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Abstract

This paper investigates the implications and consequences of choos-
ing special gauges or gauge-invariant or non-gauge-invariant approxi-
mations in the action integral for the variational formulation of the-
ories involving electromagnetic fields. After some interesting special
gauges are considered, it is shown that non-gauge-invariant approxi-
mations always lead to inconsistent Euler-Lagrange equations. As a
concrete example, the Maxwell-Vlasov theory is investigated. The spe-
cial non-gauge-invariant case considered, which is sometimes used in the
literature, is obtained by replacing the contribution of the electric field
to the Maxwell part of the Lagrangian density by the contribution of
the gradient of the scalar potential alone. The detailed investigation
concerns the local energy conservation law, and it is shown that the law
thus derived is physically meaningless since it contains non-physical,
spurious terms. The results are also valid for drift-kinetic and gyroki-
netic theories, and for other theories, e.g. two-fluid theories.
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1 Introduction

The electromagnetic potentials ® and A are related to the fields E and B by

the equations

E:—Vq)—la—A and B=V x A. (1)
c ot

The electric and magnetic fields are not modified when the potentials are
changed according to gauge transformations

, 10V ,

=9 T A =A+VU (2)
A theory defined by a variational problem is gauge invariant if the action inte-
gral is invariant under such gauge transformations or if the Lagrangian density
only changes by a time derivative. It is then obvious that all results concerning
physical quantities obtained from Hamilton’s principle do not depend on the
gauge.
On the other hand, if a theory is not gauge invariant the results have, in prin-
ciple, no physical meaning, since changing the gauge changes the results. It
is, of course, allowed to use a special gauge with all the results being physi-
cally meaningful, but Hamilton’s principle in this case must be supplemented
by corresponding constraints. However, these constraints must not be com-
bined with non-gauge-invariant approximations of the Maxwell fields, where
the gauge transformations are restricted to leave the constraint invariant.
Usually, one considers kinetic theories with gauge-invariant particle contribu-
tions to the action integral which yield gauge-invariant charge and current
densities satisfying the corresponding continuity equation. But these parti-
cle contributions are sometimes combined with Maxwell contributions con-
taining non-gauge-invariant approximations. An example will be considered
in Sec. 4.3.2. One problem which immediately arises in this case is the ap-
pearance of an inconsistency within the local conservation law for the electric
charge, which is one of the possible reasons for the appearance of incorrect,
spurious terms in the local energy conservation law. However, even if local
charge conservation is formally guaranteed by the introduction of an appropri-
ate Lagrange multiplier term, the expression for the current density remains,
nevertheless, incomplete and this, in turn, is responsible for the appearance of
a different spurious term in the local energy conservation law. This deficiency
does not occur if the approximations are gauge invariant. The first feature will
already be shown here in the introduction. Later we will consider the inter-
esting particular example of the Maxwell-Vlasov theory in detail. It will be
seen that the incorrect terms concern only the energy flux density; therefore,
they do not influence the total energy conservation. However, the dynamics
behind this total energy conservation law, which is reflected by the energy flux
density, is wrong. The results obtained are typical also of drift-kinetic and
gyrokinetic theories, and other theories, e.g. two-fluid theories.



As concerns the first feature, let the Maxwell contribution to the Lagrangian
density be any function of E and B:

(3)

10A
c ot’ ’

EM:£M(E,B):£M<E:—V<I>——— B=VxA

This is, of course, always gauge invariant. Variation of the total action integral
with respect to ® and A yields

0Ly oLy
Viove - YV g - P (4)
and
oL, 1. 10 OL., 1. 108060,

VX = T caatijo@aen - oo O

which is obviously in agreement with

dp .

Y +V.j=0. (6)
for all choices of Ly (E, B) representing certain approximations. Similarly, one
can show that all Maxwell Lagrangian densities of the form £,(V®,0A /dt, V x
A) # L,,(E,B) lead to inconsistencies.

