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1. Introduction

1.1 Fusion and Magnetic Confinement

The research of controlled nuclear fusion aims at the production of energy from the fusion

of the two hydrogen isotopes deuterium and tritium. The cross section for the reaction

D + T → 4
2He(3.5 MeV) + n(14.1 MeV) (1.1)

reaches a maximum value of σDT,max = 4.9 × 10−28m2 at a collision energy of 64 keV

in the centre-of-mass frame. The fusion cross section is small against the relevant cross

sections for Coulomb collisions between D+ and T+, and D+ or T+ with electrons. Thus,

only a very small fraction of accelerated D+ ions would cause a fusion reaction, when

injected into a tritium rich target, because energy loss to the cold electrons has a factor

of > 107 higher cross section than the fusion reaction. A net energy production can only

be achieved when confining a sufficiently hot DT-plasma with almost equal temperatures

of ions and electrons, such that the unavoidable Coulomb collisions do not lead to a loss

of mean kinetic energy of the two fuel ions D+ and T+.

In a thermal plasma, the number of reactions per volume is given by the product of

the densities of the reaction partners and the reaction parameter 〈σv〉. Here, v is the

relative velocity of the colliding particles and 〈〉 denotes an average over the Maxwellian

velocity distribution. The reaction parameter 〈σDTv〉 of the DT-reaction and a few other

fusion reactions is shown in Fig.1.1. The DT-reaction has the highest values with a broad

maximum for ion temperatures Ti between 20 keV and 100 keV. Below Ti=10 keV, there is

a steep decrease of 〈σDTv〉 and the envisaged fusion plasma needs to have a temperature

above 10 keV.

Two schemes for the plasma confinement are subject to present day research. In the

inertial confinement scheme, a DT-pellet with a diameter of ≈1 mm is compressed by

about a factor of 1000 and heated up very rapidly to T≈10 keV with a high power

energy source (laser or heavy ion beams). Even at this temperature, inertia is sufficient

to confine the plasma for a time duration of ≈1 ns, during which a considerable fraction

of the DT-mixture fuses in a controlled explosion. The magnetic confinement scheme,

which will be discussed below in more detail, uses a steady state plasma, which is confined
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Figure 1.1: Reaction parameter 〈σv〉 of some fusion reactions in a thermal plasma of

temperature T .

by magnetic fields. Net energy production in both schemes is only possible, if most of the

energy needed for the heating of the plasma is drawn from the fusion reaction itself, i.e.

from the 3.5 MeV α-particles, which are ’stopped’ in the plasma by Coulomb collisions

(α-heating).

The magnetic fields, which confine the plasma, have a toroidal topology. With this

geometry, it is possible to avoid ’end losses’, which arise due to the very high transport

coefficients in hot plasmas in the direction of the magnetic field. The Lorentz force guides

the charged particles along the magentic field. Due to the toroidal field line bending and

the inhomogenity of the magnetic field, which has increasing field strength towards the

axis of the torus, there is an extra drift velocity with opposite sign for ions and electrons in

the direction of the torus axis (curvature- and ∇B-drift). For a purely toroidal magnetic

field with ~B = ~Bt, these drifts lead to a charge seperation and the build up of an electric

field along the torus axis causing a loss of the plasma due to ~E × ~B-drifts on a ms time

scale. This problem can be solved by an additional poloidal field ~Bp, which produces a

helical field line geometry. A magnetic field line winds around the centre of the plasma

and spans a toroidal surface, which is called a magnetic surfaces. The particles, which

follow the magnetic field lines are guided around the plasma centre and the vertical drift

velocity moves the particle away and towards the field line depending on the particle

position above or below the mid plane of the torus. Thus, the particle orbits have only

a minor displacement from the magnetic field lines as discussed in section 3.1.

The poloidal magnetic field is either produced by external coils, as in the stellarator or

by a toroidal plasma current, as in the tokamak. The tokamak approach yields a field

line geometry, which is symmetric with respect to the torus axis and we restrict the

following discussion to axi-symmetric solutions, i.e the tokamak case. Magnetic surfaces
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Figure 1.2: Geometry of magnetic field lines on the nested magnetic surfaces in a

tokamak.

in the tokamak are shown in Fig.1.2. The helicity of the magnetic field on a magnetic

surface is described by the ’safety factor’ q. q gives the number of toroidal turns, which

the field line has to complete for 1 poloidal turn around the toroidal surface.

In the tokamak, the poloidal field is produced by a toroidal plasma current Ip. Ip is

induced by a transformer, where the primary winding is fomed by a central solenoid

and the plasma is the secondary winding. Due to the high electrical conductivity of

hot plasmas, induced loop voltages of a few V are sufficient to drive plasma currents of

several MA. The poloidal field at the plasma edge is of the order of 0.1 T and the toroidal

field has a few T. The combination of toroidal field and plasma current is typically chosen

such, that the safety factor at the plasma edge is in the range qedge ≈ 3-5.

In equilibrium, the forces due to the radial gradient of the plasma pressure ∇p are

counteracted by ~j × ~B forces.

∇p = ~j × ~B (1.2)

Thus, ~j and ~B are perpendicular to the pressure gradient: ~j · ∇p = ~B · ∇p = 0.

The pressure is constant on the magnetic surfaces and the electric currents flow in the

magnetic surface. The magnetic flux and the total current through any poloidally or

toroidally closed line on the magnetic surface is constant and the poloidal or toroidal

magnetic flux is commonly used to label the flux surfaces. For a fusion reactor, the

central plasma pressure, which has to be stabilised by the ~j × ~B forces, is ≈ 1 MPa.

The shape and position of the magnetic surfaces is controlled by additional external

toroidal coils. Toroidal magnetic surfaces can only be produced in a certain inner volume

of the tokamak and the magnetic separatrix separates the confined inner region from the
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Figure 1.3: Poloidal cross section of a tokamak with limiter and divertor configuration.

outer region where the field lines close outside of the plasma vessel. The last closed flux

surface (LCFS) is either given by the magnetic separatrix as in the divertor configuration

or by a part of the plasma wall, which limits the confined plasma inside the magnetic

separatrix, as in the limiter configuration. The two configurations are illustrated in

Fig.1.3. The plasma region outside the LCFS is termed the scrape off layer (SOL) and

loosely called the region of ’open’ field lines, i.e. field lines which intersect with some

part of the vessel wall. The separatrix in the depicted divertor configuration has the

shape of an X in the lower part and the poloidal field is zero at this so called X-point. In

the divertor configuration, the plasma wall interaction mainly takes place in a specially

designed part of the plasma vessel, which is somewhat removed from the confined plasma

and is termed the divertor. Here, it is possible to achieve a reduction of the plasma

temperatures compared to the temperature at the LCFS which is advantageous with

respect to the release of wall materials into the plasma (see section 1.3). Present day

designs of a fusion reactor are based on the divertor concept.

The ideal fusion plasma just consists of electrons, deuterium and tritium ions. All

other ions, which contribute to the pressure, that has to be balanced, are considered as

impurities. For a given achievable plasma pressure, impurity ions cause a dilution of the

DT mixture and reduce the α-heating, which is necessary for a positive energy balance.

Furthermore, plasma radiation increases with the introduction of impurities (line and

continuum radiation) and the increased energy loss of the optically thin plasma makes

the sustainment of the high plasma temperatures more difficult. Helium from the DT

reaction is of course unavoidable. Other impurities originate from the plasma facing wall

components, which are eroded due to the bombardement with energetic plasma ions.

Several materials are investigated as candidates for different plasma facing components
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including low-Z elements beryllium and carbon up to the high-Z element tungsten. Many

aspects of these materials, like thermal heat conduction, mechanical, chemical, electrical

properties, and erosion yields come into play and have to be judged against the behaviour

of these elements in the plasma. The present design for the next step device ITER is

based on a mixture of low-Z and high-Z materials, while in a steady state power producing

device, the erosion rate and the degradation of material properties due to neutron damage

seems to be far to high for a low-Z plasma facing material. Furthermore, the injection

of the noble gases neon and argon is considered to achieve low plasma temperatures in

front of the plasma facing wall components. In the next section, upper limits for the

allowed impurity concentrations in the central part of the confined plasma are evaluated.

1.2 Burn Condition and Confinement Times

The term burning or ignited plasma describes the situation, where the confined plasma

burns the fuel nuclei D and T to He without any external heating sources. In the concept

of magnetic confinement, this is a steady-state situation, where all energy losses of the

plasma are balanced by the α-heating.

Pα = PLoss = Ptrans + Prad (1.3)

The energy losses are separated into heat transport losses Ptrans due to conduction and

convection and radiation losses Prad. In the following, we will investigate the power

balance without considering profile effects and the power densities shall represent some

mean values over the plasma volume. Furthermore, we assume equal temperatures of all

ions and electrons.

The plasma shall consist of the four ion species deuterium, tritium, helium and another

not yet specified impurity. The fuel densities shall have the optimum 50/50 mixture,

i.e. nD=nT , and the total DT-ion density is nD + nT=ni. The impurity concentrations

are denoted by fHe = nHe/ne and fI = nI/ne. At the considered temperatures, He is

doubly ionised and the other impurity has an average charge 〈Z〉 =
∑

Z ZnI,Z/nI , where

the fractional abundances of the impurity charge states fI,Z=nI,Z/nI shall be in corona

ionisation equilibrium. The impurity concentrations determine the dilution of the fuel

ions and we find from quasi-neutrality the fraction of fuel ions.

fi =
ni
ne

= 1− 2fHe − 〈Z〉fI (1.4)

The total particle density can also be expressed with the electron density and the impu-

rity concentrations.

ntot
ne

= 1 + fi + fHe + fI = 2− fHe − (〈Z〉 − 1)fI = ftot (1.5)
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Figure 1.4: Radiative power parameter for some elements in the range from H to W.

The α-particles, which are produced with energy Eα=3.52 MeV in the DT-fusion reac-

tion, shall be perfectly confined during the slowing down to thermal energies. They are

lost as thermal particles and transfer their whole initial energy Eα to the plasma. Thus,

the α-heating power density is.

Pα = nDnT 〈σDTv〉Eα =
1

4
f 2
i n

2
e〈σDTv〉Eα (1.6)

The fusion reaction rate 〈σDTv〉 is the average over a Maxwellian energy distribution

being only a function of the ion temperature. It can be evaluated from the formulas

given in Ref.[1, 2] and is displayed in Fig.1.1.

The power density due to radiative losses from line radiation (bound-bound transitions)

and continuum radiation (free-bound and free-free transitions) can be expressed with

the radiative power parameter LX(T ) for the element X at temperature T , which adds

the contributions from all charge states assuming corona ionisation equilibrium.

Prad = n2
eLrad(T ) = n2

e(fiLH + fHeLHe + fILI) (1.7)

For the fully ionised light elements, LX is dominated by the bremsstrahlung contribution

being proportional to Z2 and line radiation becomes important for heavy elements. The

relevant atomic data are taken from the ADAS atomic data base [3] and for tungsten

from the ADPACK data base [4, 5]. The radiative power parameter for a number of

elements is shown in Fig.1.4.

The loss power density due to heat conduction and convection shall be described by the
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empirical energy confinement time τE.

Ptrans =
W

τE
=

3ntotkBT

2τE
=

3ftotnekBT

2τE
(1.8)

We replace each term in Eq.(1.3) by the according expressions of Eq.(1.6), (1.7) and

(1.8).

neτE =
3
2
ftotkBT

1
4
〈σDTv〉f 2

i Eα − Lrad(T )
(1.9)

The power balance defines the parameter neτE as a function of the temperature and the

impurity concentrations fHe and fI . However, the He density is not a free parameter

being proportional to the fusion reactions per volume. By introducing a global particle

confinement time τ ∗α for the α-particles, the particle balance reads.

1

4
f 2
i n

2
e〈σDTv〉 =

nHE
τ ∗α

=
nefHe
ρτE

(1.10)

We use the term global particle confinement time to denote the fact, that the decay

time of He from the system is not only a function of the transport parameters of the

confined plasma, i.e. diffusion coefficient and drift velocity, but depends strongly on

the He recycling at the plasma walls and the pumping efficiency. Only some fraction of

the He particles, which are lost from the confined plasma, arrive in the pumping duct,

while the rest recycles as neutral helium from the plasma walls and can again enter the

confined plasma. Thus, τ ∗α will be significantly larger than τE and the factor is denoted

with ρ: τ ∗α=ρτE.

Equations (1.9) and (1.10) allow the calculation of neτE and fHE as a function of T , ρ

and fI . In Fig.1.5, we show some solutions assuming carbon and tungsten as additional

impurity. The upper figures depict the so called triple product or fusion product neTτE,

which has to be achieved in a steady state burning plasma and the lower figures give

the according He concentrations. The black line is the idealised burn condition for

ρ = 0 and fI=0, i.e. no fuel dilution and radiation due to impurities and infinitely fast

removal of He. The minimum is found at T = 14 keV with neTτE=3×1021 keVm−3s. For

finite ρ, the ignition lines are closed. For each possible temperature, there is a solution

with low triple product and low fHe and a branch with high neTτE and high fHe. The

blue line is calculated for ρ = 5 and fI=0, where the minimum fusion product has an

increased value of neTτE=3.8×1021 keVm−3s at T = 13 keV with a He concentration of

fHE=6%. Finally, C and W are added each with two different concentrations. For both

impurities, the lower concentration was chosen such, that it leads to a further increase

of the minimum fusion product by 20%. The value of the respective concentration is

fC,20%=1% for C and for W, it is only fW,20%=0.0045% due to the strongly increased

radiative power LW of the high-Z element. The next line of each impurity shows the

behaviour for a concentration, which is a factor of 4 above the 20%-value. We note,
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Figure 1.5: Fusion product neTτE and helium concentration fHe for a burning DT-

plasma: Black lines are for zero helium concentration fHe=0, blue lines for global helium

confinement time τ ∗α = 5τE and red lines for τ ∗α = 5τE and additional carbon(tungsten)

impurity on the left(right) side.

how quickly the operating window vanishes. Above a certain impurity concentration,

the power balance can not be fulfilled.

For a global helium confinement time τ ∗α = 5τE, the impurity concentration fI,20% was

calculated for the impurity elements Be, C, O, Ne, Ar, Fe, Kr, Xe, and W, i.e. the con-

centration which increases the minimum fusion product for fI=0 by 20% to a value of

neTτE=4.6×1021 keVm−3s. In Fig.1.6, the 20%-concentrations are plotted as diamonds

versus the nuclear charge of the added impurity demonstrating the fact that the maxi-

mum allowed impurity fraction strongly decreases with the nuclear charge of the element.

The upper x-axis gives the temperatures of the respective minima, which are close to

the 13 keV value at fI=0. The detrimental effect of the different elements depends again

on the impurity charge. The light, fully ionised elements mainly decrease the heating

power by diluting the fuel ions, while the heavy elements mainly cause an increased ra-

diation loss of the plasma. ∆Prad and ∆Pα shall be the difference of radiated power and

α-heating power with respect to the case with zero impurity concentration fI = 0 and

the parameter ∆Prad/∆Pα quantifies the main effect of the different impurities. For Be,

radiation is negligible with ∆Prad/∆Pα below 0.1, while for Fe and the heavier elements,

the increased radiation is about a factor of 10 above the α-heating power reduction.
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minimum fusion product with respect to fI=0 at a given global helium confinement time

τ ∗α = 5τE. The parameter ∆Prad/∆Pα (red stars) allows a comparison of the different

detrimental effects of the impurity on the α-power and the radiative loss power.

We conclude, that the requirements for plasma purity in the fusion reactor are very high.

When considering the presence of more than one impurity from the plasma wall, the

maximum allowed concentrations for the single impurity, which are approximately the

values given in Fig.1.6, have to be reduced even further to guarantee enough operational

space. More detailed investigations [6, 7, 8], which account for profile effects, need to

specify the transport parameters for heat and particle transport, as well as the heating

profile due to the slowing down of the MeV α-particles or the eventual loss of the α-

particles before thermalization [9, 10].

1.3 Relevance of Impurity Transport

We found in the previous section, that it is essential to have low impurity concentrations

in the plasma to fulfil the condition of a steady burning fusion plasma. These concen-

tration limits apply only to the hot central part of the confined plasma. Here, where

D and T predominantly fuse, dilution matters and only radiation losses in the centre

shortcut the transport of energy from centre to edge. In equilibrium, central impurity

densities increase with the the rate of impurity production. Furthermore, they depend

on the location of the impurity sources, and the impurity transport perpendicular and

parallel to the magnetic field lines.

We begin with a few remarks about the impurity sources. The helium production rate

is defined by the rate of fusion reactions and has a fixed value, when a certain fusion

power shall be achieved. For the impurities, which are eroded from the plasma facing

components, the production rate strongly depends on the choice of the material. First

of all, the heat conductivity of the material has to be high enough to enable operation
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energy for incident deuterium ions under normal incidence.

at surface temperatures, which are well below the melting or sublimation temperature

for a given steady state power load from the plasma. Besides this condition, two erosion

mechanisms need to be distinguished: the physical sputtering, which is due to elastic

energy transfer from the incident particles onto the target atoms, and chemical erosion,

where the incident particles form volatile molecules with the target atoms. Physical

sputtering takes place, when the energy transfered onto surface atoms is above the surface

binding energy Es, which happens only, when the kinetic energy of the incident particle is

above a certain threshold value Eth. The energy transfer between the projectile with mass

mp and the target atoms with mass mt depends on the mass ratio, where the maximum

transferable energy fraction in a single collision is γ = 4mtmp/(mt + mp)
2. Thus, the

ratio Eth/Es becomes large for small values of γ [11, 12], while Es of different materials

considered for plasma facing components do not vary that strongly. A few examples for

the physical sputtering yield Yphys by deuterium projectiles under normal incidence are

shown in Fig.1.7. The surface binding energies of Be, C, and W are 3.4 eV, 7.4 eV and

8.7 eV, while the respective sputtering thresholds are 10 eV , 27 eV, and 209 eV [13]. For

carbon, chemical reactions with hydrogen dominate the carbon erosion at ion energies

below 100 eV as is shown in Fig.1.7. The hydrocarbon formation is a complex multi-

step process depending on particle energy, particle flux density, surface temperature and

material properties [14]. The formation of oxides is of less importance due to the small

oxygen concentrations, which are below 1% in present day devices.

The energy spectrum of the incident particles has contributions from different loss mech-

anisms, and the particle load varies significantly between different locations. The main

contribution in the divertor is the parallel ion flow along the magnetic field lines, while
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in the main chamber fast ions from the neutral beam injection or the ion cyclotron

heating and fast hydrogenic neutrals, which are formed in charge exchange processes,

come into play. The parallel losses are strongest at the separatrix and show a steep

decay with the distance to the separatrix due to the large anisotropy of the transport

coefficients being much smaller perpendicular to the magnetic field direction. For equal

temperatures of ions and electrons, the mean ion energy on the target is approximately

〈E〉 ≈ 2kBT + 3ZkBT , where the second term proportional to the ion charge Z is due

to the acceleration in the sheath potential. This term is especially important for the

physical sputtering of high-Z materials, where a low fraction of higher charged impurity

ions leads to a substantial increase of Yphys due to the increased energy of the projectile,

and since impurity ions also have a reduced threshold energy due to the higher mass.

Besides fusion produced helium and impurities from the plasma facing components,

injection of noble gases is foreseen in a fusion reactor in order to increase the radiation

losses in the edge region of the plasma. According to the radiative power parameters

depicted in Fig.1.4, the radiated power per impurity density is considerably higher in the

low temperature edge region at 10-1000 eV compared to the hot core at a few 10 keV.

This dependence is used by the concept of a radiative mantle [15, 5, 16, 17], where a well

controlled amount of added impurities shall help to spread the power load over larger

areas and to reduce the temperature in front of the plasma facing components, while

central radiation losses are still kept low. It is thus a measure to reduce the strong

localised power deposition and erosion close to the separatrix.

The acceptable erosion rates are determined by the required life time of the plasma facing

components as well as by the low limits for the allowed central impurity concentrations,

which are very low for the high-Z elements and in the percent range for beryllium and

carbon. Here, impurity transport between the wall components and the plasma centre

is the key element, which has to be considered. The radial impurity flows can either

be driven by the radial impurity gradients being caused by diffusion, but may also

have a convective component, which is inwardly or outwardly directed independent of

the impurity gradient. For purely diffusive transport, the radial flows will reduce the

driving gradient. For the case of the fusion produced helium, there is a central source

of helium ions, which maintains the radial gradient to the outside, and in equilibrium,

diffusion leads to a steady outwardly directed net flow of helium. The total radial helium

flux is of course just equal to the production rate and the diffusion coefficient decides,

whether a large or low radial helium gradient is needed to maintain that radial flow.

For the other impurities as well as for the recycling helium, the source location is at the

very edge of the plasma, and inside the source region, the radial impurity gradient will

become zero in equilibrium for purely diffusive transport independent of the diffusion

coefficient. In this case, radial and parallel transport in the edge, and the impurity source

distribution in the edge play the dominant role. For edge produced impurities, also the
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role of the convective flows are very important, since they can provoke strong radial

impurity gradients for cases, where the directed convective component is the dominant

flow contribution. The contribution of the convective flows depends on the impurity

charge and on the type of plasma transport mechanism.

Thus, the radial transport requirements for helium and the other impurities are somewhat

different. The fusion produced helium has to be removed from the central plasma at a

similar pace as the energy is transported towards the edge, while for the other impurities

the edge transport and the influence of convective flows are very important. Transport

investigations have to be performed for the whole range of elements from He up to

W. Since the construction of large fusion plasma experiments is expensive and time

consuming, it is not possible to test many elements as plasma wall components on a

large scale. It is therefore not of mere academic interest to understand the transport

behaviour of the different elements in terms of the underlying physical mechanisms. This

knowledge is rather needed to predict impurity transport in next step fusion devices, and

will influence the material choice or indicate advantageous plasma operation scenarios

with low central impurity concentrations.



2. The Radial Impurity Transport Equation

For the description of impurity fluxes perpendicular to the magnetic surfaces, the com-

mon ansatz uses a sum of a diffusive and a convective flux density. With this ansatz the

continuity equation can be transformed into a radial transport equation, which allows

to calculate the temporal evolution of the radial impurity profiles in terms of the diffu-

sion coefficient and the drift velocity for given boundary conditions. The characteristics

of the general solution and specific cases with simple analytical solutions will illustrate

the main influences of the transport coefficients on characteristic time scales and the

equilibrium density profiles for a constant influx of neutral impurities.

For the analysis of spectroscopic measurements, it is necessary to know the radial location

and the fractional abundance of each ion stage and the system of the coupled transport

equations for all ion stages of the impurity has to be solved. In these equations, neigh-

bouring ion stages couple through ionisation and recombination and solutions can only

be obtained by numerical methods. The preferred algorithm will be given and applied

to calculate the change of ion stage abundances from the corona ionisation equilibrium.

Radial impurity transport is caused by various physical phenomena. The mechanisms,

which might be treated with the above ansatz are turbulence due to micro-instabilities

and Coulomb collisions, while macroscopic instabilities might have larger radial scale

lengths than the density gradient lengths. The different contributions to the collisional

transport coefficients can be calculated in most circumstances, while there is still very

little knowledge of turbulent impurity transport.

