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Integrated analysis of fusion data
Usually, diagnostic data and modelling results are dealt with separately in the analysis of

fusion data, i.e., experimental results are passed to modelling codes for addressing physi-

cal issues. But interdependencies of modelled and measured parameters are numerous. In

addition to the increase of the reliability of physics results, these entanglements allow for ac-

cessing barely measurable quantities more accurately, e.g., particle and heat fluxes. The goal

of this paper is to introduce a framework for inclusion of modelling results to data analysis.

Application to W7-AS data and transport modelling will be discussed.

The notion ofintegrated modellingand integrated data analysis[1] is used here for the con-

cise combination of different sources of information such as different diagnostics results. The

methods of Bayesian probability theory will be employed in order to arrive at a comprehen-

sive modelling and data analysis. Technically, the approach uses raw data and their respective

uncertainties and yields estimates for all parameters entering the model, in particular those

quantities, which are of physical interest. The motivation for a framework allowing for in-

tegrated analyses arises from physically motivated requirements in large, long-pulse fusion

devices. E.g., the operation of W7-X plasmas on time scales large with respect to the typical

configuration relaxation time (τL/R > 10 s) requires formalized on-line analyses of validated

physics quantities. Moreover, huge amounts of data require automated approaches. For de-

tailed off-line investigations, the inclusion of interdependencies enhances both the reliability

of analyses and evidence for quantities which are not directly measurable.

A simple picture of the integrated approach consists of modules representing individual di-

agnostics measurements or modelling results, all of which are linked through physical rela-

tionships. An ubiquitous case for such links in fusion experiments is mapping of different,

spatially resolved measurements onto a common grid given by magnetic equilibria. The ex-

ample discussed in this paper focuses on transport models. Probabilistic methods are briefly

discussed as a prerequisite of integrated modelling. In addition to several benefits to be dis-

cussed in this paper, Bayesian probability theory also allows one to deal with so-called sys-

tematic errors, which is essential for a framework for joint treatment of different diagnostics

and modelling. Aspects of software architecture, such as WebServices or GRID computing,

allowing the communication of codes are beneficial for the realization of the integrated ap-

proach; more details can be found in Ref. [2].
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The Bayesian approach
Bayesian probability theory provides a framework for inference from uncertain data; the un-

certainties are encoded as probability density functions (PDF) . The outcome is the condi-

tional PDF of all model parameters (including the quantities of interest)givensome data. In

the Bayesian approach PDFs are used to quantify uncertain information rather than frequency

distributions of random variables. For the purpose of inference, all sources of uncertainties are

to be quantified. Then, the outcome, the so-calledposteriorPDF is given by Bayes’ theorem

multiplying the likelihood PDF (uncertainties of data) and thea priori knowledge (without

data). Theprior PDF may encode physics knowledge (e.g. temperatures cannot be negative)

or may be derived from information criteria [3].

The Bayesian approach treats quanti-
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Figure 1:Bayesian graphical model for the Nd:YAG Thomson

scattering on W7-AS.

ties of interest and nuisance parame-

ters similarly – the latter parameters

affect the result and introduce addi-

tional uncertainties (e.g. calibration

factors). The classification of param-

eters to be of nuisance or of interest

depends on the application and phys-

ical issue to be addressed. It is to be

noted that consideration of nuisance

parameters may give valuable infor-

mation for the optimization of fusion

diagnostics [4].

From a formal point of view the integration of different diagnostics todiagnostic setsis

straightforward. An advantageous semantics is the formulation of interdependencies within

Bayesian Graphical Models [5], which is a convenient basis for the specification of the full

posterior PDF. Thesedirected acyclic graphscan be used to built up an appropriate repre-

sentation of a large, complex probabilistic model, being an appropriate framework for the

entanglements typically occurring in fusion data analysis. The Bayesian graphical model may

also reflect the topology of different software modules to be linked. The outcome of the graph-

ical model is the joint PDF of the set of all nodesU (U = {d, p} comprises both the datad

and model parametersp) which can be shown to be the product of the conditional distribution

of each node given their parents, i.e.,p(U) =
∏

u∈U p (u|parents[u]) [2].
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As an example for a realistic probabilistic model, Fig. 1 shows a Bayesian graphical model

for the Nd:YAG Thomson scattering system operated on Wendelstein 7-AS, adopted from a

similar statistical model in Ref. [4].

In a physics-motivated approach the quantities of in-
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Figure 2: Simplified Bayesian graphical

model for an integrated interpretative mod-

elling employing the ST code [6].

terest (for clarity red colored in Fig. 1) represent the

canonical links of different diagnostics modules. A

second graphical model shown in Fig. 2 depicts the

links of different diagnostics results (which enter in

Fig. 2 as data with errors). The linkage is given by

the interpretative module of the stellarator transport

code ST [6]. Uncertainties of any node, i.e. any

quantity or parameter in the graph, can be derived.

As a different example, a Bayesian graphical model

for the diagnostics of Wendelstein 7-AS was used to

determine the uncertainty of mapping andι profiles.

Results for Wendelstein 7-AS
Figure 3 depicts results derived with the graphical model shown in Fig. 2. These results

represent marginal posterior distributions from a Markov-Chain-Monte-Carlo sampling of the

full posterior PDF. That PDFPp is given coarsely aχ2-like expression and the discrepancy

of the entire model is measured by a weighted sum of deviations:

lnPp = −
∑

i, j, ..

(
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It is the functional dependencyg which introduces the link between density and temperatures

on the one hand and the radial electric field on the other. Practically,g is provided by the

transport code module. The implicit dependence between radial electric fieldEr and density

and temperature profiles is obtained from neoclassical transport. In order to check the validity

of the transport model, experimental fluxes derived from heat and particle sources are shown

in Fig. 3 as well. The radial electric field is determined from the ambipolarity condition.

The shade of the patches close to lines in Fig. 3 is a measure of uncertainty of the integrated

model for experimental data from a W7-AS high ion temperature shot given.

Physically, it can be concluded that particle and energy transport are quite consistent with

neoclassical approximations within the core of a high ion temperature plasma of Wendelstein

7-AS. The edge fluxes, however, considerably differ from neoclassical predictions and anoma-

lous transport dominates. The radial electric field at the edge, however, is well described by
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Figure 3: Results for integrated transport modelling according to the graphical model shown in Fig. 2 for a

W7-AS high-Ti shot. Magenta dotted lines result from integration of sources, magenta solid lines are the result

from sequential analysis. The error of the integrated modelling are depicted by the gray patches, the scale of

which is proportional to the logarithm of the PDF and black corresponds to maximum probability.

neoclassical theory. Hence, the anomalous contributions at the plasma edge of W7-AS high

ion temperature discharges appears to be intrinsically ambipolar. A possible mechanism for

such an anomalous edge transport in the W7-AS shot analyzed is electrostatic turbulence.

Concluding, methods for an interpretative integrated modelling were demonstrated and ele-

mentary steps, such as the probabilistic modelling of single diagnostics and the linkage of

different diagnostics were discussed. The integration makes use of the Bayesian probability

theory. Applicability of methods is tested on W7-AS data in order to prepare tools for Wen-

delstein 7-X, which can be automated (for on-line analyses) and allow one to determine barely

measurable quantities and to quantify the reliability of physical results. The Bayesian frame-

work allows one to include physics results at different stages of complexity of data analysis.
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