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Introduction:

For symmetric magnetic configurations (e.g. tokamaks), the flux-friction relation [1] is based on the

equivalence of theB ·∇B and theB×∇B terms in the drift-kinetic equation, the first being responsible

for the friction of passing particles with trapped ones and the second for the radial drift, i.e. radial

transport. In the conventional neoclassical theory, mono-energetic transport coefficients are defined by

moments of the 1st order distribution function (involving flux-surface averaging and integration over

the pitch,p = v‖/v). The flux-friction relation leads to a coupling of the 3 mono-energetic transport

coefficients, i.e. the particle transport coefficient,D11, the bootstrap current coefficient,D31 (equivalent

to the Ware pinch,D13 due to Onsager symmetry), and the parallel electric conductivity,D33. With a

database of elongated tokamak configurations, these mono-energetic transport coefficients are described

self-consistently by analytic expressions.

Flux-Friction Relations:

The mono-energetic 1st order drift kinetic equation (DKE) is written in conservative form with spherical

velocity-space coordinates,p; v
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with the incompressible form of theE × B drift, with Cp(f) the Lorentz form of the pitch-angle

collision term, and with
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The flux surface average,〈A 〉, and the averaged moment,[A ] are defined by
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Straightforward integration with
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whereb = B/B0, and theE × B drift effect can be neglected (2nd order in inverse aspect ratio,

ε = r/R). For tokamaks,Bθ = ῑ εB0 with ῑ being the rotational transform yields

B · ∇B = −ῑ ε (B ×∇B) · er

31st EPS Conference on Plasma Phys. London, 28 June - 2 July 2004 ECA Vol.28G, P-1.100 (2004)



(with the unit vectorer normal to the flux surface) coupling the radial flux,∝ (B ×∇B) · er, and the

friction, ∝ B · ∇B. This feature is not present in configurations with lacking symmetry.

The radial component of the∇B-drift velocity is given by

ṙ = v∇B |r =
m

qB

1 + p2

2B2
v2 (B ×∇B) · er,

and inserting in eq.(2) yields the flux-friction relation

v [ pV (f) − pCp(f) ] = −ῑ ε ωc0 [ b ṙ f ] + 2νv [ pf ]. (3)

By normalizing the DKE (1) (̂X = Xῑv/R)
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with collisionality,ν∗ = νR/ῑv, the 1st order DKE for the radial transport and the bootstrap current is

defined by

V̂ (f∗
1 ) − Ĉp(f∗

1 ) = −ρ∗
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4ῑε
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d ln fM

d ln r
(4)

and for the ohmic current and the Ware pinch by

V̂ (g∗1) − Ĉp(g∗1) = −u∗

ῑ
p (5)

with f∗
1

= f1/fM (g∗
1

= g1/fM ), with “gyroradius” ρ∗ = v/rωc0, and “loop voltage”u∗ =

(qR/TB)E · B in normalized form. Both the radial transport (symmetric part inp of f∗
1
) and the

ohmic current (asymmetric part inp of g∗
1
) are directly driven by the inhomogeneity. With eq.(3), the

averaged moment equations are obtained

−Γ11 (1 − α11) + 2ν∗ Γ31 = 0 and − Γ13 (1 − α13) + 2ν∗ Γ33 = −2

3

u∗

ῑ
(6)

with the particle fluxΓ11 = [ṙ∗f∗
1
], bootstrap currentΓ31 = [pf∗

1
], Ware pinchΓ13 = [ṙ∗g∗

1
], and ohmic

currentΓ33 = [pg∗
1
]; ṙ∗ = ṙ / ρ∗v = 1

2
(1 + p2) ∂b−1/∂θ, and the (small) finite aspect ratio corrections
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1
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1
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1
]/[ṙ∗g∗

1
].

The Pfirsch-Schlüter (PS) contributions must be eliminated in bothΓ11 andΓ33. With the ansatzf∗
1

=

φ0 + pφ1 in the PS-regime, eq. (3) leads to
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For the simplified “standard model” (see Sec. 8.9 in ref.[2]) of an elongated tokamakb = (1 +

κε cos θ)−1 with the reduction of the toroidal curvature,κ (elongation≃ κ−2), 〈(1−b−2) b〉 = κ2ε2/2

is obtained. The direct integration of the DKE (5) for largeν∗ (neglecting thêV contribution) leads to

Γ33
PS = − 1

3ῑν∗
〈u∗〉.
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Eliminating both PS contributions in eq.(6), dividing by the “thermodynamic forces” (d ln fM/d ln r

andu∗, respectively), and using Onsager symmetry,D̂13 = −D̂31, yields the system for the diffusion

coefficients

−
(

D̂11 − D̂PS
11

)

(1 − α11) + 2ν∗ D̂31 = 0 (7)

D̂31 (1 − α13) + 2ν∗
(

D̂33 − D̂PS
33

)

= 0 (8)

Database of elongated tokamak configurations:

The DKES code [3, 4] is used to calculate the 3 mono-energetic transport coefficients for a database of

elongated tokamak configurations in an extended “standard model”b = ῑεeθ + (1 + κε cos θ)−1eφ.

