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Abstract

In this paper we describe a relatively simple and transparent method
of obtaining collisionless drift-kinetic, gyrokinetic and more general the-
ories, including local charge, energy and momentum conservation laws.
An important feature of the new formalism is, contrary to present-day
theories, the exact gauge invariance, thus avoiding certain inconsisten-
cies. The present paper starts with the introduction and proof of the
correctness of a Lagrangian for combined Maxwell-kinetic theories in
general coordinates as concerns the particle motion. The kinetic part
of it is formulated in Eulerian form by means of the equations of mo-
tion in the form of Hamilton-Jacobi’s equation, used only as a tool,
and Dirac’s constraint theory. Charge and current densities automat-
ically distinguish between “particle-like” (guiding-centre), polarization
and magnetization contributions. This formalism is applied to aver-
aging coordinates derived by a method similar to Kruskal’s. Certain
properties of the averaging coordinates, according to the basic require-
ments imposed on them, can be used to obtain a gyro-angle independent
Lagrangian, from which one can obtain a Lagrangian for the combined
Maxwell-kinetic theories in a reduced phase space that is applicable to
situations in which one is not interested in the dependence on some kind
of gyroangle describing the gyromotion, whose treatment can, however,
easily be added. The basic perturbation theory, which aims at obtaining
averaging phase-space coordinates, is done solely within the Kruskal for-
malism in which only the electric and magnetic fields appear, but not
the corresponding potentials. This formalism provides, in particular,
information about the allowed amplitudes of fluctuations. The results
are later used to obtain approximate expressions for the Lagrange func-
tions in the drift-kinetic and the gyrokinetic ordering. For the defi-



nition of certain approximations to the exact Lagrangian the central
principle is the exact gauge invariance. The terms of the zeroth and
first orders needed for such an approximation are given. For the drift-
kinetic ordering Littlejohn’s Lagrangian is readily rederived and hence
the drift-kinetic theory as obtained and investigated by the present au-
thors in some previous work. Conservation laws and their mathematical
structures corresponding to the gyroangle-independent Lagrangian are
obtained in a following paper. There, in particular, a detailed descrip-
tion of how to obtain variations of gyroangle averaged quantities in the
reduced phase space is given, and it is explained how these variations
are used in a modified form of Noether’s theory which observes exact
gauge invariance.



Contents

1

2

Introduction

Lagrangians for kinetic equations in general

coordinates
2.1 Phase-space Lagrangian . . . . .. ... ... ... ... ....
2.2 Transformation to new variables (3, ..., (e;t . . . . . . ... ..

2.3 Dirac’s Hamiltonian. . . . . . . ... ... 0000
2.4 The Lagrangian for a kinetic equation . . . . . . .. ... .. ..
2.5 Covariance property of the Lagrangian for the kinetic equations

Reformulation of the equations of motion

suitable for Kruskal’s formalism

3.1 The Kruskal form of the equations of motion and related re-
quirements . . . ... ..l L Lo e e

3.2 Estimate of the allowed fluctuation densities for electrostatic
perturbations . . . . ... ... L oL

The Inverse Kruskal method

4.1 General outline . . . . . . .. ... ... oo

4.2 Recursion procedure . . . . . ... ..o

4.3 Solution by iteration . . . . . . ... ..o L
4.3.1 Remarks on the gyrokinetic theory . . . . . . . . . . ...
4.3.2 Notations . . . . . . . . e
4.3.3  Structure of the iteration procedure . . . . . . .. . ...
4.3.4 Ordersineneeded . . . . ... . ... . ... ......
4.3.5 Zeroth order . . . . . . . . . ...
4.3.6 Fuirstorder. . . . . . . . . ...

Reduced phase-space Lagrangian

5.1 Convenient choice of a gauge function in the phase-space La-
grangian . . . . . ... ..l e e

5.2 Gauge invariance of the Lagrangian . . . . . . . ... ... ...

5.3 Reduced phase-space Lagrangian . . . . ... ... .......

5.4  Vector representation of the reduced Lagrangian and the Euler-
Lagrange equations . . . . . . . . .. ..o
5.4.1  The Littlejohn Lagrangian . . . . . . . . . . ... . ...

Maxwell-kinetic theory in the reduced
phase space
6.1 Quantities entering the Lagrangian for the kinetic theory . . . .
6.1.1 The canonical momenta in the reduced phase space
6.1.2  Dirac’s constrained Hamiltontan . . . . . . . . . . .. ..
6.2 Maxwell-kinetic theory . . . . .. .. .. ... 0oL



6.2.1
6.2.2
6.2.3
6.2.4

The Lagrangian . . . . . . . . . . . . . ...
Liouwille’s theorem . . . . . . . . . . . . ... ... ...
The kinetic equation . . . . . . . . . . . ... ... ...
Sketch of a procedure for obtaining the inhomogeneous

Mazxwell equations and conservation laws . . . . . . . ..

7 Summary

Appendix A

Appendix B

Appendix C

Appendix D

Direct proof of £.(.t)=0

Properties of some Lagrange
brackets

Alternative derivation of a Liouvillian
volume element

Liouville’s theorem

36

37

38

41

42



1 Introduction

In this paper we describe a relatively simple and transparent method of ob-
taining collisionless drift-kinetic, gyrokinetic and,in principle, more general
theories together with local conservation laws by applying a Noether-like for-
malism. In particular, it presents a rather difficult subject from a point of
view different from that of the standard theories and offers an alternative
to the usual systematic treatments based on pseudo-canonical theory and Lie-
transform theory [1-6]. The very specific feature of our method is the Eulerian
- as opposed to Lagrangian - formulation of the Lagrangians for the kinetic
equations which are the appropriate base for deriving not only total but also
local conservation laws, first introduced by Pfirsch [7], combined with exact
gauge invariance. The considered Lagrangians Lk are correspondingly based
on a Eulerian instead of a Lagrangian description of the particle motion. Eu-
lerian Lagrangians for the linearized gyrokinetic theory were already obtained
by Brizard [8,9] employing the methods of Pfirsch [7] and Pfirsch and Morri-
son [10,11], and for the nonlinear gyrokinetic theory by means of a variational
principle with constrained variations [12], which are performed according to a
rule which is equivalent to the principle of dynamical accessibility, as described
e.g. in [11,13-15]. Contrary to present-day theories is the observance of ex-
act gauge invariance, thus avoiding certain inconsistencies which can lead to
incorrect expressions for the energy density and the energy flux density, and
to an erroneous interpretation of the contribution of certain terms as resulting
from the polarization current.

Together with the Lagrangian for Maxwell’s equations,

Lt = / @z o [E* (x,1) = B (x,)] (1)
the Lagrangians Lk form a total Lagrangian,

Lyt (t) = Ly + Lk, (2)

from which one obtains, via Hamilton’s principle, the kinetic and inhomoge-
neous Maxwell equations. The latter appear directly in the form

1 OE oP
e B-——= .arice—ie M YR
V 1r Of  Jparticle—tik +cV XM + 5 (3)
1
EV -E = Pparticle—like — V.-P, (4)

4%

where “particle-like” refers to entities which can and will be chosen as the
guiding centres or the gyrocentres, and M is the magnetization and P is the
polarization connected with these “quasi-particles” . We consider it an im-
portant feature of the new method that it automatically yields this kind of
representation, unlike the standard methods.



In previous publications of the authors [7,10,11,16] the drift-kinetic and Vlasov
theories were already treated in part by the same method, where for the drift-
kinetic theory Littlejohn’s Lagrangian [3] had to be used. This Lagrangian is
now also obtained, and in a very simple way, too, as shown in Sec. 5.4.1.

The method of obtaining the stated Lagrangians for the kinetic equations
consists in a series of rather simple steps:

1. Obtain for each particle species v a transformation x(¢,t), p(¢,t), ¢ =
(C1,--.,Cs), from the phase-space variables x, p to “quasi-particle” variables
(¢1y--+,C) = (21,-..,24), an adiabatic invariant (5 = J and a gyroangle-
like variable (¢ = @ by applying Kruskal’s asymptotic theory of systems
with all solutions nearly periodic [17].

2. Use these transformations for transforming the original phase-space La-
grangians L, (x,p,t) for each particle species. The transformed La-
grangians are of a non-standard type, which means that Hamilton’s
equations with a Hamiltonian obtained in the usual way from such a
Lagrangian are not identical with the original equations of motion.

3. Obtain, by applying Dirac’s “constraint theory” [18,19], Hamiltonians
Hy,, in an extended phase space which lead, together with certain “con-
straints”, to the correct equations of motion.

4. Use these Hamiltonians in Hamilton-Jacobi equations for the Hamilton-
Jacobi functions S, (¢, o, t). These equations are the Eulerian forms of
the equations of motion.

The Hamilton-Jacobi equations, however, only play the role of a tool;
the Hamilton-Jacobi functions S, will not appear in the final expressions
for the kinetic equations and the various macroscopic densities, i.e the
densities in configuration space. This holds for the nonlinear theory
which we present here. For linearized theories it will be advantageous
to use a modified version of the Hamilton-Jacobi equations which yields
generating functions for the transformation of the perturbed orbits to
the unperturbed ones [8,9,11]. In this case the first-order generating
functions S,; play a central role, particularly in the second-order energy.