In Section 2 we consider three examples with prescribed gauges. Section 3
treats an example with a non-gauge-invariant choice for L£,;, which is later
studied in detail in Section 4, and, in particular, in Section 4.3.2. Two further
examples with prescribed gauge-invariant £,,(E, B) are also treated in Section
3; they correspond to linearized theories with purely electrostatic perturbations
and to quasi-neutral theories, respectively. They are proposed as a way of
replacing non-gauge-invariant expressions for £,. These last two examples
are again treated in Section 4, and, in particular, in Sections 4.3.4 and 4.3.5,
respectively.

2 Special gauges used in the exact Maxwell
Lagrangian density

In the investigation of kinetic plasma theories it is sometimes convenient to
introduce a special gauge for the electromagnetic potentials ® and A in the
exact Maxwell Lagrangian density,

1 1 10A°
- B?2-B? =" ||lVvd+_-=2| —B?|.
La 8w [ ] 8 ‘V * c Ot (M)
Interesting examples of exact gauges are
109
cA=0, ——— -A=0, &=0. 8



The first one is the Coulomb gauge, the second one is the Lorentz gauge, and
the third one is obtained from any special gauge by a gauge transformation

given by
10V ov
A=A"+VV¥, &=9¢'——— with — =¢?".
+ ; - wit 5 = ¢ 9)

When any of these gauges is used in the variational problem, the allowed
variations are restricted. One can take care of this by introducing Lagrange
multipliers.

The Coulomb gauge does not change the Lagrangian density. Therefore, only
the Euler-Lagrange equations are modified. Because of the term

pcV - A (10)

relating to the Lagrange multiplier uc, there is a contribution to the right-hand
side of the equation for V x B, given by

V/,Lc. (11)
However, the equation for V x B must remain unchanged. Hence,
Ve = 0. (12)

In the case of the Lorentz gauge, one has analogously the additional expression
pL lz—-l-V-A] , (13)

from which the additional charge density

1 8,LLL

add = —— —— 14
Padd c ot ( )

follows. This must vanish and, therefore,

O

=0, (15)

There is also an additional current density
Jada = =V, (16)
which must also vanish. Hence, also
Vi, =0. (17)
In the case of the gauge ® = 0, there is the additional expression
P (18)
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relating to the Lagrange multiplier pug. This yields an additional charge density

Padd = H¢- (19)
On the other hand, since in this case

10A
E=—— 20
c ot’ (20)
there is now no term V-E resulting from the E? contribution to £,;. Therefore,
one must choose
drpe =V - E (21)

in order to obtain the correct Maxwell equations.
These choices of the various Lagrange multipliers, together with Maxwell’s
equations, leave all conservation laws unchanged.

3 Non-gauge-invariant versus gauge-invariant
approximations of the Maxwell Lagrangian
density

The situation is different with non-gauge-invariant Maxwell Lagrange densities
obtained from certain approximations. An example is the non-gauge-invariant
choice

Lo = % [VaP - (v x A)?]. (22)

The usual argument for this choice is that one is interested in situations where
the condition

10A
‘ < v (23)

c ot
is satisfied. There is, of course, no exact gauge such that dA /0t = 0, con-
trary to V& = 0. Moreover, it must be stressed that within the variational
problem one does not compare the contributions to the factors of & with the
contributions to the factors of A. The comparison is made separately within
the factor of §® and within the factor of 6A. If (1/c)0A /0t is already ne-
glected in the Lagrangian density, incorrect and inconsistent Euler-Lagrange
equations are obtained, not only in the sense discussed in the Introduction,
but also inconsistent in the assumed approximation (23) itself. This will be
explained in detail further below in Sec. 4. It can be illustrated by means of,
for example, (46), where it is readily seen that the contribution (1/47)0V®/0t
to the displacement current density gets lost if the term (1/¢)0A /0t is already
neglected in the Lagrangian density £, with the consequence that one obtains
not only incorrect and inconsistent Euler-Lagrange equations, but also wrong
expressions for the conservation laws. The fundamental inconsistency results

6



from the variation of the action integral, with (22) taken into account, with
respect to ® and A. This obviously leads to the following two inhomogeneous
Maxwell equations:

4

A® = —47p and V x B = —j, (24)
c

where p and j are calculated, e.g. from the Vlasov distribution functions, and

are time dependent. Hence, (24) imply the inconsistency
dp
ot
It could be argued that one is essentially interested in quasi-neutral situations

with 0p/0t negligible. In this case, however, one should choose for £, the
gauge-invariant expression

#0 and V-j=0. (25)

1
Ly =-—B? 26
M 87T ’ ( )
which directly yields the exact quasi-neutral equations
4
p=0 and V x B =—j. (27)
c
This implies a Poynting vector with
10A
E=-Vo— —, 28
c ot (28)

but the energy density consists only of the magnetic field density. This case is
further discussed in Sec. 4.3.5.

