
GEOM: Discrete Geometric Mapping for Toroidal Devises

H. McGuinness†, E. Strumberger‡

†Rensselaer Polytechnic Institute, Nuclear Engineering Program
Troy, New York, U.S.A.

‡Max-Planck-Institut für Plasmaphysik, IPP-Euroatom Association
85748 Garching, Germany

IPP Report 5/109 October 2004

Contents

1 Introduction 1

2 Numerical Details 2
2.1 Description of the Grid . 2
2.2 Tag Determination . 2

2.2.1 Line Parameterization . 2
2.2.2 Complex Integration and Tag assignment 5
2.2.3 GEOM/GOURDON Interface . 8

3 Use of GEOM 11
3.1 Input . 11
3.2 GEOM Output . 17
3.3 Compiling and Running GEOM . 17

4 Source Code 18
4.1 GEOM Subroutines and Modules . 18

4.1.1 Subroutines . 18
4.1.2 Modules . 19

4.2 Parallelization in GEOM . 20
4.3 GEOM related Modules, Subroutines and Variables in GOURDON 21

4.3.1 Subroutines . 21
4.3.2 Variables . 22
4.3.3 Modules . 22

5 Appendix 1: Finding intersection points 23
5.1 Triangles . 23
5.2 Surfaces . 23

6 Appendix 2: Sample Input File 25

7 Acknowledgements 28

Bibliography 28

Abstract

The GEOM code creates a discrete, gridded geometric map of a toroidal device. The
user defines the positions of the First Wall, Last Closed Magnetic Surface, divertor and
baffle plates, and how many partitions the device space should be divide into. GEOM out-
puts a three dimensional array of the device geometry. The output of GEOM serves as an
input to a modified version of the GOURDON code, which with this output, significantly
decreases run time for a GOURDON job.

1 Introduction

The GEOM code (GEOmetric Mapping), developed at the Max Planck Institute for
Plasma Physics, was created in order to decrease the run time of a version of the well
known GOURDON code.[1] The output of GEOM serves as an input to a modified and ex-
tended version of the original GOURDON which traces field lines and guiding centers.[8]1

GEOM was first utilized to study divertor issues of the Wendelstein 7-X stellarator and
has since been modified for studying divertor issues of NCSX.

The GEOM code works in the following manner. The computational region in which
GOURDON will trace field lines is partitioned into a grid. Each grid point is then given
a numerical tag which relates to the geometry of the device being studied. The tags
represent different sections of the geometry. Different sections are, for example, the area
between the First Wall (FW) and outside the Last Closed Magnetic Surface (LCMS), the
area enclosed by a divertor and baffle plates, the boundary of the LCMS, etc.

This tagged geometric map of the computational region of interest to GOURDON
serves as an input to GOURDON. Every time GOURDON traces one step further GOUR-
DON queries the GEOM map to see if the field line is close to the boundary of a Plasma
Facing Component (PFC). If it is close to one of these surfaces then an extensive numerical
procedure is cared out to determine if indeed the field line in that one integration step
crossed the boundary, and if so, where exactly it crossed. Using the GEOM map in the
GOURDON code saves GOURDON from making this extensive calculation every time it
steps through a tracing, thereby significantly speeding up tracing time.

GEOM fits into a series of codes which begin with the calculation of the vacuum field
from the coil geometry and currents with the VACFIELD code and ends with the tracing
of field lines and guiding centers with GOURDON. Figure 1 shows input and output
dependencies of codes close to GEOM in chain. Assuming nested flux surfaces, fixed or
free-boundary three-dimensional equilibria are computed with the NEMEC code for given
pressure and rotational transform profiles or pressure and toroidal current profiles.[2] [3]
GEOM takes as input the Fourier representation of the LCMS and the FW and the
geometry of the other PFCs to create the tagged geometric map of the region of interest.
GOURDON then uses the field calculated by MFBE and the geometric map to trace field
lines inside and outside the LCMS.[5] [6]

GEOM’s role in the larger system code is to decrease the time GOURDON spends
tracing. Through faster tracing the deposition patterns of field lines and particles on
PFCs such as divertor and baffle plates can be determined more quickly, allowing for a
larger number of structural and magnetic field geometries to be considered while designing
a particular machine.

1The code was modified by Dr. Strumberger of IPP. In GOURDON there is the option for any particular
run of the code to trace field lines or guiding centers. Therefore, in this document, it will be understood
that “tracing field lines” means the same as tracing field lines and guiding centers.

1

NEMEC:
free bound.
equilibrium

GOURDON:
tracing lines, guid.
centers outside
LCMS

MFBE:
magnetic field

GEOM:
geometry

Input: geometry of PFCs

Figure 1: Part of the code system related to GEOM and their interdependencies.

2 Numerical Details

2.1 Description of the Grid

The grid area must be large enough to at least cover the region which GOURDON will
trace over, and must be fine enough so that field lines which actually are not close to a
surface do not trigger the computationally expensive procedure of calculating if a surface
has been crossed. By convention the grid is in cylindrical coordinates, centered around
the coordinate (R0, Z0), and has radial width of 2∆R and vertical height of 2∆Z. Neither
the central coordinate nor the width or height of the box vary from toroidal cross section,
and it must be made sure that the region of interested is covered with this constraint.

The grid is broken up into NR radial, NZ vertical and Nφ toroidal sections. Con-
sequently the three dimensional array “index”, which stores the tag for each point as a
function of position, has dimensions index(NR, NZ , Nφ). “Side” and “top” profiles of the
grid are shown in figure 2.

2.2 Tag Determination

2.2.1 Line Parameterization

Once the grid has been created each point in the grid must receive a numerical tag which
represents the point’s relation to the geometry of the device and plasma surface. Tags are
meant to distinguish the points which make up different sections of the geometry, such as
the region outside the LCMS or inside a region closed in by divertor and/or baffle plates,

2

∆

∆R

R

Z

(R ,Z)00

∆R

∆Z

∆Z

∆R

O

Figure 2: On the left is a side view of the computational box showing the center coordinates
(R0, Z0) and width and height (∆R and ∆Z). On the right is a top view, showing ∆R
and ∆φ. The definition of ∆φ, which is measured in degrees, is simply 360/Nφ for a single
period device.

or lie close to particular surfaces such as the FW, LCMS or the divertor region surfaces.
For points inside regions this task is accomplished through the numerical evaluation of
the complex contour integral

∫

Ω

1

z − z0
dz (1)

around the boundary Ω of the region for each cross sectional step in the φ direction. In
this manner tags are given on the basis of the cross sectional geometry for each cross
section. But before the integrations can be carried out for each region the boundary line
of the region on which to integrate must be defined.

