. a)
ion saturation current profile, b) plasma potential profile, c) electron diamagnetic drift velocity,
d) E×B drift velocity e) frequency connected with the electron diamagnetic drift for an m = 1
mode, f) frequency connected with the E×B drift. The discharge parameters are identical to
those of figure 6.11.

6.7 Dependency on neutral gas pressure

A parameter scan for the neutral gas pressure was conducted. It is limited to pressures
between 0.15Pa and 0.7Pa. For pressures lower than 0.15Pa, no stable helicon mode
could be established. For pressures above 0.7Pa the fluctuations become too small. The
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magnetic field was maintained at 67mT and the RF power was 2.8 kW in pulsed operation.
An uncompensated probe is used for measurement of the fluctuation dynamics and of
radial ion saturation current profiles.

Figures 6.15 and 6.16 show the fluctuation dynamics for six different neutral gas pressures
p, ranging between 0.16Pa and 0.66Pa. Both figures are organized in the same manner
as figures 6.11 and 6.12, respectively.

At p = 0.16 Pa (figure 6.15a-c), irregular behavior is observed. The space-time diagram is
dominated by mode-type patterns, which are, however, modulated in space and time and
frequently interrupted by phase defects. The average phase velocity is higher than in the
cases of increased pressure. In the frequency-mode number spectrum, one broadened peak
around m = 2 and 4.1 kHz is found, embedded in a rather broadband background. The
frequency power spectrum figure 6.15c) also reveals the broadened peak around 4.1 kHz.
This frequency is remarkably high for an m = 2 mode, consistent with the observed high
phase velocity. Consequently, due to the extended frequency range, the power in the
broadband spectrum drops more slowly than in previous cases.

At p = 0.21 Pa the dominant feature is an m = 4 mode with a frequency of 1.8 kHz as
shown in figure 6.15d-f). The spatiotemporal diagram shows a fairly regular stripe pattern
with significant transient changes in frequency and mode number as well as amplitude
variations. This is also seen in the power spectra which shows a sharp peak at 1.9 kHz,
corresponding to a mode number m = 4, embedded within a broadband background in
which other, smaller spectral peaks are also found. For instance, the smaller peak at
f = 2.4 kHz in figure 6.15f) belongs to a different mode number m = 5.

If the pressure is increased to p = 0.31 Pa, weakly developed turbulence establishes with
relatively irregular dynamics (figure 6.15g-i). Mode-type stripe patterns are still seen in
figure 6.15g) but only within small intervals. In the spectra, figure 6.15h,i), two broadened
peaks are at frequencies 2.1 kHz and 3 kHz, associated with mode numbers m = 4 and
m = 5, respectively. The broadband fluctuation power is still very high.

The dynamical behavior changes completely at pressure p = 0.41 Pa, as shown in fig-
ure 6.15j-l). An m = 5 mode clearly dominates the fluctuation dynamics. The space-time
pattern in figure 6.15j) is strictly periodic, although some modulation is still present.
Both spectra show a sharp peak at f = 2.8 kHz with a small broadband background.

A further increase of the pressure to p = 0.51 Pa leads again to a change of the fluctuation
dynamics. The space-time diagram is rather irregular without much periodicity between
the striations. Two broadened peaks arise in the spectra, corresponding to an m = 4
mode at f=1.6 kHz and m = 5 at f=2.5 kHz. The broadband power level is much higher
than above.

At p = 0.61 Pa, the m = 5 mode has again taken over and is now found at 2.2 kHz as
shown in figure 6.15p-r). Again, there is a number of other, smaller peaks, especially one
at 1.3 kHz corresponding to m = 4. The amplitude of the fluctuations is so small that
some probes of the probe array hardly detect any fluctuations.

An overview of the fluctuation dynamics is given in figure 6.16, showing color-coded power
spectra at pressures between 0.16Pa and 0.66Pa in steps of 0.05Pa. The black bars on
top of the diagram indicate the dominating mode number, and the black bullets mark
the highest peak of each spectrum. The decrease of the frequency of the m = 5 mode
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Figure 6.15: Dependency of the dynamics on neutral gas pressure: The first column shows
color coded space-time diagrams measured with the probe array. The second column shows
frequency-mode-number spectra in linear scaling. The third row shows a logarithmical power
spectrum obtained from a time series of one probe of the probe array. Note the different scaling
of the frequency-mode-number spectrum indicating the change of the fluctuation amplitude.
Discharge parameters: B = 67mT, PRF = 2.8 kW.
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Figure 6.16: Dependency on neutral gas pressure: Color-coded power spectra for different
pressures. The bars atop the diagram indicate the dominating mode while the black dots indicate
the maximum of each spectrum.

with increasing pressure becomes evident. Also the m = 4 mode has the same tendency
at higher pressures, whereas for pressures between 0.21Pa and 0.31Pa the frequency
increases a little. However, the m = 4 mode is always embedded into a broadband
turbulent background such that nonlinear interaction with other modes might dominate
the dynamical processes.

In figure 6.17, radial profiles of the mean ion saturation current are shown together with
the respective radial fluctuation profiles. Both, the ion saturation current as well as its
fluctuations, are normalized to the peak value of the ion saturation profile for 0.61Pa.
Figure 6.17a) demonstrates that the ion saturation current, and thereby the plasma den-
sity and/or the electron temperature, increases with increasing neutral gas pressure. At
p ≥ 0.41 Pa the central peak value (at r = 0) remains constant and only small deviations
in the gradient regions are found. The maximum gradient increases by a factor of 1.4
between p = 0.16 Pa and p = 0.61 Pa.

Figure 6.17b) shows that the fluctuation level changes rather dramatically. For the lowest
pressure of 0.16Pa, the standard deviation of the fluctuations is about 7.5% of the peak
value and 11% of the local value of the ion saturation current. As reasoned above, at
p = 0.16 Pa the fluctuation behavior is different from the other cases. The shape of
the fluctuation profile is similar but the fluctuation level is significantly higher and the
fluctuations do not vanish in the plasma center. The fluctuation maximum occurs at
r = 20 mm for p = 0.16 Pa and slightly shifts outwards to r = 25 − 30 mm for higher
pressures. For p = 0.61 Pa, the fluctuation level is only 0.5% in comparison to 11% for
p = 0.16 Pa. The mean fluctuation level thus changes by a factor of more than 20 within
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Figure 6.17: Dependency on neutral gas pressure: Radial profiles of ion saturation current and
fluctuations of ion saturation current. Ion saturation and its fluctuations are normalized to the
peak value for 0.61Pa.

the pressure variation considered. For the pressure range p = 0.21− 0.61 Pa, it decreases
by a factor of 7.

6.8 Discussion

The experiments reveal that in the helicon discharge mode of the VINETA device an
instability with frequencies well below the ion cyclotron frequency occurs within certain
parameter regimes. The experimental findings can be summarized as follows:

• Fluctuations with frequencies in the range 0.7 − 9 kHz (i.e. well below the ion
cyclotron frequency fci & 15 kHz) and poloidal mode numbers m = 1− 8 have been
observed. Modes with mode numbers m = 4− 6 are found more often than modes
with lower m. A variety of dynamical behavior occurs, ranging from single saturated
modes to interacting modes and weakly developed turbulence.

• The fluctuations are localized in the density gradient regions of the plasma and
nearly vanish in the plasma center.

• ñ/n and φ̃/T[eV ] are of similar magnitude. Maximum fluctuation levels are ñ/n ≈
φ̃/T[eV ] ≈ 30%.

• For saturated coherent modes, a phase shift ](ñ, φ̃) ≈ 10◦ − 35◦ between density
and potential fluctuations has been measured in the region of highest gradients. The
density fluctuations are always ahead of the potential fluctuations.

• Both, single-mode waves as well as large scale turbulent structures, propagate in
the direction of the electron diamagnetic velocity.

• The axial wavelength is finite and values close to 1−2×(device length) are observed.
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• The plasma is quiescent below B ≈ 50 mT (weakly dependent on other discharge
parameters). The mode frequency increases with increasing magnetic field. Above
onset of the fluctuations, the fluctuation level remains relatively constant.

• The mode frequency decreases with increasing neutral gas pressure. The fluctuation
levels are highest for lowest possible neutral gas pressures. The plasma fluctuations
are small for neutral gas pressures above 0.6Pa.

• The poloidal mode structures show a spiral shape but rotate rigidly.

Identification of the instability

A low-frequency instability is observed in the helicon plasma of the VINETA device. The
Kelvin-Helmholtz instability, the flute instability, and the drift instability have a number
of features in common (see chapter 2) and must be taken into careful consideration. In
particular, plasma density and plasma potential gradient regions coincide, and thus all
these instabilities could occur. Due to similar electron diamagnetic drift and E×B drift
velocity, the frequency ranges are also similar. The clearest distinction between the drift
instability and the two other instabilities is the parallel electron dynamics which results
in a finite parallel wavelength for drift waves. In contrast, for both the Kelvin-Helmholtz
instability and the flute instability, the parallel wavelengths are infinite. It was previously
shown that the parallel wavelength of the observed instability is close to once or twice the
machine length. Also, the phase shift 10◦-35◦ between density and potential fluctuations
is consistent with drift waves. For the Kelvin-Helmholtz and flute instabilities it must
be > 45◦. Finally, the fluctuation levels of normalized plasma density and plasma poten-
tial are similar whereas for both, Kelvin-Helmholtz and flute instability, higher potential
fluctuations are expected [60]. In conclusion, the experiments show that the observations
are consistent with the drift instability, but not with the Kelvin-Helmholtz and the flute
instability.

Variation of the fluctuation dynamics with external parameters

In contrast to other experiments [46,54], no clear-cut transition scenario from single modes
towards turbulence was observed. If the ambient magnetic field is increased, the dynamical
states just alternate and the most turbulent state was found at medium magnetic field,
whereas at the highest accessible magnetic field, the dynamics is quite coherent. For a
variation of the neutral gas pressure, a similar behavior is observed. Also here, weakly
turbulent states just alternate with relatively coherent modes.

A higher magnetic field tends to result in modes with higher mode numbers m. In
particular, the mode frequency increases with increasing magnetic field. At first glance,
this seems to be contradictory since the drift wave frequency scales as ω∗ ∝ 1/B. It was
found, however, that in the VINETA device ω∗ is nearly independent of B whereas the
E×B rotation frequency ωE decreases with increasing magnetic field. Thus, the observed
increase of frequency with increasing B can be explained by the decreasing Doppler shift.

The mode frequency decreases with increasing neutral gas pressure. The diamagnetic
electron drift frequency ω∗ turned out to be nearly independent of the neutral gas pressure
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as well, whereas the peak value of ωE increases with pressure. Constant ω∗ combined with
increasing ωE yields a decrease of the mode frequency. Again, the Doppler shift due to
the E×B drift can be made responsible for the frequency variation.

Poloidal mode structure

The poloidal mode structure of saturated drift modes has been reconstructed using a
cross correlation technique. Experimental as well as numerical results on the poloidal
mode structure of drift waves have rarely been discussed for linear devices. Usually, only
radial amplitude profiles are shown and poloidal symmetry is assumed. One exception
is reference [119] where Grulke and coworkers show a symmetric mode structure of an
m = 2 mode, experimentally obtained with the conditional averaging technique [120].
In the VINETA device, poloidal mode structures always turned out to show a clear
bending in the maxima and minima of the mode. The question arises whether this is
an artefact due to the time averaging of the correlation technique used. The measured
maximum and minimum correlation coefficients are, however, quite close to ±1 which
indicates a high phase coherence between the signals. If, for instance, the frequencies of
both simultaneously recorded signals would slightly differ or if in one of the time series the
frequency would slightly change in time (corresponding to a non-constant phase velocity),
the maximum cross correlation would be well below 0.5. Therefore, it is concluded that the
actual mode structures in the experiment are correctly reconstructed, i.e. they are indeed
sheared. The question is why mode structures appear to be sheared. A possible, rather
straightforward explanation is that the sheared E×B drift distorts poloidal structures.
However, this would also limit the lifetime of the coherent mode structures which must be
observable as frequency or sudden phase shifts. Neither have been observed in time series
and, as reasoned above, this would also result in values of the cross correlation function
well below the obtained ones. In addition, the structure rotates like a rigid body, i.e. with
a constant angular velocity, which is also incompatible with velocity shear.

As already mentioned, numerical calculations for drift wave dispersion have been con-
ducted and are presented in the next chapter. These calculations also allow for inves-
tigation of the poloidal mode structures for both, density and plasma potential. Thus,
besides frequencies and growth rates, features of poloidal mode structures are studied as
well.

Large time scale behavior

Constant density is reached in the VINETA device several 10ms after switching on the
RF power. This time is longer than in other helicon devices. For instance, in the HE-L
device [111] short pulses of 2–8ms are sufficient to reach stable conditions. The reason
for this discrepancy might be the comparatively large plasma chamber of the VINETA
device in which the plasma column extends only to a radius of about 30mm while the
chamber has a radius of 200mm. Thus, the volume occupied by the plasma itself is quite
small so that the dynamics of the neutrals could play a much bigger role than in other
devices where the plasma fills nearly the entire vacuum chamber. The neutrals have the
lowest thermal velocities of all involved particle species. For neutral temperatures between
300K and 1000K, the thermal velocity is 250− 450 ms−1. At these velocities, the device
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length of about 5m is travelled within 10-20ms, which is close to the time needed to reach
constant discharge conditions.

It was shown that the fluctuation dynamics may change within one plasma pulse to remain
constant for several 10ms to several 100ms. Simultaneously, the mean plasma density
remains constant over most of the pulse length. The reasons for this behavior can only
be speculated: Neutrals travel the VINETA device on a time scale of several 10ms. The
plasma production by ionization of neutrals and the gas feed are spatially separated by
about 5m. Thus, neutral flows are a candidate for the change of the plasma dynamics by
neutral depletion effects.
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Chapter 7

Numerical solution of the drift wave
dispersion relation

A local slab model yields mode frequencies several times higher than those observed and
is thus inconsistent with the observations. For a better comparison between experiment
and model, the drift wave dispersion relation must be solved in cylindrical geometry for
experimental parameters. As reasoned in chapter 2, this is not an easy task. The linear
2nd order differential equation in cylindrical coordinates has a complex structure and
depends on a number of physical quantities. For the present work, a newly developed
code, which is referred to as the Risø code1 in the following, was used to numerically
solve the drift wave dispersion relation in cylindrical geometry. The model is similar
to the one developed by Ellis, Marden-Marshall and coworkers [9] but there, the
collision frequencies were assumed to be radially constant. This is clearly not the case
in VINETA, owing to the dominating Coulomb collisions that are proportional to the
plasma density. The goal of the Risø code is to allow for arbitrary radial profiles for
density, plasma potential, and the collision frequencies νei, νen, and νin.

The following section 7.1 describes briefly the numerical code with emphasis on input and
output parameters. In section 7.2, computational results are benchmarked to previously
obtained ones based on the model of Ellis, Marden-Marshall and coworkers. In
section 7.3, computations for VINETA parameters are presented and compared with
experimental findings. The main questions to be answered by the code are:

• What is the main destabilizing mechanism in the VINETA device?