Another argument could be that one is interested only in electrostatic pertur-
bations within a linearized theory. In this case one should replace

1 2 2 1 2
@ _ L (M) _ (rOD 2 (p
EM_8W[(E) (B)]—>87T(E), (29)
but still with A
10A
EV = —vol) — - 30
v T (30)

which again means a gauge-invariant theory. There is then no longer a Poynt-
ing vector, and the second-order energy density only contains an electric field
energy. This question is treated, basically, in Sec. 4.3.4.

4 Detailed investigation of the deficiencies re-
sulting from different non-gauge-invariant ap-
proximations of the Maxwell Lagrangian den-
sity within Maxwell-Vlasov theory

The Maxwell-Vlasov theory is studied here with techniques which are basically
those of [1] and references therein, using variational methods. To simplify

7



matters, the method is again briefly given here. The action functional for the
theory is

A= / dt &Pa Lo, (31)

where
L. =Ly + Lk (32)

is the total Lagrangian density consisting of Maxwell field and kinetic contri-
butions, £ and Ly, respectively. Here we are only interested in deriving the
local energy conservation law and, in particular, comparing different theories
characterized by different approximations of the Maxwell Lagrangian density.
This density, in the general case, is given by

Ly (x,1) = 1 (EQ—BQ):g—lV@-i——— (33)

8m

The overbraces characterizing the different terms are introduced here for easy
description of the different cases treated below, and are very convenient in
tracking the contribution of the different terms to the local energy conservation
law. Later, terms with the characterization E1, E2 above the overbrace will
be encountered. Such terms vanish when either V& or (1/¢)0A /0t or both
vanish in the Maxwell Lagrangian density.

The kinetic Lagrangian density is given by

La(x,1) = —p%/d%z folx, o, 1) lM +H (x, %i’,t)] L (34)

ot

where H(x, p,t) = e®(x, 1) +H (p — (e/c)A(x,1)) is the particle Hamiltonian,
with H given by

A

H (x,p,t) = 5 [p - SA(X, t)r. (35)

As shown below, the functions S(x, a,t) satisfy the Hamilton-Jacobi equa-
tions, 0S/0t + H (x,0S5/0x,t) = 0, as a result of the variational principle.
These functions are only used as a tool. They will not appear in the final
expressions and, therefore, one does not have to solve the Hamilton-Jacobi
equations; only certain general properties of the functions S(x, a,t) will play
arole. The a’s are constants of integration for the Hamilton-Jacobi equations.
S(x,a,t) is a mixed-variable generating function for a canonical transforma-
tion to new Hamiltonians equal to zero. The new momenta o« and coordi-
nates 3 = 05(x, o, t)/0a are therefore constants of motion. The functions
fp(x, o, t) are primary forms of the distribution functions with the argument
a instead of p or v. The quantities to be varied in Hamilton’s principle are,
besides ® and A, the functions S(x, o, t) and f,(x, o, t). The gauge transfor-
mation
10¥
c ot’

> ® A A+VY, S—>S+S\Il (36)

8



leaves both contributions to the total Lagrangian density invariant when the

electric field considered includes both V& and (1/c)0A/0t.