It is important to note that although the tags are given to grid points these grid
points represent the cells created by the grid structure. A given grid cell is represented in
a toroidal plane by the lower, left grid point which makes up the grid cell. The tag of the
grid cell is given by this lower, left grid point. See figure 3 for an illustration of this point.

The strategy in defining the line of integration is to parameterize the surface line into
a certain number (given as input to GEOM) of (R, Z) points, which will be called Nθ here
for convenience. Two one-dimensional arrays, “rrc” and “zzc”, which have size Nθ, store
the R and Z coordinate data at each consecutive index for each parameterized point of
the line. It is important to note that these parameterizations and arrays are independent
of the grid points; the defining points of a line need not have the same coordinates as a

3

2 2

2

2

22

2

2

1 1 1

111

11

1

1

1

1

1

1

1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

71 71

1

1

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

1
1

1 1 1

1 1

1

1

1

1

1

1

1

1 1

1

1111

1

1

1

1

1

2

2

2

2

222

71

0

0

00

0

1 7171 71 71

00 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0

Figure 3: A toroidal cross section of a device imposed on a grid with the red, light blue
and green regions being the area inside the LCMS, between the FW and LCMS, and the
divertor region, respectively. The numerical tags (without considering tags for surfaces)
for each cell are given by the tag given to the lower, left grid point which makes up the cell.
All cells without explicit tags have tag 0. If surface tags were included in this illustration
cells which are close to the boundaries of the three regions would have surface tags, such
as 3 and 4 for the FW and LCMS surfaces, instead of the region tags.

4

grid point, in general they will not.
First the LCMS and FW are parameterized. The Fourier representations of the LCMS

and FW are inputs to GEOM. From these the arrays rrc and zzc can be given values
for each of their elements (named Ri and Zi respectively). For example, if the LCMS is
parameterized in the jth toroidal cross section by Nθ points in a stellarator symmetric
device, the ith element of each array is calculated as

Ri =

mss,nss
∑

m=0,n=0

r̂c
m,n cos(2π[

m(i − 1)

Nθ

+
n(j − 1)

Nφ

])+ r̂c
m,−n cos(2π[

m(i − 1)

Nθ

−
n(j − 1)

Nφ

]) (2)

Zi =

mss,nss
∑

m=0,n=0

ẑs
m,n sin(2π[

m(i − 1)

Nθ

+
n(j − 1)

Nφ

])+ ẑs
m,−n sin(2π[

m(i − 1)

Nθ

−
n(j − 1)

Nφ

]) (3)

where r̂c
m,n and ẑs

m,n are the mode m and mode n Fourier coefficients for the radial and
vertical coordinate respectively, mss is the maximum m number and nss is the maximal
n number.2 Once this is carried out the surface has been parameterized and integration
can be carried out to see if a particular cell is inside or outside of the surface.

The parameterization of regions not defined through Fourier representation (the di-
vertor regions) is similar. Plate geometry is input in cylindrical coordinates, and at each
cross section there are only a few points which define the plate. Therefore to parameterize
the plate many points inbetween these defining points are linearly interpolated so that the
integration steps are fine enough to ensure the accuracy of the integral. Also, a divertor
region is made up of several different plates, and they must be connected in order to cre-
ate a smooth parameterization of the region. This plate parameterization must in turn
be connected to a parameterization of the section of the FW that the divertor surface
region includes. This effectively means that the connecting plates must have the same
coordinate for their adjoining end point. Once both paths, around the plates and on the
FW area that encloses the divertor region, have been parameterized they are combined
so as to form a closed loop around the divertor region. Integration can then be carried
out to see if a particular grid cell lies inside or outside of the divertor region. See figure 4
for an illustration of parameterization of various geometric sections in a particular cross
section.

2.2.2 Complex Integration and Tag assignment

Once the surfaces of a region have been parameterized it is possible to tell which grid
cells lie inside and outside that region. To determine whether a particular cell lies in a

2The Fourier coefficients are functions of the curvilinear coordinate s and the quantities (i−1)
Nθ

and (i−1)
Nφ

equal the curvilinear coordinates u and v respectively.

5

1
2 3

4R i

R i+1 R i-1
R i+3

Z i+1

Z i

Z i-1

Z i+3

Figure 4: On the right, a cross section of a simple geometry, with the region inside the
LCMS colored dark grey, the region between the LCMS and FW in light grey and the
divertor region in green. The red arrows on the FW surface indicate the direction of pa-
rameterization and hence integration. Similarly the blue arrows indicate parameterization
and integration direction of the divertor region. The numbers near the divertor region
relate the plate numbers which make up the region, and the blue points are the defining
point of the divertor plates. The grid is put in the background for clarity. On the left is a
blow up of one section of the FW surface, where individual line integration segments are
shown.

6

particular region with boundary parameterization Ω the complex contour integral

∫

Ω

1

z − z0
dz (4)

with z = R + iZ is carried out, where z0 is the grid point representing the cell. If z0 is
inside the integral will yield 2πi, if z0 is outside the integral will yield 0. Therefore for any
grid cell the imaginary part of this integral can be evaluated to see it the cell lies inside
a given boundary. The discrete version, used for the actual numerical calculation of the
imaginary part, is given by an absolute value of the sum

Im[

∫

Ω
] ≈ abs[

Nθ−1
∑

i=1

(

rri

rr2
i + zz2

i

+
rri+1

rr2
i+1 + zz2

i+1

)

dzi −

(

zzi

rr2
i + zz2

i

+
zzi+1

rr2
i+1 + zz2

i+1

)

dri]

(5)
where rri is the radial distance of z0 from Ri, zzi is the vertical distance of z0 from Zi,
dri is Ri − Ri+1 and dzi is Zi − Zi+1.