5. Obtain the primary form of the Lagrangians for the kinetic equations as

v a5,
Z/dGC dGOd fpy <% + HDIJ(C? Y?ﬂ) ) (5)

where f,, = f,., (¢, o, t) are the primary forms of the distribution func-
tions; the final form of the distribution functions will be denoted by f,.
The quantities to be varied in Hamilton’s principle are f,,, S,, and
the vector and scalar potentials A and ®, on which the Hy,’s depend
somehow.



6. Prove that this Lagrangian is equivalent to the Vlasov theory

7. Eliminate the S,’s and « in all final expressions such as the kinetic
equations and charge and current densities.

Kruskal’s theory (point (a) above), and also a certain modification of it which
has to be used here, is based on a formal infinite power series expansion in
a certain small parameter €. In the present context it is concerned with the
single-particle motion in given electric and magnetic fields. For the drift-kinetic
theory € is given by the ratio of the gyroperiod and the time scale for these
fields and it is required that the ratio of the gyroradius rgy., to the length
scale L for these fields also be of the order of this e. For the gyrokinetic
theory this requirement concerns only the “background” fields. There may be
in addition fluctuations around these fields with length scales of the order of
the gyroradius, but the amplitudes of these fluctuations in some units must be
of the order € (details are given in Sec. 3). This restriction, which is an element
of all systematic present-day treatments, already arises here within the simple
Kruskal formalism in a straightforward way.

Kruskal’s method is neither Hamiltonian nor pseudo-Hamiltonian. It also ap-
plies to non-Hamiltonian systems. It yields a transformation to new depen-
dent variables implying a reduction of the number of equations. The omitted
variable is essentially an angle variable ¢. Correspondingly, one obtains for
Hamiltonian systems an adiabatic invariant. The method is straightforward
to any order in €. There is, in particular, in contrast to present-day theories,
no need to solve any differential equations.

The basic modification of Kruskal’s theory needed here is that the old variables
are obtained as functions of the new ones, instead of the other way around as in
Kruskal’s original paper. Such a modification was first introduced by Larsson
within the framework of guiding-centre theory [20].

Another modification is needed for the gyrokinetic scaling. These modifica-
tions, however, do not change the characteristics of Kruskal’s theory.

Since Kruskal’s theory is a complete theory for the particle motion, this theory
could be used directly for solving Vlasov’s equation and obtaining the charge
and current densities for Maxwell’s equations. This would, however, have the
disadvantage that, when the expansion is only done to a finite order in e, this
kind of theory in general lacks, within the approximation made, conservation
of energy, momentum and angular momentum. This deficit is avoided in the
present-day theories. In our paper it is avoided by incorporating Kruskal’s
theory for any finite approximation in € in a Eulerian form of a Lagrangian
for the combined Maxwell-kinetic theories (points (b) to (e)). This method
also allows one to keep background and fluctuating fields together, which is
needed when performing variations, although the fluctuating fields must be
small in order to allow an expansion according to Kruskal’s formalism. Since
this Lagrangian is of finite order in € only as concerns the Kruskal theory,
its variation with respect to, in particular, the scalar and vector potentials &
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and A yields expressions for the charge and current densities which guarantee
the various conservation laws for any finite approximation in e. As already
shown in [7], these expressions contain particle-like (guiding-centre) as well as
polarization and magnetization contributions corresponding to the rotational
motion in these particle-like entities [see (3) and (4)].

It is emphasized that the finite approximation in € concerns only the Kruskal
part, which implies only the electric and magnetic fields E and B but not &
and A. In this way, the somewhat doubtful attribution of certain orders in € to
® and A, as done in some present-day theories, is avoided. Such an attribution
could be meaningful only for specific gauges. However, instead of doing this,
gauge invariance is used as a keynote. A particular result of not attributing
A and ® a certain order is that in the e~! order of the Kruskal formalism
together with the requirement of gauge invariance, only the gauge-invariant
Lagrangian L = (e/c)x - A (x,1) — e® (x, t) is left, leading to a motion parallel
to B with superimposed E x B drift, according to E + (v x B)/c = 0 for the
drift-kinetic case, or (v x B)/c = 0 for the gyrokinetic case. For the purposes
of this paper, only the very simple lowest-order contribution and some readily
calculated first-order quantities from Kruskal’s theory are needed. We would
like to mention here also that, contrary to the usual treatments [2,3,5,12,21],
our description of the guiding-centre and gyrocentre dynamics does not re-
quire the inversion of the Lagrange matrix in order to obtain the Poisson
brackets. We treat this subject in detail in [22]. Also different from the usual
theories is our method of obtaining a gyroangle-independent Lagrangian for
guiding centres or gyrocentres. Our procedure is based, from the beginning, on
Kruskal’s method of constructing averaging coordinates whose time evolution
is independent of the gyroangle to any order in the expansion parameter e.
The particle Lagrangian, expressed in the averaging coordinates, is exact and
thus describes the exact particle motion. Although the Euler equations corre-
sponding to this Lagrangian are independent of the gyroangle, the Lagrangian
itself usually is not. The dependence of this Lagrangian on the gyroangle is
eliminated here by a convenient choice of a gauge function in the phase space
of the averaging coordinates, and not by a change of phase-space coordinates.
The result is an ezxact, manifestly gyroangle-independent Lagrangian. In con-
trast to this is the usual method introduced by Brizard, e.g. in [5,12], of
obtaining gyrocentre Lagrangians. This method is based on the techniques
used in guiding-centre theory by Littlejohn, who preferred to work directly on
the particle phase-space Lagrangian; in [21], and also in a detailed treatment
concerning a different theory [23], the elimination of the gyroangle dependence
from a certain Lagrangian is achieved by performing, order by order in the
parameter of smallness, an appropriate transformation of coordinates in phase
space, also allowing for a gauge transformation in that space.

As it appears convenient for the particular aspect of the problem being in-
vestigated, the description of the particle motion is based on three alternative
pictures using either the usual canonical Hamiltonian for particles in an elec-



tromagnetic field, viz.

1
H (x,p,t) = —

» p—%A(x,t)]2+e<I>(x,t), (6)

or Newton’s equations of motion as given by (66) below, or the Hamilton-
Jacobi equations as done in Sec. 2.4.

The paper is organized as follows: Section 2 concerns the above points (a) to
(g) for general transformations x(¢,t), p(¢,t), i.e. not necessarily for a trans-
formation to averaging coordinates. Section 3 presents a reformulation of the
equations of motion suitable for application of Kruskal’s theory and discussion
of the conditions to be satisfied as concerns orders in €. Section 4 presents
Kruskal’s modified theory. In Sec. 5 we derive a manifestly gyrophase inde-
pendent Lagrangian corresponding to Kruskal’s modified theory for any order
in €. In Sec. 6 we obtain the Eulerian form of a Lagrangian for the combined
Maxwell-kinetic theories with averaging coordinates based on Kruskal’s the-
ory and formulate the whole Maxwell-kinetic theory. The summary is given in
Sec. 7.

In Appendix A, direct proof is given that the quantity J of Kruskal’s theory
is indeed a constant of the motion. In Appendix B, the Lagrange brackets
needed for the derivation of a manifestly gyrophase independent phase-space
Lagrangian are calculated. In Appendix C, an alternative derivation to that
given in the main text of a Liouvillian volume element is presented. Finally, in
Appendix D, a concise derivation of a Liouvillian volume element for general
kinetic theories is given.

2 Lagrangians for kinetic equations in general
coordinates

In the following the index v for the particle species is suppressed.

2.1 Phase-space Lagrangian

The starting point is the phase-space Lagrangian for each particle species,
L(x,p;x;t) =%-p— H(x,p,1), (7)

with the Hamiltonian H given by (6). The quantities to be independently

varied in the corresponding action integral are x and p.

2.2 Transformation to new variables (i,..., (st

With
C:(Cla--wCG)ax:x(Cat)ap:p(C’t)’ (8)



where these functions can depend somehow on the electric and magnetic fields,
one obtains

with p
7(C,t)=£-p, (10)
and 5
Hy(Ct)=H-p- 5. (11)

The quantities to be varied independently in Hamilton’s principle are the ¢;’s,
while §(; follows via partial integration over ¢ in the action integral, which
yields the usual form of the Euler-Lagrange equations. With

oL 9y . OH,

el A s ) 12
o¢ 0O¢ o¢ (12)
and oL dy 9 o
2 Y- 9
oL _ “@r _ 97 kY 1
Y wa S a (13)
the Euler-Lagrange equations become
oy . . Oy Ov O0H,
A il A A s L 14
o¢ ¢-¢ o¢ 0ot o¢ 0 (14)
or, equivalently,
S ;[0 5%] Oy OH,
; _ — — =0, 15
2.¢ R R (15)
with solutions _
G=Vi(C--,Gt)- (16)
The momenta canonically conjugated to the (;’s are
oL
i — —— =) gee ey ; t). 17
oc. i (G Ge: t) (17)

The equations for the P,’s have the meaning of “constraints” in the sense that
the P;’s are completely determined by the (;’s, and have no degrees of freedom
of their own. Therefore, the C'i’s cannot be expressed by the P;’s as usually
possible [24]. Lagrangians of the above type belong to the class of non-standard
Lagrangians, as Dirac named them.