2.1 Flux Surface Averaged Transport

The law of particle conservation for the particle density nI,Z of impurity I in ion stage

Z may be written as:
∂nI,Z
∂t

= −∇~ΓI,Z +QI,Z (2.1)

where ~ΓI,Z is the flux density of the impurity and QI,Z represents the sources and sinks

due to ionisation, recombination and charge exchange. The source and sink term connects

neighbouring charge states. With an ansatz for the density dependence of the transported
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Figure 2.1: For the magnetic flux surface, whose poloidal projection is drawn on

the left with a thick line, the poloidal variation of the toroidal magnetic field(red),

the gradient(blue), and the contributions to the classical part of the collisional radial

impurity fluxes(black) are shown in the polar plot on the right. All values are normalized

to their maximum value.

flux density ~ΓI,Z , the particle conservation equation shall be transformed into an impurity

transport equation. Here, we are interested in the radial transport perpendicular to the

magnetic flux surfaces, since the large transport coefficients parallel to the magnetic field

cause a practically constant density nI,Z on the magnetic flux surface. Even though nI,Z

and also the source/sink term QI,Z are constant on the flux surface, the radial component

of ~ΓI,Z shows a variation with the poloidal angle θ. One reason is the poloidally varying

distance of the flux surfaces being shorter on the outboard than on the inboard. This

leads to a poloidal variation of the gradients of density and temperature, which are the

driving terms for the radial impurity flux. Another reason is the 1/R dependence of the

toroidal magnetic field BT . In Fig.2.1, the poloidal projection of a few flux surfaces are

sketched. For one flux surface, the dependence of the gradient and of BT on θ are shown

in a polar plot. Both quantities vary by about a factor of 2.

The correct flux surface average of Eq.(2.1) is derived by the following steps (see Ref.[18]).

Inside the last closed flux surface (LCFS), Eq.(2.1) is integrated over the volume V inside

a flux surface which leads to.

∂

∂t

∫
nI,Z dV = −

∮
~ΓI,Z d~S +

∫
QI,Z dV (2.2)
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The flux surface shall be labeled with ρ, where ρ rises from centre to edge. Thus, ∇ρ/|∇ρ|
is the unit vector ~er perpendicular to the flux surface pointing towards the outside of

the enclosed volume, and the flux density integral becomes

∮
~ΓI,Z d~S =

∮
~ΓI,Z
∇ρ dS
| ∇ρ | =

∮
ΓρI,Z

dS

| ∇ρ | (2.3)

where ΓρI,Z is the radial contravariant component of the particle flux density ΓρI,Z =
~ΓI,Z∇ρ. Using the flux surface average of an arbitrary scalar quantity F

〈F〉 =

(
∂V

∂ρ

)−1 ∮
F dS

|∇ρ| (2.4)

and ∫
FdV =

ρ∫

0

dρ
∂V

∂ρ
〈F〉 (2.5)

the continuity equation (2.2) becomes

∂

∂t

ρ∫

0

dρ
∂V

∂ρ
nI,Z = −∂V

∂ρ
〈ΓρI,Z〉+

ρ∫

0

dρ
∂V

∂ρ
QI,Z (2.6)

which can be differentiated with respect to ρ. For a flux surface geometry, which is

independent of time, we arrive at.

∂nI,Z
∂t

= −
(
∂V

∂ρ

)−1
∂

∂ρ

(
∂V

∂ρ
〈ΓρI,Z〉

)
+QI,Z (2.7)

We choose the flux surface label r, which is calculated from the enclosed volume V . The

volume V depends on r as the volume of a cylinder with length 2πRaxis.

r =

√
V

2π2Raxis
(2.8)

With this choice, the averaged continuity equation is casted in the familiar cylindrical

form.
∂nI,Z
∂t

= −1

r

∂

∂r
r〈ΓrI,Z〉+QI,Z (2.9)

For the flux density perpendicular to the magnetic surface, an ansatz with a diffusive

and a convective part is used. D(θ) is the radial diffusion coefficient and v(θ) is the

radial drift velocity, where the dependence on the poloidal angle θ is explicitly denoted.

The radial covariant component ΓI,Z,r of the flux density is.

ΓI,Z,r = −D(θ)∇nI,Z~er + v(θ)nI,Z = −D(θ)
∂nI,Z
∂r
|∇r|+ v(θ)nI,Z (2.10)
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Here, the density gradient has been seperated into a poloidally dependent and indepen-

dent part using ∇nI,Z = (∂nI,Z/∂r)∇r. The radial contravariant flux density is obtained

by multiplying with |∇r|.

ΓrI,Z = ΓI,Z,r|∇r| = −D(θ)|∇r|2∂nI,Z
∂r

+ v(θ)|∇r|nI,Z (2.11)

Thus, we obtain the radial impurity transport equation.

∂nI,Z
∂t

=
1

r

∂

∂r
r

(
D∗

∂nI,Z
∂r
− v∗nI,Z

)
+QI,Z (2.12)

Here, D∗ and v∗ are the flux surface averaged transport coefficients.

D∗ = 〈D(θ)|∇r|2〉 =
1

4π2Raxisr

∮
D|∇r|dS =

1

4π2Raxisr

∫ 2π

0

D(θ)|∇r|dS
dθ
dθ

v∗ = 〈v(θ)|∇r|〉 =
1

4π2Raxisr

∮
vdS =

1

4π2Raxisr

∫ 2π

0

v(θ)
dS

dθ
dθ (2.13)

For the collisional transport parameters, we know the dependence of D and v on the

poloidal angle, and the correct surface averages will be given in Sec.3.1. Fig.2.1 depicts

the behaviour for the classical part of the collisional impurity flux. The classical diffusion

coefficient DCL has a magnetic field dependence DCL ∝ 1/B2, and the polar plot of

Fig.2.1 depicts the integrand, which appears in Eq.(2.13). All terms, i. e. the magnetic

field dependence, the gradient, and the larger surface on the outboard, favour the radial

flux contribution from the outboard side being about a factor of 5 larger than the inboard

contribution. The fluxes connected to the classical drift velocity vCL have just the same

dependence: vCL is proportional to DCL times a combination of gradients of temperature

and density, which leads to vCL ∝ |∇r|/B2. For the turbulent transport, it is also

expected, that the main contribution is on the outboard side, however, the exact poloidal

dependence is not known. The superscript ∗ will be omitted from now on.

Outside the LCFS in the regime of open field lines, the one dimensional model is not

very well suited. Parallel transport to the divertor/limiter can be considered here in the

form of a parallel loss time τ‖. Thus, in the scrape-off layer (SOL), a term −nI,Z/τ‖ is

added on the right-hand side of equation (2.12).

The source/sink term QI,Z couples the transport equation of each ionisation stage with

the neighbouring stages.

QI,Z = − (neSI,Z + neαI,Z + nHα
cx
I,Z)nI,Z

+ neSI,Z−1nI,Z−1

+ (neαI,Z+1 + nHα
cx
I,Z+1)nI,Z+1 (2.14)

SI,Z is the rate coefficient for ionisation of impurity species I in ionisation stage Z,

αI,Z is the recombination coefficient for radiative and di-electronic recombination from
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ionisation stage Z and αcxI,Z is the respective recombination coefficient due to charge

exchange.

The sum of the transport equations for all ions (not the neutral!) of one species is

a very useful simplification since all source terms cancel except for the ionisation and

recombination between the neutral atom and the single ionised ion.

∂nI
∂t

=
1

r

∂

∂r
r

(
D
∂nI
∂r
− vnI

)
+QI,1 (2.15)

D and v are average values of the transport coefficients for each ion stage weighted with

the fractional abundance of each ion stage at a certain flux surface.

2.2 The Solution for the Total Ion Density

2.2.1 Characteristics of the Solution

Analytic solutions of the radial transport equation exist only for a few cases. The aim

of this section is to describe the characteristics of the solution and to define the most

important measures, like the equilibration time scale, the particle confinement time,

and the penetration probability, where we use the definitions as given by Fußmann [19].

Eq.(2.15), the radial transport equation for the total ion density of one impurity species,

shall be rewritten with a slightly different notation.

∂n

∂t
=

1

r

∂

∂r
r

(
D(r)

∂n

∂r
− v(r)n

)
+Q(r, t)− n

τ‖
θ(r − a) (2.16)

Here we left out the indices for n and Q and added the parallel loss term for radii

outside the LCFS with radius rLCFS = a. Q(r, t) is the source function, i.e. the number

of ionised neutrals minus the number of recombined singly ionised ions per unit volume

and unit time. The solutions shall satisfy the following spatial boundary conditions.

∂n

∂r

∣∣∣
r=0

= 0

∂n

∂r

∣∣∣
rw

= −n
λ

(2.17)

Typically, λ is of the order of ≈1 cm and is thus small compared to the typical plasma

radius of ≈1 m.

The solution of the homogeneous time dependent partial differential equation uses the

separation ansatz.

n(r, t) = exp
(
−µ

2Dct

a2

)
u(r) (2.18)

Dc is a characteristic value of D(r) and µ is an arbitrary parameter which will be

determined from the boundary conditions. This ansatz leads to a differential equation



18 CHAPTER 2. THE RADIAL IMPURITY TRANSPORT EQUATION

for the radial function u(r).

1

r

∂

∂r

(
r
D(r)

Dc

∂u

∂r
− v(r)

Dc
u
)

+
(µ2

a2
− θ(r − a)

τ‖Dc

)
u = 0 (2.19)

The boundary conditions yield an infinite number of discrete eigenvalues µ1 < µ2 < ...

and the eigenfunctions un and um for different eigenvalues µn and µm are orthogonal.

This can be seen when multiplying the differential equation (2.19) for un with um and

for um with un and subtracting the two equations. We are then left with the following

equation.

µ2
m − µ2

n

a2
runum = um

∂

∂r

(
r
D(r)

Dc

∂un
∂r
− v(r)

Dc
un

)
− un

∂

∂r

(
r
D(r)

Dc

∂um
∂r
− v(r)

Dc
um

)

=
∂

∂r

(
r
D(r)

Dc

(
um

∂un
∂r
− un

∂um
∂r

))
(2.20)

and integration over r yields

rw∫

0

runumdr =
a2

µ2
m − µ2

n

[
r
D(r)

Dc

(
um

∂un
∂r
− un

∂um
∂r

)]rw
0

=
a2

µ2
m − µ2

n

rwD(rw)

Dc

(
um(rw)

∂un
∂r

∣∣∣
rw
− un(rw)

∂um
∂r

∣∣∣
rw

)
(2.21)

Form 6=n, the integral is zero due to the boundary conditions. Form=n, we normalise the

eigenfunctions such that the integral equals 1/2π. The eigenfunctions form a complete

set.

2π

rw∫

0

unumrdr = δnm

∑

n

un(r)un(r′) =
δ(r − r′)

2πr
(2.22)

The solution of the homogeneous equation for t > t′ and initial density distribution n0(r)

at t = t′ is thus given by:

nhom(r, t) =
∑

n

an exp (−(t− t′)/τn)un(r)

an =

rw∫

0

n0(r′)un(r′)2πr′dr′

τn =
τ⊥
µ2
n

τ⊥ =
a2

Dc
(2.23)

The temporal evolution of the density is thus the sum of the exponentially decaying

radial eigenfunctions un(r), where the eigenfunction un has n − 1 zeros in the radial
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interval. The eigenfunction with u1 has no zero and the longest decay time τ1. After

all higher eigenmodes have decayed, the density distribution is proportional to u1 and

decays self similar with decay time τ1.

If the initial density distribution at time t = t′ is given by a radial delta function

n0(r) = NLδ(r− r′)/2πr, where NL shall denote the number of particles per unit length

of the cylinder, the coefficients an are NLun(r′). Thus, the probability of finding a

particle, which was deposited at r′ at time t′, within the radial interval [r, r+dr] at time

t is.

G(r, r′, t− t′)2πrdr =
∑

n

exp (−(t− t′)/τn)un(r)un(r′)2πrdr (2.24)

where G(r, r′, t−t′) is the Green’s function. With the Green’s function, we can construct

the solution of the inhomogeneous equation. Since Q(r′, t′)2πr′dr′dt′ gives the number of

particles NL, which were deposited per unit length of the cylinder at time t′ and radius

r′, we get by integrating over all times t′ < t and all radii r′.

ninhom(r, t) =

t∫

−∞

rw∫

0

G(r, r′, t− t′)Q(r′, t′)2πr′dr′dt′ (2.25)

We first define the particle confinement time τp as the equilibrium impurity ion content

Na inside the LCFS divided by the total ion source rate Φ which shall be constant in

time

τp =
Na

Φ
=

a∫
0

neq(r)rdr

rw∫
0

Q(r)rdr

(2.26)

τp can be expressed in terms of the eigentimes τn by putting a time independent source

Q(r) into Eq.(2.25). Integration of the density over all radii r < a leads to

τp =
1

ΦL

a∫

0

t∫

−∞

rw∫

0

G(r, r′, t− t′)Q(r′)2πr′dr′dt′2πrdr

=
1

ΦL

∑

n

τn

a∫

0

un(r)2πrdr

rw∫

0

un(r′)Q(r′)2πr′dr′ (2.27)

where ΦL =
∫ rw

0
Q(r)2πrdr is the constant source rate per unit length of the cylinder.

We can also find another interpretation of τp. Let us consider a source which deposits

NL ions per unit length at the initial time t′: Q(r′, t′) = n0(r′)δ(t − t′) with NL =∫ rw
0
n0(r′)2πr′dr′. The density evolution after this δ-puff is given by Eq.(2.25).

n(r, t) =

rw∫

0

G(r, r′, t− t′)n0(r′)2πr′dr′ (2.28)
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Now, we calculate the time evolution of the ion content inside the LCFS and normalise

with the number of deposited ions at t′, which yields the probability Pa(t− t′) to find a

particle, which was deposited at time t′, inside the LCFS at time t.

Pa(t− t′) =
1

NL

a∫

0

n(r, t− t′)2πrdr =
1

NL

a∫

0

rw∫

0

G(r, r′, t− t′)n0(r′)2πr′dr′2πrdr (2.29)

If the source distribution is within the LCFS, Pa(t− t′) equals 1 at time t′ and decays to

zero for later times. For sources outside the LCFS, which is the usual case for impurities,

Pa(t− t′) will first rise to a maximum and then decay. The maximum Pa,max of Pa shall

be defined as the penetration probability into the radial region of closed flux surfaces.

Integration of Pa over all times t > t′ yields the mean dwell time of a particle inside the

LCFS.

τd =

+∞∫

t′

Pa(t− t′)dt (2.30)

Since the integrand depends only on the time difference t − t′, we can substitute the

integration variable.

τd =

t∫

−∞

Pa(t− t′)dt′

=
1

NL

t∫

−∞

a∫

0

rw∫

0

G(r, r′, t− t′)n0(r′)2πr′dr′2πrdrdt′ (2.31)

Eq.(2.31) has the same form as the first equation of (2.27). Thus, for equal forms of the

radial deposition profile the mean dwell time inside the LCFS for a particle originating

from a temporal δ-source equals the particle confinement time, the impurity content

inside the LCFS divided by the constant source rate for equilibrium conditions.

τd = τp (2.32)

2.2.2 Analytic Solution for Constant Diffusion

We consider the most simple case with constant diffusion coefficient D, zero drift velocity

v=0 and treat only the radial range inside the LCFS. The transport equation for the

total ion density n(r, t) has the form

∂n

∂t
= D

1

r

∂

∂r

(
r
∂n

∂r

)
+Q(r, t) (2.33)

and for the equilibrium case with constant source.

D
1

r

∂

∂r

(
r
∂neq
∂r

)
= −Q(r) (2.34)
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Figure 2.2: Dependence of the characteristic decay times τn on the decay length λ

at the boundary. τ1 has an offset-linear dependence on λ, while the higher eigentimes

saturate at high values of λ.

The radial boundary is at r = a with

∂n

∂r

∣∣∣
a

= −n
λ

(2.35)

λ is the characteristic decay length in the scrape of layer, which can be estimated to be√
Dτ‖ being on the order of 1 cm and thus small compared to a. The equilibrium density

distribution, which obeys the boundary conditions is

neq(r) =
1

D

(λ
a

ΦL −
a∫

r

dr′

r′

r′∫

0

Q(r̃)r̃dr̃
)

(2.36)

where ΦL = 2π
∫ a

0
Q(r)rdr denotes the number of particles, which are deposited per unit

time and unit length of the cylinder. In the following, we just consider a point source at

r = rs.

Q(r) = ΦL
δ(r − rs)

2πrs
(2.37)

and the equilibrium density becomes for this case.

neq(r) =
ΦL

2πD

(λ
a
− ln (rs/a)

)
for r ≤ rs

neq(r) =
ΦL

2πD

(λ
a
− ln (r/a)

)
for r > rs (2.38)

The density is constant inside the deposition radius rs and has a logarithmic decay

outside of rs. The particle confinement time τp for this point source is obtained by

integrating the density profile of Eq.(2.38) over the area within the LCFS.

τp =
1

2

a2

D

(λ
a

+
1− (rs/a)2

2

)
(2.39)
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Figure 2.3: Left graph: The temporal evolution of the density is shown for different

time delays after a radial δ-source has been switched on. Right graph: Starting from the

equilibrium with source on, the density decay with zero source is shown. The bound-

ary density is zero, and the time delays are normalised to the first eigentime τ1. The

equilibrium density with source on is just the sum of decaying and rising density at

equal time delays. For ∆t > τ1, the density profile during decay has relaxed to the first

eigenfunction, which decays exponentially with time constant τ1.

τp depends strongly on the deposition radius rs. For central deposition (rs=0), λ/a can

be neglected and the particle confinement time equals τp = a2/4D, which is just the time

needed for an average excursion over a radial distance ∆r = a during a random walk. For

impurities, which are ionised very close to the plasma boundary, it is ∆rs = (a−rs)� a

and the confinement time is strongly decreased. In this case, τp = a(λ + ∆rs)/2D has

only a linear dependence on a.

The separation ansatz for the time dependent homogeneous partial differential equation

leads to Bessel’s differential equation of zero order for the radial function u(r).

1

r

∂

∂r

(
r
∂u

∂r

)
+
µ2

a2
u = 0 (2.40)

Normalised eigenfunctions of Eq.(2.40), which are finite at r = 0 are

un(r) =
1

Nn
J0(µn r/a) Nn =

√
πa
√

1 + (λµn/a)2J1(µn) (2.41)

J0 and J1 is the zero and first order Bessel function, µn is the n-th root of the boundary

condition at r=a.

J0(µ) + λ
dJ0

dr

∣∣∣
a

= J0(µ) +
λ

a
µJ ′0(µ) = J0(µ)− λ

a
µJ1(µ) = 0 (2.42)

For λ=0, the eigentimes are τ1=0.173τ⊥, τ2=0.0328τ⊥, τ3=0.0134τ⊥, τ4=0.00719τ⊥ with

τ⊥=a2/D. The dependence of the first 10 eigentimes on λ is shown in fig. 2.2. The

expressions for τp in terms of of the eigentimes τn for the point source at rs is

τp =
∑

n

τn
2

µn(1 + (λµn/a)2)J1(µn)
J0(µnrs/a) (2.43)
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and the residence probability Pa(t) for a particle deposited at rs at t=0 is.

Pa(t) =
∑

n

exp(−t/τn)
2

µn(1 + (λµn/a)2)J1(µn)
J0(µnrs/a) (2.44)

Two examples for the solutions of the time dependent equation with zero boundary

density (λ=0) are shown in Fig.2.3. The left graph shows the density rise after the start

of a steady δ-source at r/a≈0.8 and gives the equilibrium profile. For the left graph,

this equilibrium was taken as initial profile, and the decay of the density is plotted

for zero source. The different time delays are given in units of the first eigentime τ1.

The two evolutions are symmetrical in the sense, that the lost density during the decay

just equals the density during the rise phase at the same time delay. For a delay time

∆t > τ1, the density profile during decay has relaxed to the first eigenfunction, which

decays exponentially with time constant τ1.

2.2.3 Equilibrium Impurity Density

The second example gives the analytic equilibrium solution for Eq.(2.16) for the case

of an impurity source, which is entirely in the scrape off layer (SOL). This situation is

encountered for a tokamak with divertor configuration, while a limiter plasma has the

source inside the LCFS. Off course, the 1D description is a quite crude approximation

to the 3D impurity source distribution in the main chamber and the divertor and the

complicated impurity flow patterns in the plasma SOL. The main objective is to discuss

the influence of the edge and bulk transport parameters on the equilibrium density on

axis n(0) in the simple 1D approximation.

We use a constant diffusion coefficient DSOL in the SOL and set the drift velocity in the

SOL to zero vSOL = 0. The diffusion coefficient and the drift velocity in the plasma bulk

are functions of the radius, which equal the SOL values at the radius of the separatrix

r=a. Considering the smallness of the scrape-off width w compared to a, we simplify

1/r d/dr(rdn/dr) ≈ d2n/dr2 in the SOL.

1

r

d

dr
r

(
D(r)

dn

dr
− v(r)n1

)
= 0 for r ≤ a

DSOL
d2n

dr2
− n

τ‖
= −Q(r) for r > a (2.45)

The boundary conditions are.

dn

dr

∣∣∣
0

= 0
dn

dr

∣∣∣
rw

= −n
λ

(2.46)

The first of the two boundary conditions restricts the drift velocity for r→0: v(0) = 0.

It exludes solutions which become infinit for r→0. The solutions for the two differential

equations shall be continuous at r=a.
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Figure 2.4: Scheme of the one dimensional impurity transport description.

At the boundary radius rw, we have a steady influx of neutral impurities, which originate

from the plasma facing wall. The neutral flux density at rw shall be Γ0 and the total

rate for the influx of neutrals is Φ = 4π2rwRΓ0. The neutrals are ionised at a certain

radius due to electron collisions, where the radial shape of the source depends on the

electron density ne, the electron temperature Te, and the velocity distribution of the

neutral impurity. Here, we assume the most simple case, where all neutrals are ionised

at one fixed radius rs in the SOL: Q(r) = Γ0δ(r − rs). We will see, that the distance

of the radial source location to the LCFS ∆rs = rs − a is a crucial parameter for the

equilibrium density at the plasma edge.

They ions leave the plasma by parallel transport to the divertor or by perpendicular

transport. The parallel loss is just described by the volumetric loss term with time

constant τ‖, where τ‖ can be estimated from the ion sound speed and the connection

length to the divertor. Parallel loss time τ‖ and DSOL define the characteristic radial

decay length λSOL =
√
τ‖DSOL for the SOL. In a wide SOL, the radial density profile

would have an exponential decay with decay length λSOL for the case, where the source

in the SOL is zero. The perpendicular loss at the edge is given by the boundary condition

Γ⊥(rw) = DSOLn(rw)/λ. The boundary decay length λ is a mixture of two decay lengths,

which are encountered at the plasma edge. For locations with direct plasma wall contact,

there will be an impurity outflow on the order of Γ⊥(rw) = n(rw)vth, since all ions, which

hit the wall, recombine and can only return as neutrals. This leads to λ = DSOL/vth

with very small values around 0.1 mm. However, in the area between the limiting wall

components, perpendicular diffusion coefficient and parallel loss time to the limiter, will

yield a larger characteristic decay length λ =
√
τ‖,limDSOL on the order of 1 cm. The

average λ is close to the second choice for the usual situation with large gaps between the
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Figure 2.5: Radial density profiles in the SOL for different source radii rs at two

different diffusion coefficients DSOL. The common parameters are Γ0=5×1019 m−2s−1,

λ=1 cm and τ‖=2 ms. The density at the separatrix is highest for small ∆rs and small

DSOL. The profile inside the source radius is flat for ∆rs � λSOL, i.e. when the time

scale for perpendicular diffusion is small against the parallel loss time ∆r2
s/DSOL � τ‖.

limiting wall structures. A schematic visualisation of the 1D-model is shown in Fig.2.4.