3

The tag assignment procedure works as such. First, all grid cells are assigned the tag 0,
which is the tag for cells outside the FW. Then for each cell in the grid complex integration
is carried out with the boundary being the FW, and cells inside the FW are given the tag
1. Then for all cells the integration is carried out again, this time the boundary being the
LCMS, and the cells inside are given the tag 2. After this the integration is carried out
for all divertor regions, which are given tags of 70 or higher.

The cells lying close to any surface, such as the FW, LCMS or a divertor region, are
given a tag differing from that of the region they are close to, but which also identifies the
region they are close to. These cells are considered to be on the “surface” of that region.
Each point of the parameterized surface array (the ith point being Ri, Zi) lies in a grid
cell, and the tag of that grid cell is given the corresponding surface tag, which is how the
surfaces of regions receive distinct tags. Usually there are several parameterized points
which are lie in the same cell. That grid cell will be assigned the same tag for each of these
points. Having multiple parameterized points per grid cell ensures there will be no “hole”
in any surface. The value of the tags for the FW and LCMS are 3 and 4 respectively while
surface tags for the divertor regions have values 11 to 70.

Every grid cell has a numerical tag, which is stored in the array “index”. There is
another array, called “aindex” which stores a different type of data for every grid cell,
although this data is only truly meaningful for cells identified as surface cells of the FW
or LCMS. For these surface grid cells “aindex” stores the curvilinear flux coordinate u,
which is given by

3Currently the code is written such that the discrete integral isn’t evaluated from one partition point
to the next partition point, but rather from one partition point to 16 points away. This is the meaning of
the variable “icompd”, which is set to 16. This is done to save computational time. If the integral does not
yield a satisfactory answer then the integration is done again skipping every eight points. The multiple of
points skipped is decreased by a factor of two until the integration yields satisfactory results.

7

ui =
(i − 1)

Nθ

(6)

where i runs from 1 to Nθ (the u coordinate relates to the cylindrical coordinates through
equations (2) and (3)). This data will allow GOURDON to calculate the position of the
field line more easily. All cells which do not have surface tags are given a u coordinate of
0.

After the entire process of assigning tags and u coordinates is finished the two arrays
“index” and “aindex” are written in binary to file, which by default is called “fort.10”.

2.2.3 GEOM/GOURDON Interface

The GOURDON code uses the output from GEOM in order to see if the current traced
step is “close” to the surface of a region. Every time GOURDON moves through an
integration step it determines the indices of the corresponding GEOM cell and queries its
tag. GOURDON also keeps in memory the coordinate and tag data from the previous
step. From this information GOURDON can tell if, in one integration step, a field line
crossed, or might have crossed, a boundary.

If the tag of the current integration step is greater than 10, meaning the boundary
of a divertor region may have been crossed, the subroutine “REGION” is called, which
determines if the boundary was crossed, and if so, where it crossed.

Subroutine REGION works in the following way. Each of the non-planar elements
forming divertor and baffle plates is approximated by two triangles (see figure 5), with
two defining points having the same toroidal coordinate, phi, and one having a smaller
or larger phi-coordinate. Since the GOURDON code knows in which GEOM cells the
current and former field line coordinates are lying, GOURDON has a good idea if the
field line is close to a plate. If it is close then the subroutine REGION searches for the
intersection point of the field line with the plate element using the relations summed up
in Appendix 1. For these calculations it is assumed that the field line goes straight from
the former to the current coordinate. If the field line does not intersect a triangle then the
subroutine is exited to continue the tracing of the field line. Otherwise, a parameter “ksx”
is set equal to 1, which, once control is given back to the routine which call REGION,
tells GOURDON that this field line tracing should be stopped.

After the optional call to REGION, the subroutine “ORT” is called, which determines
if the field line has crossed a surface defined through Fourier representation (such as the
FW or LCMS). For each tracing step this subroutine is called but is exited immediately
if it can be determined just from the current and former field line position tags that a
surface has not been crossed, which saves computational time.

The methods which REGION and ORT use to determine crossings differ. The ORT
subroutine takes advantage of the fact that surfaces defined through Fourier representation
have a constant s coordinate value in the left-handed curvilinear flux coordinates given by
(s, u, v). In this use of the flux coordinates the LCMS has s = 0, while the FW has s = 1.
Points inbetween have s values from 0 to 1 while points outside the FW have s values
greater than 1. All ORT has to do to see if a field line crossed a surface is calculate the

8

Figure 5: A case in which the field line crosses into a divertor region. The blue dots
represent points where the plates are defined, and the red lines are connecting the plate
points which are defined in the same cross section/value of φ. The purple dots and black
line represent the last and current position of the field line and the line segment that
connects them. As is shown, two triangles are made from the four plate points, and the
field line segment intersects the triangle in the foreground.

s coordinate of the current and former field line coordinate: if the s value passes through
0 or 1 when transitioning from the former s value to the current s value then it is clear
that a, and which, surface has been crossed.

The (s, u, v) values corresponding to a given (R, φ, Z) point is found in the following
manner. Fourier coefficients for a surface with s value inbetween 0 and 1 are obtained by
linear interpolation of the Fourier coefficients between two neighboring surfaces themselves
defined by Fourier coefficients. For a surface with s = 0 (the LCMS) and for another with
s = 1 (FW) the radial Fourier coefficients of a surface with intermediate s value are

r̂zc,s(s) = r̂zm,n(s = 0)[1 − s] + r̂zm,n(s = 1)[s] (7)

where r̂zc,s stands for either the radial or vertical Fourier coefficient. The general relation
between a cylindrical coordinate (R, φ, Z) and a flux coordinate (s, u, v) for a stellarator
device is given by the relation

9

R −

mss,nss
∑

m=0,n=−nss

r̂c
m,n(s) cos(2π[mu + nv]) = 0 (8)

Z −

mss,nss
∑

m=0,n=−nss

ẑs
m,n(s) sin(2π[mu + nv]) = 0 (9)

φ = v
2π

Np

(10)

where Np is the number of periods of the device.4 The Fourier coefficients r̂c
mn(s) and

ẑs
m,n(s) are defined by equation (7). While v is simply given by equation (10) the s and

u coordinates have to be computed by searching a zero of the two nonlinear functions of
equations (8) and (9). This is done with the C05PBF routine of the NAG library.

