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Introduction.  In advanced tokamak scenarios, the plasma performance is strongly limited 

by the external kink mode. This mode can be stabilized by conducting walls and/or plasma 

rotation. At the same time, external error fields (for instance asymmetric perturbations 

produced by the magnetic field coils) can be strongly amplified and stop the plasma 

rotation. Thus, investigation of the error field amplification (EFA) is one of the key issues 

for the stability of advanced tokamak discharges. In this paper, we investigate this error 

field resonance numerically. It allows us to include different effects which are not 

considered in the analytical theories1,2,3,4 (different viscosity models, sound wave coupling, 

real plasma shape, etc.).   

Toroidal torque and absorbed power. The tokamak plasma rotates with respect to the 

chamber and static error fields. The problem of plasma slowing down by external error 

fields is equivalent to the acceleration of the plasma via externally applied rotating 

fields. The torque due to the error fields can then be calculated directly from the power 

absorbed by the plasma as shown below. The total power flow out of external coils (and 

thus the energy needed to produce plasma perturbations) is connected to the toroidal 

torque, which is transferred from the coils to the plasma5. This result was obtained from 

the matrix circuit equation under the assumption of linear plasma instabilities. The 

power required to drive an arbitrary surface current J is the following:  
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with J +  being the Hermitian conjugate of J . The torque required to drive the antenna 

current J is  
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where Φ  is the plasma flux andE  is the vacuum electric field. Then the torque 

transferred from the external antenna onto the plasma can be calculated from the 

relation: 
 2 Re( / )n Pϕτ ω= ⋅ ,                                                 (3) 

where n is the toroidal mode number, and P the absorbed power.   
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The linear MHD CASTOR_FLOW code is used to calculate the power absorbed by the 

plasma for a given frequency ω of the current flowing in the external antenna. This 

frequency dependent perturbation is equivalent to a rigid rotation of the plasma with the 

same frequency ω in a static error field. For these investigations, the 

CASTOR_ANTENNA6 code has been integrated into the recently developed 

CASTOR_FLOW code. The CASTOR_FLOW code, which is an extended and 

modified version of the CASTOR7 code, includes plasma rotation, viscosity and a 

resistive wall. 

 Assumptions of the model 
1. Linear resistive MHD approach.  
2. The thin shell approximation is used for the resistive wall. 

3. Landau damping is approximated by a parallel viscosity force |||| || ,visc th iF k v vκ ρ= −
�� �

. 

4. Perpendicular viscosity is implemented as a constant damping rate ν to the Lagrangian pressure 
perturbation. 

5. Instantaneous plasma response to the antenna perturbations is assumed. 
6. Plasma rotation is limited to 0.3Mach if it is not included in the equilibrium. 

 

Our CASTOR_FLOW code is similar to the linear resistive MHD code MARS8 which 

allows to make benchmark calculations in the future. One of the differences between these 

two codes is the more advanced semikinetic model to describe Landau damping in the 

MARS code9. On the other hand, the CASTOR_FLOW code allows calculating the 

toroidal torque.  
Comparison with analytical theory. A simple analytical model for error field 

amplification has been developed by R.Fitzpatrick1. This theory assumes only one 

external resonance in cylindrical geometry. In order to compare our calculations with 

the predictions of that model, we have neglected sound wave coupling and viscosity. 

We have constructed a set of JET shape equilibria stable to the external kink mode (β 

below the “no wall” limit) with the same qa-values at the plasma edge, but different β-

values. The resulting resonance frequencies (strongest 

EFA) are shown in figure 1. These results are very 

similar to those derived by Fitzpatrick. Such a 

resonance appears in the absence of a resistive wall, 

and we call it the “ideal branch” of the error field 

resonance as it measures the energetic distance to ideal 

marginal stability. 