4.1 Variation of the Lagrangian density
The variation of the Lagrangian density is
0Ly, = 0Lk + 0Ly,
The variation of the kinetic Lagrangian density can be written as

SLk(x,8) = Osoln(X,1) + Ssaln(, 1)
+55fp£K(X, t) + 555£K(X, t),

with

50 L ( Z/d?’a fo(x, o, t) e 09 (x,1),
5‘5ALK(X’ t) = _Z/d?’a fp(x> aat) [_E 0A (X, t)] : aa_];’
051, L Z/d3a(5fpxat) [W—FH]
and

06S (x,a,t) 06S OH
dssLy(x,t) = — Po fox, a,t)l + Sl
“ pz/ P ot ox  Op

_ _g;/d?’a [—55(&@”5) l% 33 (f" )]

0 0 0H
+ o 0)+ o (s o]

where
0H O0H(x,p,t) ( oS )
—_— = =v|x,p=—=—,1]).
ap ap p=0S(x,Q¢,t)/0x ox
The variation of the Maxwell Lagrangian density is
E2 E2
1 /o TOA\] ~~/~ TOV-A
5 Lre (%, 1) E{V- [5@ (V¢+E§>] _ % (A‘“g -
E2 E2 E2 E2
0 [A (o= TOA\] TA 0 (= T0A
Il el P 2 L (p -
+3tC(V +c t)] c 3t(v c Ot
M M M M
N N A~
A VxB-V (5A>< B>}

NeJ

|

(37)

(44)



4.2 FEuler-Lagrange equations

The use of (37)-(44) in Hamilton’s principle yields the electric charge den-
sity from the variation d®, the current density from JA, the Hamilton-Jacobi
equations from 0 f, and the Vlasov equations in the variables x, o, ¢ from §5.

4.2.1 Equation for the potentials containing the charge density

E1,E2
1 /\El 1 8V A
_ = — 3
o AD e E /d a fo(x,a,t) = —p. (45)

As previously pointed out, the terms characterlzed by E1, E2 vanish when the
terms E1 or E2 or both are omitted in the Lagrangian density.

4.2.2 Equation for the potentials containing the current density

2L 10 e 1;; OH
C =~
Cvx B+ (Vo422 = /d3 a ) =5 (46
47rV>< +4 ot (V +c 8t) p_zs_e o folx @ )ap 3 (46)
from which
E2
d -~ 13V A
= ——| AP +— 47
vV 77615[ ¢ ot ] (47)
follows.
4.2.3 Hamilton-Jacobi equations
05 (x, 1) (’g’ta’t) +H=0. (48)

4.2.4 Kinetic equations

o (50 -

After taking the Euler-Lagrange equations into account, the variation 6L,
reduces to 6°FL,,, , where the superscript EL means that the Euler-Lagrange
equations were used.

Lo, (x,1) = 8% (L + Ly) =

P P OH
—g/df‘a la (f30S) + - (fpas—pﬂ

1 ~~ 2L K 1E82A 1 X
P A~ A
+V-l—5¢b<V¢> )]—V-l—(SAx B]
4 c A7
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E2
E2 El

1 0|~ (== 10A
+Ra[“‘ (Vo c@t)] (50)

4.3 Local energy conservation

The local energy conservation law is obtained by means of the usual Noether
procedure. Contrary to [1], we consider here the usual shift variations and
not the otherwise very convenient gauge-invariant shift variations because, be-
sides gauge-invariant Lagrangians, we also want to investigate the non-gauge-
invariant case with £,, = (1/87) (\V@\Q — B?

Owing to a time shift ¢,, the Euler variation of the total Lagrangian density is

0
aﬁtot_(x, t). (51)

For the actual development of the system, the kinetic Lagrange density L (x,t)
does not contribute, because it vanishes after the Euler-Lagrange equations are
inserted for S, i.e. the Hamilton-Jacobi equations, (48). One thus has

0L (x,1) = —¢,

0L (X,1) = 0% Loy (X,1) = 0Ly (x,1) = —Q%EM(X, t)
E2
YN
,./\ 10A
= —e—2 _'B? 2
e 6tH ®t o ] (52)

On the other hand, §*" L, (x, t) is also given by (50). Following a displacement
€, in time, the usual shift variations of ®, A and S are

0d 0A
0P = —€ 0A = 6o (53)
and 85 aS
0S8 = _Eta =e¢H =¢ leq)(xa t) + H <X’ E’t>‘| ? (54)

where (35) and (48) are used. By substituting these expressions in (50), with
(45) and (46) taken into account, one obtains

_5EL£m(xt /d3 [at CORS (fp aHﬂ

/

(a)

E1 E1,E2
o7 /AD 17D .
Y1e(221 1 %.a o B
+8t[ (471' et Y )J -V ( iV )
from (45) from (46)