If a surface has not been crossed then ORT returns control to the routine which called
it. If a surface has been crossed then it calculates the three dimensional coordinates of the
intersection of the field line and surface (see Appendix 1 for details). If the FW surface
has been crossed the parameter “ksx” is set to 1, which signals to GOURDON that this
field line should no longer be traced, and the relevant data is written to arrays. After
all field lines have been traced, these arrays, depending on factors such as if field lines or
guiding centers were being traced, are written to different output files.

4In the code the cosine and sine terms are calculated by evaluating the quantities
cos(2πmu) cos(2πnv) − sin(2πmu) sin(2πnv) and sin(2πmu) cos(2πnv) + cos(2πmu) sin(2πnv) , re-
spectively.

10

3 Use of GEOM

GEOM is written in FORTRAN 90 using free allocation of the field dimensions and free
format. The code uses the MPI communication library and runs on an IBM Regatta
supercomputer.

The directory of GEOM has the following structure. The main directory is called
geom, the source code is in subdirectory src, and the makefile and the object code are in
subdirectory obj. Subdirectory exe contains the executables and the input file.

3.1 Input

The input is a user created file which contains all the relevant structural geometric data
(the positions of the FW, divertor and baffle plates) and plasma boundary geometric data
(the LCMS) of the device. Also included are the parameters for the grid and the desired
number of partitions for the parameterization of the surfaces. Appendix 2 is a sample
input file for reference, and figure 6 is a graphic of one of the cross section outputs of this
input.

Only devices in which the FW and LCMS are stellarator symmetric or axisymmetric
with up-down symmetry can be processed by GEOM, although it would be straight forward
to modify the code so that it could run cases without symmetry. The plates can have any
symmetry, or none at all.

The first line of the input file, which starts with “stop”, is the kind of run it is desired
GEOM process. The options for this are “insur”, which simply reads in the Fourier
coefficients of the surfaces, “beleg”, which carries out the tagging process for the FW
and LCMS, not regarding if there are divertor regions present or not, and“geom”, which
characterizes the entire geometry of surfaces, divertor and baffle plates.

The next two lines are for characterizing the grid. The parameter “np” is the number
of field periods of the device. If np is greater than 1 then GEOM calculates the tags for the
points of one field period and writes the same tags for that period onto the other periods.
The parameter “nf” is the number of divisions of the grid desired in the toroidal direction
(the number of cross sections that will be calculated), “nr” is the number of divisions
in the radial direction and “nz” is the number of divisions in the vertical direction, see
figure 2. In the next line, “rnull” is the radial center of the grid, “znull” the vertical, and
“ronull” and “zonull” are the radial and vertical half-widths, respectively, meaning the
grid starts radially at rnull-ronull and goes to rnull+ronull, while points are defined for
every ronull/nr unit of distance. By convention these distances are in meters.

The next two lines relate to the Fourier defined surfaces. The variable “jub” is the
number of points that the LCMS will be divided into when the complex contour integral
moves along the LCMS boundary. Likewise, “jub1” is the number of points the FW will
be divided into. Presently both jub and jub1 must be a multiple of the variable “icompd”,
which is set to 16 (See the description of this variable for an explanation). The parameter
“mss” is the maximal m mode number in the Fourier representation for all of the surfaces,
and “nss” is the maximal n node number for all the surfaces.

The following block of input relates to the LCMS. The variable “nlcms” is the number
of Fourier coefficients used to represent the LCMS. The Fourier coefficients of the LCMS
r̂c and ẑs are named as “rmnc” and “zmns” respectively. Note that the “rmns” and

11

R

Z

Figure 6: A visual representation of the sample data at the φ = 8 cross section. Each tag
is given a different color. The region outside the FW is black, the region between the FW
and LCMS is lite red, the region inside the LCMS is red, the divertor region is lite blue,
the FW is green, the LCMS is blue and the divertor region surface is yellow.

12

1
2 3

4

1

1 2 3
4

2
5 6

3

=0 =1O O

Figure 7: The geometry for two cross sections, one at φ = 0 and the other at φ = 1. For
the φ = 0 cross section there is one divertor region named “1”, which is made up of plates
1, 2, 3 and 4. In the next cross section some of the defining points for plate 1-4 have
changed, and it was decided by the user to make these two separate divertor regions, “2”
and “3”. To do this connector plates 5 and 6 had to be created to connect plates 2 and 3
to the FW.

“zmnc”, which represent r̂s and ẑc are required but set to zero since stellarator symmetry
or axisymmetry with up-down symmetry is assumed, see Appendix 2 for an example. The
coefficients must be put in increasing m value, while put in decreasing n value for any
given m value (see Appendix 2). The next block of input relates to the FW. The variable
“nwand” is the number of Fourier coefficients used to represent the FW. Again “rmnc”
and “zmns” are the nonzero Fourier coefficients.

After the surfaces, the plates are specified. Before any particular plate geometry is
detailed, numbers relating to the whole set of plates, which make up the divertor regions,
are specified. A divertor region is a closed region defined by divertor, baffle and connector
plates, and a section of the first wall. Connector plates are plates which serve to connect
the divertor or baffle plates to the FW. Connector plates may or may not actually exist
in the device but they are necessary constructs for GEOM to be able to carry out the
complex boundary integral for the divertor regions. In turn, divertor regions can split
apart, if it is deemed necessary, from cross section to cross section and become unique
regions. Also, one plate can make up more than one region. See figure 7.

The parameter “ndd” is the total the number of plates to be read in. The parameter
“kto” is the maximum number of toroidal coordinate points a plate may have. This
number can be larger than the maximum number of φ values given in the input file for
a single plate because additional points can be calculated by interpolation. If data is
only specified for whole degrees then kto should be at least double the number of points
specified for the plate with the highest number of toroidal data points. Similarly, the

13

parameter “kpo” is the maximal number of (R, Z) points which define any plate. The
parameter “npper” is the number of degrees in one period. The parameter “igi” is the
number of divertor regions in the entire geometry.