Figure 1. Error field resonance without a resistive wall. The ideal wall is 
at infinity, the external kink mode is stable. Plasma viscosity and 

compressibility (sound wave coupling) are neglected.  
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Influence of a resistive wall and plasma dissipation on the “ideal branch” of error 

field amplification.  In this section we investigate the influence of a resistive wall, 

sound wave coupling and plasma viscosity on the “ideal branch” of EFA resonance. In 

the following, we change the stability of the plasma for kink perturbations by shifting 

the wall instead of changing the β-value. This is more convenient for calculations near 

the external kink stability boundary. Our equilibrium has JET shape and an external 

resonant surface (q=3) just outside the plasma boundary. If the wall distance 

corresponds to marginally stability, the resonant frequency drops to zero (see figure 2 

(8)). Replacing the ideal wall by a resistive one (width of the wall 5mm, ηwall=10-7 

Ohm·m) is destabilizing and thus the EFA frequency does not drop to zero at the 

original marginal stable wall distance (figure 2 (1)). The influence of sound wave 

coupling and viscosity on the resonance is even stronger. They completely change the 

resonance behaviour (figure 2 (2-7)). In this case, frequency and torque amplitude 

slightly increase with the 

wall distance. The value 

of Landau damping has 

only a small influence on 

the torque amplitude 

once it is above a small 

threshold value (figure 2 

(4-6)).  

Figure 2 Influence of different 
factors on the error field 
resonance. Calculations 1-7 use the 
resistive wall (ηwall=10-7 Ohm·m).  
(1)  ν=0, κ||=0, Γ=0 (2)  ν=0.01, κ||=0, 
Γ=0 (3)  ν=0, κ||=0.1, Γ=0 (4)  
ν=0.01, κ||=1.5, Γ=1.667 (5) ν=0.01, 
κ||=0.1, Γ=1.667 (6) ν=0.01, 
κ||=0.001, Γ=1.667 (7) ν=0.001, κ||=0, 
Γ=1.667 (8) ηwall=0, ν=0, κ||=0, Γ=0. 

Antenna perturbations have the following toroidal and poloidal mode numbers: n=1, m=-2…8. 

Resistive wall branch of the error field resonance. 

Due to the existence of a resistive wall, in addition to the ideal EFA resonance, a lower 

frequency EFA resonance appears at about the inverse resistive wall time. In the following 

calculations we use the same equilibrium as for the results shown in figure 2 and include in 

addition toroidal plasma rotation ( 0.051tor Alfvenv v= ⋅ ). This rotation is sufficient to stabilize 

the resistive wall mode (RWM). Due to the low frequencies involved in the problem the 

influence of sound wave coupling and viscosity for this resonance is negligible. 

Calculations show that the maximum toroidal torque and maximum EFA (EFA=(Bpl/Bvac)-

1) behave differently for this resonance. This difference is due to the phase shift between 
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the induced currents in the wall and the antenna current. As expected one finds the 

maximum EFA amplitude at about the inverse resistive wall time frequency (see figure 

3(b)). The exact value of the resonance frequency as well as the amount of EFA depends 

on the wall distance (and normalized plasma pressure). 

 

Figure 3 Resistive wall branch of error field resonance (ηwall=10-7 Ohm·m). a) Toroidal torque: 1-ν=0.01, κ||=1.5, 
Γ=1.667, 2-ν=0.01, κ||=0.1, Γ=1.667, 3-ν=0, κ||=0, Γ=1.667, 4-ν=0, κ||=0, Γ=0, 5-inverse resistive wall time. b) Error 
field amplification. In all calculations, antenna perturbations have the following toroidal and poloidal mode 
numbers: n=1, m=-2…8. 

Our calculations of the resistive wall resonance are similar to DIII-D experiments. In these 

experiments RWM was stabilized by plasma rotation and then exited by an external n=1 

magnetic field10. It was found that the resonance frequency of the EFA is a fraction of the 

inverse resistive wall time and EFA amplitude/frequency increases with increasing of β. 

This is similar to our result (see figure 3(b)), but detailed comparison is necessary. This is a 

subject for further investigations. 
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