• Are the experimentally observed frequencies in agreement with model predictions?

• What is the explanation for the sheared mode structures found in the experiment?

1The model as well as the code have been developed by V. Naulin from the Risø National Laboratory,
Roskilde, Denmark.
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7.1 The numerical model

In chapter 2, a second order ordinary differential equation for the dispersion of drift waves
in a cylindrical plasma was given:

∂rrφ+

(
1

r
− κ(r) +RD(r)

)
∂rφ+

(
Q(r)− m2

r2

)
φ = 0 (7.1)

where
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Most of the parameters are a function of radius (ναβ, P , κ, Vp, Sp, ω
∗ and ω̃). For the

numerical solution, the differential equation is reduced to coupled differential equations
by introducing

y1 = φ , y2 = r y′1 and K(r) = κ(r)−RD(r) (7.2)

where the prime ′ denotes the partial derivative with respect to r. The system of coupled
1st order ordinary differential equations reads to be(

y1

y2

)′
=

1

r

(
0 1
m2 0

) (
y1

y2

)
+

(
0

K(r) y2 − r Q(r) y1

)
(7.3)

where ω1, ναβ, κ and m are real numbers. Splitting (7.3) into real and imaginary parts
(denoted by the subscripts R and I, respectively) finally yields
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 .

(7.4)

Solutions of eigenvalue problem (7.4), satisfying given boundary conditions, exist only
for particular complex eigenvalues ω = ωR + iωI , that must be found together with the
complex eigenfunction ψ(r) = ψR(r)+iψI(r). This class of equations is solved numerically
by using iterative ’shooting’ methods. The Runge-Kutta method is used to solve the
ODE system [117,121]. The solution of (7.1) is further complicated by the fact that at
r = 0 a singularity occurs, owing to the diverging 1/r and 1/r2 terms. The equation is
solved for the radial range r ≥ ε, where ε is a small number close to zero. In the course of
the shooting method, an eigenvalue is guessed and the set of ODEs is solved, integrating
from r = ε to r = a where a is the ‘plasma edge’. The boundary conditions

ψ(r = ε) = 0 and ψ(r = a) = 0 (7.5)
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are used. If the solution does not satisfy the boundary conditions, the eigenvalue is
changed and the equation is integrated again. This procedure is repeated until a complex
eigenvalue ω and a function ψ(r) are found, satisfying the differential equations with the
boundary conditions to within a predefined error.

The radial positions ε and a are parameters of the code. The plasma edge is not sharply
defined and therefore, the choice of a has an arbitrary component. In reference [9],
a2/r2

0 = 1.76 was chosen for a Gaussian density profile n(r) = n0 exp(−r2/r2
0). For this

value of a, the density at the plasma boundary is still 17% of the peak density. In the
present work, values between a2/r2

0 = 6.5 and a2/r2
0 = 11 have been used, such that the

density at the plasma edge is below 1% of the peak value.

In principle, arbitrary radial profiles of the mean density n0, of the collision frequencies
νei, νen, νin, and of the plasma potential can be used as input parameters. Note that only
the sum νe = νei + νen enters the equations. Besides the parameter profiles, the parallel
electron velocity V and the parallel wavelength λz are input parameters of the code. The
discussion is restricted to radial density profiles of Gaussian shape and a radially constant
plasma potential since this gives best convergence of the numerical results.

For mode numbers in the range m = 1 − 6 the ODE system (7.4) was solved and mode
frequencies ωR, growth rates ωI and radial mode profiles ψ(r) were evaluated. The radial
mode structures shown are the modulus of ψ(r). In particular, the assumption of eigen-
modes of the form φ = ψ(r) exp(−iωt+ ik‖z+ imθ), which was used to obtain the system
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Figure 7.1: Poloidal eigenmodes for sample radial profiles of ψR and ψI . a) Real and imaginary
part of ψ(r) = 5 r exp(−r2/0.2). b) Resulting poloidal eigenmode. c) real and imaginary part
of ψ(r) = 5 r exp(−r2/0.2) + i 2 r exp(−r2/0.1). d) Resulting poloidal eigenmode.
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of differential equations, also allows one to determine the poloidal eigenmodes for a fixed
time instant t and a fixed axial position z. With α = exp(−iωt+ ik‖z) one obtains

φ(r, θ) = αψ(r) exp(imθ) (7.6)

= α (ψR(r) + iψI(r)) (cos(mθ) + i sin(mθ)) (7.7)

Re(φ(r, θ)) ∝ ψR(r) cos(mθ)− ψI(r) sin(mθ) . (7.8)

If the real part ψR and the imaginary part ψI are non-zero and have different shapes, the
resulting poloidal mode structure becomes sheared. This is demonstrated in figure 7.1. In
the case of a real eigenfunction ψ, the poloidal eigenmode is not sheared (figure 7.1a,b).
Otherwise, the poloidal eigenmode becomes sheared (figure 7.1c,d). In reference [9], ψ
was assumed to be real for Gaussian density profiles and complex eigenfunctions ψ were
allowed only in the case of non-Gaussian density profiles (but not further discussed). To
our best knowledge, no numerical results on poloidal drift mode structures in cylindrical
geometry have been published to date.

7.2 Comparison with previous results

To benchmark the new code, a comparison with similar previous studies is meaningful.
In reference [9], numerical results of a nonlocal, cylindrical model of the collisional drift
instability are reported. This model is similar to one introduced here. Table 7.1 sum-
marizes the code parameters taken from reference [9] as well as the input parameters of
the Risø code. For comparison, the collision frequencies were kept radially constant. The
density profile is a Gaussian n(r) ∝ exp (−r2/(17.6 mm)2). The collision frequencies were
calculated using the formulae compiled in appendix B. We note that from the data given
in the paper it is not possible to deduce the exact input parameters, used to obtain figure 4
of reference [9]. For instance, no collision frequencies and not all parameters determining
the Gaussian density profile are given. Additionally, a higher value for the plasma edge
a is chosen here such that the density at r = a is well below 1% of the peak value. Some
deviations are thus expected for the eigenfrequency and growth rates.

parameters from ref. [9] corresponding input parameters for the Risø code

B = 200 mT Ωci = 4.8 · 105 s−1 ρs = 5 mm

Te = 2 eV vth = 6 · 105 m/s cs = 2.5 · 103 m/s

p0 = 1 mtorr νin/Ωci = 0.01 νen/Ωci = 5.4

n = 1 · 1016 m−3 νei/Ωci = 0.27

V/vth = 0.2 V/cs = 50

no E×B drift φ0(r) = 0

Table 7.1: Plasma parameters given in reference [9] and corresponding input parameters used
for calculation with the Risø code.



7.2 Comparison with previous results 93

Ellis et al. 1980 Risø code

a)

b)

c)

d)

Figure 7.2: a,b) Figure 4 taken from reference [9]. Real and imaginary part of ω versus
parallel wavelength for m = 2 from three theoretical models (local slab – , Gaussian numeric
◦, full numeric •). c,d) Real and imaginary part of ω versus parallel wavelength for m = 2
calculated with the new Risø code for a Gaussian density profile. The input parameters (see
table 7.1) are chosen similar to the parameters given in reference [9].

In figure 7.2, the results from reference [9] and the Risø code are compared. It is found that
the previous result is qualitatively well reproduced. In both cases the mode frequency ωR

decreases monotonically with increasing parallel wavelength. The Risø code finds slightly
higher frequencies for small wavelengths but smaller frequencies for higher wavelengths.
In both models, the growth rate increases with increasing wavelength and nearly saturates
for wavelength λz & 10 m. The Risø code gives slightly higher values than the model of
Ellis et. al. This might well be an effect of deviating input parameters.

The poloidal mode structures for density and potential are calculated from ψ(r) and
(2.33). The results for λz = 2 m and λz = 15 m (see figure 7.2) are shown in figure 7.3.
For a parallel wavelength of 2 m the mode structures for density and potential look the
same and the phase shift is only ](ñ, φ̃) = 1.3◦. Nearly no shear is observed. For
higher parallel wavelength λz = 15 m the mode structures look very different: The mode
structure is sheared similar to the experimental result (see chapter 6). In addition, a large
phase shift between density and potential is found, ](ñ, φ̃) = 32◦.

Figure 7.4 compares the results for two different radial profiles of the electron collision
frequency, a flat νen(r)/Ωci = 5.4 profile and a Gaussian profile of the form νen(r)/Ωci =
5.4 exp (−r2/(17.6 mm)2). The parallel wavelength is chosen to be λz = 4 m. All other
parameters are the same as for figure 7.2. It is found that the mode frequencies are similar
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Figure 7.3: Calculated poloidal mode structures for density and potential obtained for the scan
of figure 7.2. Left side: λz = 2 m. Right side: λz = 15 m. First row: plasma potential mode
structure. Second row: plasma density mode structure.

in both cases, although ωR with a flat profile is slightly smaller for all mode numbers
m = 1 − 4. Figure 7.4b) shows, however, that the growth rates differ significantly: the
growth rates for the Gaussian collision frequency profile are approximately a factor of
three smaller than for the flat profile. This might be due to the different total area of the
collision frequency profiles which is a factor of three higher for the flat collision profile
than for the Gaussian collision profile with the same peak value. For slightly higher peak
values of the Gaussian collision frequency profile, the mode frequencies remain almost
constant but the growth rates increase proportional to the peak value. Figure 7.4c,d)
shows radial eigenmodes for flat and Gaussian collision profiles with the same peak value.
The black curve indicates the density profile. All modes have their maximum in the
gradient region of the density profile. Modes with higher mode number m are always
localized further away from the plasma center than modes with lower mode number. This
is in agreement with previous results [9]. The shape of the collision frequency profile has
no visible influence on the localization of the modes. In figures 7.4e,f) poloidal mode
structures of the plasma potential are shown for the different collision profiles. For both
cases, only a small amount of shear is observed and the structures look very similar.

In summary, it is found that the Risø code reproduces the results of reference [9] quite
well. In addition, it is found that poloidal mode structures are sheared for higher values
of λz. Thus, the assumption of real valued eigenfunctions seems to be too strict even for
the case of Gaussian density profiles.
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Figure 7.4: Comparison between a flat electron collision profile νen/Ωci = 5.4 and a Gaussian
electron collision profile νen/Ωci = 5.4 exp(−r2/(3ρs)2). The parallel wavelength is λz = 4 m.
The other parameters are the same as given in table 7.1.

parameter input parameter of the code

B = 75 mT, Te = 2 eV Ωci = 1.8 · 105 s−1 ρs = 13 mm

νei ≈ 1 · 108 s−1 νei/Ωci ≈ 600

νen ≈ 5 · 106 s−1 νen/Ωci ≈ 30

νin ≈ 6 · 104 s−1 νin/Ωci ≈ 0.3

λz ≈ 5 m (11 m) λz/ρs ≈ 400 (850)

V/cs = 1

Table 7.2: Typical plasma parameters in the VINETA device and derived input parameters
used for the code.

7.3 Results for VINETA parameters

A Gaussian density profile n(r) = n0 exp(−r2/r2
0) is assumed with r0 = 3ρs, which is close

to the experimental situation2. The input parameters of the code have been calculated

2In principle, the density profiles can be arbitrarily defined. However, due to numerical instabilities,
the code does not find adequate solutions for density profiles obtained from the experiment.
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Figure 7.5: Scan of the parallel wavelength. a-c) show the input radial profiles of background
density n0, electron collision frequencies νei, νen and ion collision frequency νin, respectively. A
flat plasma potential profile (i.e. no E×B drift) and V = cs are assumed.) The calculated mode
frequencies ωR are shown in d), the growth rates ωI in e). Radial mode profiles |ψ(r)| are shown
in f). Results for mode numbers m = 1, 2 are not shown due to numerical instabilities.

for conditions in the VINETA device (see chapter 5). An overview is given in table 7.2.

Dependency on the parallel wave length

Figure 7.5 shows the result of a scan of the parallel wave length. The input density profile
is shown in figure 7.5a). Radially dependent collision frequencies are assumed as shown in
figure 7.5b,c). The collision frequency for Coulomb collisions is proportional to the plasma
density profile and thus the collision frequency in the plasma center is much higher than
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Figure 7.6: Parameter scan for Coulomb collisions νei. a) frequency ωR vs. νei, b) growth rate
ωI vs. νei. (Gaussian profiles n(r) ∝ exp(−r2/(3ρs)2) for density and Coulomb collisions νei,
λz/ρs = 400, V/cs = 1, νen = νin = 1 · 10−5).

at the plasma edge. If one considers neutral depletion in the core plasma (see chapter 5),
the electron-neutral and ion-neutral collision frequencies are lower in the plasma center
than further outside. Here, the extreme case of 100% ionization degree in the plasma
center is assumed. The collision frequencies νen and νin vanish in the plasma center and
increase toward the edge.

The dependency of the mode frequencies and growth rates on the parallel wave length
is shown in figure 7.5d,e). Again, it is found that with increasing parallel wavelength
the mode frequencies decrease. For mode numbers m = 4 − 6 the growth rates increase
first but then decrease. For the m = 3 mode, this decrease is not observed, instead
saturation occurs. In the experimentally observed range λz/ρs = 400 . . . 850, the growth
rates change only slightly for each mode which might lead to mode competition between
modes with different parallel wavelength. At λz/ρs = 2000, all growth rates are similar
ωI/Ωci ≈ 0.03. Figure 7.5f) shows radial eigenmodes for λz/ρs ≈ 400. As before, higher
modes are localized at larger radial positions. However, the spacing between the different
modes is seen to be more irregular than previously seen in figure 7.4.

Collisions

Figure 7.6 shows a scan of the Coulomb collision frequency and its effect on mode fre-
quencies and growth rates. Here, the collision frequencies for collisions with neutrals are
assumed to be small and radially constant νen/Ωci = νin/Ωci = 1·10−5. Figure 7.6a) shows
that the frequency of the drift waves strongly decreases with increasing electron collision
frequency νei for all mode numbers m = 1−5. The growth rates are shown in figure 7.6b).
For all mode numbers, they increase very steeply in the range νei/Ωci = 0 . . . 100. For
mode number m = 1, the growth rate increases monotonically for the whole νei-range,
while for the higher mode numbers the growth rate decreases gradually after peaking
around νei/Ωci ≈ 100. For all frequencies the highest growth rate is found for m = 5
and the lowest for m = 1. This agrees quite well with the experimental findings in the
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Figure 7.7: Comparison of eigenvalues and mode structures for νin/Ωci = 10−5 and νin/Ωci =
10−2. a) mode frequency ωR, b) growth rates ωI , c,d) radial eigenfunctions |ψ(r)| for m = 1−4,
e,f) poloidal mode structures of the plasma potential. (Gaussian profiles n(r) ∝ exp(−r2/(3ρs)2)
and νei(r)/Ωci = 500 exp(−r2/(3ρs)2). λz/ρs = 400, V/cs = 1, νen/Ωci = 1 · 10−5).

VINETA device, where modes with higher mode numbers (m = 4− 6) are usually easier
to destabilize than modes with low mode numbers.