10



2.3 Dirac’s Hamiltonian

The usual Hamiltonian method applied to the Lagrangian (9) to derive a
Hamiltonian from a Lagrangian yields the “primary” Hamiltonian

As mentioned in the Introduction, Hamilton’s equations with this Hamiltonian
are not identical with the equations of motion, (15). Following Dirac one can,
however, define a Hamiltonian Hy, in an extended phase space which, however,
possesses a manifold of solutions twice as large as that following from the
original Lagrangian, but reducing again to the original manifold when imposing
the constraints. For the present case Dirac’s Hamiltonian is

Ho (G Pot) = H, (¢.8) + 3 Vi (P— 7). (19)

i=0
with V; as defined in (15) and (16). The corresponding Hamilton equations
are

' =V, 20
Go= 5 =i (20)
these being the same as the original equations of motion, (16). But there are
the following additional equations:

. 0H,
B= "%
OH, L.V, o, i
= TR S (P )+ S Vit 21
ac, 2 ag, WL Vig, 21)

These equations are now proved to be solved by the constraints (17):
With

) 0 0
A = ’Yk 4 Z Yk
=0

e
aHp 0vi
= + Vi— 22
e 22
where (15) and (16) have been used, one obtains
S 5 oV
Po—==> — (P —). (23)
i=0 OCk

These equations have as special solution the constraints P, = 7. Hence,
Dirac’s Hamiltonian allows one to obtain the correct equations of motion in-
cluding the constraints.

There is, however, an important point to be taken into account later. The
combinations (P — 7,) are not in general constants of motion, and (P — vx) =
0 are only special values.

11



2.4 The Lagrangian for a kinetic equation

As mentioned in the Introduction, this Lagrangian will be based on the Hamilton-
Jacobi equation with Hp:

oS

~—— 4+ H, - - s P =
at + <a<—z’<_1’ ) 0’ S S(Clﬁalﬁt), 2

9s
e

The variables «; are constants of integration for a so-called complete solution.
The meaning of the Hamilton-Jacobi equation is briefly recalled. It is the
equation for a generating function for a canonical transformation from the old
variables (; and momenta P; to the new variables 3; = 0S/0«; and momenta
«;, and a new Hamiltonian which vanishes identically. The latter has the
consequence that «; , [; are constants of motion. “Complete” solution means
that «;, §; form a complete set of constants of motion.

It is now claimed that the Lagrangian Lk(t) for a kinetic equation is given by

(24)

0S5
Ly = — Z /d6<d6afp (Ciaaht) [a (Ciaaiat) +P]P (CZat)

particle species

#2760 (52 Gand) -5 (g,.,t))] | 25)

Proof of the correctness of this Lagrangian will evolve from the Euler-Lagrange
equations for the combined Maxwell-kinetic theory.

With all variations assumed to vanish on the boundaries of the total inte-
gration space, including time, variation of the action integral A = fff Lo dt
corresponding to the Lagrangian (2) (with relation(1)) yields by variation of
fps »S, ,® and A, respectively,

oS
fp E(Ciaaiat)—i_Hp (Clat)
6 oS
+Z‘G(§Zat ag (Czaa/za ) ’7] (Clat) = Oa (26)
j=1 j
af, & 0
S 9o 4 Vify) (27)
ot le ac; Vilo
| - 5 Ax
¢ 47TV E= ; IZ 0D (x,1)’ (28)
particle species
_ 1 1 0E 0 Ak
A ' 47T lv xB - c ot ] partic%pecies oA (X’ t) ’ (29)

where Ax = [;? Lxdt. Equation (26) is the Hamilton-Jacobi equation for the
particle motion. Equation (27) is a continuity equation along the particle orbits
(note that the a;’s are constants of motion). It will later become the kinetic

12



equation. Equations (28) and (29) represent the charge and current densities,
respectively. They will later become, in particular, the usual equations for
these quantities in Vlasov’s theory.

A first step in the direction of usual equations is to replace the function
fo (Giy ci, t) by a function which, like the distribution function, is a constant of
motion. This is accomplished by expressing the number of particles dN, , in a
comoving volume element d®°Cd®q, such that dN,, is a constant of motion, by

dN(,a = fp (CZ, Q;, t) ngdGOJ =w (CZ, Q;, t) fT(CZ, Q;, t) dGCdGa, (30)

where s

is the Van Vleck determinant. This function has the property of solving the
continuity equation, (27) [25,26]. Hence, the function f ((;, o, t) is a constant
of motion and therefore a solution of the equation

(31)

E:‘/ag : (32)

The next step is to eliminate the new momenta «; by again introducing the
P;’s with the help of P, = 05/0¢;. This means that in the integrals over the
«;’s one has to replace

-1

d°P = w'd°P, (33)

and, as a consequence of this,

dN¢o = fp (G i t) d°CdPa —

dNep = f (G 0s(Giy Piy 1), 8) dCdSP = [ (G, Py t) d°Cd°P, (34)

where dN; p is the number of particles in a comoving volume element d°Cd®P
which is itself a constant of motion since the (’s and P’s form pairs of canonical
variables.
The last step is to incorporate the constraints, (17). It turns out that the
following representation with an additional function A ({;, t) included is appro-
priate:
dN(,P = f(CZaPzat) d6<d6P )‘ gza H5 P 71)f(€1:"'a€67t) d6§d6P
(35)
The function A ((;, ) is later to be chosen such that f (;,t) is also a constant
of motion in order to become the distribution function. Since []; 6 (P; — ;) is
not a constant of motion (as mentioned in Sec. 2.3, P, = ~; are only special
solutions of (23)), A cannot be a constant.

13



Since f (¢;, P;,t)d®CdSP is a constant of motion, the factor f (¢;, P;,t) d®C of
d®P is a density in P-space satisfying a continuity equation according to the
equation of motion for the P;’s. This density has a total “explicit” time de-
pendence through the explicit occurrence of ¢ and the t-dependence of the (;’s
and d®C. The continuity equation for this density is:

0 7 16 0 dP 6 .
Ot | <fd C> " op; < dt C) 0, (36)
with
2 —g+¢.g+i(d6<) 0 (37)
Ot |, ot o¢ di 0ds¢
Therefore p
- 5p [ 6 ] =0.
dt /whole P—space d fd C 0 (38)

This means that the quantity

ang = [ EPFa¢| = NGO F G G A (39)
whole P—space

is a constant of motion. dN, is the total number of particles in the comoving
volume element d®C. With f required to be a constant of motion it follows
that A\ must be chosen such that

A (¢, t) d°C = constant of the motion. (40)

As shown in Appendix D, such a A is given by

A= \/lwirll; (41)
with
9% _ O
oG 0
In Sec. 6.2.2 a very simple derivation of A within the framework of the averaging

variables will be given.
The equation for the function f ((y,..., (s, ) is the kinetic equation

Wik = (42)

+ V . 43
Z i = (43)
Another way to obtain this equation is to make the ansatz

f(Cza «; (Cj,Pjat) at) = f (C’L’ Cz: H5 P %) (44)

to solve (32). Integration of df/dt = 0 with respect to d®P, taking into account
the properties of the delta function and (23), then yields a continuity equation

for f(Ci,t) A (G, t), and thus (43) for f (G, t).

14



The simplest example is the one which leads back to x,p. This is obtained
with
x = (C1,€2,G3) » P=(C4,G5,C6) 5 (45)
which yields
¥ = (4,655 6:0,0,0) , A= /|wix|| = 1. (46)

This way all relations found above become identical with the usual ones in
the Vlasov theory. This only shows, however, that the Lagrangian (25) is
correct for the identity transformation. That this Lagrangian is correct for
any transformation will follow from a covariance property of this Lagrangian
which will be proved in the following subsection.

2.5 Covariance property of the Lagrangian for the ki-
netic equations

Let
G = Gi(&,1) (47)

be a transformation from one choice of coordinates (; to another choice of
coordinates &;. This transformation results, in particular, in

X:X(gla"'a&iat) ) p:p(é-la"'ag&t)' (48)

There are then two ways of obtaining the new Lagrangian for the kinetic
equations.

1. Direct use of the latter functions in the general definition of the La-
grangian for the kinetic equations.

2. Transformation of the integrand in the old Lagrangian for the kinetic
equations.

If both ways lead, up to a total time derivative, to the same Lagrangian, then
direct use of the identity transformation and the transformation inside the
integral on the right-hand side of (25) leads to the same results in Hamilton’s
principle. Since the integral is independent of the choice of the integration
variables, this “covariance” proves the general correctness of the Lagrangian
(25).