~ N\ v
-~

(b) (h)

11



10 /e 19V A 9 e 1A
c ~~ . c =
= 22 (AP 4= Vo — (Ve 4=
4 ¢ 615( c Ot )J v c 8t<v c 8t>
fromv(46) fromv(46)
(©) (d)
E1l El E2
1 o] 1 5% 1 DA
B v AR il v 2 N L v A Dactnlitiaiuiid
v [47r ot ] 47rV ot ¢ Ot
() (9)
M E2 E2
1A ~1 1 9[9A /o~ 1A
+V'[Eax 31—4—%& W(V‘“za)]- (55)

~~ ~~

(4) ()

The term (a) can be transformed by passing from the variable a to p, and
from the primary distribution function f,(x, e, t) to the distribution function
proper, f(x,p,t), as explained in detail in [1], equations (5.22)-(5.30). In
particular, this implies the substitution 0S(x, &, t)/0x — p. One then obtains

@=-3 e[ 5 (1 p0)+ 2 (rHeemn S| 6

The term (h) can be written as +(¢/47)V - (V® x B). Together with the term
(i), one obtains

15E) 1
C ~~ C N
) — | — q) —_— B = — . —E B .
- [ (oo ) B v [ ]
Further, one finds
E1 ME1,E2
0 AP Ad
b S - =2
() + (¢) ot [ 0y A ]
—— —_——
from (45) from displ. current in (46)
E1,E2 E1,E2 E2
100[_ == 10V A 1 9[V-A BV-A
— V. Ve+- o2 -
T [ oo | T e atl ot ot
from (45) from (45) from (46)
El N E1,E2
PN ~=
_ G 0[ Bo AD
O 0t| An A

~—~— ——
from (45) from displ. current in (46)

12



1 00 ] 1 9VE = 1 00 1aEéE2A
A ~— .
4—V-[avq>]———- R
T

~~

+

Ar Ot 1+\47r at ¢ Ot
B c

/

,

~

from (45)
E1,E2 E2

—_——
1 8[8V-A VA

dmc ot | __ot ot |
—_— e —
from (45) from (46)

(58)

E2
ELE2 ——

10 == 10A
(@) = _EElV¢' (V‘“za) ]

from displ. current in (46)

v

~~

D

1 OV oy 1E 2aA
=
— 22 (e +-= )
4 Ot —~— c Ot
N—— factor of B “N—~—
factor of B, F . factor of E |

from displ. current in (46)

E1

(e) = —%V- @%}, (60)

~ /

A
El E2 El E2
—~— AN ——
__10VP 10A 1 09210V-A 61)
W= co ot o (
E c

When all three contributions E1, E2 and M are present in the Maxwell part of
the Lagrangian density, it is clear that the term A of (b) + (¢) cancels the term
A of (e), the term B in (b) + (c¢) cancels the same term in (d), consisting of
the two factors indicated in (59). The term C in (b) + (c) cancels the term C
in (g), and the terms E in (d), consisting of the two factors indicated in (59),
and (g) cancel each other.
In cancelling A®, the term marked with !!!'in (b)+(c), Eq. (58), plays a crucial
role, and the term B in (d), consisting of the two factors indicated in (59), is
crucial to cancelling the same term in (b) 4+ (¢). These terms are not present
if the displacement current is not taken into account in the Euler-Lagrange
equation for the current density, which is the case when |V ®|?/87 instead of
IV® + (1/¢)dA/8t|” is used in the Maxwellian part of the Lagrangian.

13



The contribution D from (d), Eq. (59), and the term (f), Eq. (55), finally yield

E2 E2 E2
19 = TOA o~ TOA [10A
D = ———|Vo. Vo + — Vo
) 47r8tl ( N >+ 08t+<08t>]
\—/—"
from displ. current in (46)
% %
1 OE* = 2 OE?
= —_—— = . 62
4 Ot 8t Ot (62)

The local energy conservation law is then obtained in the usual way by setting
0L,y (x,t) from (52) equal to 0°“L,,, (x,t) from (55), with (56)-(62) taken
into account. In the following, four different forms of the Lagrangian density
are considered.