The equilibrium density profile for this model is:

n(r) =





n(a) exp
(
−

a∫
r

v(r̃)
D(r̃)

dr̃
)

for r < a

n(a) cosh
(

r−a
λSOL

)
for a < r < rs

n(a) cosh
(

r−a
λSOL

)
− Γ0

λSOL
DSOL

sinh
(
r−rs
λSOL

)
for r > rs

(2.47)

with the density at the LCFS

n(a) = Γ0

(λSOL
Dsol

)λ cosh[(w −∆rs)/λSOL] + λSOL sinh[(w −∆rs)/λSOL]

λ sinh[w/λSOL] + λSOL cosh[w/λSOL]
(2.48)

Fig. 2.5 shows a few radial profiles for different source radii and two values of DSOL,

which differ by a factor of 4. The radial range just covers the SOL, while the den-

sity profile inside the separatrix will be discussed below. The common parameters

are Γ0=5×1019 m−2s−1, λ=1 cm, τ‖=2 ms, and w=5 cm. For the higher diffusion coeffi-

cient, the characteristic perpendicular transport time from source location to separatrix

∆r2
s/DSOL is small against the parallel loss time τ‖, such that parallel losses are neglegi-

ble and the profiles inside of rs are flat. For the lower diffusion coefficient, parallel losses

become important for larger values of ∆rs, where the density decreases considerably

towards the separatrix. The density at the separatrix is highest for lowest values of ∆rs

and DSOL, while for equal ∆rs, the factor of 4 increase of DSOL leads to about a factor

of 2 decrease of the separatrix density.

Several modifications of this results can be found in the literature, which are due to

a different choice of λ. For λ=0, we get the hard boundary result with n(rw)=0. For

λ = λSOL, the soft boundary case is obtained, which has w � λSOL. Finally, the case

with λ → ∞ would yield a situation without radial losses at rw. The density at the



26 CHAPTER 2. THE RADIAL IMPURITY TRANSPORT EQUATION

0.1 1.0 10.0
2DSOL (m /s)

0

1

2

3

4

n(
a)

 (1
0

18
m

-3
)

∆ra=4cm 
∆ra=3cm 

∆ra=2cm 

∆ra=1cm 

Figure 2.6: Separatrix density versus SOL diffusion coefficient: The parameters are

Γ0=5×1019 m−2s−1, λ=1 cm w=5 cm, and τ‖=2 ms. The separatrix density n(a) is plot-

ted for four different source locations ∆rs=1 cm, 2 cm, 3 cm, and 4 cm.

LCFS for first two cases are:

n(a) = Γ0
λSOL
Dsol





sinh[(w −∆rs)/λSOL]/ cosh[w/λSOL] for λ = 0

exp [−∆rs/λSOL] for λ = λSOL
(2.49)

For v(r) = 0, Engelhardt [20] derived the soft boundary and Post and Lackner [21] the

hard boundary result.

Fig.2.6 shows the dependences of n(a) on the diffusion coefficient in the SOL and on the

source radius. For low DSOL, n(a) is very sensitive to the radial distance of the source

to the separatrix ∆rs, while the dependence on ∆rs is weak at high values of DSOL. For

each ∆rs, there exists a maximum of n(a), which is at DSOL ≈ ∆r2
s/τ‖. For a plasma

with higher DSOL, also the electron density usually has a larger decay length in the

SOL. The higher electron density shifts the source radius towards the edge, such that

∆rs and DSOL increase simultaneously. Thus, an increasing DSOL should always lead to

a decrease of the separatrix impurity density at a given influx.

The goal of this section was to calculate the central density for a given influx and

the knowledge of n(a) would be sufficient, if there were no impurity drift velocities

in the confined plasma. For zero drift velocity v(r) = 0, the absolute value of the

diffusion coefficient inside the separatrix is completely irrelevant and the density on axis

equals the density at the separatrix: n(0) = n(a). However, the transport inside the

separatrix, is characterised by the presence of drift velocities, which leads under special

plasma conditions to strong density gradients inside the separatrix. The normalised

gradient at radius r < a depends on the ratio of drift velocity to diffusion coefficient:

(1/n)dn/dr = v(r)/D(r). Thus, the density on axis depends on a mixture of source

location, edge and core transport. Fußmann [19] first included the effect of drift velocities

inside the separatrix for the hard boundary case.
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Figure 2.7: Separatrix density versus SOL drift parameter vSOLλSOL/(2DSOL): For

the soft boundary case, the ratio of the separatrix density n(a) with drift to the density

without drift is shown for two source locations ∆rs/λSOL=1 and 0.5. Positive(negative)

values of κ denote an outwardly(inwardly) directed drift velocity.

Finally, we consider the effect of drift velocities in the SOL. For the soft boundary case,

the density at the separatrix for vSOL 6= 0 is given by.

n(a) = Γ0
λSOL
DSOL

1√
1 + κ2 + κ

exp [−∆rs(
√

1 + κ2 + κ)

λSOL
] (2.50)

with

κ =
vSOLλSOL

2DSOL

=
vSOL

2

√
τ‖

DSOL

(2.51)

Positive drift velocities (outward) lead to a decrease of n(a) while negative drift velocities

(inward) leader to higher values of n(a). Fig. 2.7 shows, that drifts in the SOL change

the equilibrium separatrix density by about a factor of 2, if vSOL≈DSOL/λSOL, e.g. for

τ‖=2 ms and DSOL=0.5 m2/s a drift velocity of DSOL/λSOL≈16 m/s causes a change by

a factor of 2.

2.2.4 Penetration and Particle Confinement Time

In section 2.2.1, it was found, that particle confinement time τp as given in Eq.(2.26) and

mean dwell time τd as defined in Eq.(2.30) are identical. Using Eq.(2.30), it is tempting

to approximate τp in the following manner

τp =

+∞∫

t′

Pa(t− t′)dt ≈
+∞∫

t′

Pa,max exp
(
−t− t

′

τ1

)
dt = Pa,maxτ1 (2.52)

This simplification leads to the interpretation, that a particle enters the confined plasma

with a penetration factor Pa,max, where it resides for a time τ1 before it is lost. τ1
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Figure 2.8: Equilibrium density profile and time evolution of Pa(t− t′) for four different

choices of diffusion coefficient and drift velocity (see text for parameters).

is the 1st characteristic eigentime and can eventually be determined from the decay

of spectroscopic signals after a short puff or laser blow-off of the considered impurity.

However, such an approach is only valid for order of magnitude approximations as will

be shown in the following example.

Fig.2.8 shows the numerical solution of the equilibrium density and the time evolution

of Pa(t − t′) for four choices of D and v. The same edge parameter as in Fig.2.6 are

used, i.e. w=5 cm, τ‖=2 ms and soft boundary conditions λ = λSOL. A radial δ-source

is located at ∆rs= 4 cm and the influx is set to Γ0=5×1019 m−2s−1 for the equilibrium

case. Case 1(black, solid lines) has constant diffusion coefficient D(r)=2.5 m2/s. For

the other three cases, the diffusion coefficient decreases to the centre. In the second

case (magenta, dashed lines) DSOL is set to 2.5 m2/s in the SOL, while case 3 (blue,

solid lines) and case 4 (red, dashed lines) incorporate an edge transport barrier with

DSOL=0.4 m2/s. Case 4 demonstrates the effect of an additional inward drift inside the

LCFS. According to Eq.(2.49), case 1 to 3 have almost equal densities inside the LCFS,

while for case 4 the density inside the radial region with inward pinch is increased by a

factor of ≈2. The plot of Pa(t− t′) shows that the assumption of a constant decay time

is crude. The legend gives the values of τp, Pa,max and τ1 and demonstrates that in this

example Eq.(2.52) is only valid within a factor of 1.4(case 4) to 3.4 (case 2).

2.3 Numerical Solution

The impurity transport equations (2.12) for the different ion stages of one impurity

species can only be solved numerically. Similarly, the solution of the transport equation
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for the sum of all ion stages (2.15) is only known, if the transport coefficients have simple

radial dependences, e.g. D(r) = const. and v(r) = var/a or D(r) = D0 + Da(r/a)2 and

v(r) = var/a. Therefore, computer codes, which provide a numerical solution of Eq.

(2.12) and (2.15) are indispensable.

A brief description of the preferred numerical schemes shall be given here. We use a

matrix notation for the Z transport equations (2.12) of all ion stages of an impurity

with atomic number Z.

∂~n

∂t
=

1

r

∂

∂r
r(D̂(r)

∂~n

∂r
− v̂(r)~n)− Ŝ~n− R̂~n + ~d

= D̂
∂2~n

∂r2 +
(D̂
r

+
dD̂

dr
− v̂
)∂~n
∂r
−
( v̂
r

+
dv̂

dr

)
~n− Ŝ~n− R̂~n + ~d (2.53)

~n is a vector in the space of of the ionisation stages containing the number densities of the

different ionisation stages. D̂ and v̂ are diagonal matrices with the transport coefficients

for each ion stage. Ŝ and R̂ are matrices with the ionisation and recombination rates,

i.e. the elements of Ŝ are the product of ne and the rate coefficients for electron impact

ionisation, while the elements of R̂ are the sum of the products of ne and the rate

coefficients for radiative and di-electronic recombination. Ŝ has a non-zero diagonal and

lower diagonal, while R̂ has a non-zero diagonal and upper diagonal. ~d has only one non-

zero element at Z = 1 and describes the source rate by ionisation of neutral impurity

atoms.

An unconditionally stable and effective discretisation method for diffusion-convection

equations is the Crank-Nicolson scheme. Here, the change of the density during the time

step ∆t from time point l to l+1, is calculated by taking the average values of densities

and spatial derivatives at the time points l and l+1 for the terms, which appear on the

right hand side of Eq.(2.53). With the notation

~nl+1/2 =
~nl + ~nl+1

2
(2.54)

the Crank-Nicolson scheme has the following form.

~nl+1 − ~nl
∆t

= D̂
∂2~nl+1/2

∂r2 +
(D̂
r

+
dD̂

dr
− v̂
)∂~nl+1/2

∂r
−
( v̂
r

+
dv̂

dr

)
~nl+1/2

− Ŝ~nl+1/2 − R̂~nl+1/2 + ~d (2.55)

An equidistant mesh of N radial grid points with radial step size ∆r shall be considered.

The spatial derivatives at mesh point k in Eq.(2.55) are replaced by the symmetric three

point formulas, which have a truncation error quadratic in ∆r.

[∂f
∂r

]
k

=
fk+1 − fk−1

2∆r
+

∆r2

6

[∂3f

∂r3

]
k

+O(∆r4)

[∂2f

∂r2

]
k

=
fk+1 − 2fk + fk−1

∆r2
+

∆r2

12

[∂4f

∂r4

]
k

+O(∆r4) (2.56)
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The truncation error of the finite difference formulation can be calculated by expanding

the densities and transport coefficients at the different nodes in a Taylor series and

forming the difference with the original transport equation. When expanding around

t+ ∆t/2 the truncation error reads.

~ECN =
∆r2

12

(
−D̂∂

4~n

∂r4
− 2
(D̂
r

+
dD̂

dr
− v̂
)∂3~n

∂r3
− 2

d3D̂

dr3

∂~n

∂r
+ 2

d3v̂

dr3
~n
)

+
∆t2

24

(∂3~n

∂t3
+ 3
(
Ŝ + R̂

v̂

r
+
dv̂

dr

)∂2~n

∂t2
− 3
(D̂
r

+
dD̂

dr
− v̂
) ∂3~n

∂r∂t2
− 3D̂

∂4~n

∂r2∂t2

)
(2.57)

The truncation error is quadratic in the radial and temporal step sizes.

We arrive at a linear system of N×Z algebraic equations, which yield the densities at the

new time point. The equation for the density of an ion stage at mesh point k contains the

densities of the neighbouring radial mesh points as well as the neighbouring ion stages.

Thus, the difference formulation is rather similar to that of a two-dimensional transport

equation. The coefficient matrix of the linear system can be ordered such, that it has

tridiagonal form plus additional terms that are displaced from the main diagonal by the

number of ion stages Z which result from ionisation and recombination. An iterative

solution of the matrix equation has been used by Behringer [22]. To this end the full

matrix equation is split into Z matrix equations on the number of radial mesh points

which are solved with the fast Thomas-algorithm. These Z matrix equations are solved

in ascending order of the ion charge and the densities of the lower charge state at the

time point l+1 are known for the calculation of the time-centred ionisation rate into the

present charge state. The time-centred recombination rate into the present charge state

uses the density of the next higher charge state at l + 1 as calculated by the preceeding

iteration step. Hulse [23] used an implicit treatment, which leads to a system of equations

with a matrix of identical rank and structure, which he directly inverted.

An alternative method has been proposed by Lackner et al [24]. Here, the densities

and radial derivatives of the transport part are again treated like in the time-centred

Crank-Nicolson scheme, however, for the ionisation and recombination part an alter-

nation between an implicit and explicit method is chosen. Thus, there is a time step

which calculates the ionisation rate per volume with the density ~nl+1 (implicit) and the

recombinations with the densities ~nl (explicit)

~nl+1 − ~nl
∆t

= D̂
∂2~nl+1/2

∂r2 +
(D̂
r

+
dD̂

dr
− v̂
)∂~nl+1/2

∂r
−
( v̂
r

+
dv̂

dr

)
~nl+1/2

− Ŝ~nl+1 − R̂~nl + ~d (2.58)

followed by a time step where ~nl+1 is used for the recombinations and ~nl for the ionisa-

tions.

~nl+1 − ~nl
∆t

= D̂
∂2~nl+1/2

∂r2 +
(D̂
r

+
dD̂

dr
− v̂
)∂~nl+1/2

∂r
−
( v̂
r

+
dv̂

dr

)
~nl+1/2

− Ŝ~nl − R̂~nl+1 + ~d (2.59)
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The method is again unconditionally stable [24] and has the great advantage to lead to

Z tridiagonal matrix equations on the number of mesh points, which can very effectively

be solved using the Thomas-algorithm. For the first time step Eq.(2.58), the equations

are solved in increasing order of the charge state, so that the densities of the lower

charge state at the new time point l+1 are known when needed for the calculation of the

ionisation source into the present charge state. For the second time step Eq.(2.59), the

equations for the charge states are solved in decreasing order since the recombination

source with the densities at the new time point are now needed.

The truncation error of the two steps

~E1 = ~ECN +
∆t

2
(Ŝ − R̂)

∂~n

∂t

~E2 = ~ECN −
∆t

2
(Ŝ − R̂)

∂~n

∂t
(2.60)

are similar to the time-centred scheme, however, additional terms linear in ∆t appear,

which change sign from step to step. The numerical solution is found to oscillate from

time step to time step and has to be taken after an even number of time steps. A detailed

treatment of the discretisation scheme (2.58) and (2.59) can be found in App.(A).

At the inner boundary, the plasma axis, a vanishing density gradient and zero drift

velocity are requested. For r → 0 the transport equations reads.

∂~n(r = 0)

∂t
= 2D̂

[∂2~n

∂r2

]
r=0
−
(

2
[dv̂
dr

]
r=0

+ Ŝ + R̂
)
~n(r = 0) + ~d (2.61)

Here, the second derivative of the densities is replaced by 2(~n1 − ~n0)/∆r2, while the

gradient of the drift velocities at r = 0 has to be approximated with the asymmetric

two-point formula. Dirichlet boundary conditions at the outermost grid point are easily

incorporated by setting the density of the last grid point to the given value. More

commonly, a decay length λ is used as boundary condition. In order to maintain a second

order truncation error in the radial step size, this boundary condition is implemented

with the symmetric three point formula using the fictitious grid point N + 1, i.e.

∂~n

∂r
=
~nN+1 − ~nN−1

2∆r
= −~nN

λ
(2.62)

The densities ~nN+1 are then replaced by ~nN−1 − (2∆r/λ)~nN in equations (2.55), (2.58)

and (2.59) respectively.

The numerical implementation usually uses a non-uniform mesh of radial grid points.

Close to the last closed flux surface, strong gradients of electron temperature and density

appear, which can have decay lengths as low as a few mm. The electron temperature

might rise from a few eV to 1 keV within 2 cm and strong gradients in the densities of

the different ionisation stages can be present. Therefore, the radial step size used in

the numerical calculations needs to be around 1 mm in the boundary region, while in



32 CHAPTER 2. THE RADIAL IMPURITY TRANSPORT EQUATION

the central part of the plasma a grid resolution around 1 cm is usually sufficient. It is

advantageous to change the radial grid spacing from centre to edge in order to keep the

number of radial mesh points as low as possible. The mesh points shall be equidistant

in the coordinate ρ = ρ(r) and a possible choice is for instance.

ρ =
r

∆rcentre
+
redge
k + 1

( 1

∆redge
− 1

∆rcentre

)( r

redge

)k+1
(2.63)

This choice produces a radial step size ∆r which decreases from ∆rcentre at the axis to

∆redge at the boundary.

∆r =
[ 1

∆rcentre
+
( 1

∆redge
− 1

∆rcentre

)( r

redge

)k]−1

(2.64)

Transformation of the transport equation to ρ yields for the radial derivatives ∂/∂r =

ρ′∂/∂ρ and ∂2/∂r2 = ρ′2∂2/∂ρ2 + ρ′′∂/∂ρ. Using the symmetric three point formulas

for the ρ derivatives leads to an increase of the truncation error as compared to uniform

grids [25, 26], however, the increase is small as long as the change of ∆r for two adjacent

grid intervals, i.e. d2r/dρ2 = −ρ′′/ρ′2, is low. It is appropriate to keep the change of ∆r

below ±10%.

2.4 Two Chamber Recycling Model

After the impurity source is stopped, the density has initially a faster decrease, which

eventually turns into an exponential decay with a longer single time constant τd. It

was found in section 2.2, that this decay time τd equals the longest eigentime τ1 of the

transport equation, which depends on the radial transport parameters. A decay with

τ1 can only be observed for non-recycling impurities, such that the inflow of neutral

impurities is really stopped, when switching off the external source. For the light rare

gases helium and neon, which completely recycle from the vessel walls as neutrals, the

situation is very different, and τd usually is much longer than τ1. The main bottle neck

for the density decay is the transport to the pumped volume and to the pump duct.

Here, the divertor configuration can achieve the highest values for the retainment of

the impurities in the pumped volume. The achievable pumping efficiency depends on a

number of parameters: the speed of the pumping system, the neutral main ion density

in the pumped volume, the probability, that an impurity, which recycles at the divertor

plates, reaches the pumped volume, the plugging of the pumped volume by the divertor

plasma, i.e. the probability for an impurity in the pumped volume to reach the main

plasma through the divertor fan, and finally the size of possible bypasses. It is especially

important to understand these transport paths for helium, since the global confinement

time τ ∗He of helium is a crucial parameter for the realisation of a burning fusion plasma

as discussed in section 1.2.
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The key parameters, which describe the puming efficiency, are usually calculated with a

simple two chamber model, where the vessel is split into the main plasma volume Vmain

and the pumped volume Vdiv [27, 28]. The impurity particles in the pumped volume are

neutral and the pumped particle rate Φpump = Sn0,div depends on the neutral impurity

density n0,div and the pumping speed S. After a characteristic time τpump = S/Vdiv,

neutrals within Vdiv are pumped out. The characteristic pump time shall be long against

the characteristic time scales τmain→div and τdiv→main for particle exchange between the

two chambers. With an impurity source rate Φ in the main chamber, the rate equations

for the particle inventories in both volumes reads.

dNmain

dt
= − Nmain

τmain→div
+

Ndiv

τdiv→main
+ Φ

dNdiv

dt
=

Nmain

τmain→div
− Ndiv

τdiv→main
− Ndiv

τpump
(2.65)

This system has a fast eigentime τeq for equilibration between the two chambers and a

slow eigentime τd, which equals the characteristic decay time after the source is stopped.

With the above assumptions τpump � τmain→div , τdiv→main these time constants are.

τeq =
τmain→divτdiv→main
τmain→div + τdiv→main

τd = τpump

(
1 +

τmain→div
τdiv→main

)
(2.66)

In equilibrium, the ratio of time constants for particle exchange between the two volumes

governs the relative population in the two chambers.

N eq
main

N eq
div

=
τmain→div
τdiv→main

=
τd

τpump
− 1 (2.67)

The global confinement time τ ∗ is defined by the total equilibrium inventory for a given

source rate Φ, where Φ has to be equal to the removal rate N eq
div/τpump.

τ ∗ =
N eq
main +N eq

div

Φ
= τpump

N eq
main +N eq

div

N eq
div

= τpump

(
1 +

N eq
main

N eq
div

)
= τd (2.68)

Thus, the global confinement time τ ∗ can be determined from the decay time τd, if the

equilibration between the two chambers is fast against the pump time. It depends on the

pump time constant and the ratio of the inventories in the two chambers. A quantity,

which is more general, since it does not depend on the used pumping speed, is the

compression factor C, which is the ratio of divertor neutral density to the average plasma

bulk ion density. This quantity is not easily measured directly since the determination

of the mass resolved neutral impurity density in the pumped volume is quite difficult

[29, 30, 31]. Equation (2.67) can be used to estimate the compression factor from the

decay time.

C =
n0,div

nion,main
=

Vmain
Sτd − Vdiv

(2.69)
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Finally, the compression factor of helium should not be too small compared with the

compression of deuterium and tritium in a fusion reactor, since this would necessitate

a large throughput of the hydrogen isotopes in the tritium-recycling unit. Thus, the

enrichment factor η is another important parameter to characterise the helium transport.

For deuterium plasmas it is defined as.

η = C
nmaine

2ndivD2

(2.70)

For an acceptable D-T throughput, the helium enrichment factor ηHe should exceed 0.2

in a fusion reactor [32].

2.5 Radial Transport and Charge State Distribution

The charge state distribution in a tokamak plasma is mainly determined by the radial

profile of the electron temperature with typical values of 1-20 keV in the centre and a

few eV in front of the plasma facing wall components.

For negligible transport, the ion stage distribution reflects a balance of the respective

rates for ionisation and recombination. The most important reactions are ionisation by

electron impact, radiative and di-electronic recombination. Three body recombination

can be neglected due to the low electron densities, while charge exchange reactions from

neutral hydrogen to impurity ions can open a further recombination channel in the edge

plasma. For balanced reaction rates, the ratio of the densities of two adjacent ionisation

stages is.
nz+1

nz
=

neSz
neαz + nHαcxz

(2.71)

The ionisation rate coefficients Sz has the strongest dependence on the electron temper-

ature Te and governs the temperature dependence of the above balance. Ionisation by

electron impact can only occur, when the colliding electron has a kinetic energy above

the ionisation energy Eion,z. The ionisation energy of the ions is roughly proportional to

(Z + 1)2 and highly charged ions can only be produced in the hot core of the plasma,

while lower charge states exist already in the colder edge plasma. Thus, the fractional

abundances fz = nz/
∑

z nz of the ion stages form radial shells, and each ion stage occu-

pies a certain radial shell, where the ratio of plasma temperature and ionisation energy

is on the order of 1. For low-Z elements, the innermost shell extends up to the axis and

contains the fully ionised element.

For the case of argon in a typical ASDEX Upgrade H-mode plasma, the distribution

due to the reaction balance is shown in Fig.2.9[b]. The radial coordinate is not linear

and has a higher resolution at the edge as used in impurity transport calculations (see

previous section). Te and ne are depicted in Fig.2.9[d]. In the radial range of the H-

mode transport barrier, Te drops within 2 to 3 cm from around 1 keV to below 100 eV.
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Figure 2.9: Equilibrium profiles of the ion stage distribution of argon for Te- and

ne-profiles of a typical H-mode plasma in ASDEX Upgrade. Figure [a] is the solution

of the coupled impurity transport equations with transport coefficients as depicted in

Fig.2.8(case 4). The equilibrium distribution assuming local balance of the ionisation

and recombination reactions is shown in [a]. Fig.[c] displays the mean ion charge for the

two cases.

The steep temperature gradient causes a steep gradient of the mean charge 〈Z〉 of argon

(Fig.2.9[c]). Ions with a rare gas like electron shell (He-like,Ne-like) are very stable and

occupy an especially wide radial shell.