Figure 7.7 compares numerical results for different ion collision frequencies (νin/Ωci = 10−5

and νin/Ωci = 10−2). The other input parameters are the same as for figure 7.6, but the
peak value of the electron-ion collision frequency profile is chosen to be νei/Ωci = 500.
Figure 7.7a,b) shows that higher ion-neutral collisionality leads to lower mode frequencies
as well as to lower growth rates for all mode numbers m = 1− 4. The latter is consistent
with the local slab model (chapter 2). Also the phase shift between density and potential
is provided by the Risø code: ](ñ, φ̃) = 14◦ is found for νin/Ωci = 10−5 and ](ñ, φ̃) = 16◦

for νin/Ωci = 10−2, i.e., nearly independent of the ion collisionality although the growth
rates differ significantly. From figure 7.7c,d) one finds that higher ion collision frequencies
lead to a shift of the radial eigenmodes towards the center of the plasma column. This is
also seen in the ‘shrinking’ of the poloidal mode structures figure 7.7e,f). Also the shear
of the mode structures is increased with the ion collisionality.

Parallel electron velocity

The parallel electron velocity has not been measured, but was estimated in section 5.4
to be close to cs, which is an order of magnitude lower than the values of other devices
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where drift waves have been investigated (see chapter 5).

Figure 7.8 shows a scan of the parallel electron velocity. The mode frequencies are nearly
independent of the parallel velocity (a) while the growth rates increase monotonically with
increasing parallel electron velocity (b). For the m = 2 mode, the growth rate increases
by more than a factor of three by increasing V/cs from 0.4 to 10. The phase shift between
density and potential is ](ñ, φ̃) = 5◦ for V/cs = 0.4 and ](ñ, φ̃) = 10◦ for V/cs = 10.
The higher growth rate is found together with increased phase shift between density and
potential. For low values of the parallel velocity the growth rate of the m = 2 mode is
smaller than for the higher mode numbers. In contrast, for V/cs & 4 the growth rate of
the m = 2 mode exceeds the growth rates of modes with higher m.

Figure 7.8c,d) shows radial mode profiles for V/cs = 0.4 and V/cs = 10, respectively. It
is found that for higher parallel velocities the modes are localized a little further outside
than for lower velocities. Poloidal mode structures for the same parallel velocities are
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Figure 7.8: Parameter scan for the parallel electron velocity V . a) mode frequencies ωR, b)
growth rates ωI , c,d) radial eigenmodes |ψ(r)| for V/cs = 0.4 and V/cs = 10, respectively, e,f)
poloidal mode structure of the plasma potential φ0 for these velocities. (Gaussian profile n(r) =
exp(−r2/(3ρs)2), νei(r)/Ωci = 200 exp(−r2/(3ρs)2), νen/Ωci = νinΩci = 10−5, λz/ρs = 800)
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shown in figure 7.8e,f). In both cases, the mode structures are sheared, but for V/cs = 10
the shear is much more pronounced than for V/cs = 0.4. This underlines the fact that
not only one parameter is responsible for a sheared mode structure.

7.4 Discussion

In the last two sections, numerical results obtained with the Risø code were presented. It
solves the 2nd order differential equation obtained from linearizing the two-fluid equations
in cylindrical geometry. The main results of this chapter are summarized and discussed.

The results of reference [9] are quite well reproduced by the Risø code. A comparison
between flat and radially dependent collision frequency profiles reveals that the mode
frequencies as well as the mode structures remain nearly the same if the flat collision profile
is replaced with a Gaussian profile with the same peak value. The growth rates, however,
change significantly and are rather sensitive to the shape of the collision profile, suggesting
that they are more determined by the total area of the collision profile than by its peak
value. In the DLPD device – for which the previous numerical calculation was conducted
– electron neutral collisions are dominant and the assumption of a flat collision profile was
justified. In the VINETA device, Coulomb collisions are dominating, which suggests to
use profiles proportional to the plasma density. Actually, for VINETA parameters, no
reasonable solutions could be obtained with flat collision frequency profiles.

Mode frequencies

For both parameter regimes investigated (see tables 7.1 and 7.2), the mode frequencies
decrease for increasing parallel wavelength. Increasing electron collisions lead to mono-
tonically decreasing mode frequencies. Between νei/Ωci ≈ 0 and νei/Ωci = 1000 the
frequencies are reduced by factors between 3 and 9 (m = 1−5). The growth rates change
significantly only for νei/Ωci < 100. Ion collisions decrease the mode frequencies. The
parallel electron velocity V shows nearly no influence on the mode frequencies.

One of the main reasons for numerical calculations was to obtain a better idea about
what determines the mode frequencies. For comparison with the experiment, the case of
75mT of section 6.6 is used. There, an m = 5 mode at 3.1 kHz was observed embedded
in a rather turbulent background. Figures 7.5, 7.6 and 7.8 show mode frequencies ωR for
m = 5 modes for parameters similar to the experimental parameters. Values between
ωR/Ωci ≈ 0.1 and ωR/Ωci ≈ 0.5 are found. The numerically obtained mode frequencies
are clearly sensitive to a number of parameters. In particular, the result obtained for the
collision frequency scan gives very low values compared to others. In the experiment, the
electron diamagnetic drift frequency was found to be about 12 kHz. From the numerical
calculations, mode frequencies in the range 2.8 kHz–14.3 kHz are obtained. To get the
frequency in the laboratory frame, the E×B Doppler shift has to be taken into account.
The peak value of fE reduces the frequency by 9.5 kHz. Then, the frequency range in the
laboratory frame is −6.6 kHz to 4.8 kHz. The negative sign indicates a propagation in
the direction of the E×B drift, i.e., opposite to the electron diamagnetic drift velocity. If,
instead, a radially averaged value is taken for the E×B frequency, the obtained frequencies
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are reduced by about 4.5 kHz. This gives a frequency range in the laboratory system of
−1.7 kHz to 9.8 kHz. For both cases, the observed mode frequency of 3.1 kHz lies within
the given frequency ranges. A propagation in the E×B direction seems plausible but has
never been observed in the experiment.

The estimation of mode frequencies is further complicated by the sensitivity of numerical
solutions on the input parameters as well as by the fact that both drifts – the electron
diamagnetic drift and the E×B drift – are similar and must be subtracted. In particular,
the accuracy of the measurement of the E×B drift is not very good. Since the plasma
does not rotate rigidly, it is also not fully clear which role the sheared rotation plays and
which value for fE is appropriate. The numerical results show that the experimentally
observed frequencies are generally consistent with drift waves.

Mode destabilization

Different physical mechanisms can destabilize the drift instability. The question, however,
is which of these is the dominating destabilization mechanism in the VINETA device.

Electron collisions destabilize drift waves because they impede the parallel dynamics of
the electrons. The growth rate is close to zero if electron collisions vanish and, at the
same time, the parallel electron velocity is small. The highest increase in the growth rate
is found below νei/Ωci = 100 whereas for larger values the changes are relatively small.
If the electron collision frequency would be reduced by a factor of 5-10, the growth rates
should remain similar. An increase of the electron temperature from 2 eV to the order
of 10 eV would result in a reduction of the collisionality by an order of magnitude. This
regime is very attractive because magnetic fluctuations are expected to play a role [4].

Ion collisions decrease the growth rate, i.e., they are a stabilizing effect, as expected from
the local slab model. The parallel electron velocity (corresponding to a current through
the discharge) is a strongly destabilizing effect, as predicted by the local slab model. In
the VINETA device V is of the order of cs. In the other devices, the parallel velocity is
of the order of several 10 cs. In particular, in devices like DLPD, MIRABELLE, and
KIWI, low mode numbers m = 1− 3 are destabilized whereas higher mode numbers are
rarely observed. In VINETA the opposite is true and indeed for higher V the lower mode
numbers have the highest growth rates. For small V , the growth rates of different modes
are much closer, and the m = 2 mode has a lower growth rate than the modes m = 3− 5.
This might be an explanation for the fact that in the VINETA device the mode numbers
m = 4− 6 are most easy destabilized.

The growth rates also depend on the parallel wavelength of the mode. In VINETA, two
values for the parallel wavelength were measured: λz ≈ 5m corresponding to λz/ρs ≈ 400
and λz ≈ 11m corresponding to λz/ρs ≈ 850. The growth rate does not change signif-
icantly within the experimentally observed λz range. Previous drift wave experiments
mostly established a relationship between the parallel wave length and the device length.
Axial boundary conditions seem to restrict the parallel wavelength to λz/4 = nL where
L is the machine length and n is a small integer number [9,14]. Since the growth rates
between different λz are nearly the same, for slightly different parameters different wave-
lengths are possible to establish. The numerical results indicate that a higher parallel
wavelength is connected with a lower mode frequency (a factor of two between λz/ρs ≈ 400
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and λz/ρs ≈ 850). The experimentally obtained frequencies for the higher wavelength
were slightly lower. However, the difference is below 15%.

Poloidal mode structure

The poloidal mode structures of the drift waves observed in the VINETA device are
sheared. The numerical studies reveal that sheared poloidal mode structures are not at
all unusual if complex eigenfunctions ψ are allowed. A close agreement is found between
observed and numerically calculated mode structures.

The results show that the mode structure shear is not caused by a single parameter only.
It seems that increased parallel wavelength, parallel electron velocity, and ion collision
frequencies lead to sheared mode structures. Higher shear in the mode structure tends to
occur for higher growth rates which coincides with increased phase shift between density
and potential.

The numerical results strongly suggest that sheared mode structures are a general phe-
nomenon, present at different parameters - even for Gaussian density profiles, without
any E×B rotation and for flat collision profiles.



Chapter 8

Summary and Conclusions

Within the scope of the present thesis, a new experimental device – the VINETA – was
designed, constructed and put into operation. It is a large, linear, magnetized plasma
experiment which is very flexible and thus allows for a wide range of highly controllable
plasma conditions. Care was taken in the design to permit easy accessibility and main-
tenance of the device. VINETA is primarily intended for studies of different kinds of
plasma waves and instabilities. Besides the investigations of the present work, it has al-
ready been successfully used for investigations on helicon and whistler waves [78], and on
ion acoustic waves [122]. For the investigation of the present work, Langmuir probes were
used for the study of the mean plasma parameters as well as for investigation of the drift
instability. Several computer controlled positioning systems and a poloidal probe array
were implemented and permit spatiotemporal measurements of low-frequency instabilities.

In VINETA, the range of achievable plasma parameters is considerably extended when
compared to other linear devices in which drift waves have been investigated before. In
the helicon wave sustained discharge mode, the plasma-β exceeds the electron-ion mass
ratio. The comparatively high plasma density (≈ 1019 m−3) at low electron temperatures
(≈ 2 eV) results in very high electron Coulomb collision frequencies which clearly dominate
the electron neutral collisions. Even though β > me/M , electromagnetic effects are
negligible for the drift instability due to the high collisionality.

Background plasma profiles, of crucial importance for the identification of the observed
instability, have been studied. Along the magnetic field, gradients of the electron tem-
perature (≈ 50% decrease for ∆z = 1 m) and the plasma potential (≈ 10% decrease for
∆z = 1 m) exist. Despite the axial inhomogeneities the instability develops with an ax-
ially constant frequency. This finding is in agreement with previous studies conducted
in the KIWI device [123,124] where global monochromatic drift waves establish despite
axial inhomogeneities of density and potential profiles.

A low-frequency instability, occurring in the helicon discharge mode of the VINETA
device, has been studied in detail. All experimentally observed features of the instability,
namely

• localization,

• fluctuation amplitudes,
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• phase shift between density and potential fluctuations,

• propagation direction,

• parallel wavelength

are consistent with the theory of resistive drift waves. A direct comparison between the-
oretically predicted mode frequencies and experimentally observed modes is not straight-
forward to do, because many (partially unknown) parameters influence the results. The
observed frequencies are, however, of the same order as the numerically calculated ones.
In conclusion, the observed instability can be identified as a resistive drift instability.

Both the ambient magnetic field and the neutral gas pressure influence the dynamics of
the drift instability and are thus suitable control parameters for the drift wave dynamics.
Different drift wave dynamical states – from single saturated modes via interaction of
several modes towards weakly developed turbulence – can be established. No clear-cut
transition scenario is observed, the dynamical states just alternate with variation of am-
bient magnetic field or neutral gas pressure. The mode frequencies change with varying
magnetic field and neutral gas pressure. This is caused by changes of the E×B rotation
of the plasma column, leading to a Doppler shift of the mode frequencies.

A new code, based on a non-local linear cylindrical model for the drift wave dispersion, was
used to gain more insight into the dominating destabilization mechanisms, and also into
dependencies of mode frequencies and growth rates on different parameters. In contrast to
previous models, radial profiles of the collision frequencies are taken into account. Since
Coulomb collisions, dominant for the electrons, are proportional to the plasma density,
this enhancement is important. The numerical model showed that electron collisions
decrease the mode frequencies significantly. This might explain why the local slab model,
where the mode frequency is found to be independent of the collision frequencies, yields
too high mode frequencies. This underlines the importance of using non-local cylindrical
models for an adequate description of drift waves.

Both, experimentally and in the numerical model, sheared poloidal mode structures were
found. To the best of our knowledge, this was observed for the first time regarding colli-
sional drift waves in cylindrical geometry. Similar mode structures are found in numerical
solutions of linear models for ion temperature gradient modes in both, toroidal geome-
try [125] and cylindrical geometry [126]. Since the sheared mode structures rotate like
a rigid body, sheared poloidal drifts cannot be made responsible for this phenomenon.
The numerical results show that the shear of the mode structure is dependent on various
parameters and sheared mode structures are found for very different parameter regimes.
This strongly suggests that sheared mode structures are a general phenomenon.

In the context of destabilization mechanisms of drift waves, the numerical results show
that the high electron collision frequencies provide the strongest destabilizing mechanism
in the helicon plasma of VINETA. Contrary, in thermionic discharges such as KIWI,
MIRABELLE and DLPD, the parallel electron drift contributes significantly to desta-
bilization [9,110]. The experimental findings show that the parallel electron drift is an
order of magnitude lower than in those devices and thus this effect is much less important
in VINETA.

Drift waves are destabilized only above a critical magnetic field Bc ≈ 50 mT. For lower
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magnetic fields, the plasma was found to be quiescent. This agrees well with the results
reported by Light et al. [42,45] and Tynan and coworkers [46]. Below the onset of the
fluctuations, the density gradients increase significantly with increasing magnetic field.
For higher magnetic fields, a saturation is observed. For magnetic fields & 40 mT, the
diamagnetic drift frequency ω∗ ∝ ∂rn0/n0B remains almost constant. Assuming Te =
const., the expression ∂rn0/n0B (and not ∂rn0 only) enters the equations describing the
drift waves (see equations (2.20)-(2.22)1). Therefore, the variation of the dynamics with
varying magnetic field is presumably not caused by varying background density profiles
but by finite Larmor radius effects. The drift scale ρs ∝ 1/B is of the order of several mm
and decreases from 30mm at B = 30 mT to 9mm at B = 100 mT. Thus, ρs is not small
compared to the density gradient scale length L⊥ ≈ 20 mm, especially for relatively low
magnetic field. This means that the density gradient is relevant for the ions during the
gyromotion. Finite Larmor radius effects are known to be stabilizing [9,14,22] and the
observed dependency on the magnetic field strongly suggests that the reduction of finite
Larmor radius damping could explain the destabilization above a threshold magnetic field.

