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I. Introduction

The CAS3D code solves the linear MHD stability problem for 3D equilibria in the presence of

an arbitrarily shaped multiply-connected, ideal or resistive wall. For tokamak stability studies

2D codes as GATO [1], NOVA [2], CASTOR [3], MARS [4] have been widely used. They

are restricted to axisymmetric wall configurations. The VALEN code [5] allows the treatment

of a multiply connected wall, but the vacuum (VALEN) and plasma (DCON) contributions to

the eigenmode are not computed in a fully self-consistent way.

The 3D MHD stability CAS3D code [6] was initially developed to study internal and external

modes of stellarator-symmetric configurations without a conducting wall. The present gener-

alized version can be applied to arbitrary 3D equilibria without any symmetry constraint. Two

new versions of the vacuum part have been added: For a closed wall surrounding the plasma,

Laplace’s equation for the magnetic potential has been solved by a Fourier method. A finite

element method has been applied to treat cases with multiply-connected perfectly conducting

or resistive wall configurations. The paper is organized as follows. In Section II the finite

element vacuum code is sketched. In Section III stability calculations are presented.

II. The Vacuum Contribution

The linear theory of ideal MHD stability can be formulated in variational form.

The contribution of the vacuum region is given by

Wvac =
1

2

�
Sp

d f (n ·ξ)(B ·B0)

with plasma-vacuum interface Sp, displacement vector ξ(r, t) = eγt ξ(r), equilibrium mag-

netic field B0, and exterior normal n. The perturbed magnetic field B in the vacuum region

has to satisfy: B = ∇×A, ∇× (∇×A) = 0, ∇ ·A = 0 with boundary conditions for A in

case of an ideal conducting wall

n×A=

{

−(n ·ξ)B0 on Sp (plasma-vacuum interface)
0 on Sw (conducting wall )

.

In case of a thin resistive wall the boundary condition follows from Faraday’s and Ohm’s law:

∇×E+ ∂B
∂t = 0, σE = J. Assuming that the perturbed quantities vary as eγt one gets with

jw the current on the resistive wall, σ the conductivity and d the wall thickness

n · (∇× jw) = −σdγ n ·B on Sw(resistive wall).
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The vector potential A can be generated by surface currents jp, jw on the plasma-vacuum

interface and the conducting wall:

A=
1

4π �
Sp

d f ′
j′p

| x−x′ |
+
1

4π �
Sw

d f ′
j′w

| x−x′ |
.

The surface-currents have to be determined such that the boundary conditions for A on Sw and

Sp are fulfilled. For a finite element problem it is advantageous to use a variational method.

One introduces the functional [7]

L =
1

8π �
Sp

d f �
Sp

d f ′
jp · j

′

p

| xp−x′p |
+
1

4π �
Sp

d f �
Sw

d f ′
jp · j

′

w

| xp−x′w |

+
1

8π �
Sw

d f �
Sw

d f ′
jw · j

′

w

| xw−x′w |
+ �
Sp

d f ′ jp ·Aext+
1

2σdγ �
Sw

d f ′ jw · jw

where n×Aext = (n ·ξ)B0, B0 = ∇s×∇(F ′P v−F
′

T u) and u,v are magnetic coordinates.

An ansatz for a divergence-free surface current is given by jp = n×∇φp, jw = n×∇φw,

where φp,φw are current-potentials. A general Ansatz for φp is given by

φp = Jp u+ Ip v+φ∗p(x(u,v)),

where φ∗p(x(u,v)) is a single-valued function. The secular terms with the net-toroidal(net-

poloidal) currents Jp,(Ip) play a role only for the m= 0,n= 0 mode.

Varying L with respect to φp and φw one obtains the above given boundary conditions.

For the finite element procedure the surfaces are discretized into triangles:

x= x1+α x21+β x31, 0< α+β < 1, xik = xi−xk, i,k= 1,2,3

The current density j∆ on each triangle is assumed to be constant:

j∆ =
φ1x23+φ2x31+φ3x12

|x21×x32|

where the φi are the values of the current potential at the vertices of the triangle.

Varying the discretized L with respect to the φi one gets a set of linear equations for the φi.