Due to the radial transport the local balance of the ionisation/recombination reactions

can not be established in all parts of the plasma, since the characteristic equilibration

time can become long compared to the characteristic transport time, with which the

ions move up and down the electron temperature gradient. This is especially true for

the edge region, where the electron temperature has steep gradients. Ions can travel a

considerable distance into a region with higher/lower electron temperature before they

are further ionised/recombined. Similarly, ions do not recombine to very low charge

states or neutral atoms in a thin cold edge plasma and finally hit the plasma facing

walls, where recombination and eventual release as neutral atom can take place. Thus,

the shell of a certain ion stage becomes radially more extended compared to the case

of local ionisation/recombination balance and is shifted further inward. For the above
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Figure 2.10: Temporal evolution of the ion stage distribution of argon at r=0.45 m after

switching on the neutral edge source. Te- and ne-profiles are the same as in Fig.2.9[d].

The left graph shows the solution of the coupled impurity transport equations with

transport coefficients as depicted in Fig.2.8(case 4). The mean ion charge reaches the

equilibrium value with a few ms delay compared to the solution of the pure rate equations

without transport (right graph).

example of argon, the impurity transport coefficients of Fig.2.8(case 4) were used in the

impurity transport code and the resulting ion stage in temporal equilibrium is shown

in Fig.2.9[a]. The fractional abundances with transport can very well be approximated

by the previous solution of Fig.2.9[b] for radii inside of r ≈ 0.5 m, however, in the edge

plasma and in the steep gradient region the charge distribution is very different and

dominated by transport effects. The different radial shells have a much stronger overlap

and the mean charge is also modified (Fig.2.9[c]). It should be mentioned, that the

fractional ion abundances shown in Fig.2.9[a] are not only influenced by the transport

coefficients, but also by the impurity source and source location as will be shown below.

In this example, a temporally constant influx of neutral atoms from the edge radius was

used, which yields a fuelling of the singly ionised ions close to the edge.

The time constants for reaching an equilibrium charge distribution are of practical im-

portance, when analysing impurity transport experiments, where the impurity density

evolution after the injection of impurities is used to deduce transport coefficients. The

temporal evolution after the start of an impurity source depends on the reaction rates,

with which a neutral atom is ionised into higher charge states, and on the characteristic

transport time, with which the ions reach the hot core of the plasma, so that they can

be ionised to higher ionisation stages. Both effects can be separated, when first consid-

ering a neutral atom at a certain radius in the hot plasma core, which is thought to be

fixed at that radius and just subject to ionisation/recombination collisions. Thus, we

solve the coupled reaction equations starting from the neutral atom at this radius. The
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Figure 2.11: Temporal evolution of the ion stage distribution of argon at r=0.61 m

after switching off the neutral edge source. The low charge states disappear within a

characteristic transport time and are not fed by recombination from higher charge states.

resulting time evolution can then be compared to the full solution including transport.

Such a comparison is shown in Fig.2.10. For the same plasma paramters as used for

Fig.2.9, the evolution of the charge distribution after the start of a constant Ar influx

was calculated. On the left hand side, the charge state abundances from the transport

calculation is shown for r = 0.45 m. The left graph compares the evolution of the mean

charge with the solution of the pure rate equations. 〈Z〉 of the pure reaction equations

reaches the equilibrium after ≈2 ms. This time is dominated by the ionisation rates of

the highest reached charge states, which have the lowest rate coefficients. As expected,

〈Z〉 of the full solution including transport reaches the equilibrium value with a delay

compared to the solution of the pure reaction equations.

Strong deviations from the charge distribution due to pure reaction balance were found in

the edge plasma. The cause for these deviations can further be elucidated by considering

the case where the constant influx of impurities is suddenly stopped. At r = 0.61 m, the

calculated charge distribution of argon after the end of the influx is shown in Fig.2.11.

All the lower charge states up to a charge of Z=12 disappear from the edge plasma within

a characteristic transport time, which is determined by the parallel and perpendicular

losses. After this time, only higher ionisation stages, which diffuse out of the plasma

core exist in this region. These charge states do not recombine to lower charge states

than Z=13 before they are transported out of the edge plasma. Outflowing impurity

ions never reach the low charge states before leaving the plasma. Thus, the low charge

states at the plasma edge, which we previously found for the equilibrium with constant

Ar influx (Fig.2.9[a]), are just fed by the inflowing ions. Their equilibrium distribution is

just determined by the neutral influx, the ionisation rate profiles and the transport coef-
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ficients. This effect is used in the determination of impurity influxes from spectroscopic

measurements of line radiation from low lying charge states. It should be mentioned,

that the charge distribution in Fig.2.11 does not include the effect of neutral argon recy-

cling from the wall, which will always produce a population of low charge states in the

edge plasma.



3. Transport Processes

A given charged particle is subject to fluctuating forces due to the movement of the

other charged particles in the plasma, which cause fluctuations of the electric and mag-

netic field. We distinguish the fluctuations and the according transport by their length

scale. For fluctuation with length scales below or equal to the Debye shielding length

λD we speak of Coulomb collisions and collisional transport respectively, while plasma

fluctuations with length scales much larger than λD cause turbulence and anomalous

transport.

• Coulomb collisions between unlike ions cause radial displacements of the colliding

ions and lead to diffusive and convective transport. In the magneto-hydrodynamic

treatment, the Coulomb collisions lead to friction forces acting on the centre of

mass velocity of the considered ion fluid. Friction forces, which are perpendicular

to the magnetic field and the gradients of density and temperature, lead to classical

transport, while neoclassical transport is due to parallel friction forces, where the

latter are a consequence of the toroidal geometry. Collisional transport sets a lower

limit to the transport coefficients.

• Tokamak plasmas always show the presence of a broad spectrum of fluctuations

in plasma density, temperature, and electromagnetic fields. The fluctuations have

a scale, which is small compared to the size of the plasma but large compared to

λD, and a frequency, which is small compared to the plasma frequency ωpe. These

fluctuations arise from micro-instabilities which are essentially driven by the radial

temperature and density gradients. The associated turbulent transport has little

influence on the transport parallel to the field lines. However, turbulence is often

the predominant mechanism for transport in the radial direction.

3.1 Collisional Transport

The exact derivation of the collisional transport coefficients is very complex and outside

the scope of this work. Especially for many component plasmas, closed formulas can

only be achieved when using several approximations. Thus, only a simplified treatment

39
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will be given complemented by numerical results. A detailed mathematical treatment of

collisional impurity transport can be found in Ref.[33]. Furthermore, Ref. [34, 35, 36]

are recomended.

We consider the equation of motion for the centre of mass velocity ~ua of species a with

charge qa and mass ma.

mana

(∂~ua
∂t

+ (~ua · ∇)~ua

)
= qana( ~E + ~ua × ~B)−∇pa −∇ · πa +

∑

b 6=a

~Fab (3.1)

where na is the particle density, pa is the pressure, πa the viscosity tensor, and ~Fab is

the friction force density exerted on species a by collisions with species b. If the velocity

distributions of both species are shifted Maxwellians, where the shift is small against the

thermal velocities va =
√

2kBTa/ma and vb =
√

2kBTb/mb, the friction term is simply

proportional to the difference of the centre of mass velocities.

~Fab = manaνab(~ub − ~ua) = −~Fba (3.2)

Here, νab is the frequency (collision frequency) for momentum transfer from species b

onto species a.

νab =
16
√
π

3(4πε0)2

1

ma

( 1

ma

+
1

mb

) q2
aq

2
b ln Λab

(v2
a + v2

b )
3/2

nb (3.3)

where ln Λab is the Coulomb logarithm. For equal temperatures νab simplifies to

νab =
4
√

2π

3(4πε0)2

√
mab

ma

q2
aq

2
b ln Λab

(kBT )3/2
nb (3.4)

mab = mamb/(ma + mb) is the reduced mass of particles a and b. For ion-ion collisions

the Coulomb logarithm is ln Λab = 30 − ln(ZaZb
√
naZ2

a + nbZ2
b /T

3/2) for na and nb in

[m−3] and T in [eV]. In the strong magnetic field limit, the collision frequency is much

smaller than the gyrofrequency ωca = qaB/ma and the Larmor radius ρa = va/ωca is

much smaller than the gradient lengths of density Ln and temperature LT .

δ =
νab
ωca
� 1 δ =

ρa
Ln,T

=
va

ωcaLn,T
� 1 (3.5)

Furthermore, we assume to be close to thermal equilibrium with ~ua being small against

the thermal velocity va. With these assumptions, the terms in Eq.(3.1) can be ordered in

powers of the small parameter δ and the lowest order terms determine the lowest order

of ~ua.

qana( ~E + ~u(0)
a × ~B)−∇pa = 0 (3.6)

while the first order of ~ua is given by.

qana~u
(1)
a × ~B = −

∑

b6=a

~Fab (3.7)
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The vector product with ~B yields the lowest order velocity perpendicular to the magnetic

field ~u
(0)
⊥a.

~u
(0)
⊥a =

~E × ~B

B2
− ∇pa ×

~B

qanaB2
(3.8)

It is the sum of the E×B-drift and the diamagnetic drift. The diamagnetic drift is

perpendicular to ∇pa and ~B and lies in the magnetic surface.

3.1.1 Classical Transport

Classical transport considers the transport due to friction forces perpendicular to ∇pa
and ~B. For ~F⊥ab, we apply the shifted Maxwellian approximation, and use in Eq.(3.2)

the difference of the zero order velocities (~u
(0)
⊥b−~u

(0)
⊥a). Since the E×B-drift is the same for

all species, only the difference of the diamagnetic velocities is leading to friction between

different fluids. Then ~u
(1)
⊥a follows from Eq.(3.7).

~u
(1)
⊥a =

1

qanaB2

∑

b6=a

~F⊥ab × ~B ≈ ma

qaB2

∑

b6=a
νab(~u

(0)
⊥b − ~u

(0)
⊥a)× ~B

=
ma

qaB2

∑

b6=a
νab(
∇pb
qbnb

− ∇pa
qana

) (3.9)

The first order velocity is in the direction of the pressure gradients and multiplication

with na delivers the flux density ~Γ⊥a = na~u
(1)
⊥a. The pressure gradients can be split

into the according density and temperature gradients and from ∇pa we get a term

proportional to ∇na. The proportionality factor is the classical diffusion coefficient Da
CL

for species a.

Da
CL =

makBT

q2
aB

2

∑

b6=a
νab =

1

2
ρ2
a

∑

b6=a
νab =

1

2
ρ2
aνa (3.10)

The classical diffusion coefficient is identical to the diffusion coefficient of a ’random walk’

with Larmor radius ρa as characteristic radial step size and a characteristic stepping

frequency νa. Da
CL is the sum of diffusion coefficients Dab

CL due to collisions with each

fluid b and for equal temperatures of of all species Da
CL has the following dependencies.

Da
CL =

∑

b6=a
Dab
CL =

4
√

2π

3(4πε0)2

1√
kBTB2

∑

b6=a

√
mab ln Λabq

2
bnb (3.11)

The diffusion coefficient is independent of the charge qa. The main contributions come

from collisions with ions, while friction with electrons can be neglected due to the small

electron mass.

The remaining terms in Eq.(3.9) lead to convective terms of the flux density, which

depend on the weighted sum of terms proportional to the density gradients ∇nb and
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terms proportional to the temperature gradient. It turns out, that the shifted Maxwellian

approximation is only sufficient to calculate these terms for the case of zero temperature

gradient. Since the friction force from Coulomb collisions is inversely proportional to

the square of the relative velocity, higher order moments of the velocity distribution

are important, which are neglected by the shifted Maxwellian approximation. In the

presence of a temperature gradient, the first order velocity distribution and the according

perpendicular friction force can be calculated from the Fokker-Planck-equation. For

equal temperatures the result is [34].

~F⊥ab = −manaνab

(∇pb
qbnb

− ∇pa
qana

− 3

2
kB∇T

[ mab

qbmb
− mab

qama

])× ~B
B2

= −~F⊥ba (3.12)

In this expression, the terms due to the diamagnetic drift are retained from the shifted

Maxwellian approximation, and an additional term proportional to the temperature

gradient appears, which is called the thermoforce. This term is due to the diamagnetic

heat flux,

~q
(0)
⊥a = −5

2

pa
qa

kB∇Ta × ~B

B2
(3.13)

which is obtained from the equation of motion for the second order moment of the velocity

distribution. For ion-ion collisions and same directions of ∇p and ∇T , thermoforce and

diamagnetic part have opposite direction for ma > mb and same direction for ma < mb.

Since the diamagnetic terms are unchanged, there are no alterations for the diffusion

coefficient and we get for the classical drift velocity ~vaCL.

~vaCL =
∑

b6=a
Dab
CL

qa
qb

[∇nb
nb
− ∇T

T

(3mab

2mb
− 1− qb

qa

(3mab

2ma
− 1
))]

(3.14)

The drift velocity contributions are proportional to the according diffusion coefficient

times the charge ratio qa/qb. Thus, transport becomes increasingly convective for ele-

ments with higher charge. The density gradient ∇nb causes a drift in upwards direction

of the gradient. When considering only fully ionised ions with Z ≈ m/2, the multiplier of

the ∇T/T term in Eq.(3.14) equals 1/2(1−mb/ma) being positive(negative) for ma>mb

(ma<mb). For heavy impurities, the ∇T term drives in the opposite direction of the

temperature gradient towards the plasma edge and this outwardly directed drift due to

the temperature gradient is called temperature screening.

The main effects leading to classical transport are summarised in the cartoon of Fig.3.1.

Impurity and hydrogen ions gyrate around the magnetic field which is directed into the

paper. Due to the density and temperature gradient, both species have a diamagnetic

velocity in the upwards direction, however, for impurities it is of smaller magnitude

due to the 1/q dependence. The difference in mean velocities causes a friction force on

the impurities in the upwards direction, which leads in the depicted case to a drift up

the impurity gradient. The temperature gradient might however cancel this effect since
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Figure 3.1: Classical transport from collisions between hydrogen and impurity ions is

due to the difference in the diamagnetic velocities, which causes friction forces perpen-

dicular to ~B.

collisions with the upwards rotating fast hydrogen ions are less effective compared to

collisions with the slow downwards rotating ions. For zero density gradient of hydrogen

and zero temperature gradient, the diamagnetic drift of hydrogen is zero and the friction

force on the impurity is always in the opposite direction of its diamagnetic velocity, which

gives rise to diffusive transport down the impurity density gradient.

Friction forces perpendicular to the magnetic field in the magnetic surface are not the

only cause for collisional transport. For the helical field lines in a tokamak, also parallel

friction forces generate due to their toroidal component a radial particle flux. We now

take a different approach which leads to an expression for the surface averaged radial

particle flux density. The result will serve to calculate the average classical diffusion

coefficient needed in the transport equation (2.12) and introduce the new terms, which

will be discussed in the next section.

The toroidal angular momentum balance is obtained from Eq.(3.1) by multiplying with

major radius R and unit vector in the toroidal direction ~et. It yields for the Lorentz

term

Rqana~et(~ua × ~B) = −qanaua,ΨRBp = −qanaua,Ψ|∇Ψ| = −qaΓa,Ψ|∇Ψ| (3.15)

where Γa,Ψ is the particle flux density perpendicular to the magnetic surface and Ψ is

the poloidal flux, which was used to express the poloidal magnetic field: RBp = |∇Ψ|.
All terms in Eq.(3.1), which contain the gradient of a scalar quantity, i.e. the pressure

and the part of the electric field, which is caused from a static potential, cancel due to

toroidal symmetry. The inertia terms are of second order in the small parameter δ and

can be neglected. The viscosity does not change the average toroidal angular momentum

on the flux surface 〈~etR∇ · πa〉 = 0. Thus, we are left with the toroidal component of
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the friction force Fa,t and the induced electric field Et, which determine the average

contravariant particle flux density 〈ΓΨ
a 〉 = 〈Γa,Ψ|∇Ψ|〉. In the radial transport equation

(2.12), r was used as flux surface label and the quantity of interest is 〈Γra〉 = 〈ΓΨ
a 〉(dr/dΨ)

with
dr

dΨ
=

1

Raxis

1

2πr

∮
dlp
Bp

(3.16)

For circular flux surfaces and large aspect ratio, it is dr/dΨ = 1/(RaxisBp). Thus, we

obtain

〈Γra〉 =
dr

dΨ

(
na〈REt〉+

1

qa
〈RFa,t〉

)
(3.17)

The toroidal components of induced electric field and friction force can be split into the

components parallel and perpendicular to the magnetic field.

~et =
Bt

B
~e‖ −

Bp

B
~e⊥ (3.18)

The perpendicular components yield the classical part of the particle flux.

〈Γra〉⊥ =
( dr
dΨ

) ( 1

qa

〈RBpFa⊥
B

〉
+ na

〈RBpE⊥
B

〉)
(3.19)

The term, which contains the perpendicular friction force leads to classical transport,

and the term with the perpendicular electric field causes the classical pinch velocity.

The classical pinch velocity ~uCL,pinch = −E⊥/B~er = −EtBp/B
2~er is small compared

with the other drifts, since only the small perpendicular part of the induced electric field

produces the radial inward drift. The gradients, which appear in the friction force Fa⊥

[see Eq.(3.12)] can be replaced by: ∇ = |∇Ψ| d/dΨ = RBp d/dΨ = RBp(dr/dΨ)d/dr.

Finally, the additional 1/B dependence of Fa⊥ has to be taken into account and we

obtain for the average diffusion coefficient from Eq.(3.10).

〈Da
CL|∇r|2〉 =

( dr
dΨ

)2〈R2B2
p

B2

〉makBT

q2
a

∑

b6=a
νab (3.20)

In the drift velocity of Eq.(3.14), we just have to replace Da
CL by 〈Da

CL|∇r|2〉 and the

gradients by d/dr.

3.1.2 Pfirsch-Schlüter Transport

Neoclassical transport is due to the parallel component of the friction forces. Eq.(3.17)

and Eq.(3.18) give the according averaged radial particle flux.

〈Γra〉‖ =
( dr
dΨ

) 1

qa

〈RBtFa‖
B

〉
(3.21)

(RBt) is constant on the magnetic surface and can be taken out of the surface average.

The parallel friction forces shall be calculated in a simplified manner by making use of
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the shifted Maxwellian approximation (3.2). To this end, the lowest order parallel fluid

velocity of all species needs to be known. It is coupled to the lowest order perpendicular

fluid velocities ~u
(0)
⊥a, where the coupling is due to the fact, that the ~u

(0)
⊥a are not divergence

free. For reasons of simplicity, we only discuss the diamagnetic velocity. It is smaller

on the inside and higher on the outside of the magnetic surface because of the inverse

proportionality to the magnetic field strength. Thus, the diamagnetic flows drive the

density on the magnetic surface towards an up/down asymmetry where the sign depends

on the magnetic field direction and the charge of the species. However, parallel flows

build up to counteract this tendency. In lowest order, the particle fluxes must have zero

divergence and since in lowest order the density is constant on the magnetic surface, the

lowest order flow velocities also must have zero divergence. The diamagnetic velocity

can be decomposed into a toroidal and a parallel part using Eq.(3.18).

~u
(0)
⊥a = −∇pa ×

~B

qanaB2
= − 1

qana

∂pa
∂Ψ

∇Ψ× ~B

B2
= − 1

qana

∂pa
∂Ψ

RBp

B
~e⊥

=
1

qana

∂pa
∂Ψ

(
R~et −

RBt

B
~e‖
)

(3.22)

The toroidal part is a rotation with constant angular frequency and has zero divergence.

In the parallel part, RBt is constant and the 1/B dependence causes a non-vanishing

divergence and the lowest order parallel velocity must cancel this part to guarantee

∇ · ~u(0)
a = 0.

~u
(0)
‖a = RBt

1

qana

∂pa
∂Ψ

1

B
~e‖ + Ca ~B

= RBt
1

qana

∂pa
∂Ψ

[ 1

B
− B

〈B2〉
]
~e‖ + ûa

B

〈B2〉~e‖ (3.23)

With the condition ∇ · ~u(0)
a = 0, the parallel flow is not completely determined, since

an additional flow ∝ ~B can be added because the magnetic field has of course zero

divergence: ∇ · ~B = 0. The constants Ca can be different for different species and lead

to parallel friction. It is advantageous to use a differently defined integration constant

ûa as is introduced in the second line of Eq.(3.23). It has the property, that the surface

average 〈 ~B~u(0)
‖a 〉 equals ûa. Only the part of the parallel velocity, which is proportional to

ûa, is influenced by viscous forces as will be shown below. With the shifted Maxwellian

approximation (3.2), we find two contributions to the transport from parallel friction.

〈Γra〉‖ =
( dr
dΨ

)
RBt

1

qa

〈Fa‖
B

〉

≈
( dr
dΨ

)2

(RBt)
2
[〈 1

B2

〉
− 1

〈B2〉
]mana

qa

∑

b6=a
νab

( 1

qbnb

∂pb
∂r
− 1

qana

∂pa
∂r

)

+
( dr
dΨ

)(RBt)

〈B2〉
mana
qa

∑

b6=a
νab(ûb − ûa) (3.24)
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F|| FII

Bp

Bp

Figure 3.2: The pattern of the Pfirsch-Schlüter fluxes originates from the variation of

the parallel flow velocity with the poloidal angle.

The first term in the sum is called the Pfirsch-Schlüter (PS) term, while the second

contribution from û is called the Banana-Plateau (BP) term.

The radial derivative of the pressure pa in the Pfirsch-Schlüter contribution contains the

derivative of the density na and the proportionality factor is the diffusion coefficient.

〈Da
PS|∇r|2〉 ≈

( dr
dΨ

)2

(RBt)
2
〈 1

B2
− 1

〈B2〉
〉makBT

q2
a

∑

b6=a
νab (3.25)

For the case of circular flux surfaces and in the limit of small inverse aspect ratio ε=r/R0,

the magnetic field averages in Eq.(3.25) can be approximated: RBt(dr/dΨ) ≈ q/ε,

1/〈B2〉 ≈ (1− ε2/2)/B2
0 and 〈1/B2〉 ≈ (1 + 3ε2/2)/B2

0 . In this limit, the Pfirsch-Schlüter

diffusion coefficient is a factor of 2q2 higher than the classical diffusion coefficient. This

factor can be understood by investigating the variation of the PS-fluxes with the poloidal

angle θ, which is visualised in Fig.3.2. The diamagnetic velocity depends on θ as u⊥ ≈
u0
⊥(1 + ε cos θ) and the PS-part of the parallel velocity is larger by a factor of 2q with a

poloidal dependence u‖ ≈ 2q cos θ u⊥= 2q cos θ(1 + ε cos θ) u0
⊥. For the classical fluxes,

mainly the toroidal field counts, while for the PS-fluxes, it is the poloidal field, which

gives an extra factor of Bt/Bp ≈ q/ε between the two fluxes. Thus, the poloidal variation

of the PS-flux is ΓPS ≈ 2(q2/ε) cos θ(1 + ε cos θ)2 Γ0
CL. The dominant term varies with

cos θ, which creates the main feature in Fig.3.2, i.e. the zeros of the radial flux on the

upper and lower part of the surface. However, this term does not lead to an average

radial flux. Only the term 2ε cos2 θ has a non-zero average ε, which results in the factor

2q2 in favour of the PS-flux.

Like in the classical case, the shifted Maxwellian approximation is not sufficient to ac-

count for all drift terms depending on the temperature gradient and higher order mo-

ments of the parallel velocity distribution have to be considered. The diamagnetic heat

flux from Eq.(3.13) has to be accompanied by a zero order parallel heat flux, which

assures divergence free total heat flux and introduces the same temperature screening

terms as known from the classical case. The parallel particle and heat fluxes do not
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completely remove the up/down asymmetry of density and temperature caused by the

diamagnetic flows. Since the variation of the temperature on the magnetic surface will

be different for species with different charge, energy can be transferred from one species

to another through collisions. This collisional coupling becomes important for high col-

lisionalities, i.e. when the collision times are much shorter than the transit time on the

flux surface. As a consequence, the larger temperature variations of high-Z impurities

are reduced together with the parallel heat flux and the temperature screening in the

high collisionality regime is reduced. This effect will be seen below in the numerical

solutions of Pfirsch-Schlüter transport.