The neutral gas pressure has a significant influence on the drift wave dynamics as well.
For the lowest attainable neutral gas pressures (0.1Pa) usually the highest fluctuation
levels were observed. With increasing neutral gas pressure the fluctuation level drops
significantly until at pressures about 0.65Pa the fluctuations essentially vanish. The
maximum gradient of the ion saturation current increases only slightly with increasing
neutral gas pressure, which cannot explain the drastic decrease of the growth rate. The
strong damping of the drift instability at higher pressures rather suggests that collisions
with neutrals play an important role. Ion neutral collisions are known to stabilize the drift
instability [10] and could be responsible for the damping that occurs at higher pressures.
Electron collisions, on the other hand, are destabilizing but are dominated by the pressure
independent Coulomb collisions.

Final remarks

It was generally accepted that plasmas produced by helicon sources are relatively qui-
escent. As late as 2001, it was reported by Light and coworkers that a low-frequency
wave-like instability is observed in a helicon discharge, exhibiting characteristics of both
the resistive drift instability and the Kelvin-Helmholtz instability [42,45]. At conferences
in 2001, Tynan and coworkers reported on first observations of resistive drift waves in the
CSDX device [46]. Also in the CSDX device, resistive drift waves were found to occur
above a critical magnetic field. These findings lead to the conclusion that resistive drift
waves generically exist in helicon plasmas within certain parameter regimes. In particular,
the magnetic field always plays a major role in the destabilization of drift waves, i.e., the
instability is found only above a critical magnetic field. Finite Larmor radius effects are
believed to be responsible for this threshold behavior.

The access to different fluctuation dynamics provides many opportunities for further in-
vestigations. In particular, if an increase of the electron temperature to ∼ 10 eV can be
accomplished by an extra microwave heating (which is planned to go into operation in the
near future), the very attractive regime of electromagnetic drift waves (drift Alfvén waves)

1Recall that ∂rN reads in physical units ρs∂rn0/n0 ∝ ∂rn0/n0B.
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would become accessible. This would allow for a comparison between electrostatic and
electromagnetic drift waves within one experimental device. For investigations of other
instabilities and waves the occurrence of a low-frequency instability is often undesired. It
was also shown here, that parameter regimes exist where the plasma is very quiescent and
which might be thus more suitable for such investigations.



Part II

Synchronization of drift waves





Chapter 9

Introduction

In the following chapters, a different aspect of the drift instability is addressed: the
control of drift wave dynamics by mode-selective synchronization. Attempts to control
the drift wave dynamics have been reported since the late 1960s [48,49]. This has been
motivated by the anomalous transport, closely connected to drift waves [8,14]. Changing
the drift wave dynamics is expected to change the fluctuation-induced transport. Drift
waves can be stabilized by changing the global plasma parameters (see chapter 6). This
is, however, sometimes undesired or even impossible. An option to change the plasma
dynamics without altering the global plasma parameters is thus desirable.

An overview of common control schemes is given in figure 9.1 [127]. Schematic diagrams
of three different closed-loop control schemes are shown in figure 9.1a-c). A common
feature of these schemes is that signals obtained from the system itself are fed back and
used to control the system. The chaos control schemes in figure 9.1a,b) aim at stabilizing
particular unstable periodic orbits that are part of the uncontrolled chaotic dynamics
of the system. Stabilization is achieved by tiny adjustments of one or more accessible
parameters. The success of this conception was demonstrated on various different plasma
waves and instabilities [127]. Using a time-delayed feedback technique (figure 9.1b), drift
wave chaos (existing only in a narrow regime of the transition route to turbulence [54])
was successfully controlled [53].

The goal of the classical feedback in figure 9.1c) is to remove the instability. This is
done by feeding back a filtered, phase-shifted and amplified signal obtained from the
system itself [127]. Attempts to apply relatively simple feedback schemes to drift waves
and other plasma instabilities have been reported since the late 1960s [48,49] but often
with ambiguous conclusions. The fluctuations of a certain dynamical state could indeed
be reduced and the confinement was improved. However, only single modes could be
suppressed with one circuit and thus no broadband reduction of the fluctuations was
achieved. More recently, multimode feedback stabilization of two different instabilities
with a single sensor-suppressor pair was experimentally demonstrated [128]. Feedback
techniques have also been tested in the edge turbulence of fusion devices, but a global
change of the particle transport has not yet been achieved [129].

For open-loop control (figure 9.1d), the control signal is typically pre-determined and
not directly derived from the actual dynamics of the system at the time [127]. The
synchronization technique presented here follows such an open-loop scheme.
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a) b)

c) d)

Figure 9.1: Conceptional overview over different control schemes (from reference [127]).

Since drift wave dynamics is a spatiotemporal phenomenon, purely temporal or spatial
control techniques can barely be expected to be efficient and robust. Nevertheless, the
spatial dynamics was almost never taken into account in the attempts to use feedback
techniques to control the drift instability. The present work aims at applying a spa-
tiotemporal control scheme. To achieve this, a recently proposed strategy was followed,
open-loop control (synchronization) acting in both space and in time [55]. Inherently,
application of such a method does not allow for a suppression of all fluctuations, but a
certain dynamical state can be selected out of broadband turbulence. Here, it is intended
to drive preselected drift modes at the expense of the broadband turbulence. Initial
steps conducted in the KIWI device were reported in reference [115] and showed that
drift wave dynamics can be influenced – to some extent – with spatiotemporal driver
signals. However, the result was not fully satisfying because the broadband turbulence
background could not be significantly reduced. Our experiments were conducted in the
MIRABELLE device at the LPMI in Nancy (France) and show that synchronization of
drift wave dynamics is possible with a modified setup. In the following, the concept of
synchronization is briefly introduced.
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9.1 What is synchronization?

The synchronization phenomenon was first observed and scientifically described by Huy-
gens as early as in the 17th century [130]. Synchronization is widely encountered in
various fields of science and engineering, and although it has been known for a long time,
it were the developments in radio communication and electronics that lead to more in-
depth studies on the subject. In the mid-1920s, Van der Pol and Van der Mark
constructed radio tube oscillators which became frequency locked when driven with a
sinusoidal signal [131]. Van der Pol was among the first who studied synchronization
effects theoretically [132]. The practical application of these studies was the possibility to
stabilize the frequency of a powerful generator with the help of a weak but very precise
reference signal. During the last 20 years, also the synchronization of chaotic systems
became a field of intense research [52,130]. It has been found that due to an interaction of
two or more identical chaotic systems the dynamical states can coincide while the dynam-
ics remain chaotic [130]. Another possibility is ‘chaos-destroying’ synchronization when
a periodic external force acting on a chaotic system changes the dynamics of the system
from a chaotic to a periodic state [130]. The rather new area of chaos synchronization
opens new possibilities for secure transmission of information since synchronization may
provide the possibility to recover information transmitted with broadband chaotic carrier
signals [133].

Synchronization is a basic nonlinear phenomenon and can be defined as the adjustment of
rhythms of self-sustained oscillating objects due to a weak interaction between them [130].
Synchronization means that the frequencies of interacting periodic systems may become
the same or lock in a rational ratio. This is also called entrainment. Interacting periodic
systems with frequencies ω and ω0 are usually called synchronized if either their phases
φ and φ0 are locked

|nφ−mφ0| < const, n,m ∈ N (9.1)

or if the weaker condition of frequency entrainment

ω : ω0 = n : m, n,m ∈ N (9.2)

is fulfilled [134]. Synchronization phenomena can be classified by different features: [52,
130]:

Mutual synchronization: Two or more oscillating systems equally affect each other
and mutually adjust their rhythms. The coupling between the systems is bi-direc-
tional.

Synchronization by external forces: The coupling between the systems is uni-direc-
tional, i.e., one oscillator drives the other one.

Phase synchronization: Only the phases (or frequencies) are adjusted and the ampli-
tude of the oscillating systems can be completely uncorrelated.

Complete synchronization: Amplitude and phase of the oscillating systems are ad-
justed and thus correlated.
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Figure 9.2: a) For a fixed value of the forcing amplitude ε the frequency respond of the system
is shown. b) Same as in a) for different values of ε. c) The so-called Arnold tongue describes
the domain where the frequency Ω of the driven oscillator is the same as the driver frequency
ω. Taken from reference [130]

Synchronization is possible for both, oscillators showing periodic behavior and oscillators
of which at least one exhibits chaotic behavior [130]. Two driving methods are possible:
The coupling between the oscillators can either be continuously applied or can be switched
on at discrete times tn = nT if the coupling and the time interval T are suitably chosen
(sporadic drive) [130]. The coupling depends on two quantities:

1. The coupling strength describes how strong the interaction between the systems is.

2. The frequency mismatch ω − ω0 describes the difference between the uncoupled
oscillators.

Figure 9.2 shows the influence of an external harmonic force f(t) = ε sin (ωt+ φ) on a
periodic, self-sustained harmonic oscillator x(t) = ε0 sin(ω0t+φ0) with a natural frequency
ω0. In case of driving, its frequency changes and is denoted with Ω. Figure 9.2a) depicts
the frequency response if the forcing amplitude ε is kept constant. For a sufficiently
small detuning, ω − ω0, the driver f(t) is able to entrain the oscillator x(t), such that
the frequency Ω of the driven oscillator equals the driver frequency ω. If the detuning
exceeds a critical value, Ω starts to deviate from the driver frequency ω, although it
is still not identical with ω0. The driving force is too weak to entrain the oscillator,
but it ‘pulls’ the frequency of the system towards its own frequency. For this case of
incomplete entrainment, periodic pulling is often observed which means that the dynamics
is frequency modulated [130]. Figure 9.2b) shows a family of curves Ω−ω vs. ω for different
values of the forcing amplitude ε. The gray area displays the region where Ω = ω. This
region is plotted also in figure 9.2c) and is known as the synchronization region or Arnold
tongue [130].



Chapter 10

Experimental setup for the
synchronization of drift waves

10.1 The MIRABELLE device

The synchronization experiments were conducted in the linear, magnetized, low-β, triple
plasma device MIRABELLE. A schematic view of the device is given in figure 10.1. It
consists of two plasma source chambers and a magnetized cylindrical midsection where
the experiments are done. The midsection has a diameter of 26 cm and a length of 1.4m.
In the source chambers, argon plasma is produced by a thermionic hot-cathode discharge
in steady state operation. Each source chamber is separated from the midsection by a
stainless steel mesh grid with a transparency of more than 60%. Both grids can be biased

source chamber mid-section source chamber

compensation coils

pumppump

U

U

filaments anode exciter

U U

1.4 m

H

UA

grid coils tube

tg1 g2

Figure 10.1: Schematics of the MIRABELLE device. Ug1,2 are the bias voltages of the grids
that separate the source chambers from the midsection. Ut is the bias voltage of the tube inside
the midsection.
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with respect to the vacuum vessel. For the synchronization experiments, only one of the
source chambers is operated. The grid between the active chamber and the midsection
is positively biased with Ug, while the other grid is connected to ground, acting as a loss
surface. In this way, electrons are injected from the active chamber into the midsection
and, to a certain degree, an E×B rotation of the plasma column is established [16]. In the
midsection, a magnetic field of up to 110mT is produced by a set of 25 water-cooled coils.
The magnetized plasma column is immersed in a stainless-steel tube (diameter 23 cm)
which is positively biased with Ut and predefines the potential at the poloidal boundary.
The magnetic field in the source chambers is compensated in order to avoid a magnetic
mapping of the filaments into the midsection [109].

Like in VINETA, drift waves propagate poloidally in the magnetized plasma column
[116]. In MIRABELLE, the main control parameters for drift wave dynamics are the
grid bias Ug and the tube bias Ut. Both superimpose a radial electric field across the
plasma column and thereby determine the E×B rotation of the plasma column and the
electron flux from the source chamber into the plasma column of the midsection. The
parallel electron drift is, as outlined above, a mechanism leading to a destabilization of
drift waves [9]. Increasing either Ug or Ut leads to a transition scenario from a stable
plasma state to drift wave turbulence [54,116].

Table 10.1 summarizes typical operation and plasma parameters. Differences between the
plasma parameters of the VINETA device and the MIRABELLE device have already
been discussed in section 5.4. Further reading is found in references [109,116].

Figure 10.2 shows typical radial plasma density and plasma potential profiles [116]. The
density peaks in the plasma center and the radial profile is close to a Gaussian. The plasma
potential has a minimum in the plasma center and its shape is close to a parabola. The
radial shapes of plasma density and plasma potential imply that both, the diamagnetic
and the E×B drift, are unsheared (see section 5.2). In contrast to the VINETA device,
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Figure 10.2: Typical radial plasma density and plasma potential profiles for the MIRABELLE
device. The measured values are indicated by filled symbols �. The density profile is fitted by a
Gaussian. The plasma potential profile is fitted by a parabola. The vertical blue lines indicate
the radial position of the octupole exciter which is installed in the edge of the plasma column.
From reference [116] (measured without exciter installed).
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parameter typical value/range

base pressure 3 · 10−3 Pa

neutral gas pressure (Argon) 4 · 10−2 Pa

magnetic field 25-40mT

tube bias 0 < Ut < 14 V

grid bias 3.6 < Ug < 15 V

peak electron density 2 · 1015 m−3

electron temperature 2 eV

ion temperature ≈ 0.03 eV

electron gyrofrequency 7 · 109 rad/s

ion gyrofrequency 1 · 105 rad/s

electron gyro radius 0.08 mm

ion gyro radius 2.8 mm

effective gyro radius 23 mm

Debye length 0.2 mm

thermal electron velocity 6 · 105 m/s

thermal ion velocity 270 m/s

ion sound velocity 2200 m/s

diamagnetic. electron drift velocity. 1400 m/s

plasma β 10−6

βµ 10−1

Table 10.1: Typical operation and plasma parameters for the MIRABELLE device. Plasma
parameters taken from reference [116].

they point in the same direction and the drift wave frequency is thus increased due to
Doppler shift.

10.2 Diagnostics

The drift wave dynamics are observed using cylindrical Langmuir probes. Time series were
recorded of either the floating potential or the electron saturation current. Temperature
fluctuations are neglected and it is assumed that Ĩe,sat ∝ ñ and φ̃f ∝ φ̃p (see section 4.2.1).

The spatiotemporal drift wave dynamics are observed using a circular probe array of
cylindrical Langmuir probes (COURONNE) [110], schematically shown in figure 10.3.
The probe array installed in the MIRABELLE consists of only 32 probes and is usually
operated in the electron saturation regime. The cylindrical probes have a diameter of
0.2mm, a length of 4mm and are arranged on a circle with 14 cm diameter which cor-
responds to a poloidal spatial resolution of 1.4 cm. The probe array was installed at an
axial distance of about 40 cm from the source grid.



116 Experimental setup for the synchronization of drift waves
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Figure 10.3: The 32 probe array COURONNE which is used in the MIRABELLE device.