The result of the first way for the contribution of particle species v is simply

L= [d¢da g0 [—as(fg;“’ )

+EE 0+ 3T (50~ 4) | (49)
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with

- m ox e
Hy=—v+ed - —| - ( —A)
p 5 vi+e En . mv + - ,
ox e
Ai P = a7 | -A ’
¥i (& &) BE, t (mV + p )
g (O O\ O ol
= \0& 0 ot 9 .
For the second way the following transformation relations are needed:
0 0 o¢| o
ox| _ ox| Z C X
ot|,  ot|, 8@2
Hence it follows that
ox 8x 8{, ox
o), P T 3 0GP
_ 8_x s acz
This yields
A 9Gi

Furthermore, one obtains

di 06 d&§ | 9G
dt_gagk at ot |,

and, therefore

V, = Z 06 o, 9%

8§k 8t
With A
- S(Cl(gk: t)a Q;, t) - S(é-ka «;, t)
one has .
as _ d
dt  dt
or

95 95 . 08
o P2 Vige = at Zvagz'

Z

Furthermore, one gets

L Oox| 0G ox
T ag|, PT 2 eg00 P
e
= 25"
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(58)

(59)

(60)

(61)



This yields

_ G ¢ . 0G
Vivi = (; o€, Vi + En

) Yi (62)
3

>oVii=> Vi + > 3—3 Yi- (63)
i & i ¢

The combination of all these relations yields

05 (Gi, i, 1) (05 _
T—I—H;AQ,Q'F?W (8€z 7z> =

6§(§Z, O!Z',t) ~ ~ 851 N
PRE0t) 4 Ayt + W (G - ). (64

It then remains to mention that, corresponding to the transformation of the
volume element, one obtains

f — a(CIa'-',CG)
P 6(515"',66)

These last two relations together prove the covariance property of the La-
grangian for the kinetic equations and therefore also its correctness.

Jo- (65)

3 Reformulation of the equations of motion
suitable for Kruskal’s formalism

The equation of motion

dv e 1

Y _C(py- xB) 66
dt  m ( * cv (66)
is reformulated in a form suitable for applying Kruskal’s method. This is done
by representing the particle velocity as

v=yb+un +vg (67)

and introducing the five-component vector y and an angle variable 1 given by

6

:%_

Here, the dot means d/dt, b = B/B, and vg = (¢/B*>)EXB. n; = n;(x,6,1)
is a unit vector perpendicular to the magnetic field at point x and time ¢,
characterized by the angle 6 as defined by (70) below. This description makes
use of two orthonormal basis sets. The first one, (e1, e, €3), is related to the
magnetic field and thus depends only on x and ¢. The second one, (n, ny, e3),

y= (ylay25y3:y4ay5) = (37,2/, Z,U”,UJ_) = (X, UH,UJ_), v (68)

17



is a particle-related basis set with n; and ny depending not only on x and %,
but also on the instantaneous orientation of the particle velocity in terms of
the angle . Given in right-hand-rule order, these two sets are defined by the

relations
b-Vb

" b-Vb|
n; (x,6,t) = —sinfe; —cosfey , mny(x,0,t) =cosfe —sinfey. (70)

Substituting (67) in (66) yields for the LHS of this equation

e e; = bXe; , €3= b, (69)

v =1b+ u||B +4,n; — Ou ny — uy (€sinf + éy cos ) + v, (71)
while the right-hand side is given by

1 B
< <E+ —va) = (b-E)b- Zu,n, (72)
m C m mc

Scalar multiplication of (71) by b, n; and ny yields the equations for @, .
and 6, respectively. With the operator D/Dt defined by

D d

in order to separate the explicit #-dependence in d/dt, one obtains

. e Db
u| = Eb -E+ [U:J_nl + VE] : lﬁ +uing - Vb‘| ’ (74)
. Db Dv
U = —nj - [UHD—t =+ D—tE] —u;ng - [Ill - (U,”Vb + VVE)] ) (75)
. 0
9 = or
2 |me  uy It dt 2 dt
1 eB no Db DVE
S AU R (AR LU (AR5
0
+ey - % + (u”b +vp+ uﬂh) - [Vey '62]} - (76)

3.1 The Kruskal form of the equations of motion and
related requirements

The Kruskal form of the equations of motion is obtained by changing the time
scale,

t
t—s=-. (77)

€
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The basic assumption of the drift-kinetic and gyrokinetic theories is that the
fast time dependence is described by the gyrofrequency alone. One can there-
fore write

eB 1
—_ = Q = _QS' 78
mc Y € (78)
This yields for (67) and (74)-(76)
d—xze yb+uin +vg), (79)
ds
du e Db
d—s” =¢ [Eb'E+[ULn1+VE] : [D—t-i'uﬂll 'VbH ) (80)
du Db Dv
d_;‘ = —¢ lnl . lu”ﬁ + —'DtE] +uing - [nl ) (“IIVb + VVE)]] ’ (81)
dd 1 1 [ny Db Dvg
= = ok +6§ {Z . [uHE + W‘| +ny - [nl . (uHVb-i- VVE)]
0
+e, - % + (qu +veg+ uLn1) : [Vel 'ez]} . (82)

With the definition of the five-component vector y in (68), these equations are
of the form

d do
Teegly,d) T =v0), (83)
with
gy, 9+1)=g(y,?) , ¥y, 9+1)=2(y,9). (84)

Equations (83) and (84) are of the same type as the starting equations in
Kruskal’s method if they satisfy the conditions

g(y,9) = 0(°) , ¥(y,9) = O(). (85)
For the inverse Kruskal method there is the additional requirement that
Y(y,9) = oly) + O (') - (86)

Weaker conditions, which would be of interest for the gyrokinetic theory are
not possible, as follows from (120) and (121) below. These latter relations
require that the ¢-average of gy possess only a parallel spatial component,
which is the case if vp is of the order eu,, eu. This way it is ensured that,
like 0/0t, also k| - vip = O(e)Qy, with k| ~ 1/rgo. (In the drift-kinetic case
this is guaranteed with vy = O (¢°) because of k; ~ 1/L.) This and the above
conditions are satisfied if with

u, =0 (eo) ) u =0 <e°) (87)
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it holds that

b-E:O(eO) , VVE:O(eO), (88)
0 0 0 . . .
i Q,0 (e ) , vg=0 (e ) (for the drift-kinetic case)
vig = O (e) (for the gyrokinetic case), (89)
Vb=0() . (90)
In the drift-kinetic case, one has
1 ro
Vo~ o owith L~ Tg% (91)

and the conditions (87)-(90) are therefore satisfied if

b-E="BO() , bxE="BO(). (92)
c c
In the gyrokinetic case, one also considers fluctuations with large perpendicular

derivatives,

bXV ~ for fluctuations. (93)

Tgyro
Equations (87)-(90) then require that the fluctuations of vz and b, given by
0vg and 0b, satisfy the condition

v = O(e) , db = O(e). (94)
This means, together with the characterization of vy in (89), that

bXEﬂuctuations = %B O (6) ) Bﬂuctuations =B O (6) . (95)

In Sec. 4 it will be shown that the recursion procedure of the inverse Kruskal
method does not introduce any further conditions. This is due to the fact that
the perpendicular derivatives which appear in the recursion procedure occur
only together with a factor €, with n > 1.

In order to avoid problems in doing variations of the electric and magnetic po-
tentials in Hamilton’s principle with the Lagrangian for the combined gyrokinetic-
Maxwell theory which will be derived in Sec. 6, no splitting into slow and fast
spatial dependences will be done. This problem does not appear in the drift-
kinetic case.
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3.2 Estimate of the allowed fluctuation densities for elec-
trostatic perturbations

If E is assumed to be mainly of electrostatic origin, the electron density can
be approximated by

ed
Nfluctuation,e = Tl0e eT (96)
In the drift-kinetic case one has for all components
)
E~—. 97
- o7)
According to (92), it then follows that
D ~ royro —B, (98)
and, therefore, that
e mwc v 1
L~ —~ 2 eB = ~1. 99
T 7 eB ¢ T (99)
This means that large density fluctuations are allowed.
In the gyrokinetic case one has
)
b-ENZ , bXE ~ (100)

Tger

According to (92) and (95), which give the same limits for all components of
E, the second relation, (100), is the critical one and yields

D~ gy B2 2 B (101)

and, therefore, it follows that

ed T
D - A1)

=~ (102)

Hence, only very small fluctuation amplitudes are allowed.

4 The inverse Kruskal method

4.1 General outline

Kruskal’s method [17] (with slightly different notation here and later, and
adapted to explicitly account for a possible slow dependence of the fields on
time, i.e. a dependence on t = es) starts with a set of ordinary differential
equations which have the following structure:

dy d

_9y _ = = 1
ys dS € g(y’ 19’ 68) ? ’198 dS 1/)(}1-’ 79’ 68) ( 03)
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with y = (y1,...,¥,) and
gy, 0+1,es) =g(y,d,es) , o(y,0+41,es) = Y(y,,es). (104)

The goal of the inverse Kruskal method is to obtain a transformation (cf.
also [20])

=Y(2,0,es) , 9=0(z,0,es) , zZ=(21,...,%n), (105)
where ¢ is an angle variable with period 1 such that
zs = eh(z,es) : ¢s = w(z,€s). (106)

These transformations will be obtained below, analogously to the original
Kruskal method, iteratively via a recursion procedure to any approximation in
€ without solving any differential equations.

For Hamiltonian systems the quantity

J(2,1) = ?f  pedx= / p- & dgz& (107)

turns out to be canonically conjugated to ¢ and a constant of motion for
the approximation considered. A direct proof of dJ(z,t)/dt = 0 is given in
Appendix A. This constant of motion is gauge-invariant since it is unchanged
by replacing A with A + VU,

/V\let d¢ / 9% 4o = ]fd\p_o (108)

and therefore does not explicitly depend on the vector potential, but only
on the magnetic field and its derivatives. Note that by Stokes’ theorem the
contribution of the vector potential A to J is essentially the magnetic flux
inside the loop z = const. This is discussed in detail in [27].