4.3.1 Gauge-invariant £, = (1/87)[|[V® + (1/¢)0A /0t]* — B?]

The result obtained with the exact Maxwell Lagrangian is, therefore,

Loere, (x 1) = 95

2
= -V Nuin — —E2—- V. [ E B] 63
€ Y ot " 8 47 X (63)

where

fun =3 [ d'p fH (64)
p.s.
and
Mein. = Z / &p fH— (65)
In this case one obtains the local energy conservation law

O€iin

ot

It should be mentioned here as a side note that it is much easier to obtain

this result by using the gauge-invariant shift variations introduced in [1]. As
shown there, these yield

| # i[5z (8 +3)] + v [B B =
LV e + 8t[ (B +8)|+ v [ CExB| =0 (60)

6S =eH, 6® =0, 6A = ¢cE, (67)
which, when inserted in (50), immediately yield (63). Of course, this is not of
importance for the subject of the present paper.

4.3.2 Non-gauge-invariant approximation with £, = (1/8x) [|V(I>\2 —

This form of the Lagrangian density is sometimes used in the literature for the
case of slowly-varying fluctuations. It is then said that the inductive part of the
electric field can be neglected in the Lagrangian density, as compared with the

14
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contribution from the scalar gradient. A basic discussion of this argument is
given in the Introduction. It will now be shown that this choice of Lagrangian
leads to incorrect results, as concerns not only charge conservation but also,
in particular, the local energy conservation law.

If the contribution (1/¢)0A /0t to the Maxwellian part £,, of the Lagrangian
is not taken into account, there are several consequences:

e The Euler-Lagrange equations (45) and (46) become equations (24), im-
plying violation of local charge conservation.

e Since there is no displacement current in the equation for the current den-
sity, (46), there is, in particular, no term (1/47)0V®/0t, which would
otherwise enter the local energy conservation law. Several terms contain-
ing (1/c)0A /0t vanish. As a result, the term —(2/87)0E? /0t disappears
from (55), as follows from (62).

e In (b) + (c), (58), the terms
E1 M E1,E2

011 1
d— ‘ —AD ——Ad
ot | 4m A7 (68)
————

from displ. current in (46)

MELE2
cannot cancel since the term -2~ is discarded, and the term B,

BRI A0 (69)

is not cancelled either since there is no corresponding term in (d), (59).

For these now remaining terms one has

01 1 oV
e e TR
1 BAYA 1 oV e 1 OV
Bl v AU I Yot el I R A A v £
47rV lcb ot ] 47TV<I> ot A Ot v
1 Ve 1 9|Vof
- Ev'lq) 8t]_ﬂ ot (70)

This introduces a wrong term into the local energy flux density, and also a
term —(1/4m)0|V ®|?/0t which, in spite of having a form apparently correct
for the local energy density, has not been correctly derived either.

In the present case one obtains in a way similar to that of the previous case
the (incorrect) local conservation law

O0€in. . 071 9 9 ]
3 TV Mt o [87 (Ivef +B?)
c 1 oV o
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The spurious term —(1/47) [®@(0V ®/0t)] in the energy flux density is also
obtained within the framework of non-gauge-invariant drift-kinetic and gy-
rokinetic theories, e.g. as appears in Eq. (49) of [2], and Eq. (21) of [3], and
is erroneously attributed to a current density wrongly identified as a polariza-
tion current density. It is, of course, not present in the gauge-invariant theories
derived in [1], [4] and [5].

As already mentioned, the spurious terms obviously do not contribute if only
the total energy of the system is considered, as done in, for example, [6]. There,
the same non-gauge-invariant Maxwell Lagrangian density of this section is
supplemented by a Lagrange multiplier term which formally guarantees local
charge conservation. Although the expression for the current density remains
incomplete and a different spurious term would appear in the local energy
conservation law if this were derived, the spurious term is in this case related
to the term 0A /0t (and not to ®(OV®/9t), and is negligible according to the
assumptions made in [6]; it is, therefore, of no consequence.

4.3.3 Difference of neglecting (1/¢)0A /0t in L, or in final results
It is easily seen that it is not equivalent to set

E--vo- 192 . _vo (72)
c Ot
right from the beginning in £y, or in the final results in the local energy
conservation law. Neglecting (1/¢)0A /0t in L leads to the (wrong) result
of (71). By neglecting it in the conservation law one obtains from (66) an
expression different from (71), viz.