3.1.3 Banana-Plateau Transport

For the Banana-Plateau term in Eq.(3.24), ûa has to be calculated for each species. It

can be determined from the surface averaged force balance along the field lines. We

obtain from Eq.(3.1) by multiplication with ~B

〈B(∇ · πa)‖〉 = 〈BFa‖〉 (3.26)

where we neglected the small contribution due to the induced electric field. The viscosity

tensor describes the deviation of the velocity distribution from spherical symmetry, i.e.

the anisotropy of the pressure parallel and perpendicular to the magnetic field.

πa = (p‖a − p⊥a)
(
~e‖~e‖ −

1

3
I
)

(3.27)

The anisotropy of the pressure varies in the poloidal direction of the flux surface, which

leads to a damping of the poloidal flow velocity.

The anisotropy results from the motion of the species in an inhomogeneous magnetic

field. Collision free particles, which travel from the outside of the torus to the inside,

gain perpendicular kinetic energy W⊥ on the cost of parallel energy W‖ due to the

conservation of kinetic energy and the adiabatic invariance of the magnetic moment

∝ W⊥/B. Particles, which start on the outside of the magnetic surface with B = Bmin,

can only pass the high field side with B = Bmax, if the ratio of parallel to perpendicular

energy at the low field side is high enough. Otherwise, they are reflected on the high field

side and become trapped particles, which move back and forth on the low field side. The

velocity space is thus divided into the region of passing particles and trapped particles.

v2
‖
v2
⊥

(
B = Bmin

)



> Bmax

Bmin
− 1 for passing particles

< Bmax
Bmin

− 1 for trapped particles
(3.28)

with (Bmax/Bmin)−1 ≈ 2ε for the case of high aspect ratios. In the same limit, the frac-

tion of trapped particles is nt/n ≈
√
ε(1.46− 0.46ε). The orbits of trapped particles are
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counter co

Figure 3.3: Poloidal projection of particle orbits for trapped and passing neon ions

(Bt=2 T, q=1.5, Ti=2 keV, ε=0.18) which start in opposite direction on the same radius

at the low-field side of the torus.

stronger influenced by the vertical torus drifts (∇B-drift and centrifugal drift). Fig.3.3

depicts the poloidal projection of the orbit for trapped and passing ions, which start from

the same position on the low field side with opposite parallel velocity. The orbits of the

trapped particles (the so called banana orbits) show wider excursions from the magnetic

surface than the orbits of the passing particles. The width of the banana orbit wB on the

outside of the orbit is highest for barely trapped particles, i.e. for particles, which have

parallel velocity v‖ ≈ v⊥
√

2ε and are reflected at θ = π. It is wB ≈
√
ερp, where ρp is

the Larmor radius evaluated with the poloidal magnetic field Bp. The passing particles

only have a maximum displacement ∆rmax ≈ ερp from their average radius. Trapped

ions travel along the orbit such, that they move in the direction of the electric current,

when they are on the outside (co) and against the current on the inside (counter) of the

banana (for electrons the direction is reversed). Thus, we find a similar effect on the

parallel flow velocity (and the parallel heat flow) as was obtained for the perpendicular

flow due to the gyro-motion of the ions (Fig.3.1). In the case of constant temperature,

a radial density gradient causes due to the gyro-motion a diamagnetic particle flux of

order ρava∇na, and here the analogous parallel particle flux on the outside of the flux

surface is of the order of wBv‖a∇nt,a.

nt,au‖ ≈ ε3/2
∇pa
qaBp

(3.29)

The passing particle orbits in Fig.3.3 suggest, that for this class of ions, there also exists

a parallel flow velocity due to radial pressure gradients. However, the extra parallel

velocities on the low-field side and the high-field side are in opposite direction and cancel

when averaging over the magnetic surface. There is a more indirect effect on the passing

particles, which are accelerated by scattering of trapped particles into the passing domain

of the velocity distribution.
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The evolution of the velocity anisotropies along the flux surface, which we just described

for collisionless particles, are of course counteracted by pitch angle scattering, which

drives the energy ratio back towards the spherical symmetric value W⊥ = 2W‖. The

strength of the anisotropy will be low if the collision time is small compared to a typical

transit time to travel from the outside to the inside of the torus. The collisionality ν∗a

ν∗a =
qR0

va
ε−3/2

∑

b

νab =
νaqR0

va
ε−3/2 (3.30)

is used to distinguish the importance of collisions on the particle movement (here the

sum includes the term νaa). For ν∗a > ε−3/2, the collision time is shorter than the transit

time τT = qR0/va of a passing particle with thermal velocity va. For ν∗a < 1, even

trapped particles, which because of lower parallel velocity need the longer bounce time

τB = τT/
√
ε to complete their orbit, do not suffer from pitch angle scattering, which

would transform them to passing particles. To this end, the direction of the velocity

vector of a trapped particle only needs a turn of about
√
ε and since the effect of the

many small angle collisions in the plasma can be understood as a diffusion process in

velocity space, the effective collision frequency for this process has an increased value of

νa,eff = νa/ε, where νa is the frequency for turning the velocity vector by an angle of

order 1. The collisionality regimes are called the banana regime for ν∗a < 1, the plateau

regime for 1 < ν∗a < ε−3/2 and the Pfirsch-Schlüter regime for ν∗a > ε−3/2.

Coming back to Eq.(3.26), it can be shown from kinetic calculations [33], that the average

of the parallel viscous forces depends only on the poloidal component of the moments of

the asymmetric velocity distribution for the considered fluid. Only the term proportional

to the poloidal flow velocity u
(0)
p,a shall be taken into account, keeping in mind that terms

proportional to higher order moments like the poloidal heat flux are neglected.

〈B(∇ · πa)‖〉 = µa
u

(0)
p,a

Bp

〈B2〉 (3.31)

u
(0)
p,a/Bp is constant on the magnetic surface. µa is the viscosity coefficient of species a,

which depends on the collisionality ν∗a and thus on the densities and temperatures of all

species, however, not on fluid velocities or asymmetries of other species.

In the banana regime with low collisionality ν∗a � 1, the viscous force can be understood

from the collisions, which exchange particles between the trapped and passing domain.

Particles are lost from the trapped domain with the frequency νa/ε and accelerate the

passing particles. From the passing domain, only a fraction ≈ √ε of the collisions will

lead back into the trapped domain. With Eq.(3.29), the parallel force density of this

effect is.

mana
du‖a
dt

= ma
νa
ε
ε3/2
∇pa
qaBp

−manaνa
√
εu‖a

= −√εmanaνa
B

Bp

(
− ∇pa
qanaB

+
Bp

B
u‖a
)

(3.32)
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In the second line of Eq.(3.32), the poloidal components of the parallel velocities were

collected in the large brackets. Thus, the simple model leads to the same expression

of the viscous force as in Eq.(3.31) and the viscosity coefficient is µa ≈
√
εmanaνa for

ν∗a � 1.

In the Pfirsch-Schlüter regime with ν∗a > ε−3/2, particles move during a collision time

1/νa only over a small poloidal angle ∆θcoll ≈ vth/(qRνa) and the parallel velocity will

change by an amount.

v‖(∆θcoll) = v‖(0)

√
1 +

v2
⊥
v2
‖

1

B

dB

dθ
∆θcoll

≈ v‖(0)
[
1 +

v2
⊥

2v2
‖

1

B

dB

dθ
∆θcoll −

v4
⊥

4v4
‖

( 1

B

dB

dθ

)2
(∆θcoll)

2
]

(3.33)

When averaging over the whole species, only the term quadratic in ∆θ is non zero,

because half of the particles move in the positive and half in the negative θ direction.

The deviation from spherical symmetry of the velocity distribution will be small due to

the high collision frequency and v2
⊥/2v

2
‖ can be replaced by 1.

mana
du‖
dt
≈ mana(v‖(∆θcoll)− v‖(0))νa = −manav‖(0)

( 1

B

dB

dθ

)2(vth
qR

)2 1

νa
(3.34)

The viscosity coefficient is now ∝ ν−1
a and the viscous force decreases with increasing

collisionality. Thus, the viscosity coefficient will rise with νa in the banana regime, reach

a maximum and decrease with 1/νa in the Pfirsch-Schlüter regime. The same will be

found for the diffusion coefficient of the banana-plateau contribution.

We now continue with the determination of the ûa part of the parallel velocity. We replace

the poloidal velocity by the parallel and perpendicular components from Eq.(3.22) and

Eq.(3.23) using

~ep =
Bp

B
~e‖ +

Bt

B
~e⊥ (3.35)

and obtain from the averaged parallel force balance (3.26) a system of equations, which

determines the integration constants ûa.

µa

[
ûa − RBt

1

qana

∂pa
∂Ψ

]
=
∑

b6=a
manaνab(ûb − ûa) (3.36)

The û are functions of the viscosity coefficients, collision frequencies and the pressure

gradients and yield the radial particle fluxes from Eq.(3.24). The solution reads in the

most simple case of a pure plasma with hydrogen ions and electrons only.

〈Γri 〉BP =
( dr
dΨ

)2 (RBt)
2

〈B2〉
miniνie
e2

µie
µie +miniνie

(
− 1

ne

∂pe
∂r
− 1

ni

∂pi
∂r

)
(3.37)

The effective viscosity coefficient µie = µiµe/(µi + µe) equals the electronic viscosity

coefficient µe due to the large mass ratio. In the low collisionality regime ν∗e < 1, µe is
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proportional to the collision frequency µe ∝ meneνei = miniνie and the term with µie

in Eq.(3.37) becomes constant. For circular plasmas and small inverse aspect ratio, the

constant is ≈ √ε and another factor (q/ε)2 comes from the quadratic ratio of toroidal

and poloidal field. In the low collisionality limit, the BP diffusion coefficient of electrons

and ions is a factor of ≈ q2/ε3/2 over the classical value and thus the dominant term of

the collisional transport.

De,i
BP ≈

q2

ε3/2
mikBTνie
B2e2

=
q2

ε3/2
De,i
CL (3.38)

Inclusion of higher order moments, adds to Eq.(3.36) the appropriate terms due to the

the parallel friction and viscous force. Additionally, there will be a respective equation

for the parallel balance of the higher order moments. The higher order moments, i.e. the

effect due to the parallel heat flux, are necessary to calculate the temperature screening of

the BP transport, however, the calculation becomes very complex for a many component

plasma [37] and it is advantageous to calculate the transport coefficients numerically.

During the discussion of the trapped particle orbits, the influence of the induced toroidal

electric field has so far been neglected. It leads to a further neoclassical inward drift, the

so called Ware pinch [38]. When a collision free trapped particle moves in the co-current

direction, it is accelerated by the electric field, and the reflection point shifts towards the

high-field side. On the return branch in the counter-current direction, it has to travel

against the electric field and the reflection angle is closer to zero than without field.

Thus, the poloidal projection of the banana orbits, which were shown to be symmetric

to the equatorial plane in Fig.3.3, are actually turned by a certain poloidal angle θ (with

θ >0 for Fig.3.3). Since the particles do not stay equal times above and below the

equatorial plane, the radial movement towards and away from the magnetic axis due to

the vertical torus drifts is not exactly balanced and the projected orbits do not close on

itself, but show rather a small inwardly directed radial shift after the completion of each

bounce period. The radial movement of the banana orbits can also be understood from

the conservation of the canonical toroidal momentum.

pφ = maR
2dφ

dt
+ qaRAφ = maR

2dφ

dt
+ qaΨ = const. (3.39)

Here, dφ/dt is the toroidal angular velocity, Aφ is the toroidal component of the vector

potential, and Ψ is the poloidal magnetic flux. At the turning points of the banana, the

toroidal angular velocity is zero and all turning points lay on a surface with Ψ = const.

The movement of this surface of constant flux yields the movement of the banana orbit.

At a fixed point in space, Ψ is changing due to the induced electric field ∂Ψ/∂t = −REt

and the total time derivative is.

dΨ

dt
=
∂Ψ

∂t
+ ~vΨ ∇Ψ = −REt + vΨRBp (3.40)
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The radial velocity of the flux surface vΨ = (Et/Bp) is inwardly directed. Thus, the

single particle picture gives for all species an equal pinch velocity. Averaging over the

flux surface and multiplying with the total number of trapped particles gives the radial

flux density.

〈Γrware〉 = κwarenftrap〈
Et
Bp
〉 (3.41)

Here, κware is a collisionality dependent factor, which becomes zero for high collisional-

ities, i. e. when only a small part of the banana can be passed between two collisions.

For low collisionalities, κware is of order unity. The Ware pinch velocity is a factor of

(B/Bp)
2 ≈ 100 higher than the classical pinch velocity. It is important for the main

ion species, which has lowest collisionalities, while for the impurities the contribution is

usually small compared with the gradient driven pinch terms. It should be noted, that

a collisionless passing ion will just gain toroidal angular momentum at the same rate as

Ψ is changing locally, and the orbit does not move in space.

3.1.4 Overview of Collisional Transport Coefficients

In Eq.(3.17), it was found, that the average radial flux density 〈Γra〉 of species a is caused

by the toroidal component of the friction forces between a and all other species: 〈Γra〉 =∑
b〈Γrab〉 ∝ (1/qa)

∑
b〈RFab,t〉. ~Fab equals −~Fba due to momentum conservation and the

flux components satisfy qa〈Γrab〉 + qb〈Γrba〉 = 0. This balance of the radial fluxes assures

ambipolarity of the total flux:
∑

a qa〈Γra〉 = 0. The toroidal friction forces were split into

perpendicular and parallel components leading to the classical(CL), Pfirsch-Schlüter(PS)

and Banana-Plateau(BP) contribution and also the fluxes of each component alone are

balanced and thus ambipolar. Each contribution has a diffusive and a convective term

and for equal temperatures of all species one can write formally.

〈Γra〉 =
∑

x=CL,PS,BP

∑

b6=a
Dab
x

[
−dna
dr

+
Za
Zb

(d lnnb
dr

+Hab
x

d lnT

dr

)
na
]

(3.42)

The drift velocity of each contribution is proportional to the respective diffusion coef-

ficient multiplied with the ratio of the charge numbers Za/Zb. Balance of the fluxes is

reflected in the following symmetries for the diffusion coefficients Dab
x and the tempera-

ture gradient factors Hab
x .

Z2
anaD

ab
x = Z2

bnbD
ba
x

Hab
x

Zb
= −H

ba
x

Za
(3.43)

In Eq.(3.42), the contribution from electrons can be neglected due to the small friction

force. The impurity strength parameter α = Z2n2/(Z2
mn

2
m) can be used to judge the

importance of impurity-impurity collisions. Z and n are charge number and density
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of the impurity, while Zm and nm are the respective quantities for the main ion. In

the trace limit, where α � 1 for all impurities in the plasma, it is only necessary to

consider collisions with the main ion, while for α ≈ 1 collisions with impurities have to

be considered as well. In the second case, not only collisions with other impurities but

also between different charge states of one impurity contribute to the radial flux.

The impurity density profile in equilibrium from Eq.(2.47), which assumed no sources

inside the separatrix, did only depend on the ratio of drift velocity and diffusion coef-

ficient, i.e. 1/na(dna/dr) = d lnna/dr = v/D. In the trace limit, where only collisions

with the main ion need to be considered, we find from Eq.(3.42) the relation between

impurity density gradient and main ion density gradient in equilibrium.

d lnna
dr

=
d lnnm
dr

Za
Zm

(
1 +

∑
xH

am
x Dam

x∑
xD

am
x

d lnT

d lnnm

)
=
d lnnm
dr

Za
Zm

(
1 +Htotηm

)
(3.44)

Here, ηm denotes the ratio of normalised temperature gradient and normalised main

ion gradient and Htot =
∑

xH
am
x Dam

x /
∑

xD
am
x is the effective temperature screening

factor of all three contributions. For zero temperature gradient, the normalised impurity

density gradient is a factor Za/Zm steeper than the normalised main ion density gradient.

For non-zero temperature gradient, this factor is usually reduced, since ηm is positive

(same direction of both gradients) and Htot is negative. For the case of additional

purely diffusive anomalous transport with diffusion coefficient Dan, Eq.(3.44) has to be

modified with a factor, which gives the fraction of the collisional diffusion coefficient

Dcoll =
∑

xD
am
x in the total diffusion coefficient.

d lnna
dr

=
d lnnm
dr

Za
Zm

Dcoll

Dcoll +Dan

(
1 +Htotηm

)
(3.45)

Thus, the equilibrium impurity density profile is determined by the gradients of temper-

ature and of the main ion species via Dcoll and Htot in the case of additional anomalous

diffusion and only via Htot in the case of negligible anomalous diffusion.

In the following, results from the numerical code NEOART by A. G. Peeters are shown.

NEOART calculates the collisional transport coefficients for an arbitrary number of

impurities including collisions between all components. The velocity distribution is ex-

panded in the three first Laguerre polynomials of order 3/2, which are used to define

’velocities’. The first ’velocity’ is the mean particle velocity of the component, the second

proportional to the heat flow, while the third term in the expansion is not related to

well known quantities. For the neoclassical part, the code solves the set of linear coupled

equations for the parallel ’velocities’ in arbitrary toroidally symmetric geometry for all

collision regimes. The classical fluxes are given by Eq.(5.9) and (5.10) in Section [5.] of

Hirshman and Sigmar [33]. The equations for the banana plateau contribution are equal

to that used by Houlberg [37]. The Pfirsch-Schlüter contribution is calculated from the

coupled equations (6.1-2) and (6.14-15) of Hirshman and Sigmar [33], as described in
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Figure 3.4: Classical (label CL), Pfirsch-Schlüter (label PS), banana-plateau term (label

BP) and total value (label tot) of diffusion coefficient D and temperature screening factor

H for He2+ and Si+14 as a function of the temperature for a deuterium plasma with fixed

electron density ne=1020 m−3 and trace impurity density. Magnetic configuration is taken

from ASDEX Upgrade for a radial position with q=2.5 and ε=0.24. D and H is shown

versus the collisionality ν∗ of the impurity ion. The different collisionality regimes are

indicated.

Ref. [39]. It applies the reduced charge state formalism [33], which is the correct way to

merge the different charge states of one species, such that the matrices, which have to

be inverted are only determined by the number of species instead of all charge states of

the atoms.

Fig.3.4 shows the transport coefficients of He2+ and Si14+ in the trace limit in a deuterium

plasma. An ASDEX Upgrade equilibrium is taken with Bt=2.5 T and the considered flux

surface has q=2.5, ε=0.24, trapped particle fraction ftrap=0.62. The electron density is

ne=1020 m−3 and a pure temperature scan with Te=Ti is performed (see upper x-axis).

The data are shown versus the collisionality ν∗ of the respective species and the differ-

ently shaded regions indicate banana, plateau and Pfirsch-Schlüter regime. In the low

collisionality regime, DBP is the most important contribution, while the high collision-

ality regime is dominated by DPS. We also note, that He2+ is for most temperatures in

the banana regime. The regime limits of He2+ with respect to Si14+ occur at tempera-

tures, which are about a factor of 5 lower. In the lower graphs, the weight factors of the

normalised temperature gradient Hx of each contribution and the effective factor Htot

are depicted. HCL and HPS is always negative and has lower absolute value for He2+
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Figure 3.5: Radial profiles of collisional diffusion coefficient D, banana-plateau term

(dashed lines), total temperature screening factor Htot of He, Ar and W for an ITER-

FDR DT-plasma and an ASDEX Upgrade D-plasma with electron density ne=1020 m−3

and low impurity densities (trace limit). The lower graphs identify the collisionality of

the impurities and show the banana-, plateau-, and PS-regime at low, medium and high

collisionalities.

due to the lower mass. HBP is negative in the regime, where DBP is the dominant dif-

fusion contribution, and becomes positive for increasing ν∗. However, the effective value

Htot remains negative in all collisionality regimes. Deep in the PS-regime, we note the

reduction of HPS for Si14+ at highest collisionalities. This is due to the strong collisional

coupling of Si14+ and D+, which leads to energy transfer from Si onto D on the upper

and lower part of the flux surface. Thus, the temperature variation of Si14+ along the

flux surface and the according temperature screening term is reduced.

Fig.3.5 shows radial profiles of the trace limit transport parameter for the three im-

purities He, Ar and W in a large fusion reactor type tokamak plasma and in ASDEX

Upgrade being smaller by a factor of ≈5. The fusion reactor type plasma is taken

from the ITER-FDR design [40] with major radius R0=8.45 m BT=5.7 T, safety factor

q95=3, Ti(0)=32 keV and ne=1020 m−3 and the ASDEX Upgrade example has R0=1.65 m,

BT=2.5 T, q95=3.3, Ti(0)=2.5 keV and ne=1020 m−3. The fractional abundance of the
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ion stages has been calculated with STRAHL. On axis, the most abundand ion stages of

W are W+43 in AUGD and W+70 in ITER-FDR and Ar+17 in AUGD and fully ionised

Ar in ITER-FDR. The most pronounced differences in the two plasmas are due to the

differences of the collisionalities and the toroidal field. The collisionalities increase with

the radius due to the lower edge temperatures and are generally lower in the hotter

ITER-FDR plasma (lowest two graphs). Thus, the diffusion coefficient is dominated by

the BP-value (dashed lines) in ITER-FDR, while in AUGD this is only the case for the

lightest element He. The lower diffusion coefficients in ITER-FDR compared to AUGD

reflect the quadratic dependence on BT . The effective temperature screening factor

shows the same variation with impurity mass and varies with radius as expected from

the collisionality scan of Fig.3.4. Close to the axis, the standard neoclassical formulation

fails and the BP-values diverge, since the basic assumption of banana-width being small

against r is not fulfilled.

In the previous examples, the impurity densities were in the trace limit and only col-

lisions with the main ion species determined the collisional transport parameters. In

the example of Fig.3.6, the density of one impurity species, i.e. neon, is increased from

very low to high values of the impurity strength parameter αNe and we investigate the

equilibrium profiles of Ne and of a second impurity Fe, which has very low concentra-

tion. We assume purely collisional transport and the magnetic equilibirum is again taken

from an ASDEX Upgrade deuterium plasma. Neon is almost fully ionised for the consid-

ered electron temperatures around 1 keV and the impurity strength parameter is thus

αNe = Z2
NenNe/Z

2
DnD = 100nNe/nD. The electron density is ne = ZDnD + ZNenNe, and

αNe=3 yields a neon concentration cNe=nNe/ne of 2.3%. For αNe=0.4, the collisions

between Fe and Ne are as frequent as bewtween Fe and D: νFe,Ne = νFe,D. Fe has an

average charge number of Z≈20 at r/a=0.5 and Z≈22 on axis.

The electron density profile is given a Gaussian shape ne=ne(0)exp(−knr2) with

ne(0)=1020 m−3 and kn = (1/a) m−1, such that the gradient length at r/a=0.5 is L=1 m.

For very low densities of Ne, the deuterium profile is of course identical to ne and for

high neon densities the nD profile is calculated from the fixed ne profile and the impu-

rity densities using quasi-neutrality. The same Gaussian parametrisation is used for the

ion temperature Ti with three different choices for the peakedness parameter kT=0, kn

and 2kn. We thus study the effect of the temperature screening and for low impurity

densities, the ratio of the normalised Ti gradient and nD gradient is set to ηD=0, 1 and

2. Ti(0) is changed with kT such that Ti(r/a = 0.5) is 1 keV for all three choices of the

Ti profile. For high values of αNe, ηD increases from the starting values 1 and 2 due to

flattening of the deuterium profile.