4.2 Recursion procedure

As in Kruskal’s original theory, one can find a recursion procedure which en-
ables one to obtain the transformation of (105) together with the functions h
and w in (106) to arbitrary approximation in € without solving any differential
equations. This goal is reached in the following way:

From (103) and (105) one obtains

8 oY
Ys = ¢s ¢ ﬁ
= e€h(z,es)- %Y: + w(z, €s) (ZZ % =eg(Y,0,es), (109)
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(3 00
Vs = s —
d’as 3(es)

. 00 . 00 00
= eh(z,es) - % + w(z,€s) % +em

Formal integration of (109) and (110) over ¢ yields
Y = Y(z,¢=0,es)

‘ /0¢ lg (Y,0,es) — h(z,es) -

= ¢ (Y,0,es). (110)

oy oy
0z  0O(es)

) EX
O = 0O(z,¢=0,¢€s)
1
w(z, €s)

/Od) lw (Y,0,es) — eh(z,es) - 88(;) - 68?6)

The transformation functions Y and © must satisfy the periodicity conditions

Y(2,6+les) = Y(20,e5),
(2,6 +1es) = O2bes)+ 1. (113)

They need to be imposed only for ¢ = 0 as starting values. With (111) and
(112), these conditions become

] dé. (112)

[ Jevoe-nae 5 - Pl as—0.
w(; &) /01 [w (Y,0,¢es) — eh(z,es) - ‘?9(2 - 68?2)] do = 1. (115)

The functions Y (z,¢ = 0,€s) and © (z, ¢ = 0, €s) may be prescribed arbitrar-
ily. The choice Y (z,¢ = 0,€s) = 2, © (z,¢ = 0, es) = 0, which is analogous to
that in the original Kruskal method, though perfectly valid, does not yield the
usual guiding centre position. Instead we choose

Y (2,6 =0,es) =2+ €Y, (2,€s), (116)
O (2,0 =0,€s) = €O, (2, €5) (117)
where Y. (2, es) and ©, (z, €s) are power series in €:
€Y. (2,€8) = €Y1 (2,€8) + €Yo (2,€5) + -+, (118)
€O, (2,€8) = €01 (2,€8) + €Oy (2,€8) + - - -. (119)

This choice guarantees that the variables z and ¢ and the particle variables
y and @ coincide in the limit ¢ — 0, leaving, however, each term in the se-
ries for Y. (z,€s) and O (2, es) still arbitrary, these being chosen later as ap-
pears convenient. A subject related to the freedom to prescribe the functions
Y (z,¢ = 0,¢s) and O (2, ¢ = 0, €s) is discussed in [28].

Equations (111) and (112) together with (114) and (115) determine the func-
tions Y (2, ¢, €s), O(2, ¢, €s), h(z, es) and w(z, es).
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4.3 Solution by iteration
4.3.1 Remarks on the gyrokinetic theory

Because of the fast spatial variations allowed in the gyrokinetic theory, spatial
derivatives can change the order in e. In (111), (112), (114) and (115) such
derivatives occur only in the form

0
h(z - . 12
(3,65) = (120)
As will be shown below, h is given to zeroth order in € by
1
hy = /O godd =< go > . (121)

According to (79), (83), (89) and (94), < go > possesses only a parallel spatial
component. The derivatives (120) therefore cannot lower the order in e. This
means that an iterative solution procedure is possible. This was the reason for
introducing the condition vy = O (¢) for the gyrokinetic theory. There is, of
course, no problem in the case of drift-kinetic theory.

4.3.2 Notations
The following notations will be used:
Y™ = Y, obtained in the n-th iteration,
<f> = /Olfd(;ﬁ for any function f. (122)

The upper indices introduced here must not be mixed up with the lower indices
indicating the order in e.

4.3.3 Structure of the iteration procedure

The iteration is done in the following way: (111), (112), (114) and (115) will
be solved in the order (111), (115), (112) and (114) using in each step the
results obtained in the preceding one.

The iteration procedure will make use of the following properties of the func-

tions g and v, which, according to (79)-(82) and (83), have the form

g = gO(Y? 797 68) + egl(Y7 197 68) ) ¢’ = '([10(}’, 68) + elpl(yv 797 68) )
Q,(x, €s)

Yo(y, €s) = - (123)

4.3.4 Orders in € needed

The orders in € needed are €® and e'. From the first order of Y, only x is
necessary in order to calculate J, and also for the spatial arguments in the
gyrokinetic case and for the factor in front of the scalar and vector potentials
in order to guarantee gauge invariance.
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4.3.5 Zeroth order

The zeroth-order quantities follow from (111), (112), (114) and (115) with
e=0:

From (111):
YO =3 (124)
From (115): X
w(z, es) = 1py(2, €s) = 5 0s(2, €5)- (125)
s
From (112):
00 = ¢ (126)
From (114):
h©® =< gy(z,0,es) > . (127)

In the later applications only the first three components h® are of interest.
These are

(R, 18", 1) = wb + v, (128)

where the right-hand side is understood to be given in terms of the phase-space
coordinates z and ¢. Note that in the gyrokinetic theory vg does not appear
because of vg = O (e).

4.3.6 First order
From (111) and (116):

€

® - -
Y(l) = z+eYq (2; 68) + ) /0 I:gO(ia b, 68)_ < 8o >] d¢

wo(z, €s
= 2+eY). (129)

In the later applications, again only the spatial components x(!) are of interest.
With

R := (21, 22, 23) y VJ_ = 25 y (130)
they are
. € ¢ ~ -
xP = R4exy (z,€es) + m/o n; (R, o, 68) Vido
€

= R+ exq (2,e5) + Vi (ng (R, ¢,es) —e; (R, €s))

21wy (R, €5)

_Vi(n (R, ¢, es) — e (Ryes)). (131)

= R+€XC1 (2,68) + m

The arbitrary function x.; (2, €s) can be chosen such as to obtain the usual
guiding centre position to first order in e:

Le
Q,(R,es)

X1 (2, €8) =

(R, es). (132)
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This yields

V
O=R+e——n (R 133
X +€QS(R,€8)H2( a¢a€8) ( )
A particular result is obtained by substituting this relation in (107):
2r  mV?
JW = - 134
GQS(R, €s) 2 (134)
Therefore,
2 1 JO
X(l) =R + p(l) ) p(l) = €p1Ny (Ra ¢a 68) =€ m 2710 € (Ra ¢a 68)
(135)

5 Reduced phase-space Lagrangian

5.1 Convenient choice of a gauge function in the phase-
space Lagrangian

In order to obtain a Lagrangian in a lower-dimensional space in terms of .J-
based averaging variables (with J taken as one of the coordinates in phase
space), we start, as in Sec. 2.1, with a phase-space particle Lagrangian in the
form

d
L(p,x;%;t) =p-x— H(x,p,t) + th(X P, 1), (136)

where, as compared with Sec. 2.1, a total time derivative of an arbitrary gauge
function F(x,p,t) in phase space is added. By expressing the position vector
x and the canonical momentum p in terms of J-based averaging variables
21 = 21,20 = 29,23 = %3,24 = Z4,J and ¢,

X:x(zla"'az4a‘]a¢at) 3 p:p(zla"'az4a=]a¢at)a (137)

where ¢ and p are periodic functions of ¢ with period 1, one obtains the La-
grangian

L('Zlﬂ"' Z4,J,¢;21,...,Z4,j¢;t):
or OF Or OF
il *aﬂ”[ a—w%l

. 8; oF 8p oF

1
ot ot (138)

Here, the Fraktur letters r and p are used to stress the functional dependence
on the J-based averaging coordinates. The arbitrary gauge function F' can be
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chosen such as to make the coefficient of ¢ in (138) independent of ¢ and equal

to J,

oFr o 83:
%._J P36 (139)

Integration of this equation yields

F(Zla"'az4a‘]a¢;t) = <F>(21,...,Z4,J;t)+F(¢)(21,...,Z4,J,¢;t)

_<F(¢) (21:---aZ4aJa¢;t)>’ (140)
where (F) (21,...,2,J;t) is an arbitrary function, and
¢ N
F©) (zl,...,z4,J,¢;t):J¢—/ p-g—;m (141)
0

The function F(® is periodic in ¢.

With the identity
¢ 0 n ¢ 0 A
- f)+/ —de¢—</ de¢> (142)
0 0¢ 0¢
for any function f taken into account, one obtains

o | OF dr\  O(F)
b * N <p 8zz>+ 0z;

0z; 0z
0
+/ l—p o _ O @] dé
A .

Op or Op O
L),

¢ dp Or Op Or| 2
+/0 l1+a—¢ o a—qj dé

¢ Op Or _0Op Or| .

H-—p- or _OF (H)—< 8;>_@

ot ot ot ot
L[ )y,
ot Ot a¢



As shown in Appendix B, the Lagrange brackets which appear in these equa-

tions satisfy the following relations

O O _Op O _
0p 0z 0z 0¢ 0 (146)
8p or 8p or

Rl A A A 14
96 0J oJ o (147)
op Or Op Or OH (148)

0p Ot 0Ot 0 0¢
By inserting (143)-(148) in (138), one obtains
L(Zl,.. Z4,J'21,...,24,j,¢;t):

(o ae) %+
)+ ﬂ
(H)+< 8t>+ o

This Lagrangian obviously does not depend on ¢.