Pun Ly 0 [1 =0, (73)

o —(|V<I>|2+B2)]+V- [iExB

8w dr
which is the correct expression for the local energy conservation law for the
approximation [(1/¢)(0A/0t)| < |V®|. Note that the contribution from the
vector potential is kept in the Poynting vector since only that contribution
determines V x E = —(1/¢)(0B)(0t).

4.3.4 Gauge-invariant approximation with £, = (1/87)[|[V® + (1/¢)0A /dt|?]

This approximation can be useful for describing of electrostatic perturbations
in the context of linearized theory. In order to stay within the above investi-
gation we do that here for the nonlinear theory. This exhibits the same kind
of features as can be found with the linearized theory. Basically, the Maxwell
Lagrangian density for an electrostatic theory is given by

1 10A1% 1
y=— |V®4+ -2 = —E2 4
L 8 lV +06t] 87 (7)
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The contributions =~ in (33) and following equations vanish. The Euler-
Lagrange equations (45) and (46) therefore become

1
—V - -E= Ze/d?’a (%, a,t) = p, (75)
4m ps.
LOE . 10E , OH
EE_F 4_E+Z /dafpxcxt)at =0. (76)
The local energy conservation law obtained from (52) and (55)-(62) becomes
O€ kin. 10,

There is no magnetic field energy and no Poynting flux.

4.3.5 Gauge-invariant approximation with £,, = —(1/87)B?

In an approximation in which a plasma is considered as quasi-neutral, with
displacement current neglected, the Maxwell part of the Lagrange density is
basically given by

1
=-——B%
Ly P (78)
One still has, however,
10A
E=-Vd—-—. 79
c Ot (79)

The contributions ~~~E1,E2 in (33) and following equations vanish. The
Euler-Lagrange equations (45) and (46) in this case become

0:p:26/d304 (%, a,t), (80)
p-s.
H

iVXB:j:pZ&e/d?’afp(x,a,t)g—p—)V-j:(). (81)
The local energy conservation law obtained from (52) and (55)-(62) becomes

O€win. 10_,
. in. __B E B - 0 82
8t+vnk+86t+v(x) (82)

There is no electric field energy in this case.

5 Summary

It has been shown that the use of special gauges in the action integral for the-
ories involving electromagnetic fields makes it necessary to supplement Hamil-
ton’s principle by a Lagrange multipliers formalism which guarantees the va-
lidity of these gauges. Examples considered are the Coulomb and the Lorentz
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gauges and the gauge ® = 0, with the result that the Euler-Lagrange equa-
tions in each case are the exact Maxwell equations together with the respective
conservation laws.

Consistent sets of Euler-Lagrange equations also result when gauge-invariant
approximations, e.g. the quasi-neutral or the electrostatic linearized theories
are used in the action integral, with corresponding meaningful local conserva-
tion laws (only the local energy conservation law is considered).
Non-gauge-invariant approximations, however, lead to inconsistent sets of Euler-
Lagrange equations. A detailed investigation of an example of such an ap-
proximation, which is used in the literature, shows that certain supposedly
obviously reasonable approximations are by no means reasonable. The defi-
ciencies of the non-gauge-invariant approximations result in wrong terms in
the local energy conservation law. Although these terms do not influence the
total energy conservation, they describe a wrong underlying dynamics.

In the present paper, only investigations concerning the Euler-Lagrange equa-
tions and the local energy conservation law were of interest. The aim was to
compare different theories characterized by different Maxwell Lagrangian den-
sities. An important result was that it is not equivalent to neglect (1/c¢)0A /0t
in the Maxwell Lagrangian density or only in the final results obtained with
Hamilton’s principle. This is related to the fact that within the variational
problem one does not compare the contributions of the factors of & with the
contributions of the factors of dA. In fact, the comparison is made separately
within the factor of §® and within the factor of JA. Results concerning the
derivation of a symmetric energy-momentum tensor for gauge-invariant drift-
kinetic and gyrokinetic theories are found in [1], [4] and [5].
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