10.3 The octupole exciter

For the synchronization experiments, an arrangement of eight stainless-steel electrodes
(octupole exciter) is positioned in flush-mounted geometry in the edge region of the plasma
column (see figure 10.4). The electrodes have a length of 32 cm and are arranged on a
circle with diameter 20 cm, such that they are 15mm separated from the surrounding
tube. The gap between each two neighboring plates is 2mm. Each of the electrodes is
driven by a sinusoidal signal with the same frequency but a fixed, preselected phase angle
δ between neighboring electrodes.

The driver signals are generated by a 8 channel PC-based analog output board with 12-bit
resolution. The signal of each output channel is amplified and connected to one of the
electrodes. In this way an (AC) current can be drawn to each electrode. The maximum
applied peak to peak voltage was 20V while the maximum possible current was limited by
the power amplifier to 1A. The possibility to draw a current to the electrodes is the main
difference between the setup presented here and a previously used setup for measurements
conducted in the KIWI device [115] where the electrodes were galvanically decoupled from
the frequency generator.

In figure 10.5 typical driver signals are shown. The chosen phase shift between the channels
leads to a poloidally propagating wave pattern. The frequency determines the propagation
velocity, while the sign of the phase shift determines the direction of propagation and
controls the poloidal wavelength. A phase shift δ = mdπ/4 corresponds to poloidal mode
number md. For the octupole exciter, Nyquist’s sampling theorem restricts the mode
number range to md = 1, 2, 3. A pattern corresponding to an md = 4 mode can be
established but with ambiguous propagation direction.

In the laboratory frame, the phase velocity of drift waves is determined by the diamagnetic
drift velocity and the E×B drift velocity of the plasma column. The wave pattern applied
to the octupole exciter can propagate either in the same direction as the drift waves or in
the opposite direction. This is referred to as corotating or counterrotating exciter field,
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Figure 10.4: Experimental arrangement used for the synchronization of drift waves. Shown are
the octupole exciter in the edge region of the plasma and the poloidal probe array COURONNE
which was used for the observation of the spatiotemporal dynamics. Sinusoidal signals are
applied to the exciter plates #1-#8. Between neighboring electrodes the signals are phase
shifted.
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Figure 10.5: Sinusoidal voltage signals applied to the eight exciter electrodes. All signals have
the same frequency but a fixed phase shift is applied between each two neighboring plates. The
straight line indicates the poloidal propagation of one maximum of the applied exciter field in
the plasma column.

respectively. The idea is that the rotating exciter field created with the octupole exciter
drives a specific drift mode with phase velocity vφ = 2πfd rx/md with rx being the radial
position of the exciter electrodes. Frequency and mode number of the applied signals are
chosen such that they are compatible with the drift wave dispersion. The frequency is
chosen to be close to an experimentally observed peak in the power spectrum, while the
corresponding mode number can be determined from instantaneous measurements with
the poloidal probe array.
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Chapter 11

Synchronization of drift waves:
experimental results

Different drift wave dynamics can be observed in the MIRABELLE device, e.g., single
coherent saturated modes, chaotic drift wave states, and weakly developed drift wave
turbulence [116]. Synchronization experiments have been conducted for different initial
states. Three examples of synchronization of drift waves are presented subsequently in
some detail. The spatial information of the driver signal is believed to play an important
role in the concept of the spatiotemporal open-loop synchronization. In section 11.1
results obtained using purely temporal driver signals are compared to those obtained by
applying spatiotemporal driver signals. Additionally, the influence of both, corotating as
well as counterrotating exciter fields, on the initial states is investigated.

11.1 Temporal versus spatiotemporal drive

With the exciter setup it is possible to investigate the influence of purely temporal as
well as of spatiotemporal driver signals on the drift wave dynamics. In figure 11.1, the
results for different driver signals are compared. A power spectrum and a frequency-
mode-number spectrum for a weakly developed turbulent state are shown in the first row
of figure 11.1. Here, no signals were applied to the electrodes. The power spectrum S(f)
is broadband (figure 11.1a), even though a few pronounced peaks are seen in the low-
frequency regime (f < fci = 15 kHz, the ion cyclotron frequency). Such low-frequency
peaks embedded into broad-band spectra have previously been observed for drift wave
turbulence in plasmas with cylindrical geometry [23,135]. In the frequency-mode-number
spectrum S(f,m), shown in figure 11.1b), spectral components are scattered over a broad
area in the (f,m)-plane and show no pronounced peaks. The other rows of figure 11.1 show
the dynamics for different exciter signals. In all cases, the frequency and the amplitude
of the exciter signals are kept constant at 8 kHz and 4V, respectively. In the second
and third row, results are shown for temporal exciter signals applied to the electrodes:
Figure 11.1c,d) show the resulting dynamics if the same exciter signal is applied to all
eight exciter electrodes, i.e., the phase shift δ is zero. In figure 11.1e,f), the exciter signal
is applied only to one single plate of the octupole exciter while the other electrodes are
kept floating. This corresponds to a local temporal perturbation. In both cases, the drift
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Figure 11.1: Comparison of the influence of temporal and spatiotemporal driver signals: Shown
are power spectra and frequency-mode-number spectra for a,b) initial state without exciter
signal applied, c,d) exciter field with zero phase shift between the plates, e,f) exciter signal
applied to only one of the eight plates, g,h) spatiotemporal md = 2 corotating exciter field, i,j)
spatiotemporal md = 2 counterrotating exciter field. For all cases, the exciter field is driven
with a frequency of 8 kHz and an amplitude of 4 V.
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wave dynamics are similar to the state without any driver signal applied. The peak at
the driver frequency is slightly more pronounced but the low-frequency background of the
spectra remains uninfluenced.

In figure 11.1g,h), a corotating exciter field with a wave pattern corresponding to md = 2
mode is applied. The drift wave dynamics change completely. Both spectra are now
dominated by a sharp peak at the driver frequency, while the broadband background is
suppressed to some degree. Note that the relatively strong sidebands in the mode in
figure 11.1h) are an artefact due to the limited number of probes of the poloidal array.
We may conclude that the drift wave dynamics are synchronized to the exciter field.
Figure 11.1i,j) depicts the effect of a counterrotating md = 2 exciter field. This has only
a weak influence on the drift wave dynamics, quite similar to the temporal drive. To
summarize, only a corotating exciter field yields a significant modification of the drift
wave dynamics.

11.2 Spatiotemporal synchronization

Figure 11.2 shows the synchronization of a weakly developed turbulent drift wave state.
This state was established by choosing grid bias Ug = 5 V and tube bias Ut = 12 V. The
unperturbed case is depicted in figure 11.2a-d). The time trace of the floating potential
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Figure 11.2: Temporal and spatiotemporal drift wave dynamics for a weakly developed turbu-
lent state: The three rows correspond from top to bottom to the unperturbed case without any
exciter signal applied, active exciter with a corotating field and active exciter with a counterro-
tating field, respectively. The four columns show time series of the floating potential fluctuations,
frequency power spectra (obtained from a single tip of the probe array), space-time diagrams
of the floating potential fluctuations and frequency-mode-number power spectra (linear scale).
The driver amplitude is A = 1.0 V. Published in reference [136].
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Figure 11.3: Temporal and spatiotemporal drift wave dynamics for another dynamical drift
wave state. The organization of the figure is the same as in figure 11.2. Driver amplitude: 1.0V.
Published in reference [137].

fluctuations (figure 11.2a) exhibits irregular features and the corresponding frequency
power spectrum S(f) (figure 11.2b) is broadband with a few more pronounced small peaks.
The spatiotemporal data (figure 11.2c), obtained with the probe array, is dominated by
irregular features and no clear-cut mode structure is observed [16,54]. This is corroborated
by the frequency-mode-number spectrum (figure 11.2d) where no pronounced peaks are
found but the spectral power is scattered over a broad area in the (f,m)-plane. For
synchronization of drift wave turbulence, a driver frequency fd is chosen to be close to
pronounced spectral features in the low-frequency regime. An exciter signal with mode
number md = 2, driver frequency fd = 8.0 kHz, and driver amplitude A = 1.0 V is
chosen. When a corotating exciter field is applied, the drift wave turbulence is successfully
synchronized as shown in figure 11.2e-h). The floating potential fluctuations (figure 11.2e)
are now fairly regular and have a relatively large amplitude, of the order of twice the
largest events in the turbulent state (figure 11.2a). Note the different scale here. The
frequency power spectrum (figure 11.2f) is sharply peaked at 8.06 kHz and its higher
harmonics, meaning that the preselected mode is enhanced at the expense of broadband
low-frequency spectral components. Regular dynamics dominate also the spatiotemporal
data (figure 11.2g). A wave structure with mode number m = 2 is found, which is also
seen in the sharply peaked frequency-mode-number spectrum S(f,m).

To verify that the control effect is really of spatiotemporal nature, the sign of the phase
shift δ and thus the rotation direction of the exciter field is reversed. Except for the
sign of δ, all other parameters are kept the same. Figure 11.2i-l) shows the result. A
counterrotating exciter field has almost no influence on the drift wave turbulence (see
above). The features of the fluctuations are barely distinguished from the unperturbed
case (figure 11.2a-d). This means that the interaction between the counter-rotating exciter
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Figure 11.4: Temporal and spatiotemporal drift wave dynamics for a saturated m = 4 mode
which is synchronized to a mode with a different mode number md = 3. The picture is organized
in the same way as figure 11.2. Driver amplitude: 7.0 V. Published in reference [137].

field and the drift wave turbulence is weak.

Figure 11.3 compiles the influence of the octupole exciter on a more coherent drift wave
state (Ug = 15 V, Ut = 0 V). Without any driver signal applied, the probe signal fluctu-
ations (figure 11.3a) show regular sequences alternating with irregular ones. The ampli-
tudes of the fluctuations are irregular and change by a factor of two. The frequency power
spectrum (figure 11.3b) has a broadened peak at 5.25 kHz. The spatiotemporal pattern
in figure 11.3c) shows an m = 2 mode, which is occasionally broken by phase defects [54].
In summary, figure 11.3a-d) shows a state at the transition from a single coherent m = 2
mode to weakly developed turbulence [54]. The mode structure dominates the dynamics
but regular sequences are alternating with irregular ones, both in space and time.

In the second row (figure 11.3e-h), this drift wave state is synchronized with a corotating
exciter signal of frequency 5.0 kHz, amplitude 1.0V and phase shift δ = π/2, corre-
sponding to an md = 2 mode structure. As a result, the potential fluctuations become
significantly more regular (figure 11.3e) with a sharply peaked frequency power spectrum
(figure 11.3f). Also the higher harmonics become more pronounced. The drift wave dy-
namics is synchronized to the preselected mode as in the weak turbulence case above.
This is confirmed by the spatiotemporal pattern (figure 11.3g). The m = 2 mode clearly
rules the dynamics and no phase defects are observed. The result for the counterrotating
case is shown in figure 11.3i-l) and is again similar to the undriven case, leading to the
conclusion that the right orientation and speed of the synchronization signal are essential.

Figure 11.4 presents another case: a saturated drift mode is driven with an exciter field
with a frequency equal to the observed frequency but with a different mode number md

(Ug = 9.9 V, Ut = 0 V). In figure 11.4a-d) the initial state is shown, a single saturated
m = 4 mode with frequency 8.8 kHz. The spatiotemporal pattern shows a regular drift
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mode (figure 11.3c) and sharp peaks are seen in the frequency-mode-number spectrum
(figure 11.3d). In the second row is the octupole exciter driven at a frequency of 8.85 kHz,
with amplitude 7.0V, and phase shift δ = 3/4π, corresponding to md = 3. Application
of a corotating exciter field (at relatively high drive amplitude) enforces a saturated drift
wave with the same frequency, but with different mode number m = 3 (figure 11.3e-h).
Due to the strong drive the fluctuation amplitude grows by a factor of two. If the exciter
is driven with a counterrotating field, again the drift wave dynamics remains almost
uninfluenced (figure 11.3i-l).

11.3 Final remarks

It was demonstrated that mode-selective synchronization is possible for different drift wave
dynamical states. Weakly developed turbulence can be tamed, i.e., can be suppressed by
driving one single mode with the octupole exciter. Modes which are not fully coherent can
be driven into coherent ones and it is even possible to transform one mode into another
with the same frequency but a different mode number. The frequencies of the drift waves
are fully entrained by the driver signals, while the amplitudes are still slightly changing in
time. Thus, at least phase synchronization was achieved. Synchronization is possible for
different mode numbers md = 1 − 3, if the frequency is chosen appropriately. However,
md = 2 usually requires the lowest driver amplitude.

Counterrotating driver patterns as well as purely temporal driver signals are found to
have almost no influence on the drift wave dynamics. This strongly supports the idea of
spatiotemporal synchronization [138]. Only for a spatial resonance with standing driver
pattern in the wave frame, drift modes can be amplified at the expense of the broadband
background turbulence.

From the experiments, it remains unclear how the octupole exciter couples to the drift
wave dynamics. This point will be discussed in chapter 13 in connection with numerical
results given in chapter 12.



Chapter 12

Synchronization of drift waves:
simulation results

Numerical simulations of the synchronization of drift wave turbulence were conducted in
cooperation with Naulin from Risø National Laboratory, Denmark. The main motivation
is to identify the basic physical mechanism how the external synchronization signal is
coupled to the drift wave dynamics.

12.1 The theoretical model

For the numerical simulations the Hasegawa-Wakatani drift wave model [65] is used
(see equations (2.34) and (2.35)). The radial background density profile n0(r) is kept fixed
and no local approximation for the density gradient is employed. The exciter is modelled
by an oscillatory parallel current profile. The driver term S = ∇‖Jext is assumed to be of
the functional form

S = ∇‖Jext = A sin(πr/r0) sin(2πmdθ − ωdt) , (12.1)

where r0 is the radius of the plasma, θ is the poloidal coordinate, md and ωd are the
driver mode number and the driver frequency, respectively. The poloidal structure of S
is depicted in figure 12.1. We underline that a rotating electric field distribution instead
of a current profile was found not to be able to lead to synchronization.

The three-dimensional model is reduced to two spatial dimensions by introducing an
effective parallel wavelength ∇2

‖ ≈ −k2
‖ (see also section 2.4). The equations of the 2D

model including the additional driver term S are

∂

∂t
∇2
⊥φ+ ~VE · ∇∇2

⊥φ = σ̃ (φ− n)− S + µw∇4
⊥φ (12.2)

∂

∂t
n+ ~VE · ∇ (n0 + n) = σ̃ (φ− n)− S + µn∇2

⊥n (12.3)

where σ̃ = k2
‖σ. In small layers around r = 0 and r = r0 the viscosities were enhanced by

a factor 200. These layers act as sources and sinks and sustain the background density
gradient. Equations (12.2) and (12.3) are solved using the Arakawa scheme [139] to
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Figure 12.1: Poloidal structure of the driver term S in the numerical simulation.

discretize nonlinearities and the density background term, and second order centered
finite differences for the remaining terms. For time stepping a third-order stiffly stable
splitting method is used [140]. Simulations are performed in poloidal coordinates on a
disk, with 64× 128 grid points in the radial and poloidal direction, respectively.

The simulations aim at a qualitative reproduction of the synchronization effect. A quanti-
tative agreement between experiment and numerical simulation cannot be expected from
the model applied. In principle, simulations may give insight into further interesting
points, especially in the change of the fluctuation-induced transport. This is not the case
in the 2D model used here since the model is not self-consistent due to the artificially
fixed radial density profiles.