(149)

5.2 Gauge invariance of the Lagrangian

Under a gauge transformation,
A (x,t) — A(x,t)+ VU (x,t)
®(x,t) — P(x,t)—(1/c) (0¥ (x,t) /Ot)
<F>(217"':Z4’J;t) — <F>—(€/C)<\I/(}T(Zh,Z4,J,¢,t),t)>,(150)
the ¢-independent Lagrangian L is left unchanged. Explicitly, the changes of

the different terms are:

(Bon) = ()£ (320 o
(G a) - £ (P (3. 28E0) s

The U-dependent terms in these relations add in the Lagrangian to (e/c) d{¥) /dt
and thus compensate the (F)-dependent change in L.
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5.3 Reduced phase-space Lagrangian

The simplest expression for the Lagrangian L is obtained by choosing the free
function (F') as
(F) =0. (154)

With this choice of (F') the Lagrangian becomes

L (a1,... z4,J;z'1,...z4,j,q'5;t)=

Zzz< >+J¢

b )
~tn+ (v ) (155)

This agrees with Larsson’s results [20] obtained in a somewhat different way
within the framework of guiding-centre theory. Of course, it would be perfectly
valid to choose any arbitrary (F) # 0 in (5.14). This would change the form
of the different terms in the Lagrangian leaving, however, the equations of
motion unchanged. In particular, one could obtain different contributions for
the symplectic and the Hamiltonian parts of the Lagrangian leading, within
the framework of certain approximations, to the two (still gauge-invariant)
different expressions derived by Brizard in [5], Egs. (6), (7) and (10), (11),
respectively.

For the applications envisaged one is not interested in the dynamics of ¢. It
then suffices to describe the reduced dynamics involving only zi, ..., z4, with
the constant of motion J having the character of a parameter. This is possible
since L does not depend explicitly on ¢. Such a description can be made in
terms of a reduced Lagrangian L. which is obtained from the Lagrangian L,
(155), by omitting the term Jq.ﬁ and the terms proportional to J. T must,
however, be stressed that it is easy to keep the terms which describe the fast
gyromotion [22] and to obtain the Euler-Lagrange equation for ¢ and J, the
last one being just J = 0. Here we choose not to do this, since such terms
shall not be needed.

With the total time derivative in the reduced phase space given by

d 0 K. 0
_9 v 9 1
dt o =gy (156)

the Euler-Lagrange equations for the z; obtained from the Lagrangian L.,

Ly (21, 2450521, ... a3 ) =

% at)
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—(H)+<p-%>, (157)

are the same as those obtained from (155).

There are no approximations in the Lagrangian L, from which z;,..., 2, are
derived. In particular, there is no approximation concerning ¢. Any results
obtained from this Lagrangian are therefore exact.

For the Dirac Hamiltonian the solutions Z; (21, - - -, 24, J, t) of the Euler-Lagrange
equations corresponding to (157) are needed. These will be obtained in the
next section by using an appropriate vector notation.

5.4 Vector representation of the reduced Lagrangian
and the Euler-Lagrange equations

For the further development of the theory it will be convenient to express
the Lagrangian L, and the corresponding Euler-Lagrange equations in vector
notation. For this purpose, it is useful to introduce a vector R with three
Cartesian components,

R = (Rl,RQ,R3) s Rz =2z , 1= 1,2,3 . (158)
The fourth coordinate in the reduced phase space will be designated by U,
U := z. (159)

The gradient with respect to R will be denoted by both 9/0R and Vg, as it
appears convenient. The reduced Lagrangian L,, (157), can then be written
as

Lr(R,U;J;R,U;t):
%[R-A(R,U;J;t)—i—UAU]—e@(R,U;J;t), (160)
where 5
~ C ;
ARU; J;t) = -( = - 161
R Tit) = (5 b)), (161)
- c [/ Ot
Av (R, U; J5t) == = ( — - 162
U( )y U a) €<8U >7 ( )
- 0
ed (R,U; J: 1) := (H) — <p : a_i> . (163)
The Euler-Lagrange equation obtained by varying R is
1d. 1[(0A\ . 1/[04y) .. 0d
—A+-|—=|'R+-|—=|U—-—==0. 164
¢ di +c<8R> +c<8R> R (164)
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The Euler-Lagrange equation obtained by varying U is

1d - OA\ . 0 Ay od
- ~ 9. 1
calvte <8U> R <8U>U T (165)

Since J = 0, the total time derivative for ¢-independent functions is given by

d 0 -0 0
%—aﬁ‘R 6—R+U@ (166)

With the fields B, E and by, defined by

B = V.XA, (167)
. 19A -
E=—— - ® 168
c Ot Ve, (168)
e (0A 94y
S (b i 169
b, ( o8 ok ) , (169)
(164) and (165) become, respectively,
1o o .
—R><B+E—%UbU=0 (170)
c
and . .
"Rop, - 2= - 2% g, 171
e R-by oU ¢ ot 0 (171)

After crossing (170) with b, and inserting R-b, from (171), one can solve for
R. With the definition

~ ~ € aA aAU
; = Dy = B —|——— 172
B(R,U,J;t):=B-b e <8U 8R> (172)

one obtains the velocity R,

R =V:(R,U,J;t), (173)
with .
e (0P 10Ay\ .~ cC -
— B+-—E . 174
Ve (R, U, J:t) = n£<&7+08t> S Exby (174)

The scalar product of (170) with B yields

where

V, (R, U, J;t) = mBB E. (176)
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which, using (174), can also be written in the alternative form

Vv, = B (177)
9% | 104y
ou ¢ ot

By replacing E according to (168), (177) yields the energy-related equation,

d(ed ; iy 9@
(¢ ):—VRE%—?—EVU%UJF (;) . (178)

R,U,J

Thus, d is conserved when A, Ay and & do not depend explicitly on time and
ed = (H).

It is seen that one advantage of using the vector representation is that it is rela-
tively easy to solve for the time derivatives R and U as functions of R, U; J: t,
while the (equivalent) solution of the equations for Z; (21,...,24;J;t), j =
1,...,4, obtained from the Lagrangian L., (157), is more involved.

5.4.1 The Littlejohn Lagrangian

Littlejohn’s Lagrangian, basically in the form of [3], (20) but with the electric
drift being taken into account, can readily be derived from the vector represen-
tation for the reduced Lagrangian obtained in the preceding section and from
the results of Secs. 4.3.5 and 4.3.6. In the following, again, an upper index
(n) indicates that a quantity has been obtained in the n-th iteration and thus
includes all orders below and equal to (n). These upper indices must not be
mixed up with the lower indices indicating the order in €. One has

p_lng(R,t), &, = (R,1),

[2 Qg JD)
X(O) = Ra u|(‘0) = Ua U(f) =\ —5-— > 0(0) = ¢a
m?2m €

(0) E (R, t) X B (R, t)

B2
2 1 JW
*= m 270, n: (R, 6,1)
2 Q,JO e
0) — Y Bl il O L&
p m |Ub (R,t) + - w— n; (R,4,1) +vg +CA(R,t)
"X, VaA (R, 1),
2
2 Q, J1)
HO = Ub(R,t)-HlEQ—J—nl (R, ¢, t)-l—vJ(E) +e®(R,t)
+ex; - Vr® (R,1). (179)
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With these relations, one obtains:

A0 — C/ 0\ ™ (0)
A0 — e<p )= ; [Ub®R, 1) +vP] + AR, 1),
A = o,
(1)
20— (O ™2 ()] L
ed® = (HO) = 5 [U +(vE)]+27T —Q,+e®(R,7). (180)

With the replacement

JO = 2 e 0,
(&

this yields the Lagrangian

Liittiejohn = R- [m [Ub (R, 1) + Vg)] + EA (R, t)]

-2 [UZ + (Vg’>)2] VB (R,).  (181)

Gyrocentre particle Lagrangians similar to those derived by Brizard [5,12] can
be obtained, using appropriate approximations, from our gyroangle-independent
Lagrangian by a procedure similar to that used to obtain Littlejohn’s guiding-
centre Lagrangian. However, particularly as concerns the gyrocentre case, but
also for the guiding-centre approximation, we prefer not make any further spe-
cific approximations at this stage. Leaving the expressions as generally valid as
possible has two important advantages. First, our treatment of gauge-invariant
Maxwell-kinetic theories remains relatively clear and tractable and, second, the
final results concerning the kinetic equations, the conservations laws and the
energy-momentum tensor are obtained in a form that comprises several differ-
ent theories which can then be obtained by introducing in those expressions
the desired approximations, as will be seen in a following paper [29].

6 Maxwell-kinetic theory in the reduced phase
space

In this section the formalism of Sec. 2 is specialized to the reduced Lagrangian
in the form of (160). The situation with this Lagrangian is the following:

6.1 Quantities entering the Lagrangian for the kinetic
theory

6.1.1  The canonical momenta in the reduced phase space

These momenta are

oL €
P,.=—=-A 182
TR ¢ (182)
oL e -
P, == ="Ag. 1
"Teu Y (183)
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6.1.2 Dirac’s constrained Hamiltonian
Therefore, the primary Hamiltonian is
H, = R-Py+UP, — L,
= ed, (184)
and Dirac’s Hamiltonian becomes

H, (R,U;P,P,: J;t) == ed + Vg - (PR - ZA) +Vy (PU — SAU) . (185)

with A (R,U;J;t), Ay (R,U; J;t) and & (R,U; J;t) from (161), (162) and
(163), respectively, and Vg (R,U; J;t) and V,, (R, U; J;t) given by (174) and
(176).