The six graphs of Fig.3.6 show radial profiles of the Fe, Ne and D density at low (αNe = 0)

and high (αNe ≈ 3) Ne density for the cases with constant Ti (ηD = 0), low (ηD = 1)

and high (ηD = 2) Ti peaking. All densities are normalised to the density at r/a=0.5.
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Figure 3.6: Radial density profiles of Fe, Ne and D at low (αNe = 0) and high (αNe ≈ 3)

Ne density for the cases with constant Ti (ηD = 0), low (ηD = 1) and high (ηD = 2) Ti

peaking. Ne is almost fully ionised with Z≈10, and Fe has an average charge number

of Z≈20 at r/a=0.5 and Z≈22 on axis. All densities are normalised to the density at

r/a=0.5.

For ηD=0 and low Ne density, Eq.(3.44) yields, that the impurity profiles have a nor-

malised gradient which is Z times as steep as the normalised gradient of deuterium.

All profiles have a Gaussian shape and the central values are nD(0)=ne(0)=1.16ne(0.5),

nNe(0)≈1.1610nNe(0.5) = 4.4nNe(0.5) and nFe(0)≈1.1621nFe(0.5) = 23nFe(0.5). With

increasing αNe, the plasma becomes more and more diluted and the deuterium gradient

strongly decreases. For the highest value of αNe, we find only nD(0)=1.05nD(0.5) and

the peaking of Ne and Fe is strongly reduced. For Ne, the peaking is even 5% below

the expected value of nNe(0)≈1.0510nNe(0.5) = 1.58nNe(0.5) due to collisions with elec-

trons. The collision frequency with electrons is only ≈3% of the collision frequency with

deuterium ions, however, they induce an outward pinch via the normalised ne density

gradient, which is about 4 times the normalised nD gradient, and the exponent ZNe has

to be reduced by ≈10% due to the electron interaction. At αNe = 3, Fe collides mainly

with Ne and the normalised gradient of nFe consequently is ZFe/ZNe≈2.1 times the nor-

malised gradient of nNe. Disregarding the small electron effect, this is just the gradient

we would expect, when considering collisions with deuterium only, since the normalised
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nNe gradient is ZNe/ZD times the normalised deuterium gradient. Thus, the main effect

of the high neon density is the dilution of the deuterium profile, which still determines

the peakedness of Ne and Fe.

When turning on the temperature screening, the peaking of the impurity densities

is drastically reduced. The effective temperature screening factors at r/a = 0.5 are

HNeD
tot = −0.36 and HFeD

tot = −0.47. At low values of αNe, we obtain from Eq.(3.44) a

reduction of the normalised gradients by a factor of (1−0.36ηD) for Ne and (1−0.47ηD)

for Fe and for ηD=2, Fe has even lower normalised gradients at low values of αNe com-

pared to Ne. The temperature screening factors are lower for smaller radii, and the

ratios of the density on axis to the density at half radius are only approximated by

[nD(0)/nD(0.5)]Z(1−HηD). With increasing αNe, the dilution does not change the nor-

malised deuterium gradient as drastically as in the case without Ti gradient, however,

the remaining decrease of the normalised nD gradient increases ηD from 1 to 1.7 and 2 to

2.2 respectively. Thus, the effect of the dilution is twofold by lowering of the inward pinch

and increase of the temperature screening. In spite of that, the normalised gradient of Fe

at r/a = 0.5 increases with αNe in the ηD = 2 case. For the highest αNe, the transport

of Fe is dominated by the collisions with Ne and here ηNe and HFeNe
tot determine the Fe

profile. The normalised nNe gradient is larger than the normalised nD gradient and the

effective temperature screening factor is just HFeNe
tot = −0.21. Thus the normalised nFe

gradient passes the normalised nNe gradient. It is obvious, that this behaviour can not

be obtained, when considering only the collisions between Fe and the diluted deuterium,

as was the case for zero temperature screening.

3.2 Anomalous Transport

The term ’anomalous transport’ reflects the surprise, which was aroused by the finding,

that experimentally determined heat conductivities exceeded the neoclassical predictions

for the ions by one and for the electrons by two orders of magnitude [41]. Also the

diffusion coefficient of impurities can be several m2/s in the experiment, which is about

an order of magnitude above the neoclassical value. It is thought, that micro-instabilities

associated with drift waves are responsible for the observed level of transport [42]. Drift

waves are related with the drift motion across the magnetic field in inhomogeneous

magnetised plasmas. In the fluid description, the drifts are the diamagnetic drifts due

to the gradients of temperature and density, while in the particle picture, the equivalent

drifts are the ∇B- and curvature-drift.

From the many possible instabilities, temperature gradient modes seem to be the most

promising candidates to explain anomalous transport. The ion temperature gradient

(ITG) modes are held responsible for the thermal ion, and the electron temperature
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gradient (ETG) and trapped electron modes (TEM) for the thermal electron heat con-

duction [43]. Interaction between ITG and TEM can account for particle transport and

enhance ion heat conduction. A simple physics picture of the toroidal ITG driven insta-

bility shall briefly be discussed, while detailed treatments are outside the scope of this

work.

Consider a small plasma region on the torus outside as depicted in Fig. 3.7. The magnetic

field points into the plane of the paper, while the gradient of temperature and magnetic

field show towards the plasma axis. We assume an initial poloidal perturbation of the

ion temperature Ti. The ∇B and curvature drift for the ions, which is proportional to

(v2
‖ + v2

⊥/2) ~B × ∇B, is always directed upwards and varies with the ion temperature.

Thus, the ion density ni above the hot regions will be higher than the equilibrium value,

while below the hot region the density will be decreased. The perturbations of the

ion density cause the electrons to rearrange along the magnetic field line as to assure

quasi-neutrality. We assume here that the electron response is adiabatic, i.e. that

electron inertia can be neglected and that the electron distribution along the field line is

given by the Boltzmann distribution ne = n0 exp(eφ/kBTe), where φ is the electrostatic

plasma potential and n0 is the unperturbed density of ions and electrons. From the

quasi-neutrality condition we find in linear order, that the potential perturbations are

proportional to the density perturbations ñ/n0 = eφ̃/(kBTe). The associated poloidal

electric fields lead to an E×B-drift, which points away from the torus axis in the hot

region and towards the torus axis in the cold region. Hence, hot plasma from the inside is

transported towards the hot region and cold plasma from the outside towards the colder

region and the initial perturbation is increased. This enforcement of the temperature

perturbation by the E×B flows only happens on the outboard side of the flux surface,

while on the inboard side the direction of the equilibrium temperature gradient is reversed

compared to Fig. 3.7 leading to a drift of cold plasma towards the hot regions and

vice versa. The radial drift is the same for all plasma particles, since the E×B-drift is

independent of particle mass and charge.

For the calculation of the radial particle fluxes, it is essential to include the electron re-

sponse with greater detail. In the simplified treatment with adiabatic electron dynamics,

the time averaged radial electron flux density Γe = 〈ñeṽr〉 ∝ 〈ñeφ̃〉 is zero, since density

and potential perturbation are in phase. The particle fluxes have to be ambipolar and

in a pure hydrogenic plasma, also Γi has to be zero. Trapped electrons, which are con-

strained to limited regions at the outboard side of the magnetic field lines, are unable

to respond adiabatically to local variations of the electrostatic potential φ either leading

to an additional destabilisation of the ITG mode or the appearance of a new unstable

mode (TEM) in addition to the ITG mode [44].

The temperature gradient modes become unstable, when the temperature gradient pa-

rameter η = (d lnT/dr)/(d lnn/dr) is above a certain critical level. For flat density pro-
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Figure 3.7: The toroidal ITG instability: An initial perturbation of the ion temperature

causes poloidal density and potential gradients due to the ∇B- and curvature drift. This

leads to radial E×B-drifts, which increase of the initial perturbation on the low field side

of the torus while the initial perturbation is decreased on the high field side. (courtesy

of W. Sutrop)

files, η is usually replaced by the temperature gradient parameter µ = −(R/T )(dT/dr) =

R/LT with R being a fixed major radius, e.g. R of the magnetic axis, and LT being the

local temperature decay length. For R/LT above R/LT,crit, the drift wave turbulence

and the associated thermal flux becomes strong, such that the temperature gradient is

caused to relax back towards the critical gradient. The temperature gradient is thus

kept at the critical gradient, more or less vigorously depending on the strength of the

turbulence above the threshold. Additional heating power leads rather to an increase of

the anomalous thermal diffusivity than to an increase of the temperature gradients as

would be expected for a thermal diffusivity, which is independent on the temperature

gradients. This behaviour is termed temperature profile resilience or profile stiffness.

The critical temperature gradient and the strength of the turbulence depends on various

plasma parameters, such as magnetic shear, normalised pressure β, the ratio of electron

to ion temperature, the density gradient and the effective ion charge. Sheared velocity

flows associated to sheared radial electric fields play an important role. These can reduce

or even suppress the turbulence by de-correlating the turbulent eddies. For the H-mode

regime, it is widely accepted, that sheared ~E× ~B plasma rotation causes a local reduction

of the turbulent transport in a narrow zone just inside the separatrix leading to the large

temperature pedestals [45, 46]. In the plasma interior, turbulence suppression in internal

transport barriers (ITB) is only observed, when the magnetic shear is close to zero or

negative [47]. For the ion thermal diffusivity, an interplay of stabilisation by shear flows

and low magnetic shear are held responsible for the ITB, while in the electron channel,

mainly the magnetic shear counts and the effect of sheared flows are thought to be limited
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[48]. For H-mode or L-mode discharges without ITB and positive magnetic shear profiles,

the absolute value of the temperature gradient increases from the magnetic axis, where

the temperature gradient is zero, with increasing radius until it reaches the critical value

at a certain radius. Inside of the radius, at which the critical gradient is encountered,

transport is expected to be at the neoclassical level, while outside of that radius it

is anomalous and the transport coefficients increase with radius, since more and more

deposited heating power is transported to the outside at an almost constant temperature

gradient. Thus, the thermal diffusivities have a radial profile which increase with radius.

The radius, where transport becomes anomalous, shrinks when the centrally deposited

heating power is increased.

There are a number of transport models, which predict anomalous transport parameters

based on ITG/TEM physics, e. g. the IFS/PPFL [49], Weiland [50], and the GLF23 [51]

models. These models have been tested against experiments and found to predict anoma-

lous heat transport, i. e. the temperature profiles inside of the H-mode pedestal, with

an accuracy of about 20% [41, 52]. Particle transport has been explored only recently.

Comparisons with experimental density profiles inside of the H-mode pedestal, which

were mainly sensitive to the ratio of drift velocity and diffusion coefficient, indicate the

important role of the collision frequency of the electrons νei with respect to the growth

rate of the most unstable modes [53]. Model calculations of impurity transport parame-

ters can be performed with the Weiland model, however, comparisons with experimental

values have not yet started.





4. Experimental Methods

Various experimental methods can been applied to gain information about the radial im-

purity transport, namely the radial diffusion coefficient D(r) and the drift velocity v(r).

All methods use a perturbation of the impurity density distribution, which is fast with

respect to the characteristic profile equilibration time and a subsequent measurement

of the impurity density evolution in the plasma. The total impurity density profile in

equilibrium gives only information about the ratio v/D according to Eq.(2.47), since the

impurity sources are generally zero in the major part of the plasma. Towards the plasma

edge, also the width and position of the radial shells for individual impurity ions contain

information about the transport parameters (see section 2.5), however, this method has

rarely been applied.

Active changes of the density profile by gas puffing, pellet injection, or laser ablation can

be used as well as fast profile perturbations due to plasma instabilities like the sawtooth

instability or the edge localised mode (ELM).

4.1 Inducing Perturbations

Perturbative studies are mainly performed by sudden injection of the investigated impu-

rity, however, there are also a few other methods as discussed at the end of this section.

The amount of injected impurities has to be adjusted such, that the spectroscopic signals

for impurity detection are well measurable with the envisaged time resolution and that

the influence on the main plasma parameters like ne, Te and Prad is as low as possible.

Gas puffing is the easiest way to inject an impurity into the plasma. The method is of

course restricted to the elements, which are available in the gaseous state. Most of these

elements are recycling at the vessel walls, and the decay of the impurity density is in

most cases dominated by the effective pump time and not by the transport coefficients

in the confined plasma. However, the density build-up after the start of the injection can

always be used for determination of transport coefficients, as long as the investigated

radial range is not to close to the edge, where profile equilibration times will drop below

the timescale of the source function, i.e. below ≈10 ms. Nevertheless, gas injection using

flow rate controlled piezo-electric valves, is the best choice for a number of applications. A
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temporally constant concentration of a certain impurity is easily realised with a proper

pre-programmed or feedback controlled valve flow and can be used to investigate the

equilibrium impurity profile. Sinusoidally modulated puffs of H2S, SiH4 and HBr, were

used to determine transport coefficients of S, Si and Br from a harmonic analysis of

spectral line radiation [54], where the above elements have low recycling probabilities.

A similar approach using active charge exchange recombination spectroscopy was used

for He and Ne [55, 56].

The laser blow-off (LBO) technique allows to inject non-gaseous elements. Friichtenicht

[57] demonstrated, that high-power laser irradiation of a metal film-glass interface can

result in efficient vaporisation of the metal and the generation of a highly directional

burst of neutral atoms with kinetic energies in the 1-20 eV range. This method was first

applied by Marmar et al. [58] on the Princeton Adiabatic Compressor (ATC) tokamak.

First transport investigations using LBO of aluminium, were reported by Cohen et al.

[59]. The LBO method allows for short impurity injections with a duration around

100µs, i.e. a rather well controlled temporal form of the source function, which can

not be achieved with most of the gaseous elements due to the high recycling coefficient.

The ablated particles are composed of ions, neutral atoms and small atomic clusters

depending on the material, the energy density of the irradiating laser and the laser

wavelength [60, 58]. The film thickness(0.2-5µm) and the laser spot diameter(1-5 mm)

controls the amount of ablated particles, which is typically in the range of 1017-1018.

A Q-switched ruby laser with a pulse energy of 1-5 J at λ=694 nm is most frequently used.

Due to the low repetition frequency of this laser, only one LBO per plasma discharge is

performed. Higher flexibility was achieved with a Q-switched Nd:YAG laser with pulse

energy around 0.6J at λ=1064 nm and a repetition frequency of 20 Hz [61] and with the

XeCl excimer laser at λ=308 nm [60]. For multiple pulse operation, the optical system is

equipped with a fast steering mechanism for the laser beam, such that each laser pulse

hits a fresh surface of the target area.

Another alternative is the injection of small pellets into the plasma. In the most simple

case, these are solid pellets of the impurity, e.g. carbon [62] or iron [63], however, a

very large perturbation is induced by pure impurity pellets. Cryogenic hydrogen pellets

with a small admixture of neon [64] were used in the ASDEX tokamak, and pellets of

paraffin mixed with CaF2 were injected at DIII-D [65]. More complicated pellet designs

comprise tracer-encapsulated cryogenic hydrogen pellets, where a small metallic capsule

is sorounded by frozen hydrogen [66], or tracer-encapsulated solid pellets, whose shell

is formed by polystyrene, (C8H8)n [67, 68]. The tracer-encapsulated pellets aim at a

deposition of the capsule material deep inside the confined plasma.

Plasma instabilities might as well lead to a perturbation of the impurity density profile.

Especially the sawtooth instability, which appears deep inside the confined plasma at

the q=1-surface has been used. Sawtooth oscillations [69, 70] are characterised by a slow
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increase of the central temperature and a rapid drop, the so-called sawtooth crash, where

thermal energy is expelled from the plasma centre within ≈100µs. Sawteeth occur,

when the safety factor on axis drops below unity and the plasma becomes unstable

to the internal kink mode leading to a reconnection of the magnetic field lines and a

flattening of the q-profile [71, 72]. Inside a mixing radius rmix, which is somewhat larger

than the radius of the q=1-surface, a swtooth crash also flattens the impurity density

profile, as has first been described by Seguin and Petrasso [73, 74]. For situations, where

the transport inbetween sawtooth crashes is considerably convective with inwardly or

outwardly directed drifts, the impurity profile becomes peaked or hollow between the

crashes and the fast flattening due to the crash can be utilised to study the transport

coefficients between the crashes [75, 76]. The edge localised mode (ELM) appears in

the steep gradient region of H-mode plasmas just inside the separatrix. ELM’s expell

thermal energy and particles from the confined plasma within ≈100µs and the impurity

density perturbation due to ELM’s was also used for the determination of edge transport

coefficients [77].

Finally, a sudden change of the transport coefficients, e.g. by switching on or off the

heating by waves or by neutral beam injection, can be used for transport investigations.

The impurity density profile is then evolving from the first equilibrium state before the

change to the new equilibrium state. In the source free part of the plasma, this scheme

can only be applied, if the two equilibria have different profiles of v/D, i.e. different

density gradients. An example for this method is Ref.[78].

4.2 Measurement of Impurity Densities

Measurements of the impurity density are mainly done by passive spectroscopically re-

solved or wavelength filtered measurements. Passive measurements integrate the radia-

tion along the line-of-sight, while active methods can yield spatially resolved information.

4.2.1 Active Spectroscopy

Active laser spectroscopic methods, like laser induced fluorescence, have only seldomly

been used in fusion plasmas. The existing tunable laser systems with sufficient pulse

energies can only produce low energy photons, such that measurements were only per-

formed in the cold edge plasma, where atoms or ions with low transition energies exist.

The low particle densities create further difficulties to reach detectable signals. Examples

of one-photon induced laser fluerscence in the UV and VUV can be found in [79, 80].

Fast neutral beams of hydrogen, helium or lithium with kinetic energies of typically 50-

100 keV offer the possibility of a spatially resolved active spectroscopy method: charge

exchange recombination spectroscopy (CXRS) [81]. In a collision of a neutral beam atom
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with a multiply charged impurity ion AZ an electron of the neutral can be captured in

a highly excited level of the ion and the photons, which are emitted in the consecutive

radiative decay, are detected. This method allows for a spectroscopic determination

of the density of fully ionised elements, which are otherwise not accessible by passive

spectroscopy. This is especially useful for light elements being completely ionised in

the major part of the plasma. Using an observation geometry, where line-of-sight and

neutral beam are crossed, spatially resolved density measurements are achieved. First

measurements of CX-excited radiation on neutral hydrogen beams were performed in the

late 1970s on oxygen and carbon [82, 83, 84]. The range of elements was subsequently

expanded to Helium and all elements of the 2nd period, and even medium-Z elements

like Fe [85, 86] could be diagnosed.

Neutral hydrogen or deuterium beams, which are used for plasma heating, are most

frequently employed, and the reaction for the charge exchange recombination reaction,

reads.

A+Z + H→ A+(Z−1)(n, l) + H+ (4.1)

Here, n and l denote the principal and orbital quantum number of the excited level. The

charge exchange reaction tends to be a resonant process in that the electron from the

neutral beam atom is preferably captured in excited levels, which preserve its orbital

energy and radius. The orbital energy is proportional to Z2/n2 and for electron capture

from ground state hydrogen, orbital energy is preserved for exchange into n = Z. The

orbital radius scales with n2/Z , which favours for the same process a capture into n =

Z1/2. Thus, only for hydrogen both quantities can be conserved, while for highly charged

impurity ions, the calculated cross sections reach a maximum at the compromise value

nmax = Z3/4 [87]. The calculated l-distribution of the cross sections shows dominant

capture into levels with large l-values for n < nmax. For n > nmax, the cross sections

maximise at l ≈ nmax, while capture into levels with even larger l-numbers is little

[87, 88]. The different quantum mechanical or semi-classical models, which are used to

calculate the cross sections are discussed in [89].

The l-distribution of the captured electrons is important for the branching of the radiative

transitions of the electron in ∆n=1 transitions and transitions with ∆n > 1. Since the

selection rule ∆l = ±1 has to be obeyed, a radiative transition to a lower level n′ is only

possible for electrons with orbital quantum number l ≤ n′. The l-distribution after charge

exchange favours ∆n = 1 transitions, such that the electrons mainly cascade down the

ladder of n-levels. The emitted intensity on one specific transition starting from level

n is thus proportional to a weighted sum of all population rates for charge exchange

into levels ≥ n, where the weighting factors are the probability, that the electron will go

through level n during the cascade. The cascade processes can be significantly affected by

the surrounding plasma environment, and transfer between the nearly degenerate l-levels

of an n-level can be induced, before the electron drops to lower states by spontaneous
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Figure 4.1: Effective rate coefficients for charge exchange excited ∆n=1 transitions

in C VI and Ne X. The full lines give the total coefficients, while the dashed lines are

for charge exchange from H(1s) only. The red line shows the fractional abundance of

H(n = 2). l-mixing and beam excitation are calculated for B =2 T, ne=6×1019 m−3,

Te = Ti =2 keV, Zeff=1.6 due to carbon. Atomic data are taken from [3].

photon emission. Mixing of l-states due to ion-ion collisions and the motional Stark

effect are discussed in [88, 90]. The high-n states are more susceptible to these effects,

and are driven to a statistical distribution according to the statistical weight 2l + 1 of

each l-level.

A small fraction of the neutral beam atoms are excited to higher n-levels mainly due

to electron collisions at low beam energies and ion collisions at high beam energies [91].

Even though this fraction is only on the order of 1%, it can play an important role at

low beam energies, where the charge exchange cross section from ground state hydrogen

into higher n-levels vanishes [92, 93]. Charge exchange from excited hydrogen neutrals

was first observed in argon [94].

All the above effects can be summarised into one effective rate coefficient 〈σn→n′u〉 for

charge exchange excited emission on the transition n→ n′ with u being the relative

velocity |~vA − ~vbeam|. We can write for the line emission coefficient εn→n′.

εn→n′ =
hν

4π
nA,z

3∑

j=1

nH,j〈σn→n′uj〉 (4.2)
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Here, the sum is over the three velocity species of the hydrogen beam with full, half

and third of the maximum kinetic energy. For the determination of the ion density,

the hydrogen density for each energy component of the neutral has to be known at

the measurement position. The beam attenuation is caused by collisional ionisation by

electrons, ions and charge exchange processes, and depends on beam energy, injection

geometry, plasma density, temperature profiles, and the Zeff profile. The evaluation of

the impurity density is usually done with calculated values for nH , where the influence

of the Zeff profile on the beam attenuation is included in an iterative manner [95, 96].

Alternatively, nH can be gained from measurements of the Doppler shifted Balmer-α

emission from the neutral beam [91].

Since the radiative decay is mainly in ∆n = 1 steps, the strongest emission is found at

the lower end of the cascade. However, there are also sufficiently strong transitions with

photon energies in the visible wavelength range even for multiply charged ions. Exam-

ples for CX-excited hydrogen-like ions are He II(n=4→3) at λ=469 nm, C VI(n=8→7)

at λ=529 nm, O VIII(n=10→9) at λ=607 nm, O VIII(n=9→8) at λ=434 nm, and Ne

X(n=11→10) at λ=525 nm.

CXRS has become a standard diagnostic on magnetic fusion devices equipped with

neutral beam injection [95, 97]. The Doppler broadening and the Doppler shift of the

CX-excited lines are used for the determination of ion temperature [88] and plasma

rotation [98, 99]. The use of visible transitions has the great advantage, that spatially

resolved measurements of the impurity density at many positions in the plasma can be

performed with a rather flexible experimental setup, that does not require large ports in

the plasma vessel. Optical fibres are employed, which transport the light from optical

heads inside the plasma vessel to the spectrometer. Each optical fibre observes via a

mirror optics, the neutral beam at a different position of the plasma cross-section. At

the entrance slit of the spectrometer, the optical fibres are positioned in a vertical line

along the slit height, and at the exit of the spectrometer, the spectrum, which belongs

to each fibre, can be measured at the respective vertical position. The light detection is

done with intensified photodiode array detectors [97], intensified charge-coupled device

detectors [100] or back-illuminated charge-coupled device detectors [101]. In impurity

transport experiments, density profile evolutions can be measured with a repetition rate

of typically 100 Hz and a radial resolution of ≈2 cm.