The database is defined in the ranges0.26 ≤ ῑ ≤ 1.04, 0.0125 ≤ ε ≤ 0.4, and0.25 ≤ κ ≤ 1.0. For

up to 35ν/v values (10−8 ≤ ν/v ≤ 103) in 24 configurations, the diffusion coefficients are calculated

with up to 250 Fourier modes and up to 1000 Legendre polynomials in the expansion of the distribution

function at low collisionalities. At even lowerν/v, the accuracy strongly decreases. For estimating the

PS contributions, 44 configurations are used (atν/v = 103 due to fast convergence to the PS limit).

The test functions for the non-linear fitting are constructed mainly by “trial and error”. This procedure

is supported by the complete co-variance analysis of the least-squares fitting. The dependence onB

and onR is known and therefore omitted for simplicity, i.e.B = 1 T andR = 1 m is used for the

database (D11 ∝ 1/B2, D31 ∝ 1/B, andD33 independent ofB).

Fit results:

All representations of the mono-energetic transport coefficients,Dij , are given in DKES notation and

can be normalized by the plateau value forκ = 1, Dn
11

= π/(8ῑ), the collisionless asymptote forκ = 1

andε → 0, Dn
31

= 0.9733/(ῑ
√

ε) [5], and the collisional limit,Dn
33

= 2v/3ν (in DKES notation).

For the PS contributions, the best-fits are obtained by

D11
PS =

4κ2

3ῑ2
ν

v

(

1 + 3.42ε3.6(1 − 2.58ῑ1.6) − 0.6ε2(1 − κ2)
)

D33
PS =

2v

3ν

(

1 − 1.18(κε)1.84 + 0.68ε3ῑ2.5
)

.

The averaged deviation of the fit to the DKES data is 0.7% (0.1%) forD11
PS (D33

PS).

The convergence of theD31 coefficient to the collisionless asymptote is independently fitted in order to

avoid the influence of (inaccurate) test functions in other collisionality regimes. Forκ = 1 and in the

limit ε → 0, the result from analytic theory [5] is confirmed (i.e.Dn
31

); the extension for elongation and

finite ε in the banana regime is given by

Db
31 = 0.9733

√

κ

εῑ2
(

1 − 0.67(κε)2
)

·
(

1 +
1.03

κε2/3ῑ1/3

√

ν

v

)−1

(9)

Finally, all 3 diffusion coefficients are fitted simultanously. With the contributions for the plateau and
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the PS regime, the bootstrap current coefficient is represented by

D31 =
(

Db
31

−1.75
+ Dpl

31

−1.75
+ DPS

31

−1.75
)−1/1.75

with Dpl
31

= 0.39
κ2ε

ῑ

vῑ

ν
and DPS

31 = 0.068
κ2ε

ῑ

(vῑ

ν

)2

,

and the radial diffusion coefficient and the parallel electric conductivity by

D11 = D11
PS +

1

α
D31

ν

v
and D33 = D33

PS − α D31

v

ν
with α = ῑε

(

1 − 0.97(κε)1.75
)

corresponding to eqs.(7,8). The average deviation of this representation for all 3 mono-energetic trans-

port coefficients to the DKES data is 1.9%, and the difference is higher for the bootstrap current coeffi-

cient especially for largeε.

Discussion:

With the very accurate expansion of the 1st order distribution function, theDb
31

coefficient of eq. (9)

calculated with DKES can be compared with other approaches. First of all, the analytical estimate of

Ref. [5] is confirmed forκ = 1 and very smallε (the energy convolution leads to an additional factor 1.5

resulting in the given value of 1.46). In lowest order inε andν∗ → 0, this representation is independent

of the magnetic field model.

The situation is different, however, with respect to the finiteε-correction and the convergence to the

collisionless asymptotic value. For the very low collisionalities, the ratioD31/Dn
31

= (1 + a0)/(1 +

a1

√
ν∗) corresponding to eq. (9) is fitted to DKES calculations for 3 different magnetic field models

with ε = 0.125, κ = 1 andῑ = 0.2614: the model with only 1b-Fourier mode,b = 1 − ε cos θ, yields

a0 = −0.0347 anda1 = 4.045; the “standard” model,b = (1 + ε cos θ)−1, yieldsa0 = −0.0091

anda1 = 3.76; and, finally, the model used in Ref. [6],b = (1 + 2ε cos θ + 4ε2 cos 2θ)−1/2, yields

a0 = −0.129 anda1 = 4.98. For the last model,a0 = 2.74ε ≃ +0.3425 anda1 = 1 obtained by

a δf -Monte Carlo technique [6] is in contradiction to the results with DKES calculations. However,

no access to the asymtotic lmfp-regime was possible in theδf -Monte Carlo simulations (which were

restricted toν∗ ≥ 103).
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