6.2 Maxwell-kinetic theory

6.2.1 The Lagrangian

The total Lagrangian for the Maxwell-kinetic theory according to (1), (2) and
(25) is now

Liot(t) = Lu + L, (186)
1
— 3 2 2
LM_/d:vg [E? (x,t) - B? (x,1)] (187)
3 4 oS .
Ik = - % /d RdUd‘adJ f, (R, Us a3 J5t) | S (R, Usais Ji1) + e
particle species

05 e oS e -
e (R (2] .

with A, Ay and & given by (161), (162) and (163) and Vg and V,, given by
(174) and (176), respectively, and with the integration over J representing the
summation over the parameter J (cf. Sec. 5.3).

6.2.2 Liouwville’s theorem

The quantity A, introduced in (40) for general coordinates (;, for obtaining a
volume element d7 in the R, U, J phase space which is conserved along the
orbits in R, U, J phase space can easily be derived in the following way. From

(167), (168) and (173)-(176) one finds

O V- (BVa)+ % (BV,,) = 0. (189)
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The quantity B thus satisfies a continuity equation in the reduced phase space.
Therefore, the phase-space volume element drg , defined as

dTR,U = |B (Rl, ceay R3, U, J, t)| deddeR?,dU (190)

is Liouvillian, i.e.

d
where the time derivative along orbits in phase space is given by (166). Since
J is only a parameter which is constant along the orbits, the same is also valid
for the volume element d7 in extended phase space which is obtained by adding

the parameter J,
dr := |B(R1,...,R3,U; J;t)| dR1dRedR3dUd J. (192)
Hence, it holds that

An alternative derivation of A is given in Appendix C.

6.2.3 The kinetic equation

The kinetic equation for the distribution function f is obtained from the La-
grangian (188) by variation of S, in a way similar to that in Sec. 2.4, (43).
One obtains of o/ o/
' =L - 194
6t+VR 6R+VU6U 0, (194)
with Vg and V;; given by (174) and (176), respectively.

6.2.4 Sketch of a procedure for obtaining the inhomogeneous Mazwell equa-
tions and conservation laws

Variation of the total action integral

t2

A = Ltotdt (195)

t
with respect to the potentials ®(x,t) and A(x,t) yields the expressions for the
charge and current densities, respectively. By means of the Noether formalism
one can also obtain the energy-momentum tensor density. In these expressions
one has to replace

f,d'a — B§ (PR _ ZA) 5 (PU _ ZAU) FR,U; J;t) d® Py dP,,

oS

IR — P,

0S

@ — PU, (196)

where B is given by (172).
This program will be carried out in a following paper for the drift-kinetic and
the gyrokinetic theory.
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7 Summary

The paper starts with the introduction and proof of the correctness of a La-
grangian for combined Maxwell-kinetic theories in general coordinates as con-
cerns the particle motion. The kinetic part of it is formulated Eulerian with
the help of the equations of motion in form of Hamilton-Jacobi’s equation as
a tool and Dirac’s constraint theory. In all final expressions such as charge
and current densities as well as the energy-momentum tensor density and the
kinetic equations the Hamilton-Jacobi function is eliminated. There is cor-
respondingly no need to solve the Hamilton-Jacobi equation. Charge and
current densities distinguish automatically between “particle-like” (gyration
centre), polarization and magnetization contributions. This formalism is ap-
plied to averaging coordinates derived by Kruskal’s method. With the help
of certain properties of the averaging coordinates according to the basic re-
quirements imposed on them, it was possible to obtain a Lagrangian for the
combined Maxwell-kinetic theory in a reduced phase space which is applica-
ble to situations in which one is not interested in the dependence on some
kind of gyroangle describing the gyromotion, whose treatment, however, can
easily be added [22]. There is no approximation with this Lagrangian. This
reduced phase-space Lagrangian is obtained from a form of the exact particle
Lagrangian which is manifestly independent of the gyrophase ¢.

The basic perturbation theory, which aims at obtaining averaging phase-space
coordinates, is done solely within the framework of the inverse Kruskal for-
malism given explicitly in this paper. The results are later used to obtain
approximate expressions for the Lagrange functions. For the definition of cer-
tain approximations to the exact Lagrangian the vector potential is formally
treated as scaling with the magnetic field B times the scale length of the back-
ground plasma, and the electric potential ® is formally treated as scaling with
B, but there is no need to really attribute certain orders to the potentials by
a corresponding choice of gauge. The terms of the needed zeroth and first
orders are given. For the drift-kinetic ordering Littlejohn’s Lagrangian is red-
erived immediately and with this the drift-kinetic theory as obtained and in-
vestigated by the present authors in some previous work. Gyrocentre particle
Lagrangians similar to those derived by Brizard [5,12] can be obtained, us-
ing appropriate approximations, from our gyroangle-independent Lagrangian
by a procedure similar to that used to obtain Littlejohn’s guiding-centre La-
grangian. However, particularly as concerns the gyrocentre case, but also for
the guiding-centre approximation, we prefer not make any further specific ap-
proximations at this stage. Leaving the expressions as generally valid as pos-
sible has two important advantages. First, our treatment of gauge-invariant
Maxwell-kinetic theories remains relatively clear and tractable and, second,
the final results concerning the kinetic equations, the conservations laws and
the energy-momentum tensor are obtained in a form that comprises several
different theories which can then be obtained by introducing in those expres-
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sions the desired approximations, as will be seen in a following paper [29].
That paper will apply the above exact Lagrangian to the combined Maxwell-
kinetic theories, with the gyroradius approximated by its first-order Kruskal
expression. In that paper one will obtain by means of a modified Noether
formalism which is gauge invariant [30] all the local conservation laws in a
form which exhibits in a very transparent way their structures. In the gyroki-
netic theory one will encounter complications compared with the linearized
theory for the above Lagrangian and with the drift-kinetic ordering which re-
sult from the occurrence of first-order terms in the arguments of the potentials.
This will lead to certain averages of these potentials over the gyromotion sim-
ilar as in other present-day theories. The most important point concerns the
energy-momentum tensor. Although the gauge-invariant Noether formalism
automatically yields the fully symmetric energy-momentum tensor for the rel-
ativistic Maxwell-Vlasov theory and the energy-momentum tensor symmetric
in the spatial indices for the non-relativistic Maxwell-Vlasov theory, as shown
in [30], and also for an approximate theory such as the drift-kinetic theory, as
shown in [10], this is, in general, not the case in other approximate theories.
To these theories belongs the gyrokinetic theory. The nonsymmetric terms
in the energy-momentum tensor are of higher order and can therefore disap-
pear when going to higher order approximations. However, it will be shown in
the already mentioned following paper that even within the framework of the
gyrokinetic theory the nonsymmetric terms can easily be eliminated without
having to consider higher-order approximations. The reason for this is that
the gauge-invariant Noether formalism yields expressions for the momentum
and angular momentum conservation laws from which one gets a clear indica-
tion how to easily derive the symmetric energy-momentum tensor. This tensor
describes the correct energy and momentum densities and their correspond-
ing flux densities. The final expressions for these densities have a physically
clear and transparent structure. In particular, they contain spin-like contribu-
tions everywhere, except in the energy density. All the results concerning the
gyrokinetic energy-momentum tensor are new and cannot be found elsewhere.

Appendix A. Direct proof of & 7 (z,t) =0

J(Z1,...,25;t) is defined as

)= [ o do. (A1)

Its time derivative is

d . 8 1 ax
@ = Aoz o ¢d¢+at/1’ 5 10
0 [! 0x
— by ['pe oo [ S do
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(e ) ox (0 0o

= K%A +6t) 96 TP (h’lazﬁ )8(/5] d¢

_ ['[(,0p, 00) ox_op (, ox  ox

= K”“aA +8t> 9 96 (hzaA atﬂ dg. (A2)

This relation can also be written in the form

d _ op op  w(z)dp) Ox
al ) = /0 K@t 95 T e %) 3¢

_0p (0x ox  w(z)ox
" 9 (E thigs T a¢>] a¢- (A3)

The additional terms obviously cancel each other. The function w(z)/e is the
time derivative of ¢. The expressions in parentheses are therefore the total
time derivatives of p and x. They can be expressed by Hamilton’s equations
of motion as

db_ o dx_oH
dt — ox’ dt  Op
Equation (A3) can therefore be written as

o= ([ 5 o ([ ] w-o. w0

Note that it was essential that h, (106), should not depend on ¢, and that it
was not required that H be independent of ¢, which it in general is not.

Appendix B. Properties of some Lagrange brack-

ets
Equations (146)-(148) are derived in this appendix.