12.2 Simulation results

The density profile used is of the form n0 = 2.5 cos(r/r0), with r0 = 10 and the viscosities
µn,w are of the order of 10−3 and σ̃ = 0.1. These parameters were chosen to establish
a saturated turbulent state similar to the experimentally observed one (see figure 11.2).
Time series of the density and potential fluctuations are analyzed using the same data
analysis tools as for the experimental data.

The simulation results for a turbulent state is shown in figure 12.2. By comparing fig-
ures 11.2 and 12.2 it becomes evident that the experimental findings discussed above are
qualitatively reproduced by the simulation. In figure 12.2a-d) unperturbed drift wave
turbulence is found in the simulation which has similar characteristics as in experiment:
broad peaks are observed in the low-frequency regime and the spectral power drops to-
wards higher frequencies. A synchronized m = 2 state is achieved at relatively small
driver amplitude (A = 0.75) if a corotating current profile with md = 2 is applied (fig-
ure 12.2e-h). The fluctuations are fairly regular and the amplitudes are much higher than
for the undriven case. The power spectrum is sharply peaked at the driver frequency and
higher harmonics. A counterrotating current profile of the same amplitude has almost no
effect on the drift wave dynamics (figure 12.2i-m).
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Figure 12.2: Simulation results for drift wave turbulence without driver term (top row), coro-
tating driver (middle row) and counterrotating driver (bottom row). The figure is organized in
the same way as figures 11.2–11.4. (Published in reference [136].)

a) b) c)

Figure 12.3: Snapshot of the drift wave mode structures in the poloidal plane obtained from
the numerical simulation. Color coded plots of the density fluctuations. a) without driver term
(corresponding to figure 12.2a-d). b) corotating driver (corresponding to figure 12.2e-h). c)
counterrotating driver (corresponding to figure 12.2i-l). Published in reference [136].

The numerical model allows for inspection of the drift mode structure in the entire poloidal
plane, as shown in figure 12.3. In the undriven case (figure 12.3a), irregular structures
prevail. If a corotating driver term with md = 2 is included (figure 12.3b), a clear
m = 2 mode structure is obtained, corroborating that synchronization is achieved. For a
counterrotating driver term, irregular structures similar to those in the undriven case are
observed (figure 12.3c).

We conclude that the experiment is qualitatively reproduced by simulation. The two
model equations (12.2) and (12.3) are coupled mode-selectively via ∇‖Jext of a rotating
current profile. In the drift wave frame, the poloidal symmetry is broken by the structured
current profile leading to a mode-selection. As a result, the preselected mode is amplified
at the expense of the broadband low-frequency spectral components.
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Chapter 13

Summary and Conclusions

Mode-selective control of drift wave turbulence by spatiotemporal synchronization was
demonstrated in experiment and numerical simulation. In the experiment, synchroniza-
tion of drift modes was achieved by using phase-shifted sinusoidal driver signals applied
to an octupole exciter which creates a poloidally propagating drive pattern. If the spa-
tiotemporal drive pattern is resonant in the moving frame of a preselected drift mode,
it is phase-locked and amplified at the expense of the broadband underground of cou-
pled modes. These experimental findings are qualitatively well reproduced in simulations
based on a Hasegawa-Wakatani model modified to match the experimental conditions.
Also in the numerical simulation, synchronization of a weakly developed turbulent state
to a single (preselected) mode is observed.

In a co-activity, Block conducted experiments in the KIWI device (resembling the
MIRABELLE) with the same experimental arrangement. It was found that a coher-
ent drift mode can be phase synchronized within a certain frequency range [123]. The
phase shift of the drift wave density fluctuations and the exciter potential signal is then
zero [141]. Consequently, at each time instant, the drift wave maximum (positive den-
sity/potential fluctuations) is at the same poloidal position as the positive potential of
the exciter signal. For exciter frequencies close to the synchronization boundaries, peri-
odic pulling with spatiotemporal features is observed [141,142]. Synchronization of a single
drift mode leads to reduction of the fluctuation-induced transport by about 30% [142]. For
incomplete synchronization, the fluctuation-induced transport remains nearly the same
but its features differ significantly from the undriven case. The findings of Block are
fully consistent with the results presented here.

A combination of active and passive probe tips was used by Thomsen to investigate
the coupling between an externally applied propagating wave pattern and the turbulent
plasma dynamics in the scrape-off layer of a fusion device [143]. Enhanced coupling was
found for copropagating wave patterns compared to counterpropagating patterns. In case
of copropagation, the driven wave was not only localized to the injection area but could
also be observed parallel to the ambient magnetic field at a distance of 12m. The coupling
to the fully developed broadband plasma turbulence was found to be limited to a narrow
frequency regime centered around the driver frequency.

In the laboratory experiments KIWI and MIRABELLE, the driver amplitudes required
for synchronization never exceeded 10V, sometimes 1V were sufficient. These amplitudes
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are of the order of the local potential fluctuations and do not mean violent variations of
the background plasma.

The synchronization method always drives one drift mode and already single modes lead
to radial net-transport [141]. Thus, it can not be expected that the fluctuation-induced
transport is suppressed entirely. The results of Block et al. suggest that the synchroniza-
tion significantly alters the fluctuation-induced transport. Both, suppression as well as
enhancement, are possible depending on the drift wave dynamics as well as on the driven
mode [144]. The question of transport control by synchronization is not the subject of
the present work.

A basic question is how the exciter interacts with the plasma. Two explanations are
possible: the coupling between exciter and plasma can either happen via the imposed
electric field or via the current drawn to the exciter electrodes. In reference [141], the
interaction between exciter signal and the drift mode was explained in terms of the vacuum
electric field generated by the exciter at the position where the maximum drift wave
fluctuations are localized. Externally applied electric potentials are usually shielded on
spatial scales given by the sheath perpendicular to the magnetic field which is in the
sub-mm range here. The electric field of the exciter is shielded already far away from the
position of the maximum drift wave fluctuations and is thus unlikely to be responsible for
the coupling between exciter and the drift wave dynamics. Two points support the idea
that the electric current plays the leading role in the coupling mechanism:

1. In previous experiments by Latten [115] a slightly different experimental arrange-
ment was used. The electrodes were galvanically decoupled from the frequency
generator in order to avoid a net current through the plasma. A weak influence
on the drift wave dynamics was observed but even at driver potentials ≥ ±30 V no
complete phase synchronization could be achieved.

2. In the numerical simulation, the dynamics could not be influenced when the exciter
signal was modelled as a localized potential perturbation. Only with current drive,
synchronization was observed [136].

The results presented here stress the importance of the role of the spatial dynamics in
the control of drift wave dynamics. Relatively weak driver signals couple efficiently to the
drift wave dynamics without changing the global equilibrium significantly. It is concluded
that spatiotemporal methods are much more promising candidates for an efficient and
robust control of the drift wave dynamics than purely temporal (as well as purely spatial)
control methods. A further improvement of the control of drift waves could be obtained by
using a combination of the presented spatiotemporal synchronization method and feedback
techniques (see chapter 9). It remains an open question, to what extent the application of
synchronization methods is possible in fusion devices. There, the spatial scale of the (fully
developed) turbulence is smaller and the poloidal cross-section is much larger compared
to low-temperature laboratory plasmas. Thus, an application of an adequate exciter
arrangement would be more challenging. However, the results of reference [143] also
indicate that for a significant and systematic influence on the turbulence – and thereby
the anomalous transport – in the edge region of fusion devices, spatiotemporal methods
are more promising than temporal methods.



Appendix A

Derivation of the drift wave
dispersion relation

The aim of this appendix is to show the derivation of the drift wave dispersion relation
in cartesian and cylindrical geometry in some more detail than in chapter 2. The same
notation and abbreviations are used as in that chapter (see tables 2.3 and 2.4). The basic
equations are first normalized and linearized. The drift wave dispersion relations for both,
cartesian and cylindrical coordinate system, are derived assuming harmonic perturbations
of a form adequate to the geometry.

A.1 Preparative remarks

From the definitions

ρs =

√
kBTeM

e2B2
, cs =

√
kBTe

M
and Ωci =

eB

M

one obtains the relations

ρscs =
kBTe

eB
and

ρs

cs
=

1

Ωci

which are used in the normalization procedure.

Normalization of the E×B Drift

Following the normalization rules given in table 2.2, the normalized E×B drift is obtained:

V E =
E ×B

B2
= − 1

B2
∇φ×B

csV̂ E = − 1

ρs

kBTe

e

1

B
∇̂φ̂× e‖

V̂ E = −∇̂φ̂× e‖
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Splitting the total plasma potential φt into the time-averaged part φ0 and the fluctuating
part φ̃ and assuming φ0 = φ0(x) one obtains in cartesian coordinates:

V E = −∇φt × e‖ = −(∂xφt, ∂yφt, ∂zφt)× (0, 0, 1)

= − (∂yφ,−∂x(φ0 + φ) , 0) = (−∂yφ, ∂x(φ0 + φ), 0) .

With φt = φ0 + φ̃ and the assumption φ0 = φ0(r), one obtains in cylindrical coordinates:

V E = −∇φ× e‖ = −(∂rφ, 1/r∂θφ, ∂zφ)× (0, 0, 1)

= − (1/r∂θφ, −∂r(φ0 + φ), 0) = (−1/r∂θφ, ∂r(φ0 + φ), 0) .

Convective derivative

From dt = ∂t + vE · ∇⊥ and the formula for vE derived above one finds for cartesian
coordinates

dt = ∂t + vx∂x + vy∂y = ∂t − ∂yφ∂x + ∂x(φ0 + φ)∂y

and for cylindrical coordinates

dt = ∂t + vr∂r + vθ
1

r
∂θ = ∂t −

1

r
∂θφ∂r +

1

r
dr(φ0 + φ)∂θ .

A.2 Normalization

The first step towards the drift wave dispersion relations given in chapter 2 is to nor-
malize equations (2.2), (2.4) and (2.8). The result of the normalization procedure are
equations (2.20–2.22).

Electron momentum equation

From equation (2.4)

nme dtv = −∇p− ne(E + v ×B) + nνeime(u− v)− nνenmev

only the parallel part is considered. With the assumptions given in section 2.2 and with
V 6= V (x, y, z) one obtains

nme dtV = −kBTe∇‖n+ ne∇‖φ− νeinmeV − νennmeV

dtV = −kBTe

men
∇‖n+

e

me

∇‖φ− (νei + νen)V .

Normalization yields

Ωcics d̂tV̂ = − kBTe

nmeρs

∇̂‖n+
kBTee

emeρs

∇̂‖φ̂− csΩci(ν̂ei + ν̂en)V̂

d̂tV̂ = − kBTe

meρsΩcics
∇̂‖N +

kBTe

meρsΩcics
∇̂‖φ̂− (ν̂ei + ν̂en)V̂

= −M
me

∇̂‖N +
M

me

∇̂‖φ̂− (ν̂ei + ν̂en)V̂ .
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This yields equation (2.20):

d̂tV̂ =
M

me

∇̂‖(φ̂−N)− (ν̂ei + ν̂en)V̂ . (A.1)

Electron continuity equation

From the electron continuity equation (2.2)

∂tn+∇ · (nv) = 0

one obtains

∂tn = −∇ · (nv) = −n(∇ · v)− v · ∇n
= −n

(
∇⊥ · v⊥ +∇‖V

)
− v⊥ · ∇⊥n− V∇‖n

1

n
∂tn =

[
− 1

n
V∇‖n−∇‖V

]
−∇⊥ · v⊥ −

1

n
v⊥ · ∇⊥n .

For the perpendicular electron velocity only the E×B drift and the diamagnetic drift are
considered. Thus ∇⊥ ·v⊥ = 0. For the electron diamagnetic drift the 1/nvD,e ·∇⊥n term
vanishes and the 1/nvE · ∇⊥n term is absorbed by the convective derivative. Thus, one
obtains

1

n
dtn = − 1

n
V∇‖n−∇‖V .

Normalization

Ωci
1

n
d̂tn =

cs
ρs

[
− 1

n
V̂ ∇̂‖n− ∇̂‖V̂

]
and simplification yields equation (2.21):

d̂tN = −V̂ ∇̂‖N − ∇̂‖V̂ . (A.2)

Quasineutrality

From equation (2.8)
∇⊥ · J⊥ = −∇‖ · J‖ (A.3)

follows

e∇⊥ · (nu⊥ − nv⊥) = e∇‖ · (nV )

en∇⊥ · (u⊥ − v⊥) + e(u⊥ − v⊥) · ∇‖n = en∇‖ · V + V · ∇‖n .

The perpendicular velocities are given in equations (2.13) and (2.17). The E×B drift is
identical for ions and electrons and therefore vanishes in the difference. The diamagnetic
drift terms vanish because they are divergence free. The polarization drift of the electrons
can be neglected because of the mass ratio M � me. The only remaining terms are,
consequently, the ion polarization drift and the ion Pedersen drift due to the collisions:

u⊥ − v⊥ =
M

eB2
(dtE⊥ − νin∇⊥φ) =

M

eB2
(−dt∇⊥φ− νin∇⊥φ) .
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Thus, one yields

M

B2

(
∇⊥n · (−dt∇⊥φ− νin∇⊥φ)− ndt∇2

⊥φ− νinn∇2
⊥φ
)

= en∇‖ · V + V · ∇‖n .

Normalization of the left hand side yields

M

B2

[
1

ρs

∇̂⊥n ·
(
−Ωcid̂t

kBTe

eρs

∇̂⊥φ̂− Ωciν̂in
kBTe

eρs

∇̂⊥φ̂

)]
+
M

B2

[
−n 1

ρ2
s

kBTe

e
Ωcid̂t∇̂2

⊥φ̂− Ωciν̂inn
kBTe

eρ2
s

∇̂2
⊥φ̂

]
=
M

B2
Ωci

kBTe

eρ2
s

(
∇̂n ·

(
−d̂t∇̂⊥φ̂− ν̂in∇̂⊥φ̂

)
− nd̂t∇̂2

⊥φ̂− ν̂inn∇̂2
⊥φ̂
)

=
e2B

M

(
∇̂n ·

(
−d̂t∇̂⊥φ̂− ν̂in∇̂⊥φ̂

)
− nd̂t∇̂2

⊥φ̂− ν̂inn∇̂2
⊥φ̂
)

and normalization of the right hand side yields

ecs
ρs

(
n∇̂‖ · V̂ + V̂ · ∇̂‖n

)
= eΩci∇̂‖

(
n · V̂ + V̂ · ∇̂‖n

)
=
e2B

M

(
n∇̂‖ · V̂ − V̂ · ∇̂‖n

)
.