After these parameters, the data relating to each plate are specified. First comes the
numerical name of the plate followed by four numbers on the next line. The first of these
numbers, called “ndi” in the source code, specifies the number of cross sections at which
the plate is defined, while the next parameter, called “ndii” in the source code, is the
number of (R, Z) points which define the plate in each cross section. The next number,
called “iwid” in the source code, takes on either the value 1 or 2. When this number is 2
this means data is specified every one-half degree. When it is 1, data is only specified for
integer degrees, and GEOM linearly interpolates half degree data for that plate. This is
to ensure that all plates are defined for every cross section GEOM sets tags for, whether
the cross sections advance in the toroidal direction by a whole or half integer degree step.
The fourth number, called “ianf” in the source code, can take the values 0, 1 or 2. It is
possible for a plate which is generally only defined for whole integer degree values of φ to
begin (or end) on a half integer value of φ, where only the first (or last) step in φ is 0.5
degrees. If the fourth number is 2, then the plate ends with a half-integer value of φ; if 1,
then it begins with a half-integer value of φ; and if it is 0, the plate both begins and ends
with integer values, irrespective if the φ step is one or one-half degree.

The following data are the coordinate data for the plate. There are “ndi” chunks of
data, which specify the data for one φ value of the cross section, with each being “ndii+1”
lines long. The first lone number is the φ value in degrees for that cross section. The
following numbers are the radial, vertical and curvilinear u coordinates of the point. The
u coordinate is only meaningful when the point lies on the FW, in which case this plate
is connected to the FW and this number takes the u value of the wall at that point.
Otherwise this number is set to -100.

After all of the data for the plates is entered, two arrays, which relate the divertor
region name to cross sections and plate names, must be specified. The first, named “ireg1”
in the source code, has eight columns. The first is the number of the cross sections, of
which there are “nf” of, which starts at 0 and runs to nf-1. It is important to note that
this is not necessarily the φ values for the cross section. The second column indicates how
many regions are in any particular cross section. Columns three through eight specify the
numerical names of the regions in that cross section. As the code is written there are up
to six regions in a cross section. This parameter can be changed by tweaking the source
code, if necessary. If there are less than six regions in a particular cross section then the
superfluous elements in the row are set to 0.

Then next array, called “ireg2” in the source code, relates the region name to the plates
which make it up. The first column is the region name and the second is the number of
plates which make up that region. Columns three through six are the numerical plate
names of the plates that make up the region. As written, up to four plates can make up
a region, which is relatively straight forward to change if necessary. If the region is made
up of less than four plates the superfluous elements in the row are set to 0.

For quick reference a list and description of the input variables ordered by their role
is given here. The input quantities are read in via the subroutines geom.f90, insur.f90,
iregin.f90 and pquerd.f90.

14

Device and Mode

• stop: A character which describes the type of job it is desired GEOM run. If “insur”
is specified then GEOM only reads in the Fourier coefficients for the FW and LCMS.
If “beleg” is specified GEOM creates a tagged map of the grid by ignoring the plate
data (i.e. all tags will be from 0 to 4). If “geom” is specified GEOM creates a tagged
map considering the entire geometry.

• np: An integer which specifies the number of field periods of the device.

Grid Parameters

• rnull: A real number which specifies the radial center of the grid.

• ronull: A real number which specifies the half-width of the computational box.

• znull: A real number which specifies the vertical center of the grid.

• zonull: A real number which specifies the half-height of the computational box.

• nf : An integer which specifies the number of toroidal partitions of the computational
grid.

• nr: An integer which specifies the number of radial partitions of the computational
grid.

• nz: An integer which specifies the number of vertical partitions of the computational
grid.

Parameterization

• jub: An integer which specifies the number of points that the LCMS will be dividing
into when the complex contour integral moves along the LCMS boundary. Should
be an integer multiple of the variable “icompd”, see section 2.2.

• jub1: An integer which specifies the number of points that the FW will be dividing
into when the complex contour integral moves along the FW boundary. Should be
an integer multiple of the variable “icompd”, see section 2.2.

Fourier Coefficients

• m: An integer which is the poloidal mode number.

• n: An integer which is the toroidal mode number.

• nlcms: An integer which specifies the number of Fourier coefficients which define
the LCMS.

15

• nwand: An integer which specifies the number of Fourier coefficients which define
the FW.

• mss: An integer which specifies the maximal m-mode number in the Fourier repre-
sentation for all of the surfaces.

• nss: An integer which specifies the maximal n-mode number in the Fourier repre-
sentation for all of the surfaces.

• rmnc: A real number which is the radial symmetric Fourier coefficient for a given
surface and (m,n) mode.

• rmns: A real number which is the radial asymmetric Fourier coefficient for a given
surface and (m,n) mode. This term should be set to zero in the input file since
GEOM can only process LCMS and FW geometry which is stellarator symmetric or
axisymmetric with up-down symmetry.

• zmnc: A real number which is the vertical asymmetric Fourier coefficient for a
given surface and (m,n) mode. This term should be set to zero in the input file since
GEOM can only process LCMS and FW geometry which is stellarator symmetric or
axisymmetric with up-down symmetry.

• zmns: A real number which is the vertical symmetric Fourier coefficient for a given
surface and (m,n) mode.

Plates

• ndd: An integer which specifies the number of plates in the geometry.

• kpo: An integer which specifies the maximal number of (R, Z) coordinates which
make up a point.

• kto: An integer which specifies the maximal number of cross sections which could
be processed.

• npper: An integer which specifies the number of degrees in one period.

• igi: An integer which specifies the number of divertor regions present in the geom-
etry.

• ndi(ndd): An array which holds the number of defining toroidal points for every
plate as an indexed function of plate name. Specified before the particular plate
data in the input file.

• ndii(ndd): An array which holds the number of defining coordinate points for every
plate as an indexed function of plate name. Specified before the particular plate data
in the input file.

• iwid: An integer which specifies whether half-degree data should be interpolated
for a particular plate. Specified before the particular plate data in the input file.

16

• ianf : An integer which specifies whether toroidal plate data begins, ends or neither
begins nor ends with half-degree data. Specified before the particular plate data in
the input file.

• ireg1(8,npper-1): The first large input array, specified in the input file after all
plate data has been entered. Relates the cross section number to the divertor regions
in the cross section.

• ireg2(6,igi): The second large input array, specified in the input file after all plate
data has been entered. Relates the divertor region numbers to their constituting
plates.