With the Fourier expansions of the normal component of ξ: ξs = ξ ·∇s and φp

ξs = ∑
m,n

ξ̂smn sin2π(mu+nv)+ ξ̂cmn cos2π(mu+nv),

the vacuum matrix can be written as

Wvac = 2π
2 ∑
m,n,m′,n′

(nF ′T +mF ′P)(ξ̂
s
mn, ξ̂

c
mn)

(

W ss
mn,m′n′

W sc
mn,m′n′

W csmn,m′n′ W
cc
mn,m′n′

)(

ξ̂s
m′n′

ξ̂c
m′n′

)

(n′F ′T +m′F ′P)

W ssmn,m′n′ = �
Sp

dudv cos2π(mu+n v)( �
Sp

φ∗sp (x′)m′n′
(xp−x

′

p) ·df
′

∣

∣xp−x′p
∣

∣

3
+ �
Sw

φ∗sw (x′)m′n′
(xp−x

′

w) ·df
′

∣

∣xp−x′w
∣

∣

3
)

where the φ∗sp (x)mn,φ
∗s
w (x)mn are the contributions to φ∗

p,φ∗w produced by the harmonic ξ̂smn.
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III. Applications

The equilibria of all examples presented are calculated with the VMEC code [8,9]. For an

ASDEX-Upgrade type equilibrium (see Fig.1a-b) with a perfectly conducting closed wall the

growth rates of a n= 1 external kink mode have been computed.
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Fig.1a-b Flux-surfaces, q-profile and pressure of an

ASDEX-Upgrade type equilibrium: < β >= 0.05

Fig.2 Growth rates of an external

kink mode versus plasma-wall distance

In Fig.2 the growth rates are plotted versus the plasma-wall dis-

tance b/a (a = plasma radius, b = wall radius). The equilibrium
is stable for values b/a< 1.45 of the ideal conducting wall. For a
resistive wall at b/a= 1.2 growth rates of the external kink mode
versus the wall-resistance 1/(σd) are shown in Fig.3. The results
are compared with those obtained with the 2D CASTOR FLOW

code- an extended version of the 2D CASTOR code - and show

excellent agreement. Fig.3 Growth rates of the

n= 1 resistive wall mode
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For a preliminary design of a multiply-

connected wall (Fig.4) for ASDEX-Upgrade the

stabilization of the n = 1 kink mode has been
studied for the equilibrium shown in Fig.1 but

with < β >= .03. For σ = ∞ the mode is stabi-
lized by the wall sufficiently close to the plasma

(see green wall in Fig.1). For σ 6= ∞ the mode
appears on the resistive time scale. Growth rates

versus resistance 1/(σd) are plotted in Fig.5. In
Fig.6a the m-harmonics of ξs of the n= 1 kink
mode for the case without wall are shown and

in Fig.6b for the case with resistive wall. Fig.4 Preliminary design of a stabilizing wall

for ASDEX-Upgrade

The kink unstable quasi-axisymmetric equilibrium [10] shown in Fig.7 can be stabilized by

a perfectly conducting (σ = ∞) closed wall at b/a = 1.3. For a wall with σ 6= ∞ one gets

a resistive wall mode. The growth rates versus resistance 1/(σd) are shown in Fig.8. The

structure of the most unstable mode changes with decreasing resistivity. For high resistiv-

ity the (m,n) = (2,1)-harmonic with even parity dominates (Fig.9a) for low resistivity the

(m,n) = (5,3)-harmonic with odd parity (Fig.9b).

31st EPS 2004; P.Merkel et al. : Resistive Wall Modes of 3D Equilibria with Multiply-connected Walls 3 of 4



10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

1/(σd)

10
−5

10
−4

10
−3

10
−2

10
−1

γτ
A

0 0.2 0.4 0.6 0.8 1

s

−0.1

0.1

0.3

0.5

0.7

0.9

ξ
s

m=3

m=2

m=4

m=5

m=6

m=7

m=8

m=1

m=9

m=10

0 0.2 0.4 0.6 0.8 1

s

−0.01

0.01

0.03

0.05

ξ
s

m=3 even

m=2 even

m=4 even

m=5 even

m=3 odd

m=6 even

m=2 odd

m=7 even

m=4 odd

m=1 even

Fig.5 Growth rates of the n = 1
resistive wall mode for the wall

shown in Fig.4

Fig.6a Fig.6b

Fig.6a-b m harmonics of ξs for the n = 1 external kink mode: a)
without wall, b) with resistive wall 1/(σd) = 2.3×10−6
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Fig.7a-b flux-surfaces (a), rotational transform (b),

pressure(b) of a quasi-axisymmetric equilibrium with

< β >= 0.013, B0 = .9 T, current I = 280 kA

Fig.8 Growth rates of a resistive

wall mode for a quasi-axisymmetric

equilibrium
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Fig.9 sequence of eigenfunctions: (m,n)-harmonics of ξs are shown for decreasing resistance:

dominant external mode changes from (m,n) = (2,1) to (m,n) = (5,3)
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