Leaving out the common factor e2B/M and introducing Ω = ∇2φ one finds

∇̂⊥n · (−ν̂in∇̂⊥φ̂− d̂t∇̂⊥φ̂)− nd̂t∇̂2
⊥φ̂− ν̂inn∇̂2

⊥φ̂ = n∇̂‖V̂ + V̂ ∇̂‖n

∇̂⊥N · (−ν̂in∇̂⊥φ̂− d̂t∇̂⊥φ̂)− d̂tΩ̂− ν̂inΩ̂ = ∇̂‖V̂ + V̂ ∇̂‖N

which yields equation 2.22:

d̂tΩ̂ = ∇̂N · (−ν̂in∇̂⊥φ̂− d̂t∇̂⊥φ̂)− ν̂inΩ̂− ∇̂‖V̂ − V̂ ∇̂‖N . (A.4)

A.3 Cartesian coordinates (Local slab model)

The goal of this section is the derivation of the dispersion relation for collisional drift waves
in cartesian geometry – (equation 2.25) – from equations (2.20–2.22). The abbreviations
(see table 2.3) and assumptions made in chapter 2 for the local slab model are used.

Electron momentum equation

From equation (2.20)

dtV =
M

me

∇‖(φ−N)− νeV

by omitting all zero order terms and all second order terms one obtains

∂tV − ∂yφ∂x(V0 + V ) + ∂x(φ0 + φ)∂y(V0 + V ) =
M

me

∇‖(φ− n)− νe(V0 + V )

∂tV =
M

me

∇‖(φ− n)− νe(V0 + V ) .
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By neglecting the time dependence of V an equation for V is found:

V =
M

meνe

∇‖(φ− n)− V0 .

Replacing all the derivatives and assuming harmonic perturbations of the form of equa-
tion (2.24) yields

V =
M

meνe

ik‖(φ− n)− V0 .

From this an equation for ∇‖V is obtained:

∇‖V = − M

meνe

k2
‖(φ− n) = −τe(φ− n) .

Electron continuity equation

From equation (2.21)
dtN = −V∇‖N −∇‖V

one obtains the linearized form

∂tn− (∂yφ)∂x lnn0 + ∂xφ(∂y lnn0 + ∂yn) = −V0∇‖n−∇‖V

∂tn− (∂yφ)∂x lnn0 = −V0∇‖n−∇‖V .

Replacing all the derivatives and assuming harmonic perturbations of the form of equa-
tion (2.24) yields

−iωn− ikyφ ∂x lnn0 = −ik‖V0n+ τe(φ− n)

and thus
−iωn = −iω∗φ− iw1n+ τe(φ− n) .

Quasineutrality

From equation (2.22)

dtΩ = ∇N · (−dt∇φ− νin∇φ)− νinΩ−∇‖V − V∇‖N

one obtains the linearized left hand side:

dtΩ = ∂t(Ω0 + Ω)− (∂yφ)∂x(Ω0 + Ω) + ∂x(φ0 + φ)∂y(Ω0 + Ω)

= ∂tΩ = −∂∇2
⊥φ = (−iω)(iky)

2φ = iωk2
yφ

where harmonic fluctuations are assumed, equation (2.24). For the last three terms of the
right hand side one obtains

−νinΩ − ∇‖V − V∇‖N

= −νin∇2
⊥(φ0 + φ)−∇‖(V0 + V )− (V0 + V )(∇‖ lnn0 +∇‖n)

= −νin∇2
⊥φ+ τe(φ− n)− V0∇‖n

= −νin(iky)
2φ+ τe(φ− n)− V0ik‖n

= νink
2
yφ+ τe(φ− n)− iw1n .
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The ∇N ·(. . . ) terms vanish since all non-zero terms are zero order or second order terms.

Combining all terms of the equation again yields

iωk2
yφ = νink

2
yφ+ τe(φ− n)− iw1n . (A.5)

Derivation of the dispersion relation

With b = k2
y equations (A.3) and (A.5) can be written as

(τe + iw1)n = (−iωb+ νinb+ τe)φ

(−iω + iw1 + τe)n = (−iω∗ + τe)φ

which allows elimination of n and φ:

(−iωb+ νinb+ τe)(−iω + iw1 + τe) = (τe + iw1)(−iω∗ + τe)

−ω2b+bωw1−iτeωb−ibνiω+ibνinw1+τebνin−iωτe+iw1τe+τ
2
e = −iω∗τe+w1ω

∗+τ 2
e +iw1τe

0 = bω2 + (−bw1 + iτeb+ ibνin + iτe)ω + (−ibνinw1 − τebνin − iω∗τe + w1ω
∗)

0 = bω2 + (iτe(1 + b) + ibνin − bw1)ω − τe(bνin + iω∗) + w1(ω
∗ − ibνin) . (A.6)

This is equation (2.25). Also, the phase relation between n and φ can be obtained

n =
−iωb+ νinb+ τe

τe + iw1

φ =
−iω∗ + τe

−iω + iw1 + τe
φ . (A.7)

A.4 Cylindrical coordinates

The goal of this section is to derive the differential equation (2.30) from the normal-
ized equations (2.20–2.22). The abbreviations (see table 2.4) and assumptions made in
chapter 2 for the cylindrical model are used.

Linearization

The first step towards equation (2.30) is the linearization of equations (2.20–2.22).

Electron momentum equation

From equation (2.20)

dtV =
M

me

∇‖(φ−N)− (νei + νen)V

using νe = νei + νen, ∇‖φ0 = 0 and ∇‖n0 = 0 one obtains

∂t(V0 + V )− 1

r
(∂θφ)∂r(V0 + V ) +

1

r
(∂r(φ0 + φ))∂θ(V0 + V )

=
M

me

(
∇‖φ0 +∇‖φ−∇‖ lnn0 −∇‖n

)
− νe(V0 + V ) .

This yields

∂tV + Vp∂θV =
M

me

∇‖(φ− n)− νe(V0 + V ) . (A.8)
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Electron continuity equation

From equation (2.21)
dtN = −V∇‖N −∇‖V

one obtains by linearization

∂tN − 1

r
∂θφ∂rN + ∂r(φ0 + φ)

1

r
∂θN = −(V0 + V )(∇‖ lnn0 +∇‖n)−∇‖(V0 + V )

∂tn−
1

r
∂θφ∂r lnn0 + ∂rφ0

1

r
∂θn = −(V0∇‖ lnn0 + V0∂zn+ V∇‖ lnn0 + V ∂zn)− ∂zV

∂tn+
1

r
κ∂θφ+ Vp∂θn = −V0∇‖n−∇‖V .

This yields

∂tn+ Vp∂θn = −1

r
κ∂θφ− V0∇‖n−∇‖V . (A.9)

Quasineutrality

From equation (2.22)

dtΩ = ∇N · (−νin∇⊥φ− dt∇⊥φ)− νinΩ−∇‖V − V∇‖N (A.10)

one obtains the linearized from of the left hand side

∂t(Ω0 + Ω)− 1

r
∂θφ∂r(Ω0 + Ω) +

1

r
dr(φ0 + φ)∂θ(Ω0 + Ω)

= ∂tΩ−
1

r
∂θφ∂rΩ0 +

1

r
drφ0∂θΩ = ∂tΩ−

1

r
∂θφSp + Vp∂θΩ .

The linearized form of the last three terms of the right hand side is

−νinΩ−∇‖V − V · ∇‖N = −νin(Ω0 + Ω)−∇‖(V0 + V )− (V0 + V )(∇‖ lnn0 +∇‖n)

= −νinΩ−∇‖V − V0∇‖n .

Keeping in mind that both n0 and φ0 depend only on r and that only first order terms
are kept, the first of the ∇N · terms reads

−νin∇N · ∇⊥φ = −νin [(∂r lnn0)(∂rφ) + (∂rn) (∂rφ0)]

= −νin [−κ(∂rφ) + (∂rn)rVp]

= νinκ∂rφ− νinrVp∂rn .

In an analogue way for the last term one obtains

−∇N · dt∇⊥φ = −∂r lnn0 dt∂rφ− ∂rn dt∂rφ0

= κ

(
∂t∂rφ−

1

r
∂θφ∂rrφ+

1

r
∂r(φ0 + φ)∂θ∂rφ

)
− ∂rn

(
∂t∂rφ0 −

1

r
∂θφ∂r∂rφ0 +

1

r
∂r(φ0 + φ)∂θ∂rφ0

)
= κ (∂t∂rφ+ Vp∂θ∂rφ) .
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Combining all terms yields

∂tΩ + Vp∂θΩ = −νinΩ−∇‖V − V0∇‖n

+ κ (∂t + Vp∂θ + νin) ∂rφ− νinrVp∂rn+
1

r
∂θφSp .

(A.11)

From the linearized equations to the differential equation

Assuming harmonic fluctuations of the form of equation (2.29) the derivatives ∂t, ∇‖ = ∂z

and ∂θ are subsequently replaced by−iω, ik‖ and im, respectively. The resulting equations
are combined to obtain the differential equation (2.30).

Electron momentum equation

From equation (A.8)

∂tV + Vp∂θV =
M

me

∇‖(φ− n)− νe(V0 + V )

one finds by neglecting the time dependence in the electron parallel velocity

Vp∂θV =
M

me

∇‖(φ− n)− νe(V0 + V )(
1 +

Vpim

νe

)
V =

M

meνe

∇‖(φ− n)− V0

V =
ik‖

νe + imVp

M

me

(φ− n)− α(r)V0 .

For ∇‖V one obtains

∇‖V = −
k2
‖

νe + imVp

M

me

(φ− n) = −P (φ− n) .

Electron continuity equation

From equation (A.9)

∂tn+ Vp∂θn = −1

r
κ∂θφ− V0∇‖n−∇‖V

one obtains

−iωn+ Vpimn = −1

r
κ(r)imφ− V0ik‖n+ P (φ− n)

−iω̃n = −iω∗φ− iw1n+ P (φ− n)

(−iω̃ + iw1 + P )n = (−iω∗ + P )φ

n =
ω∗ + iP

ω̃ − w1 + iP
φ .
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This is an equation which connects n and φ and from which the phase shift between
density and potential fluctuations can be found. For the further analysis it is also useful
to get an expression for P (φ− n):

P (φ− n) = −iω̃n+ iω∗φ+ iw1n .

Quasineutrality

The resubstitution of Ω to φ is given by the following expression

Ω = ∇2φ =
1

r
∂r(r∂rφ) +

1

r2
∂θθφ =

(
∂rr +

1

r
∂r −

m2

r2

)
φ .

From equation (A.11)

∂tΩ + Vp∂θΩ = −νinΩ−∇‖V − V0∇‖n

+κ (∂t + Vp∂θ + νin) ∂rφ− νinrVp∂rn+
1

r
∂θφSp

one obtains

−iωΩ + imVpΩ = −νinΩ + P (φ− n)− V0ik‖n

+κ (−iω + imVp + νin) ∂rφ− νinrVp∂rn+
1

r
imφSp

−iω̃Ω = −νinΩ + P (φ− n)− iw1n

+κ (−iω̃ + νin) ∂rφ− νinrVp∂rn+
1

r
imφSp .

This yields

(−iω̃ + νin)Ω− P (φ− n) + iw1n− κ (−iω̃ + νin) ∂rφ+ νinrVp∂rn−
1

r
imφSp = 0

(−iω̃ + νin)

(
∂rr +

1

r
∂r −

m2

r2

)
φ− P (φ− n) + iw1n

− κ (−iω̃ + νin) ∂rφ+ νinrVp∂rn−
1

r
imφSp = 0

(−iω̃ + νin)

(
∂rr +

1

r
∂r −

m2

r2
− κ∂r

)
φ− P (φ− n) + iw1n

+ νinrVp∂rn−
1

r
imφSp = 0 .

Using the abbreviations

A =
1

ω̃ + iνin

, and B =
ω∗ + iP

ω̃ − w1 + iP

and replacing P (φ− n) and n leads to

(−iω̃ + νin)

(
∂rr +

1

r
∂r −

m2

r2
− κ∂r

)
φ+ iω̃n− iω∗φ− iw1n+ iw1n

+ νinrVp∂rn−
1

r
imφSp = 0
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(−iω̃ + νin)

(
∂rr +

1

r
∂r −

m2

r2
− κ∂r

)
φ+ iω̃Bφ− iω∗φ+BνinrVp∂rφ−

1

r
imφSp = 0

(ω̃ + iνin)

(
∂rr +

1

r
∂r −

m2

r2
− κ∂r

)
φ− ω̃Bφ+ ω∗φ+ iBνinrVp∂rφ+

1

r
mφSp = 0

∂rr +

(
1

r
∂r − κ∂r

)
φ− m2

r2
φ− ω̃ABφ+ Aω∗φ+ iABνinrVp∂rφ+ A

1

r
mφSp = 0

∂rr +

(
1

r
− κ+ iABνinrVp

)
∂rφ+

(
Aω∗ + A

1

r
mSp − ω̃AB − m2

r2

)
φ = 0 .

Finally, using the two definitions for RD and Q given in chapter 2

RD(r) := i
1

ω̃ + iνin

(
ω∗ + iP

ω̃ − w1 + iP

)
νinrVp = iAB νinrVp

and

Q(r) :=
1

ω̃ + iνin

[
ω∗ +

m

r
Sp − ω̃

ω∗ + iP

ω̃ − w1 + iP

]
= A

[
ω∗ +

m

r
Sp − ω̃ B

]
one finally obtains the second order differential equation (2.30)

∂rrφ+

(
1

r
− κ(r) +RD(r)

)
∂rφ+

(
Q(r)− m2

r2

)
φ = 0 .

This equation is numerically solved in chapter 7.
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Collisions

In a plasma, collisions between the different kinds of particles play an important role since
they can change the momentum and energy of the interacting particles or even change
the particles themselves, for instance, in the case of ionization of an atom. As seen in
chapter 2, collision frequencies also determine the dynamics of drift waves and, therefore,
for numerical calculations numbers for collision frequencies are needed. Unfortunately,
collision frequencies are difficult to determine accurately. In this chapter the main collision
processes in argon plasmas are briefly summarized and formulas used in this work for the
estimation of collision frequencies of the most important collision processes are given. An
overview on collisions can be found in reference [145].

Energy and momentum are conserved during collision processes. Principally, one dis-
tinguishes between elastic and inelastic collisions. For elastic collisions the sum of the
kinetic energy of the particles is conserved. In inelastic collisions a fraction of the kinetic
energy is changed into internal energy of the involved atom or ion and also the number
of particles can change. Examples for inelastic processes are ionization and excitation of
neutrals. Usually, inelastic collisions are rare compared to elastic collisions.

In weakly ionized gases the charged particles collide more frequently with neutral atoms
than with each other, while for higher ionization degrees, Coulomb collisions between
charged particles dominate. In a helicon discharge, both Coulomb collisions as well as
collisions between charged particles and neutrals, play a role. For this reason, both kinds
of collisions are discussed in this section.