3.2 GEOM Output

As written there are four main output files called “fort.10”, “fort.17”, “fort.26” and “out-
put”. The fort.10 file are the index and aindex arrays written in binary, the fort.17 file
are the index and aindex arrays without considering the plates written in binary and the
fort.26 file is the index array written in ASCII. The output file is essentially a log recording
if certain subroutines were called. A full run of GEOM (the variable “stop” in the input
file the value ”geom”) gives an output file which only has the date and time at which the
job ran, whereas a run which did not consider the plate geometry (“stop”=“beleg”) would
have the text ”‘STOP: beleg’” before the date and time.

3.3 Compiling and Running GEOM

In the subdirectory obj ibm is the make file which creates the executable GEOM in the
subdirectory exe.

The job is submitted by executing the commands text file, which for the example input
file named “my in” of Appendix 2, is named “geom.e”. In the first line of this file the text
string following “poe” is what the GEOM executable is to be called, and “<my in>>”
specifies the path name of the input file (beginning in the subdirectory exe). The output
file name is given by the next string, here “output”. The number of processors used to
run the job is given after the text “-procs”.

Here is a simple example of a GEOM command script

poe GEOM <my_in >>output -procs 1

date >> output

17

4 Source Code

In this section the subroutines and modules used in both GEOM and the GEOM-related
code in GOURDON will be briefly described.

4.1 GEOM Subroutines and Modules

4.1.1 Subroutines

• beleg.f90: The purpose of this subroutine is to assign tag values to all grid cells on
the basis of whether or not the points are inside, outside or “close” (as explained in
section 2.2) to the FW or LCMS, and write the data to various output files. It does
not take into account whether or not divertor regions are present, and therefore only
assigns values 0, 1, 2, 3 or 4 to grid points. This subroutine contains code or other
subroutines which parameterize the surfaces, carries out complex integration on the
surfaces and writes data to the output file.

• belegp.f90: The purpose of this subroutine is to assign tag values to grid cells on
the basis of whether or not the points are inside or on the surface of (as explained in
section 2.2) a divertor region, and write the data to various output files. If the grid
cell in not close to a divertor region then the tag is not changed. Also, this subroutine
contains code or other subroutines which parameterize the surfaces and boundaries
of the divertor regions, carries out complex integration on these boundaries and
writes data to the output file. This subroutine is called only when the text “geom”
is inserted on the second line of the input file.

• compdiv.f90: This subroutine carries out the complex integration over either the
FW or LCMS. It outputs the value of the integration and requires the coordinate of
the grid point for which the integral will be carried out (z0 in equation (4)).

• compdivg.f90: This subroutine is similar to “comdivg.f90”; it calculates the con-
tour integral for a certain grid point z0. The difference is that “compdivg.f90”
performs the integration for a divertor region, not the FW or LCMS. It requires
the parameterization of the plates which make up the divertor region and the pa-
rameterization of the part of the FW which completes the boundary of the divertor
region.

• geom.f90: This is the main program of GEOM. The first block of the input file, up
to the specifications of the LCMS, are read in here.

• insur.f90: This subroutine reads in the surfaces defined by Fourier coefficients, such
as the FW and LCMS, from the input file. It also divides the coefficients in which
n = 0 by two. This is due to how the coefficients are used in the code. The n = 0
coefficients are counted twice in a sum, and to counter this these coefficients are
divided by two.

• iregin.f90: This subroutine reads in the two large arrays at the end of the input
file (see section 3.1). The first array relates the cross section number to the divertor

18

regions it contains. The second relates the divertor region number to the plates
which make up that divertor region.

• pquerd.f90: This subroutine reads in data of the divertor geometry and interpolates
half-degree coordinate data for a given plate if no such data exists. This interpolation
is linear, depending on the plate coordinates from the two closest integer degree
data. It also begins to parameterize the path for the integration on the plate. The
parameterization is finished, by making much finer partitions, in the subroutine
“belegp”.

• surfb.f90: This subroutine parameterizes either the FW or LCMS. It produces
two arrays, “rrc” and “zzr”, which are the radial and vertical coordinates of the
parameterization, respectively. Stellarator symmetry or axisymmetry with up-down
symmetry of the FW and LCMS is assumed.

• surfwl.f90: Similar to subroutine “surfb.f90”, this subroutine parameterizes the
part of the FW which makes up part of the boundary of a given divertor region.
It produces arrays “rrw” and “zzw”, which are the radial and vertical coordinates
of the parameterization, respectively. Stellarator symmetry or axisymmetry with
up-down symmetry of the FW is assumed.

• winkel.f90: This subroutine calculates part of the expression necessary to transform
the Fourier representation of the FW and LCMS into cylindrical coordinates so
that these surfaces can be parameterized and grid points nearby can be assigned
the tags of these surfaces. It is in this part of the expression where the indexes
of the parameterized lines serve as input for the transformation. This subroutine
also allocates many of the arrays which are used for parameterization, complex
integration, transformation from Fourier representation to cylindrical coordinates
and also for storing of the tag and u coordinate data.

4.1.2 Modules

• mod compl.f90: Contains various arrays relating to complex integration, all of
which are allocated in subroutine “winkel.f90”.

• mod cosind.f90: Contains various arrays relating to the transformation from Fourier
representation to cylindrical coordinates, all of which are allocated in subroutine
“winkel.f90”.

• mod dim.f90: Creates constants which are read in from the input file.

• mod fourier.f90: Contains various arrays which hold the Fourier representation of
the FW and LCMS, all of which are allocated in subroutine “insur.f90”.

• mod index1.f90: Contains various arrays and constants which relate to the assign-
ing of processors to cross sections and to the tags and u coordinate data of the grid
points, all of which are allocated in subroutine “winkel.f90”.

• mod plate.f90: Contains various arrays relating to plate specifications and param-
eterization, all of which are allocated in subroutine “iregin.f90”.

19

• mpp functions.f90: This module establishes a MPP job environment to execute
the parallelized GEOM code. This relates to all of the “call barrier, call broad-
cast” code blocks used to transmit data that processor 0 has calculated to all other
processors. The “call broadcast(var)” command sends the variable “var” from the
current processor to all other processors. The “call barrier()” command does not
allow any processors to take on another task until the current processor is finished
with its task. The “call MPI Recv(a,b, MPI DOUBLE PRECISION, k...” and “call
MPI Send(a,b, MPI DOUBLE PRECISION, 0...” commands are also part of the
parallelized structure, of which the first command tell the current processor to re-
ceive variables “a” and “b” from processor “k”, while the second commands tells
the all other processors to send variables “a” and “b” to processor 0.