4.2.2 Passive Spectroscopy

Passive spectroscopic measurement of characteristic line radiation is a very sensitive

diagnostic for impurity concentrations with a detection limit in the range of 1ppm [102,

103, 104].

The quantitative calculation of line radiation needs the local population density of the
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emitting quantum state. For the low electron densities in a tokamak plasma, the cal-

culation is very much simplified, since only two body collisions between electrons and

ions (linear in ne) have to be taken into account, while three body collisions between an

ion and two electrons can be neglected, because their collision rates are very small. The

equilibration time for the population distribution of the quantum levels of an ion stage

is dominated by the time constants of radiative decay, which in most cases are much

shorter than the characteristic transport times. Thus, the population of ground level

and excited states is in equilibrium and just depends on ne and Te. Excited states which

can not decay via dipole radiation, the metastable states, have a longer time constant

for equilibration, and for the plasma edge, the actual population of levels, which belong

to different spin systems might not be equilibrated [105].

For resonance lines, it is often sufficient to consider only collisional excitation from the

ground state and radiative decay when calculating the equilibrium distribution. This

approximation leads to the so called corona equilibrium. For other levels, however, exci-

tation and de-excitation from other excited levels have to be considered and a collisional-

radiative model has to be solved to find the equilibrium distribution [3]. The results of

such collisional-radiative models is expressed in terms of effective population rate co-

efficients due to collisional excitation, recombination or charge exchange with neutral

hydrogen. We now consider the usual case, where the rate coefficient due to excitation

by electron collisions yields the dominant contribution. The rate of radiative decays per

volume from quantum state n of an element A in ion stage Z can then be written as

nA,zneX
exc
n , which is formally equal to the corona expression, when the effective rate co-

efficient Xexc
n is replaced by the rate coefficient for collisional excitation from the ground

state 〈σ1→nve〉. From all radiative decays from level n, a fraction Anm/
∑

k<nAnk decays

on the transition n→ m, depending on the branching ratio of the Einstein A-coefficients.

When observing the plasma along a certain line-of-sight, the measured radiance Lnm on

the transition n→ m is obtained by integrating along the coordinate l of the line-of-sight.

Lnm =
hνnm
4π

Anm∑
k<nAnk

∫

l.o.s.

nAfzneX
exc
n dl (4.3)

Here, we used the fractional abundance fz = nA,Z/nA for the part of the total density

nA of element A, which is in the ion stage with charge Z. Each charge states of an

element is found in a certain radial shell according to the electron temperature profile

(see section 2.5), and the line radiation from different ion stages contains information

about the density profile of the impurity element.

Naturally, this scheme gives only complete profile information up to the centre of the

plasma, if the respective element is not completely ionised. The ionisation energy of the

hydrogen like ions is Eion = Z2 13.6 eV, and all light elements up to about Ne(Z=10)

are fully ionised for temperatures above ≈1 keV. For the larger tokamak experiments,

the main part of the plasma has temperatures above 1 keV and line radiation gives only
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information about colder plasma regions, which prevents the use of passive spectroscopy

for these elements.

Heavier elements, which yield line radiation in the main part of the plasma, can be

investigated. For transport analysis, the position and width of the respective shells is

crucial. It can be gained from Abel inverted measurements along many line-of-sights

[106] requiring an experimental setup with many VUV or X-ray spectrometers [107].

Alternatively, a spectrometer, which views the plasma on different chords during a series

of identical discharges, can be employed [108]. These expensive techniques were only

rarely used [109]. The common approach uses a single radial chord for each spectrometer,

and the position of the radiating ion is taken from the calculated charge distribution of

the impurity transport model. An example for this approach is a study of argon transport

at TEXTOR [110], where line radiation from ArVII, ArVIII, ArX, ArXII, ArXIV, ArXV,

ArXVI and ArXVII after a short argon puff was measured with a time resolution below

1 ms. The analysis often uses only the time evolution [110, 54] of the different lines due

to the difficulties to obtain an absolute calibration (especially in the VUV) or due to a

lack of reliable atomic data for the effective excitation rates.

Soft X-ray Cameras

The spatial and temporal resolution of the measurements can be strongly enhanced, when

sacrificing the spectral resolution and employing only spectrally filtered measurements

in the soft X-ray wavelength range, i.e. for photon energies in the range from 1-20 keV.

Most commonly, thin beryllium filters with a thickness between 6-500µm are used to

suppress photons of lower energy. The detecting silicon diodes are operated with reverse

bias voltage, and have a thick depletion layer, where the photons deposit their energy and

form electron-hole pairs due to the internal photo effect, while Compton effect and pair

production can be neglected for the occuring photon energies. The high energy cut-off is

defined by the thickness of the depletion layer of about 100-300µm. An average energy

of Epair =3.62 eV is needed for the excitation of one electron-hole pair, and the mean

charge per photon is Q = hν/Epair. For single photon detection, the energy spectrum

of the photons can be gained from the detected current pulses. This technique of pulse

height analysis employs Si(Li) diodes. Soft X-ray cameras, however, do not resolve the

single current pulses. Here, the average detector current is measured, which yields the

deposited power of all photons passing the beryllium filter: I = P/Epair = P 0.276 A/W.

The transmission of the metal filters as a function of photon energies are well known [111]

and the absolute sensitivity of the whole system can be calculated within an uncertainty

of ≈20% [112]. Up to 60 single Si-diodes are used in a single pinhole camera, which

is compact enough to be mounted inside the vacuum vessel and to observe the whole

poloidal cross section of the plasma. The filter should be mounted such that the line-of-
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Figure 4.2: For a detector setup with a 100µm thick Be filter in front of a Si dode

of 300µm thickness coated with 0.8µm Al, the spectral filter function is shown on the

right side, while the total filtered radiative power coefficients of C, O, Ne, Si, Ar, and Ni

are depicted on the right. Ionisation equilibrium is assumed. The ionisation energies of

He-like(red) and H-like(blue) stages are added to the graph of the filter function.

sight from each diode through the pinhole is perpendicular to the filter surface, which

guarantees identical absorbing lengths through the filter, i.e. an identical filter function,

for each diode. Several camera systems are usually installed and measurements from

about 50-100 lines-of-sight are used to obtain the local emission pattern with a time

resolution down to 1µs.

Band pass filters can be constructed, when identical detectors are placed behind two

absorbing filter foils with nearly the same atomic number and with thicknesses adjusted

to achieve matched transmission curves except in the energy range between their absorp-

tion edges (preferebly K-edges). The difference in the detector output signals for such a

system is proportional to the power from photons with energies between the absorption

edges. This scheme is named the method of balanced Ross filters [113, 114, 115]. The

use of balanced Ross filters for impurity measurements has not been very frequent up to

now [116, 117, 118].

The soft X-ray emissivity due to impurity species A can be written as

εsxrA = nAneL
sxr
A = nAne

∑

Z

fA,zk
sxr
A,z (4.4)

where fA,Z is the fractional abundance of the ionisation stage Z and ksxrA,z is the radia-

tive power coefficient of this stage weighted with the photon energy dependence of the

detector setup. The ksxrA,z have contributions due to line- and continuum-radiation. The

sum term in equation (4.4) is the total radiative power coefficient LsxrA in the detected

spectral range of the detector. In Fig.4.2, the soft x-ray radiative power coefficients of a
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few elements are shown versus Te for the case of a 100µm thick Be filter in front of a Si-

dode of 300µm thickness and a 0.8µm Al coating. The fractional abundances are taken

from ionisation equilibrium excluding transport. The filter function is shown in the right

graph of Fig.4.2. In this graph, also the ionisation energies of the He- and H-like stages

are shown for each element. For C and O, the ionisation energies are below the cut-off

energy of the filter, and neither line radiation nor the K-edges of the recombination con-

tinua can contribute to the detected radiation, which is mainly due to bremsstrahlung

only. Ne is marginal, while for Si, Ar and Ni, line radiation and recombination radiation

from He- and H-like stages can pass the Be-filter. Thus, the filtered radiative power

coefficients of those elements is strongly increased in the Te range, where the respective

ion stages exist.

Soft x-ray cameras measure radiation from all elements in the plasma, and are only

useful for perturbative studies. The contribution of the injected impurity is obtained

by subtracting the signal before the injection from the signal after injection. For cases,

where the intrinsic plasma radiation is dominated by emission from light impurities, like

C and O, this background radiation can be well suppressed with a suitable filter as is

demonstrated in Fig.4.2. A small amount of an impurity with sufficiently high nuclear

charge, e.g. Al or Si, leads to an easily detectable increase of the soft x-ray radiation.

Discharges with a sufficiently long and stable flattop are advantageous in order to reduce

the amount of the injected impurity as much as possible.

Local Emission from Line-of-Sight Integrated Measurements

From the line-of-sight integrated measurements, local emissivites can be calculated by

tomographic inversion. The inversion is considerably simplified, when the emission is

constant on magnetic flux surfaces. This assumption is well justified in the confined

plasma, since the large transport coefficients parallel to the magnetic field suppress the

evolution of gradients on a flux surface. At the end of this section, effects, which lead to

poloidal asymmetries on a flux surface, will be discussed.

For the case of constant emission on flux surfaces, the inversion evaluates from the

measured line-of-sight integrals the local emissivity ε(ρ), which just depends on a single

coordinate, the flux surface label ρ. For circular flux surfaces and observation in one

poloidal plane, the special case of an Abel inversion with radius r as flux surface label

is obtained. We discuss the indirect inversion procedure, where the local emissivity is

described with a certain function ε(ρ, p1, p2, .., pn) which depends linearly or non-linearly

on the parameters p1, p2, .... pn. The parameter are found by minimising the squared

deviations between the claculated line-of-sight integrals

Lk(p1, p2, ...pn) =

∫

kth l.o.s.

ε(ρ, p1, p2, .., pn)dl (4.5)
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and the measured values lk, which shall have an uncertainty σk .

χ2 =
1

N

N∑

k=1

[Lk(p1, p2, ...pn)− lk]2
σ2
k

= min (4.6)

This scheme leads to a linear or non-linear system of equations, which is solved with

Gauß-Seidel elimination in the linear case or with the Levenberg-Marquardt algorithm

in the non-linear case. For the linear case of Abel inversion, examples can be found in

Ref.[119], where even polynomials in r were used, and in Ref.[120], where the emissivity

is expressed as a sum of cosine functions.

In order to avoid strongly oscillating solutions, regularisation methods have to be em-

ployed. The first possibility is to reduce the number of free parameters in the fitting

function. Cubic splines with zero derivative at ρ = 0 are very useful in this respect,

where only in regions with strong gradients a higher density of spline knots is allowed. It

is furthermore advantageous to use the exponential of a cubic spline in order to assure,

that the fitted emission is always positive. For the second method by Tikhonov [121], a

penalty function for the curvature of the solution like W
∫

(d2ε/dρ2)2dρ is added to the

χ2-term of Eq.(4.6), and the weight factor W of the penalty function is adjusted until

χ2 equals 1, i.e. until the mean deviation equals the experimental uncertainty [122].

Fig.4.3 shows three inverted emission profiles for simulated data sets of a 60 channel

soft X-ray camera at ASDEX Upgrade. The simulated data sets were contaminated

with normally distributed noise at a level of σk/lk=10% as indicated by the error bars

in the upper right figure. A case with strong edge radiation, which is a factor of 10

of the emissivity in the centre, mimics the total radiation profile. It is compared with

a typical triangular soft X-ray radiation profile, and a profile with dominant central

radiation. Dashed lines show the standard deviation of the inverted emissivity profiles.

It can readily be seen, that the relative uncertainty of the inverted profiles is largest in

the centre. Only the innermost channels contain information about the profile in the

centre and small changes in the line-of-sight integrals transform into large changes of the

emissivity due to the short integration path. Additionally, there is a dramatic increase of

the relative uncertainty, when the centre is observed through a region with strong edge

radiation. Bolometric measurements are thus not very sensitive to small changes of the

central emission.

For radiation which originates from outside the last closed flux surface (LCFS), the

assumption of constant emission on the flux surface is not fulfilled and the radiation

increases strongly when approaching the divertor or the limiter. This effect is very

pronounced for the total radiation, but can be neglected for the soft X-ray radiation,

which is predominantly produced inside the LCFS.

Inside the LCFS, the emission might be modulated due to macroscopic MHD modes,

where this asymmetry with respect to the unperturbed flux surfaces can be removed by
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Figure 4.3: Examples for the inversion of line-of-sight integrated emission profiles of

a 60 channel soft X-ray camera at ASDEX Upgrade. The data sets (upper right) were

simulated with a 10% relative measurement uncertainty. The uncertainty of the unfolded

emission profiles (lower right) is shown with dashed lines. The profile with strong edge

radiation mimics a total radiation profile as it would be seen by a bolometer camera.

using measurements, which are temporally averaged over many oscillation cycles. An

example of such an emissivity modulation, which has been observed after the injection

of tungsten in ASDEX Upgrade, is shown in Fig.4.4. Here, tungsten accumulated on

the q=1 surface in a magnetic (m=1,n=1)-island, which rotates with about 10 kHz in

the toroidal direction. The geometric dimensions of the island can be estimated from

the spatial and temporal structure of the oscillating soft x-ray signals [123, 124] and are

depicted in Fig.4.4.

The vertical torus drifts (or, equivalently, the divergence of the diamagnetic drifts) drive

the densities towards an up-down asymmetry and lead to parallel return flows. The

resulting up-down asymmetry for main ions and electrons can be neglected, however,

parallel friction between main ion and impurity ions sweeps impurities with the return

flows, and the resulting impurity asymmetry has opposite direction from the vertical drift

direction. The asymmetry shall be described with n = n0(1 ± γ sin θ), where θ is the

poloidal angle and γ is the relative amplitude. For the ordering assumptions in section

3.1, i.e. collision frequency much smaller than the gyro frequency and gyro radius much
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Figure 4.4: Modulation of the line-of-sight integrated soft x-ray signals due to ac-

cumulation of tungsten in a toroidally rotating (m=1,n=1)-island. The camera had a

6µm thick Be-filter. The geometrical dimensions of the island are estimated from the

temporal and spatial structure of the intensity oscillations [123].

smaller than gradient lengths, the amplitude γ is much smaller than the inverse aspect

ratio ε. Non-linear extension of the neoclassical theory towards high collision frequencies

predict that γ can reach a maximum value of ε [125, 126]. Experimental measurements

of these small asymmetries need precise knowledge of the flux surface and line-of-sight

geometry, and at the edge, an assessment of the asymmetry due to the impurity source

distribution. Quantitative agreement of experiment and theory [127] is not always found

[128].

In plasmas, which exhibit a fast toroidal rotation, the impurity density on the outboard

side of the flux surface can be increased with respect to the inboard side due to the

centrifugal force on the impurity ions. In the force balance equation (3.1), the centrifugal

force enters in the term mana(~ua ·∇)~ua = −manaω
2R~eR, where ω is the toroidal angular

frequency and R is the major radius. In lowest order, the centrifugal force term, the

electric field term and the pressure gradient term along the magnetic field are retained

in Eq.(3.1). For constant temperature Ta on the flux surface, the density ratio of the

outermost to the innermost poloidal position on the flux surface with major radii Rout
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Figure 4.5: Tomographic reconstruction of the soft x-ray emissivity distribution during

the high performance phase of a hot ion H-mode in JET. The inversion used data from

210 lines-of-sight from many soft x-ray cameras with a 250µm thick Be-filter. The strong

in/out asymmetry of the peripheral emission and the central peak is attributed to nickel

radiation. (from [129])

and Rin is then given by [130]

na(Rout)

na(Rin)
= exp

[maω
2(R2

out −R2
in)

2kBTa
− eZa∆φ

kBTa

]
. (4.7)

For the electrons, the centrifugal force term can be neglected due to the small mass. The

unknown difference of the electrostatic potential ∆φ follows from the quasi-neutrality

condition
∑
naZa = 0. In a plasma of main ion D with low impurity concentrations

(trace limit), the quasi-neutrality is only maintained by the electrons and the deuterium

ions.

ne(Rout)

ne(Rin)
= exp

[ e∆φ
kBTe

]
= exp

[mDω
2(R2

out −R2
in)

2kBTi
− eZD∆φ

kBTi

]
=
nD(Rout)

nD(Rin)
(4.8)

The temperature Ti shall be equal for all ion species, and the second term in the exponent

of Eq.(4.7) reads for an impurity ion with mass mI and charge ZI .

eZI∆φ

kBTi
=
mIω

2(R2
out − R2

in)

2kBTi

ZImD

mI

Te/Ti
1 + ZDTe/Ti

. (4.9)
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Thus, the ∆φ-term reduces the exponent by a factor of 2 when equal electron and ion

temperature and fully ionised impurities with ZImD/mI ≈ 1 are assumed. For this case,

the asymmetry is finally

nI(Rout)

nI(Rin)
≈ exp

[mIω
2(R2

out − R2
in)

4kBTi

]
= exp

[
ε
v2

Φ

v2
th

]
(4.10)

where ε = (Rout − Rin)/(Rout + Rin) is the inverse aspect ratio, vΦ = ω(Rout + Rin)/2

is the average toroidal velocity and vth =
√
kBTi/mI is the thermal velocity. The

asymmetry of electrons and deuterium ions is very weak, since it is reduced by a factor

exp (
√
mD/mI). For a flux surface at half radius in a tokamak with aspect ratio 3, we

have ε ≈ 0.15 and the out/in density ratio is a factor of 2 for vφ =
√

ln 2vth/
√
ε ≈ 2.15vth.

For impurity concentrations above the trace limit, ∆φ increases and leads to a reduction

of the asymmetry, while for a plasma with Te < Ti, ∆φ decreases. Fig.4.5, which is

taken from Ref.[129], shows an example for a strong in/out asymmetry. In a hot-ion

H-mode at JET, soft x-ray emission from Ni revealed this in/out density asymmetry for

a situation with vφ ≈ 3vth.

4.3 Evaluation of Transport Coefficients

Radial profiles of the fully ionised impurity ions from CXRS or the soft X-ray radiation

can be used to calculate the total density of the injected impurity, if the fractional

abundances of the ion stages are known. In section 2.5, it was shown, that the fractional

abundances of the most populated ion stages are only weakly influenced by the transport

parameters in a large part of the main plasma, and can be calculated directly from the

ionisation and recombination rates, i. e. for radii below r ≈ 0.5 m for the examples

shown in Fig.2.9 and Fig.2.10. Thus, the total impurity density evolution after a single

impurity injection or during a sinusoidally modulated impurity puff can be gained up to

some radius and can be used to determine the transport coefficients without making use

of impurity transport codes. The direct evaluation methods, which either work in the

time domain or use a harmonic analysis shall be described in the section 4.3.1 and 4.3.2.

Section 4.3.3 describes a few enhancements which can be incorporated when using full

impurity transport calculations.

4.3.1 Single Impurity Injections

For the total impurity density, the source term in the transport equation can be neglected

in the major part of the confined plasma. In this case, the radial flux density Γ(r, t) of

the total impurity density at radius r can be evaluated from the temporal change of the
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respective density n(r, t) inside of r.

Γ(r, t) = −1

r

∫ r

0

∂n(r̃, t)

∂t
r̃dr̃ (4.11)

The transport coefficients can then be gained from the dependence of the normalised

flux density Γ/n on the normalised density gradient [1/n][∂n/∂r].

Γ(r, t)

n(r, t)
= −D(r)

1

n(r, t)

∂n(r, t)

∂r
+ v(r) (4.12)

We assume, that the perturbation by the impurity puff is small, such that the transport

coefficients are not changing during the evolution of the density profiles in the plasma.

Thus, D(r) and v(r) are only functions of the radius. In this case, a plot of the normalised

flux density versus the normalised density gradients yields a straight line with a slope

of −D(r) and an offset of v(r). Shortly after the puff, there is an influx phase with

negative values for Γ(r, t) followed by an outflux phase with positive Γ(r, t). For times,

which are long compared to the second eigentime of the transport equation, the density

at all radii decays exponentially with the first eigentime τ1. Then, Γ/n becomes constant,

and the transport coefficients can only be determined if measurements are taken before

that phase. For diffusive transport, the arrival time of the density perturbation scales

quadratically with the radial distance between source and measurement location, i.e.

∆t ≈ ∆r2/D, while the width of the density distribution is about equal to ∆r. At

the edge, a higher temporal and radial resolution is thus needed to resolve the density

evolution after a puff, e.g. ∆t = 2.5 ms for ∆r=5 cm and D = 1 m2/s.

Fig.4.6 and Fig.4.7 demonstrate the method for a radially constant diffusion coefficient

D(r) = 1 m2/s and zero drift velocity. The right graph of Fig.4.6 shows the calculated

evolution of the density for several times after a short puff at t = 0 s, which deposits

particles at r = 0.64 m. For the measurement of the density evolution, two cases with

different spatial and temporal resolutions were assumed. For the first case, the equidis-

tant radial measurement points have a radial spacing of 5 cm and a temporal distance

of 5 ms, while for the second case, the radial and temporal resolution are increased by

a factor of 2, i.e. ∆r=2.5 cm and ∆t=2.5 ms. The measurement uncertainty shall have

a statistical component with 5% of the measurement value and a constant instrumental

uncertainty of 0.025 in the units of Fig.4.6. The resulting error bars are depicted for

three density profiles in Fig.4.6.

The derivatives are approximated with the symmetric three point formula and the radial

integral with the trapezoidal rule, which yields at the radial measurement point k and
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Figure 4.6: Right graph: Calculated density evolution after a short puff at t =0 s for

radially constant diffusion coefficient D=1 m2/s and v=0 m/s. Left graphs: Evaluated

transport coefficients from the straight line fit of the normalised fluxes versus the nor-

malised gradients for two spatial and temporal resolutions of the measurement (black:

∆r=5 cm, ∆t=5 ms; red: ∆r=2.5 cm, ∆t=2.5 ms). The error bars are evaluated from

the density measurement uncertainties shown in the right graph.

at temporal measurement point j.

∂n(rk, tj)

∂r
=

n(rk+1, tj)− n(rk−1, tj)

2∆r

1

rk

∫ rk

0

n(r̃, tj)r̃dr̃ = N(rk, tj) =
1

rk

[
∆r

k−1∑

i=1

n(ri, tj)ri +
∆r

2
n(rk, tj)rk

]

Γ(rk, tj) = −N(rk, tj+1)−N(rk, tj−1)

2∆t
(4.13)

The uncertainties for these quantities are readily computed from the uncertainties of the

densities. In Fig.4.7, the resulting normalised fluxes are shown as a function of the nor-

malised gradients for two radii from the measurement with the higher resolution. Both

quantities have an uncertainty and the straight line fit has to weight the individual mea-

surement point according to the two error bars. The χ2-method for fitting a straight line

y(x) = a+ bx through measurement point (xi, yi) with uncertainties in both coordinates

can be performed with the following merit function.