In the phase-space coordinates zi,..., 24, .J, ¢ the constant of the motion .J,
(107), can be written as

Or Lo or
— 2 do = - == do. B1
g {zl,...,z4,J,t}:constp (9¢ d¢ /0 P 8¢ d¢ ( )
Partial derivation of J with respect to z;, J and ¢ yields, respectively,
_['[op & dp O
0 _/0 0z 0p Op Oz ] df = / g, (B2)
L[op Ox Op Ox
1= — B3
/0 0] 06 09 GJ] a¢ = / Lrdd (B3)
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and

_ dp or Op Ox
—/0 [at 55 50 at] d := /ltd¢, (B4)

where the convenient notation [;, 1, [; has been introduced for the Lagrange
brackets concerned. Thus, [;,l; — 1 and [; have vanishing mean values. It
will now be shown that also their oscillating parts vanish. The calculations
are made with basically the same methods used to derive the transformation
equations (109)-(112) in Sec. 4, but employing the phase-space coordinates
Z1,-..,24,J,¢ instead of Z,..., 25, .

Some relations needed for the calculations can be derived from the canonical
Hamiltonian H,

H(X’pat: 68) = H(x(zl,"wz‘l:‘],(b;t = ES),p(Zl,...,Z4,J,¢;t: 68);t: 68)7

(B5)
from which one obtains as derivatives with respect to the independent variables
Z1,-.-,24,J,¢ and t the relations

om _ oH| o O0H| o
0z,  Or Pt 82’1 ap 8z,
_ b O @
T dt 0y * dt 0z’ (B6)
OH _ _dp or  dr op
o] = "t 9 T dt o) (B7)
OH _ dp O d; op
- —+ — B
96~ dt 06 dt 0o (B8)
and 0H dp O0r dxr O
o _ _@p or —ar Op
ot |, ;, dt ot o G dt (B9)
where %—If r p = ﬁ has been used in the last equation. With (B6) and
( 6%) = ( ) (and similarly for J and t) taken into account, differenti-

atlon of (B6) B7 and (B9) with respect to ¢ yields

or 0 |dr 8; 0 |dp p 0 |dr
5 0p ) * 0% 36 L) = o6 ok |at) a8 o ) 10
O 0 [dp] [ 9p 0 [de] _ ox O [dp]  Op O [dr
“aJ _l_]Jr_ 8g/>[ ]_ 96 aJ[ ]+a¢ &Ildt] (B11)
and

a;adp 8p6d; 0 |dH

ot %[ ]*E a—¢[ ]w[ ]

o 8[dp]+8p 8ldx] (B12)

" 0¢ otl|dt| " 99 ot |dt
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In the phase-space coordinates 21, ..., z4, J, ¢, the total time derivative is given
by

d 0 LY a 0
=y . - . t=es) — + — (Bl
o Flhj 21y .oy 2ay Jit = €8) =— 8,2] - — (215,21, J,t = €s )6q§+ T (B13)
(cf. (106). Tt is easily seen that
0d do
- == B14
dpdi  didg’ (B14)

D4 _do om0 10w
ﬁzi dt N dt aZZ j=1 aZZ 8zj € 82’1 3¢’

(B15)

and correspondingly for 0/0J and 0/0t. When this is taken into account,
(B10)-(B12) yield, respectively,

dl, h,
# = _% ) l(z); with 1 (l17 l27 l37 l4) h (z) = (h1: h27 h?n h4) ) (B16)

dy _ b
d  0J
d L+ 0H _ Oh, 1,
99 ot
Since the mean values of l(z) and [; vanish, and the mean value of [; is 1
according to (B2)-(B4), 1), [; and /; can be replaced by their oscillatory parts
1), [; and [; in (B16)-(B18). By substituting d/d¢ from (B13) in (B16) and
solving for 81 (z)/ 0, one obtains

) (B17)

(B18)

Oy _ € [5h<z) ; Ol Ol (B19)

26 5z L@ the 5+

The iterative solution of this equation yields i(z) = 0 to all orders in . With
this result taken into account, (B17) and (B18) yield in a similar way

~ - OH
b=0 , h+355=0. (B20)
Therefore,
Op Or Op Or .
—_— - =1,... B21
9% 96 96 8z 0 iTLood (B21)
8p or Bp o
—_— - =1 B22
aJ ¢ 08¢ 8J ’ (B22)
and

8p Oor Op Or OH
9% or op . B2
ot 96 96 ot 96 O (B23)
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It is easy to calculate the Poisson brackets [z;, J| and [¢, J| by making use of
these results. Let g, be any of the coordinates z1, ..., 24, J, ¢. Then, from

o= (@ (g, 1), 9 (qu,t) 1 1), (B24)

one obtains

O Or Onn , O Oa

dq, M dq, or | 0q, Op’

WhiCh7 with 8Q)\/ax = [q)\vp] = 16/:1 [q/\7 qu] ap/aqv and aCI,\/ap = - [QAaF] =
— 3% . [ar, 4,] Or/Dq, yields the orthogonality relations between the Poisson
and the Lagrange brackets, viz.

(B25)

b= lansa) [ 2 0 (B2
By taking g, = ¢, this equation yields
[z, J] =0 ,i=1,...,4 (B27)
and
[¢,J] = 1. (B28)

Appendix C. Alternative derivation of a Liou-
villian volume element

In Sec. 6.2.2 a Liouvillian volume element was derived in a simple way by
making use of the vector representation of the Euler-Lagrange equations. Here,
an alternative (though more complicated) derivation will be given which is
similar to the usual derivation of a Liouvillian volume element within the
framework of guiding-centre theories.

The Lagrangian equations derived from L, (157), can be written as

- O(H) [op or Op o
i Wik = 5~ 2 A, A, A =1,....,4 1
izzl 2 Wik 8zk + <3t azk aZk at> ) (4 ) ) , (C )

with w;, the antisymmetric matrix given by

L= (0 Op O Op
Wik = <6ZZ 6zk azk 6zz> (02)

The following phase-space volume element dr, is then Liouvillian, i.e. d (d7y) /dt =
0 along orbits:
dry == X (21, ..., 24; J; t) dz1dzedz3dzy, (C3)
with
A = |det (wy)| V2. (C4)
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A proof of this theorem is given in Appendix D. Here, it will be shown that
this A coincides with B, (172).
The matrix elements wj; satisfy the following conditions: w; = 0 for i =
1,...,4; wy = —wig fori=1,...,3; wig = —wa1; Wiz = —ws31 and woz = —wso.
Calculation of det (wj) yields

det (wik) = (W1awe3z — Wiswoy + w12w34)2 . (C5)

By identifying 21, 29, 23 and 2z, with R, Ry, R3 and U, respectively, the follow-
ing relations can be derived by comparing (C1) with (170):

e. [0A 0Ay
=-Xp | =— — — k=1,...,3 Cé
Wka cxk laU oR. ] ’ ’ ) ) ( )
where the X, £k =1,...,3 are Cartesian unit vectors. Next, one has
€ € €
wy=—-B1 , wiz=-By , wip=-—-B;. (C7)
c c c

Since B - (8A/8U - GAU/(?R) = (mc/e)B according (172), one obtains

i - [ (5-22)0]
- [@B

Cc

(C8)

The Liouvillian volume element given by (C3) is thus the same (within a
constant factor) as that given by (190).

Appendix D. Liouville’s theorem

The equations of motion as given by (15) and (16) can be written as

Viw; D1
> Vi = G+ 5, oY)
with the elements of the matrix (w;;) given by
0y O
Wik = — — . D2
PTG G (b2
In order to derive Liouville’s theorem, one needs the time derivative of
A = det (wzk) . (D3)
It is convenient to use the Laplacian development of A, viz.
A= Z wik Cik, (D4)

k=1

42



where 7 can be any of the numbers 1, ..., n. Here, the determinant is expanded
as a linear combination of the products of the elements of any row and the
corresponding signed minors, viz. the cofactors Cj. By definition, the Cj do
not contain the element w;; and, therefore,

0A

8(.{)1‘ k

= Cj. (D5)

Since A is a function of the w;;’s, its derivative with respect to time is

dA . 0A
E B Z-,kaik awik
By using the relation
(Ci) = A (Jki) , (D7)
where the matrix (J;) is the inverse of the matrix (wy), i.e
> wadik = i, (D8)
!
one obtains A
dt ik

From the definition of wy, (D2), one can derive the relation

Owy; Owpy Owig,
oG 0G  0¢

By using (D1) in the expression for the partial derivative of (D2) with respect
to time, one obtains

Owip Owy  Owpy v 6)%
— — . D11
2 [” [ack e ] TG T A “’”] (b11)

By making use of the last two equations, the total time derivative of wj,

= 0. (D10)

dwir, 8w,k Owig,
= v D12
dt Z o ( )
can be written as p o 8V
wzk l l
— = . D13
Z l T3 wkl] (D13)
Multiplication of this equation by Ji; and summation over ¢ and &, with J; =
—Jik and W = —Wik and the relations Ez wliJik = 5lk and Ek wlkai = 5” being
taken into account, yields
dwzk
-2 ) D14
ZZ,,; dt Z 8Q ( )
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By inserting this in (D9), one obtains
dA oV,
— ==2A) —.
dt ; a¢
The quantity
NERNES
then satisfies the continuity equation

()

Thus, the volume element
dr = Xd( ...d¢,

is Liouvillian, i.e.

d

Z(dr) =
747)
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