This parallelized environment is initialized with the “call init MPP environment()”
command near the beginning of the “geom.f90” source code, and ended with the
“call mpi finalize(errorcode)” command at the end of the “geom.f90” source code.

4.2 Parallelization in GEOM

GEOM is a parallelized code which is parallelized in the toroidal direction. When a job
is run with more than one processor each processor computes and assigns the tag for the
grid cells in a number of different cross sections. For example, if there are 20 toroidal
cross sections of a device, and four processors are used, each processor will compute the
tag data for five cross sections. Below is a list and short description of the most important
variables related to parallelization which appear in the source code.

Variables of Parallelization

• npes: An integer set by the user in the commands text “geom.e” which is the
number of processors being used to execute the job. Appears in subroutines beleg,
belegp and mpp functions.

• pid: A processor dependent integer which is the identification number of the current
processor. This number takes values from 0 to npes-1. Appears in subroutines beleg,
belegp, geom, iregin, mpp functions and pquerd.

• imax: An integer equal to MAX[(nf+npes-1)/npes, 1]. It is, essentially, the num-
ber of cross sections that each processor will need to compute. This is defined in
this non intuitive manner since it is possible that the number of processors does
not divide evenly into the number of cross sections to compute. See discussion of
variable ipek for more information. Appears in subroutines/modules beleg, belegp
and mod index1

• ipek(imax+1): A processor dependent array which holds the cross section numbers
for a given processor to compute. With a size “imax+1” it is ensured that all cross
sections are processed. If the number of cross sections to be computed does not divide
evenly into the number of processors being used, npes, some of the last elements of
the array for a few of the processors will not be accessed. The elements of this array
vary from processor to processor because of the the inclusion of the processor id

20

number, pid, in the assigning of the array in subroutine beleg. For example, the
array could have elements (0,3,7,11) for one processor, meaning this processor will
compute the tagged map for cross sections 0, 3, 7 and 11, while having elements
(2,5,9,13) for another processor. Appears in subroutines beleg and belegp.

4.3 GEOM related Modules, Subroutines and Variables in GOURDON

The subroutines “ort.f90” and “region.f90” form the heart of the GEOM-related code in
GOURDON. In these it is calculated if the field line crosses a surface or divertor region,
respectively, and if so, what are the coordinates of intersection. These subroutines are
called one after the other in the large GOURDON subroutines called “fieldline.f90” and
“guiding.f90”, which trace field lines or guiding centers.

In the block of code before ORT and REGION are called the location of the grid cell
which the field line is current in are calculated and the tag of that grid cell is queried,
which if it has the appropriate value, begins the detailed investigation if and where the
field line crossed the Fourier representation defined surface or the divertor region surface.

Many of the GEOM related subroutines, modules and arrays are described below.

4.3.1 Subroutines

• insur.f90: Same function as in GEOM.

• iregin.f90: Same function as in GEOM.

• lage.90: This subroutine calculates the curvilinear s and u coordinates of the cur-
rent position of the field line. See section 2.2.3, GEOM/GOURDON interface, and
Appendix 1 for more information. Appears in subroutine ort.

• ort.f90: This subroutine (if the grid cell in which the field line is currently in
has a surface tag, such as the tag from the FW or LCMS) calculates if the field
line truly crossed the surface, and if it did, where it crossed. See section 2.2.3,
GEOM/GOURDON Interface, for details.

• position.f90: This subroutine is called when it has been determined by subroutine
ort that a field line crosses the FW or LCMS boundary. It calculates the coordinates
of intersection. See section 2.2.3, GEOM/GOURDON interface, and Appendix 1 for
more information. Appears in subroutine ort.

• pquerd.f90: Same function as in GEOM.

• readin.f90: Reads in the first block of the GEOM input file.

• region.f90: This subroutine, if the grid cell in which the field line is currently in
has a divertor region boundary tag, calculates if the field line truly crossed the di-
vertor surface, and if it did, where it crossed. See section 2.2.3, GEOM/GOURDON
Interface, for details.

21

4.3.2 Variables

Tracing “nparam” field lines, information about their possible intersection with LCMS,
FW and divertor and baffle plates are stored in the following arrays:

GOURDON Arrays Concerning Field Line/Surface Intersection

• dlfield(6, nparam): The first dimension of this array stores the coordinates (phi,R,Z)
of the intersection point of a field line or guiding center with the LCMS, velocity
of the guiding center at the intersection point, and length of the path and time the
traced guiding center needed to reach the intersection point. Note, that velocity and
time are only defined for the guiding center. The second dimension stores the field
line number.

• wfield(7, nparam):The first dimension of this array stores coordinates (phi,R,Z)
of the intersection point of a field line or guiding center with the FW, velocity of
the guiding center at the intersection point, and length of the path and time the
traced guiding center needed to reach the intersection point. Note, that velocity
and time are only defined for the guiding center. Further, the u-coordinate of the
intersection point is stored as the last quantity. The second dimension stores the
field line number.

• aplat(3, nparam):The first dimension of this array stores coordinates (phi,R,Z) of
the intersection point of a field line or guiding center with a divertor or baffle plate.
The second dimension stores the field line number.

• iplat(3, nparam):The first dimension of this array stores number of the divertor
region, “ignum”, plate number, “ipnum”, and number of the triangle, “ize”, of the
intersection points for field lines that intersect divertor or baffle plates. The second
dimension stores the field line number.

4.3.3 Modules

• mod dim.f90: Same as in GEOM.

22

5 Appendix 1: Finding intersection points

5.1 Triangles

The problem is to find the criteria for the intersection of a given line segment with a given
triangle, and if they do intersection, to find the coordinates of intersection, ~I.