The collision frequency between the species α and β is defined by

ναβ = nβ 〈σαβvα〉 (B.1)

where σαβ is the cross section for collisions between the species α and β, n is the density
and v is the velocity. Usually, ναβ is different from νβα. For a Maxwellian distribution,
this reads to be

ναβ = nβ
4

π

(
mα

2kBTα

)3/2 ∫ ∞

0

σαβ(v) v3
α exp

(
−mαv

2
α

2kBTα

)
dvα . (B.2)

The rate constant is defined by

Kαβ = 〈σαβvα〉 . (B.3)
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B.1 Coulomb-Collisions

Charged particles ‘feel’ each other’s electric field from a certain distance. That means that
their momentum changes even if they do not actually collide. Most of these collisions occur
at a small angle but the cumulation of these many small-angle collisions leads to large
momentum changes. For Coulomb collisions an analytic expression for the cross section
can be found. Thus, the collision frequency can also be given by a formula:

νei =

(
1

4πε0

)2
4
√

2π Z2e4ni

3
√
me (kBTe)3/2

ln Λ (B.4)

where

ln Λ = ln

[(
1

4πε0

)−3/2
3 (kBTe)

3/2

2
√
π e3

√
ne

]
, (B.5)

Z is the charge number , Te is the electron temperature in units of K and ne is the plasma
density in m−3 [146]. From this a handy formula for νei can be derived:

νei = 2.91 · 10−12 n

T
3/2
[eV ]

lnΛ

where the electron temperature T[eV ] is expressed in eV and the plasma density n in m−3.

The electron-electron collision frequency is νee = νei/
√

2. The ion-ion collision frequency
depends on ion mass and ion temperature [146]:

νii =

(
1

4πε0

)2
4
√
π Z4e4ni

3
√
M (kBTi)3/2

ln Λ . (B.6)
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Figure B.1: Electron-ion collision frequency in dependency of the plasma density.
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B.2 Electron-neutral collisions

Neutrals do not have an external electric field. So charged particles ‘feel’ their presence
only when they come within the range of an atomic radius. For elastic collisions one can
think of electron-atom collisions as collisions between billiard balls. For higher electron
energies inelastic collisions become more important.

Elastic collisions

Since electrons are much lighter than atoms, there is a considerable change of the electron
momentum when it collides with a neutral. The neutral on the other hand is nearly
unaffected. The cross section for such collisions depends on the type of gas as well as
on the energy of the electron. At high energies, the cross section decreases because the
electron passes the atom so fast that there is not enough time for the electric field of the
outermost electrons of the atom to change the momentum of the passing electron. The
momentum transfer cross section for elastic electron-atom collisions in argon is plotted
in Figure B.2. It is found that, especially for low energies, the cross section depends
on the electron energy. Using formula B.1, the collision frequency can be calculated
numerically. The result of the calculation for three neutral gas pressures is shown in
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Figure B.2: Momentum transfer cross section for elastic electron neutral collisions in argon
[147]. The electron energy E and the electron velocity v are connected by E = mv2/2e where
E is in units of eV.
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Figure B.3: Electron-neutral collision frequency.

figure B.3. It is found that for temperatures above approximately 2 eV the collision
frequency is relatively constant. Below 2 eV, changes in the collision frequency of more
than two orders of magnitudes are found. The collision frequency for elastic electron-
neutral collisions increases with the neutral gas pressure.

Inelastic collisions between electrons and neutrals

The most important inelastic processes between electrons and neutral gas atoms are ion-
ization and excitation. For argon, the ionization threshold is 15.76 eV and the excitation
threshold is 11.55 eV. A comparison between the three most important collision rates is
shown in figure B.4. It is found that the collision rate for elastic collisions dominates by
far for low temperature plasmas. Insofar, only the collision frequency for elastic collisions
is taken into account in this work.

B.3 Ion-neutral collisions

Besides elastic collisions, for collisions between ions and neutrals, the ion-atom charge
transfer reaction A+ A+ → A+ + A is also an important process. A comparison of cross
sections for both processes is shown in figure B.5. It can be seen that cross sections
for both processes are of the same order of magnitude and increase towards low energies
where not much data exists. In reference [146] a formula for the cross-section for resonant
charge exchange between an argon ion and an argon atom (both in the ground state) is
given:

σct[m
2] = 4.8 · 10−19 m2

(
1 + 0.14 ln

(
1 eV

E[eV ]

))2

(B.7)
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Figure B.4: Comparison between collision rates for elastic electron-neutral collisions, ionizing
collisions and exciting collisions. From Reference [145].

where E is the kinetic energy of the ion with respect to the atom. For room temperature
E = 0.025 eV this yields σin = 1.1·10−18 m2 and for E = 0.3 eV a value σin = 6.5·10−19 m2

is obtained. This is also in good agreement with the value of the total ion-atom cross-
section at low temperatures of σin ≈ 10−18 m2 which is given in reference [145]. Ionization
due to ion-atom collisions is significant only for energies higher than 100 eV and can
therefore be neglected when discussing laboratory plasmas [145].

Figure B.5: Comparison between collision rates for elastic ion-neutral collisions (s) and charge
transfer collisions (T). t denotes the sum of both mechanisms. From reference [145].
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Appendix C

List of Symbols

A Vector potential
B magnetic field
B z-component of the magnetic field
e elementary charge
b b = k2

y (normalized units) table 2.3
β ratio of plasma pressure to magnetic-field pressure
βµ β/(me/M)
cs ion sound velocity table 2.2
δ phase shift between exciter plates chapter 10
f frequency
fD,e electron diamagnetic drift frequency
fE E×B frequency
I current
Ie,isat electron saturation current chapter 4
Ii,isat ion saturation current chapter 4
i

√
−1

j, J current density chapters 2 and 4
K κ−RD
k wave vector
k‖, k⊥ parallel / perpendicular part of k
κ inverse density gradient scale length table 2.4
kB Boltzmann constant table 2.4
L⊥ density gradient length scale
λD Debye length table 4.2
λz parallel wavelength
M ion mass
m poloidal mode number
md poloidal driver mode number chapter 10
me electron mass
µ0 vacuum permeability
N lnn
n total plasma density n = n0 + ñ, also used instead of ñ
n0 mean plasma density
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ñ fluctuating part of the plasma density
ng neutral gas density
νei electron ion collision frequency
νen electron neutral collision frequency
νe electron collision frequency νei + νen table 2.2
νin ion neutral collision frequency
P abbr. used in num. model table 2.4
p plasma pressure
pg neutral gas pressure

φ plasma potential φ = φ0 + φ̃, also used instead of φ̃
ϕ phase angle chapter 4
φ0 mean plasma potential

φ̃ fluctuating part of the plasma potential
φf floating potential section 4.2
φp plasma potential section 4.2
Q abbr. used in num. model equation (2.31)
ψ parallel component of A
ψ eigenfunctions chapter 7
rc,e, rc,i electron / ion gyro radius table 4.2
R normalized cross correlation function chapter 3
RD rotational drag term equation (2.32)
ρs drift scale table 2.2
S spectral power density chapter 3
Sp curvature of flow profile table 2.4
σ standard deviation
Tα temperature of species α in K
T[eV ] electron temperature in eV
t time
τ time lag or normalized collision frequency table 2.3
τe Mk2

‖/meνe table 2.3

U u‖, parallel ion velocity chapter 2
U probe bias with respect to ground chapter 4
Ug grid bias chapter 10
Ut tube bias chapter 10
u ion velocity
V v‖ parallel electron velocity chapter 2
V probe bias with respect to the plasma potential chapter 4
Vp normalized E ×B drift table 2.4
v electron velocity
vD,α diamagnetic drift velocity for species α equation 2.15
vE E ×B drift velocity equation 2.14
vp,α polarization drift velocity for species α equation 2.16
vth,e, vth,i electron / ion thermal velocity table 4.2
Ω vorticity chapter 2
Ωci ion cyclotron frequency
ω angular frequency
ωR, ωI real / imaginary part of the drift wave frequency
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ωc,e electron cyclotron frequency table 4.2
ωp,e, ωp,i electron / ion plasma frequency table 4.2
ω∗ frequency corresponding to VD,e tables 2.3, 2.4
ω1 electron parallel drift frequency table 2.4
ω̃ ω −mVp table 2.4
(r, θ, z) cylindrical coordinates (ez‖B)
(x, y, z) cartesian coordinates (ez‖B)
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[86] Th. Enk and M. Krämer. Radio frequency power deposition in a high density helicon
discharge with helical antenna coupling. Phys. Plasmas, 7(10):4308–4319, 2000.

[87] I. V. Kamenski and G. G. Borg. An evaluation of different antenna designs for helicon
wave excitation in a cylindrical plasma. Phys. Plasmas, 3(12):4396–4409, 1996.

[88] C. Franck, O. Grulke, and T. Klinger. Mode transitions in helicon discharges. Phys.
Plasmas, 10(1):323–325, 2003.

[89] A. Stark. private communication.

[90] N. Hershkowitz. How Langmuir Probes Work. In O. Auciello and D. L. Flamm, editors,
Plasma Diagnostics - Discharge Parameters and Chemistry, pages 113–183. Academic
Press, Boston, MA, 1989.

[91] F. F. Chen. Electric probes. In H. Huddlestone, editor, Plasma Diagnostic Techniques,
pages 113–200. Academic Press, New York, 1965.

[92] C. Franck, O. Grulke, and T. Klinger. Magnetic fluctuation probe design and capacitive
pickup rejection. Rev. Sci. Instrum., 73(11):3768–3771, 2002.

[93] I. Duran et. al. Measurements of magnetic field fluctuations using an array of Hall detectors
on the Textor tokamak. Rev. Sci. Instrum., 73(10):3482–3489, 2002.



156 Bibliography

[94] H. M. Mott-Smith and I. Langmuir. The theory of collectors in gaseous discharges. Phys.
Rev., 28:727, 1926.

[95] I. D. Sudit and F. F. Chen. Rf compensated probes for high-density discharges. Plasma
Sources Sci. Technol., 3:162–168, 1994.

[96] F. F. Chen. Langmuir probe analysis for high density plasmas. Phys. Plasmas, 8(2):3029–
3041, 2002.

[97] V. I. Demidov, S. V. Ratynskaia, and K. Rybdal. Electric probes in plasmas: The link
between theory and experiment. Rev. Sci. Instrum., 73(10):3409–3439, 2002.

[98] K. U. Riemann. The Bohm criterion and sheath formation. J. Phys. D: Appl. Phys.,
24:493–518, 1991.

[99] P. C. Stangeby. A problem in the interpretation of tokamak langmuir probes when a fast
electron component is present. Plasma Phys. Controlled Fusion, 37:1031–1037, 1995.

[100] T. E. Sheridan. How big is a small Langmuir probe? Phys. Plasmas, 7(7):3084–3088,
2000.

[101] F. F. Chen. Langmuir probe analysis for high density plasmas. Phys. Plasmas, 8(6):3029–
3041, 2001.

[102] K. Hansen, T. Klinger, and A. Piel. Computer controlled probe diagnostic system and
applications in a magnetized laboratory plasma. Rev. Sci. Instrum., 65(8):2615–2622,
1994.

[103] V. I. Demidov, S. V. Ratynskaia, R. J. Armstrong, and K. Rybdal. Probe measurements of
electron density distributions in a strongly magnetized low-pressure helium plasma. Phys.
Plasmas, 6(1):350–358, 1999.

[104] R. R. Arslanbekov, N. A. Khromov, and A. A. Kudryavtsev. Probe measurements of
electron energy distribution function at intermediate and high pressures and in a magnetic
field. Plasma Sources Sci. Technol., 3:528–538, 1994.

[105] R. Balbin et. al. Measurement of density and temperature fluctuations using a fast-swept
langmuir probe. Rev. Sci. Instrum., 63(10):4605–4607, 1992.

[106] T. Klinger A. Latten and A. Piel. A probe array for the investigation of spatio-temporal
structures in drift wave turbulence. Rev. Sci. Instrum., 66(5):3254–3262, 1995.
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[136] Ch. Schröder, T. Klinger, D. Block, A. Piel, G. Bonhomme, and V. Naulin. Mode selective
control of drift wave turbulence. Phys. Rev. Lett., 86(25):5711–5714, 2001.

[137] Ch. Schröder, T. Klinger, G. Bonhomme, D. Block, and A. Piel. Taming drift wave
turbulence. Contrib. Plasma Phys., 41(5):461–466, 2001.

[138] A. S. Pikovski, M. G. Rosenblum, M. A. Zaks, and J. Kurths. Phase synchronization of
regular and chaotic oscillators. In H. G. Schuster, editor, Handbook of Chaos Control,
pages 305–328, Weinheim, 1999. VCH-Wiley.

[139] A. Arakawa. Computational design for long-term numerical integration of the equations
of fluid motion: Two-dimensional incompressible flow. J. Comput. Phys., 1:119–143, 1966.

[140] G. E. Kariadakis, M. Israeli, and S. A. Orzag. High-order splitting methods for the
incompressible Navier Stokes equations. J. Comput. Phys., 97:414, 1991.

[141] D. Block. Synchronization of drift waves and its effect on fluctuation induced transport.
PhD thesis, Christian–Albrechts–Universität Kiel, 2001.

[142] D. Block and A. Piel. Fluctuation induced transport of driven drift waves: I. monochro-
matic waves. Plasma Phys. Controlled Fusion, 45:413–425, 2003.

[143] H. Thomsen. A Dynamics Investigation into Edge Plasma Turbulence. PhD thesis, Ernst–
Moritz–Arndt Universität Greifswald, 2002.

[144] D. Block and A. Piel. Fluctuation induced transport of driven drift waves: Ii. weak
turbulence. Plasma Phys. Controlled Fusion, 45:427–437, 2003.

[145] M. A. Lieberman and A. J. Lichtenberg. Principles of Plasma Discharges and Material
Processing. John Wiley & Sons, New York, 1994.

[146] A. Anders. A Formulary for Plasma Physics. Akademie-Verlag, Berlin, 1990.



Bibliography 159

[147] M. Hayashi. Recommended values of transport cross sections for elastic collision and total
collision cross section for electrons in atomic and molecular gases. Institute of Plasma
Physics, Nagoya University, Report IPPJ-AM-19, copies may be ordered from the National
Technical Information Service, Springfield, VA22161, 1981.



160 Bibliography



Danksagung
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Abstract of the dissertation with the topic:  
„Experimental investigations on drift waves in linear magnetized plasmas.“ 
 
presented by Christiane Schröder 
 
Two main aspects concerning drift wave dynamics in linear, magnetized plasma devices are 
addressed in the work: In part I of the thesis, drift waves are studied in a helicon plasma. The 
plasma parameter regime is characterized by comparably high collision frequencies  and 
comparably high plasma-β exceeding the electron-ion mass ratio. Single Langmuir probes and 
a poloidal probe array are used for spatiotemporal studies of drift waves as well as for 
characterization of background plasma parameters. The main goals are the identification of a 
low-frequency instability and  its major destabilization mechanisms. All experimentally 
observed features of the instability were found to be consistent with drift waves. A new code, 
based on a non-local cylindrical linear model for the drift wave dispersion, was used to gain 
more insight into the dominating destabilzation mechanisms, and also into dependencies of 
mode frequencies and growth rates on different parameters. In the experiment and in the 
numerical model, poloidal mode structures were found to be sheared. Part II of the thesis 
reports about mode-selective spatiotemporal synchronization of drift wave dynamics in a low-
β plasma. Active control of the fluctuations is achieved by driving a preselected drift mode to 
the expense of other modes and broadband turbulence.  It is demonstrated that only if a 
resonance between the driver signal and the drift waves in both space and time is reached, the 
driver has a strong influence on the drift wave dynamics.. The synchronization effect is 
qualitatively well reproduced in a numerical simulation based on a  Hasegawa-Wakatani 
model.  
 