Let the general triangle, illustrated in figure 8, be composed of arbitrary points

~r1 = (r1x, r1y, r1z)
~r2 = (r2x, r2y, r2z)
~r3 = (r3x, r3y, r3z)

(11)

Define the vector ~a to be ~a = ~r1 − ~r2, and vector ~b to be ~r2 − ~r3.
Given the points ~f1 and ~f2 which define the line segment define ~f = ~f2 − ~f1 and

~r = ~r1 − ~f1. With the definition of the following parameters

λ = (rx + αax + βbx)/(fx)

α =
(ryfx−rxfy)+β(by−fx−bxfy)

axfy−ayfx

β =
(ryfx−rxfy)(axfz−azfx)−(rzfx−rxfz)(axfy−ayfx)
(byfx−bxfy)(axfz−azfx)−(bzfx−bxfz)(axfy−ayfx)

(12)

it can be shown that the criteria for intersection are

0 ≤ α, β, λ ≤ 1 and α + β ≤ 1 (13)

and that the intersection point is given by

~I = ~f1 + λ(~f2 − ~f1) = ~r1 + (α~a) + (β~b) (14)

5.2 Surfaces

The problem is to, given two points ~X1 and ~X3 with coordinates (x1, y1, z1) and (x3, y3, z3)
with a connecting segment that intersects a surface defined by Fourier coefficients with
known s coordinate, find the intersection coordinates of the surface and line segment.

Since it is know that the intersection point lies on the line connecting ~X1 and ~X3 the
vector, call ~X2, from X1 to the intersection point can be written as

~X2 = a(x3 − x1, y3 − y1, z3 − z1) (15)

where a is a scalar, and the coordinates of the intersection are given by ~X1 + ~X2. Since
the s coordinate and the Fourier coefficients of the surface are known, the components of
the vector ~X2 can be represented in the following manner.

23

r1

r2

r3f1

f2

I

Figure 8: An illustration of a line segment intersecting a triangle.

x2 =
(

∑mss,nss
m=0,n=0 r̂c

m,n cos(2π[mu + nv])
)

cos(v 2π
Np

)

y2 =
(

∑mss,nss
m=0,n=0 r̂c

m,n cos(2π[mu + nv])
)

sin(v 2π
Np

)

z2 =
∑mss,nss

m=0,n=0 ẑs
m,n sin(2π[mu + nv])

(16)

where Np is the number of periods of the device. Combining equations (15) and (16)
results in a systems three equations and three unknowns, a, u and v. Once found a can be
plugged into equation (15) to find ~X2 and the intersection coordinates given by ~X1+ ~X2.

24

6 Appendix 2: Sample Input File

Here is an example of a simple input for GEOM which has one divertor region made from
three plates. The LCMS, FW and outer wall are all circles of radius 1.0, 2.0 and 2.2
meters respectively.

stop: geom

np= 24 nf= 30 nr= 100 nz= 100

rnull= 2.500 znull= 0.000 ronull= 2.50 zonull= 2.50 [m]

jub= 80000 jub1= 3200

mss= 2 nss= 0

plasma_surface: nlcms= 2

m n rmnc rmns zmnc zmns

0 0 2.5000E+00 0.0000E+00 0.0000E+00 0.0000E+00

1 0 1.0000E+00 0.0000E+00 0.0000E+00 1.0000E+00

first_wall: nwand= 2

m n rmnc rmns zmnc zmns

0 0 2.5000E+00 0.0000E+00 0.0000E+00 0.0000E+00

1 0 2.0000E+00 0.0000E+00 0.0000E+00 2.0000E+00

ndd kto kpo npper igi

5 60 3 30 1

plate: 1

5 2 1 0

6.000

2.50000 2.00000 0.2500

2.50000 1.70000 -100.0000

7.000

2.50000 2.00000 0.2500

2.50000 1.70000 -100.0000

8.000

2.50000 2.00000 0.2500

2.50000 1.70000 -100.0000

9.000

2.50000 2.00000 0.2500

2.50000 1.70000 -100.0000

10.000

2.50000 2.00000 0.2500

2.50000 1.70000 -100.0000

plate: 2

5 2 1 0

6.000

2.50000 1.70000 -100.0000

3.25000 1.29900 -100.0000

7.000

2.50000 1.70000 -100.0000

25

3.30000 1.38564 -100.0000

8.000

2.50000 1.70000 -100.0000

3.35000 1.47224 -100.0000

9.000

2.50000 2.00000 -100.0000

3.40000 1.55885 -100.0000

10.000

2.50000 2.00000 -100.0000

3.45000 1.64545 -100.0000

plate: 3

5 2 1 0

6.000

3.25000 1.29900 -100.0000

3.50000 1.73200 0.1666

7.000

3.30000 1.38564 -100.0000

3.50000 1.73200 0.1666

8.000

3.35000 1.47224 -100.0000

3.50000 1.73200 0.1666

9.000

3.40000 1.55885 -100.0000

3.50000 1.73200 0.1666

10.000

3.45000 1.64545 -100.0000

3.50000 1.73200 0.1666

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0

12 1 1 0 0 0 0 0

13 1 1 0 0 0 0 0

14 1 1 0 0 0 0 0

15 1 1 0 0 0 0 0

16 1 1 0 0 0 0 0

17 1 1 0 0 0 0 0

26

18 1 1 0 0 0 0 0

19 1 1 0 0 0 0 0

20 1 1 0 0 0 0 0

21 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0

23 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0

25 0 0 0 0 0 0 0

26 0 0 0 0 0 0 0

26 0 0 0 0 0 0 0

28 0 0 0 0 0 0 0

29 0 0 0 0 0 0 0

1 3 1 2 3 0

27

7 Acknowledgements

The authors would like to thank Dr. Don Steiner for editing this document.

References

[1] Strumberger, E., Nuclear Fusion, 40, 1697, 2000.

[2] Hirshman, S.P., Lee, D.K., Comput. Phys. Commun., 39, 161, 1986

[3] Hirshman, S.P., van Rij, W.I., Merkel, P., Comput. Phys. Commun., 43, 143, 1986

[4] Hirshman, S.P., Meier, H.K., Phys. Fluids, 28, 1387, 1985

[5] Strumberger, E., Merkel, P., Schwarz, E., Tichmann, C., Laboratory Report IPP
5/100, Garching, 2002, http: //www.ipp.mpg.de/netreports/ipp-report 5 100.ps

[6] Strumberger, E., Nuclear Fusion, 37, 19, 1997

[7] Nuhrenberg, J., Strumberger, E., Contributions to Plasma Physics, 32, 204, 1992

[8] Gourdon, C., “Programme Optimise de Calculs Numeriques Dans les Configurations
Magnetique Toriodales”,CEN Fontenay aux Roses, 1970

28