χ2(a, b) =
N∑

i=1

(yi − a− bxi)2

σ2
yi + b2σ2

xi

(4.14)

A routine for minimising this merit function, which also yields error estimates for a and

b, can be found in [131]. In Fig.4.7, the data points from the analysis at r = 0.3 m are
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Figure 4.7: Evaluated normalised fluxes versus the normalised gradients at two radii

for the density evolution of Fig.4.6. The measurement resolution is ∆r=2.5 cm and

∆t=2.5 ms. The diagonal has the slope equivalent to D =1 m2/s. At the larger radius

r =0.55 m, the temporal resolution is insufficient to detect the gradients in the influx

phase.

on the diagonal, i.e. on the line with a slope equivalent to D = 1 m2/s, while the data

points for r = 0.55 m show deviations from this line, which are much larger than the

error bars. For the larger radius, the spatial and temporal gradients are too large and

can not be measured with the resolutions of ∆r=2.5 cm and ∆t=2.5 ms. At t = 5 ms,

the density wave has already passed the radius r = 0.55 m and only one data point

represents the inflow phase. Fig.4.6 gives the evaluated transport coefficients and their

uncertainties from the fit routine. For the radial range 0.1-0.55 m, D and v are compared

with the set values (dashed lines) for both resolutions using black error bars for the lower

resolution (∆r=5 cm , ∆t=5 ms) and red error bars for the higher resolution (∆r=2.5 cm

, ∆t=2.5 ms). Inside of r = 0.4 m, the lower resolution is sufficient and yields smaller

error bars. The gradients can be determined with less uncertainty due to an increase

of the density differences for the lower resolution. Outside of r = 0.4 m, the higher

resolution yields better results and can be used up to r = 0.5 m. For r = 0.55 m, the

resolution is insufficient and the flux can only be explained with the smeared measured

gradient when using higher transport coefficients. Especially, the data points in the

influx phase have smallest relative uncertainty due to the high density and are strongly

weighted in the fit, which yields an inward pinch to explain the strong influx with the

measured near zero gradient.
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4.3.2 Modulated Gas Puffs

Sinusoidally modulated gas puffs offer another possibility to deduce the transport coeffi-

cients [54, 55, 56]. The method needs long stationary discharge phases for the recording

of several oscillation periods, but has the advantage that rather low puff levels lead to

sufficiently accurate measurements of the modulation amplitude A and phase φ. Thus,

the impurity perturbation can be kept quite low.

We compare the harmonic analysis method, with the analysis of fluxes and gradients

after a short gas puff or a laser injection and discuss the evolution of the total impurity

density with zero sources like in the previous section. The impurity influx shall be

sinusoidally modulated with angular frequency ω and shall be sufficiently small, such that

the transport parameters are independent of time. In this case, the impurity densities

will also be modulated with the same frequency ω, and the amplitude A(r) and phase

φ(r) are gained from the sine and cosine transform of the density modulation.

a1(r) =
2

T

∫ t+T

t

n(r, t̃) cos
(
ωt̃
)
dt̃

b1(r) =
2

T

∫ t+T

t

n(r, t̃) sin
(
ωt̃
)
dt̃

A(r) =
√
a1(r)2 + b1(r)2 tan

(
φ(r)

)
=
a1(r)

b1(r)
(4.15)

Here, T is the time of one or more modulation periods. The transport parameters at a

certain radius r can then be determined from the radial profile of amplitude and phase

up to r.

D(r) = −ω
r

(dφ
dr

)−1 1

A(r)

∫ r

0

A(r̃) cos
(
φ(r̃)− φ(r)

)
r̃dr̃

v(r) = −ω
r

1

A(r)

∫ r

0

A(r̃) sin
(
φ(r̃)− φ(r)

)
r̃dr̃ +D(r)

1

A(r)

dA(r)

dr
(4.16)

For comparison with the single puff method, we use again a radially constant diffusion

coefficient D(r) = 1 m2/s and zero drift velocity. In this case, the ratio of the complex

amplitudes ñ of the density modulation at two radii is given by a ratio of zero order

complex Bessel functions J0.

ñ(r)

ñ(r0)
=

J0(exp(−iπ/4)kr)

J0(exp(−iπ/4)kr0)
with k =

√
ω

D
. (4.17)

The lower measurement resolution from the above example with ∆r=5 cm and ∆t=5 ms

is taken. The modulation frequency is f=5 Hz. Fig.4.8 shows the density modulation

for six radii. The measurement uncertainty is assumed to be worse compared to the

example in section 4.3.1 with a statistical component of 10% of the measurement value.

The resulting error bars are depicted for the outermost measurement point in Fig.4.8. A
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Figure 4.8: Right graph: Calculated density evolution for sinusoidally modulated influx

with frequency 5 Hz, a radially constant diffusion coefficient D=1 m2/s and v=0 m/s. Left

graphs: Profiles of amplitude and phase and transport coefficients assuming a spatial

and temporal resolution of ∆r=5 cm and ∆t=5 ms. The error bars are evaluated from

the density measurement uncertainties shown in the right graph.

time interval of 4 modulation periods(800 ms) shall be available for the determination of

amplitude and phase. The required integrals of Eq.(4.15) and (4.16) are approximated

by the trapezoidal rule and the symmetric three point formula is used for the derivatives

in Eq.(4.16). The radial profile of phase and amplitude and the respective uncertainties

are shown in the upper left graph of Fig.4.8. The dashed line gives the evolution of phase

and amplitude in the slab approximation, which yields dφ/dr = d(lnA)/dr =
√
ω/(2D)

and is valid for r
√
ω/D � 1. The lower left graph of Fig.4.8 depicts the resulting

transport coefficients. The uncertainties of D and v are rather low due to the long ’inte-

gration’ time compared to the single injection experiment, even though the uncertainty

assumption for the single density measurement was increased. The uncertainty increases

with decreasing radius, since the radial gradients of amplitude and phase become small.

Towards the edge, there is no large systematic error observable due to the finite radial

and temporal measurement resolution. Here, the temporal and radial gradients are much

weaker compared to the single injection and even a lower measurement resolution is suf-

ficient. The density evolution can off course also be analysed in the time domain and

the fit of normalised fluxes versus normalised gradients delivers the same results as the

harmonic analysis.

Thus, the modulated gas puff experiment seems to be advantageous compared to the sin-
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gle injection. However, pre-requisites for such experiments are long stationary discharge

phases and impurity species, which do not show too much recycling at the vessel walls

or are pumped sufficiently well, such that the modulated gas puff is not superimposed

by a much stronger flux of recycling impurities.

4.3.3 Transport Code Calculations

Numerical solutions of the coupled radial impurity transport equations as described in

section 2.3 have to be used when the influence of transport on the ion stage balance

becomes large. For a given set of transport parameters, the code calculates the profile

evolution of the densities of all ion stages, which are compared with CXRS measurements

or are used to evaluate the line-of-sight integrated data from passive spectroscopy.

The evaluation of transport parameters from code calculations are usually performed by

adjusting manually the profiles ofD(r) and v(r) until a match of measured and calculated

time traces is achieved. Examples for the analysis of line-of-sight integrated spectroscopic

measurements are given in Ref.[110, 61, 54, 64, 132]. Examples for the application to

soft X-ray measurements after laser blow-off can be found in Ref.[133, 134, 135], and

usage of several diagnostics is presented in Ref. [136, 137].

The one dimensional treatment of the plasma edge outside the last close flux surface is

off course a rather crude description of the two or even three dimensional impurity flux

patterns. Here, the different code parameters like the decay time τ|| due to parallel losses,

the perpendicular loss at the outermost grid point, the fraction of recycling impurities,

the transport parameters in the SOL, and the time evolution of the neutral influx is

just adopted to satisfy the time evolution of the emission from lower ionisation stages.

Reliable information about the flux surface averaged transport parameters can only be

expected from comparison of code results and measurements within the last closed flux

surface.

If the total impurity density evolution is known up to a certain radius, numerical solutions

of the radial transport equation for the total impurity density can be employed, which

use the density evolution at the outermost measurement radius as boundary condition.

The computation time is sufficiently short to incorporate the respective subroutine into

a χ2-fit routine using the Levenberg-Marquardt algorithm. This offers the possibility for

a few enhancements compared to the methods used in the previous two sections.

The evaluation procedures in sections 4.3.1 and 4.3.2 did not impose any relations on

the transport coefficients at neighbouring measurements points, which can lead to strong

radial oscillations of D(r) and v(r), if the data quality of the density measurements

is not very good. A further regularisation, which suppresses such oscillations for the

radial profiles of the transport coefficients, can be incorporated, when the evolution of

the impurity density at all measurement points is fitted. The strategy is to use radial
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Figure 4.9: Right graph: Density evolution for sinusoidally modulated influx with

frequency of 5 Hz, and transport parameters as shown with dashed lines in the left

graphs, i. e. a diffusion coefficient, which increases with radius, and an inwardly directed

drift velocity. The effect of sawteeth oscillations with frequency of 20 Hz was included

by periodically flattening the density profile within rmix=0.25 m. Left graphs: Profiles

and uncertainties of the evaluated transport coefficients assuming a spatial and temporal

resolution of ∆r=5 cm and ∆t=5 ms using the fit method (black) and the fourier method

(red) from section 4.3.2. The error bars are evaluated from the uncertainties of the

density measurement as shown in the right graph.

functions for the transport parameters with the lowest number of free parameters, which

yield χ2 ≈ 1. For example, D(r) can be parametrised by specifying the logarithms of D

on an equally spaced radial grid, which are linearly interpolated. This parametrisation

avoids the appearance of negative diffusion coefficients in the fit procedure. Furthermore,

D(r) should be kept constant inside the innermost grid point in order to avoid large

scatter of D(0), which is sensitive to the second derivative of the density on axis and

thus very uncertain. It is advantageous to use the drift parameter v/D instead of v in

the fitting routine, and the most simple parametrisation is again an equally spaced radial

grid of drift parameters, which is linearly interpolated. On the axis the drift parameter

has to be zero.

Another enhancement is the separation of the transport induced by sawtooth crashes

from the transport in the quiet phase between the crashes. Sawtooth crashes are known

to cause a nearly complete flattening of the impurity density inside a certain mixing

radius [73, 76]. The magnetic reconnection during the collapse happens on a time scale



4.3. EVALUATION OF TRANSPORT COEFFICIENTS 85

of a few 100µs. The associated density flattening leads to an outward/inward flux, if the

density profile before the collapse is peaked/hollow. This effect is easily incorporated

into the transport code, where at the collapse time a complete flattening of the density

inside the mixing radius rmix is invoked obeying the particle conservation. The mixing

radius rmix can experimentally be determined from the soft X-ray profiles. Thus, the

transport due to sawtooth crashes can be excluded from the fitted transport coefficients,

which shall describe the plasma properties without macroscopic MHD instabilities.

An example for the fitting procedure is shown in Fig.4.9. A sinusoidally modulated influx

with frequency of 5 Hz is assumed. The diffusion coefficient has now a more realistic

shape, which is low in the plasma centre and increases towards the plasma edge and

there shall also be an inward pinch. The set values are shown as blue dashed lines in the

left graphs of Fig.4.9. Furthermore, a sawtooth oscillation with frequency of 20 Hz shall

be present, which flattens the impurity density inside of rmix=0.25 m at the times of each

sawtooth collapse. The spatial and temporal measurement resolution is ∆r=5 cm and

∆t=5 ms. The right graph of Fig.4.9 shows the density evolution for every second channel

during one period of the modulated influx. It can be observed, that the density increases

towards the centre in contrast to the case with purely diffusive transport as shown in

Fig.4.8. The central channels are strongly disturbed by the sawtooth crashes. The

statistical uncertainty of the density measurement is set to 20% as illustrated by the error

bars. The fit functions for the transport coefficients are parametrised as described above

with four equally spaced grid points for D and three grid points for v/D. Four influx

modulation periods are used for the fit, and the pre-set transport parameters are found

with rather small satistical uncertainties. The density evolution was also processed with

the harmonic analysis of section 4.3.2, which determines the pre-set transport parameters

with higher uncertainty outside the sawtooth mixing region, while inside the mixing

region, the averaging over the sawteeth oscillations produces a systematic error yielding

too high diffusion coefficients and too low inward pinch parameters.





5. Experimental Results

Measurements of the radial impurity transport behaviour will be summarised in this

chapter. Most information about the transport properties of the plasma was gained

from perturbative experiments, which investigated the temporal evolution of the impurity

density profile after a disturbance.

Impurity injection experiments are the most common form of perturbative studies. Here,

the determination of a single decay time constant is the easiest measurement, which has

widely been used. For non-recycling impurities, the decay time is dominated by the

region with slowest transport, which the impurity has to pass in order to leave the

plasma, while for elements, which recycle from the vessel walls, the main bottle neck is

the transport to the pump duct. Thus, the interpretation of the decay times is rather

limited without further knowledge on the spatial profiles of the transport coefficients.

A deeper insight can only be gained by the determination of radially resolved transport

coefficients, which can be compared with the transport coefficients of the energy trans-

port or with theoretical predictions, i. e. with code calculations of neoclassical transport

(codes for turbulent impurity transport are just emerging). The measurement tools of

these studies have been described in the preceeding chapter.

The form of the equilibrated density profiles gives only the ratio of radial drift velocity

and diffusion coefficient, if the source location is in the scrape-off layer. Even though the

single transport coefficients can not be resolved, there is great interest in the equilibrium

density profiles with respect to a burning fusion plasma, where low central impurity

concentration have to be achieved, and low values for the ratio of central to edge impurity

concentration are required. Thus, it is of high interest to assess the plasma conditions,

which lead to the detrimental effect of central impurity accumulation, and to devise

counter measures.

5.1 Decay Times

When injecting an impurity into a tokamak plasma, the increase of the spectral line

radiation is followed by a decrease, which eventually becomes an exponential decay with

a single time constant τd. This decay time τd is determined by the longest eigentime
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of the transport equation, and after all higher eigenmodes have vanished, the impurity

density in the whole plasma has a constant spatial profile, which decays with τd. For

the measurement, the required time resolution is rather low and the determination of

τd was one of the first methods to study impurity transport. For a recycling impurity,

like most gaseous impurities, the decay is usually dominated by the time constant, with

which the impurity is pumped out of the vessel, and only for a non-recycling impurity

τd gives information about the radial transport coefficients in the plasma. For a non-

recycling impurity, τd equals to the first eigentime τ1 of the radial transport equation. In

contrast to the energy transport, information about τ1 is not very valuable to estimate

the particle confinement time τp, which is much smaller than τ1 due to the impurity

source location at the plasma edge (see section 2.2.3). The particle confinement time

would be equal to τ1, if the source function had the radial shape of the first eigenfunction

of the transport equation, which depending on the heating method might look rather

similar to the power deposition profile of the plasma heating. Thus, it is sensible to

compare τ1 with the energy confinement time τE to gain insight in the relation of radial

impurity and energy transport.

Decay time studies of non-recycling impurities were performed with laser blow-off (LBO)

injection [58]. First investigations on ATC were performed using only VUV lines from

lower ionisation states of aluminium (AlV - AlXI) [59], while silicon LBO experiments

on Alcator-A [138] included VUV lines from SiXI and SiXII as well as X-ray lines of

SiXIII and SiXIV, where it turned out, that the He-like line from the plasma centre has

a systematically longer decay time than the Li-like line being emitted more towards the

edge. Injection of V, Cr, and Ni into TFR plasmas showed the same difference for the

decay of central and more peripheral line emission [139]. This discrepancy was simply

due to the fact, that the VUV lines became to weak in order to measure the late decay

rate [140]. This problem is often encountered for the emission from charge stages which

are predominantly fed by ionisation. When the source has disappeared, these charge

states are only weakly populated by recombination, the charge state distribution shifts

towards higher ion stages (see Fig.2.11), and line radiation from the lower charge states

becomes very low. The fractional abundance of the higher charge states in the plasma

bulk, which are more evenly fed by recombination and ionisation, does not decay and

their emission can be measured for a longer time. Furthermore, if the diffusion coefficient

has a strong radial dependence or if there is a high inward pinch in the central part of

the plasma, it takes very long until the decay of central and peripheral impurity density

is governed by the same time constant τ1, which is practically not measurable (see for

example Fig.5.13). Most prominent are the cases with large central inward pinch, where

the central line emission does not decay during the discharge period, e. g. [139, 141].

Scaling laws for the impurity decay times have been proposed for ohmic and L-mode

plasmas. Extensive experiments on ohmic plasmas in the Alcator-C tokamak were carried
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out by Marmar et al. [142], and the found scaling of the decay time was

τAlcator−C [ms] = 7.5× 10−2a mM

q

(R0.75Zeff
ZM

)
(5.1)

where a[cm] and R[cm] are the minor and major plasma radius, mM [amu] and ZM are

mass and charge of the main ion species respectively. The dependences inside the brackets

were not verified as firmly as the proportionality to amMq
−1. A dependence of the decay

time on impurity mass or charge was tested for aluminium, silicon, and titanium finding

equal decays for these elements. This scaling was found not to be in agreement with a

data set gained for ohmic and L-mode plasmas in JET and Tore Supra, and Mattioli et

al. [143] proposed

τJET,TS[ms] = 7.4V 0.70±0.08I0.31±0.09
p

( P
ne

)−0.57±0.03

(5.2)

with plasma volume V [m3], plasma current Ip[MA], heating power P [MW] and line

averaged density ne[1019m−3]. The measured decay times varied between 0.25-1 times

the measured energy confinement times τE. The influence of the plasma elongation κ and

triangularity δ on the decay times was investigated in ohmic plasmas in TCV [144]. The

increase of the elongation from 1.6 to 2.3 produced a threefold decrease of τd from three

times the energy confinement time of the electrons τEe to τd ≈ τEe. For the triangularity

scan with -0.16< δ <0.6, the ratio τd/τEe was almost unchanged.

For the H-mode, no attempts were made to obtain such scaling laws for the decay times.

In type-I Elmy H-mode plasmas in ASDEX Upgrade, it was shown that the decay time

is only determined by the edge transport through the H-mode barrier [77]. Thus, the

decay time does not contain information about the transport coefficients in the plasma

interior. The edge transport becomes even more dominant in the ELM free H-mode,

where there is almost no loss of impurities through the edge barrier. For Ni injection

into JET, a comparison of the decay times is shown in [145]: the typical decay times in

L-mode were 150-200 ms, while the H-mode decay took several seconds. Also for L-mode

discharges at JET and Tore Supra, indications for a weak edge transport barrier were

found from the modelling of the evolution of the soft X-ray emission after LBO [146, 134]

as well as from the simulation of the spectral emission characteristics of intrinsic C and

Ni [147], and also the decay times in L-mode might have a strong influence by the edge

transport.

Decay time studies for the light rare gases helium and neon, which completely recycle

from the vessel walls, mainly give information about the transport to the pumped volume

and to the pump duct. The decay times for recycling impurities can be interpreted with

a simple two chamber model [27, 28]. It was discussed in section 2.4, how the global

confinement time τ ∗, the compression factor C and the enrichmant factor η are estimated

from the decay time τd.
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Studies of the global confinement of helium were performed most often, which reflects

the importance of τ ∗He for the realisation of a burning fusion plasma (see section 1.2). An

overview of helium exhaust experiments in tokamaks is given in [9]. In ASDEX Upgrade,

helium in the divertor was pumped by turbomolecular pumps, while JET, DIII-D and

JT-60U employed an argon frosting technique to adsorb helium on the divertor cryo-

pumps. Effective helium exhaust has been demonstrated in H-mode plasmas with type-I

ELMs in DIII-D [30] with ηHe ≈ 1, ASDEX Upgrade [148, 149] with ηHe between 0.2 and

1, JT-60U [150, 151, 152] with ηHe ≈ 1, and JET [153, 154] with ηHe in the range 0.2-0.5.

These values are above the required value of 0.2, which sould be exceeded to obtain an

acceptable D-T throughput in in a fusion reactor [32]. In internal transport barrier (ITB)

discharges with helium beam injection, the global helium confinement time depended on

the strength of the ITB. In JT-60U discharges with reversed shear and strong ITB,

the injected helium fuelled inside the barrier, and helium accumulated inside the ITB,

leading to ratios of τ ∗He/τE ≈15 [151]. Weakening of the ITB reduced the scaled energy

confinement time τE/τITER−89P from 2.4 to 1.2 and the scaled global residence time of He

reduced to τ ∗He/τE ≈8. At JET, helium beam injection into a reversed shear discharge

with a weak ITB showed very good helium removal with helium enrichment factor in the

range 0.4-0.6 [155]. Typically, the enrichment factors for argon and neon are well above

unity [156, 30, 153].

5.2 Perturbative Transport Studies

Here, the main experimental findings from perturbative impurity transport studies in

the plasma bulk of discharges in conventional modes, i. e. mainly H-mode and L-mode

regimes, and for discharges with internal transport barriers are summarised. In many

experiments, the evolution of the brightness from a few emission lines after impurity

injection did not allow for the determination of the radial profiles of the transport coef-

ficients. In these cases, transport simulations were performed with a radially constant

diffusion coefficient eventually including drift velocities with a constant drift parame-

ter α = v(r)a2/(2D(r)r). Such investigations will not be considered. In this section, we

rather concentrate on the determination of radially resolved transport coefficients, which

were obtained from impurity profile measurement predominantly using charge exchange

recombination spectroscopy (CXRS) or the soft X-ray diagnostic.

For the low-Z elements, CXRS is the most important experimental tool. Perturbative

studies were performed with helium, nitrogen and neon. Short gas puffs were injected

during the steady phase of the discharge and impurity fluxes were inferred from the

measured density evolution for normalised radii below 0.8. The transport coefficients at a

certain radial position are determined from the offset-linear dependence of the normalised

impurity fluxes on the normalised density gradients assuming time independent transport
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parameters (see 4.3.1).

Wade et al. [157] determined the transport coefficients of He in DIII-D H-mode plasmas

with type-I ELMs at three different NBI heating powers PNBI=4.5, 9.3, and 12 MW,

and observed a rise of the diffusion coefficient with the heating power. For different

confinement regimes, L-mode, ELM free H-mode, type-I ELMy H-mode and VH-mode,

the diffusion coefficient of He was found to rise from centre to edge, and the ratio of the

helium diffusion coefficient DHe and the effective heat diffusivity χeff was approximately

equal to 1 for all cases. These observations were also consistent with measurements in

TFTR [158], that indicated DHe/χeff ≈ 1 in both L-mode and supershot regimes. In

dimensionally similar ELMing H-mode discharges at DIII-D with identical safety factor

q, normalised pressure β, and ion collisionality ν∗i , the normalised ion gyro-radius ρ∗i was

varied by a factor of ≈1.6. The diffusion coefficient of He was determined for r/a < 0.5.

The variation of DHe and χeff indicated a gyro-Bohm-like scaling DHe ∝ B−1 [159].

Comparison of He and Ne in DIII-D L-mode plasmas showed equal transport coefficients

for both impurities, however, in VH-mode only the much lower diffusion coefficients were

similar, while the drift velocities were remarkably different [160]. In a more elaborate

work, these differences in VH-mode were studied in greater detail for helium, nitrogen and

neon [161]. It was found, that for the central part of VH-mode plasmas with normalised

radii ≤ 0.4, the experimental drift velocities are in agreement with neoclassical values,

which were calculated with the NCLASS code [37]. The neoclassical drift velocities

increase with the impurity charge and for the special case of the VH-mode plasmas, which

have a flat main ion profile and strong central ion temperature gradient, the temperature

screening term becomes dominant, such that the drift velocities were outwardly directed

for all three species. The collisionality of the three elements were in the ”banana” regime.

The experimentally determined diffusion coefficient of He, N, and Ne were very similar

within the data scatter and about a factor of 3 above the neoclassical values, which were

also very similar for the investigated elements.

In ASDEX Upgrade, transport coefficients of Ne and He were determined in NBI-heated

H-, CDH- and L-mode discharges [162, 163]. Fig.5.1 shows the range of transport co-

efficients found with this method for all investigated discharges. It includes H-, CDH-

and L-mode plasmas with toroidal field 1.9< BT [T] <2.7, total heating powers 2.0<

Ptot[MW] <9.1, line averaged densities 4.5< n̄e[1019m−3] <12, effective mass of the main

ion 1.2< meff [amu] <1.9 and fixed plasma current Ip=1 MA. The diffusion coefficient

rises towards the plasma edge where it is more than an order of magnitude above the

neoclassical diffusion coefficient, i. e. mainly determined by anomalous transport. D has

a similar profile shape and magnitude as the effective heat diffusivity χeff and displays

the same degradation with heating power as χeff : D∝
√
P . Also the dependence on the

isotope mass of the background plasma D∝ m−0.666±0.047
eff is as expected from the isotope

dependence of τE-scalings. There is thus a strong link between the anomalous impurity
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Figure 5.1: Transport coefficients for Ne and He found in ASDEX Upgrade H-, CDH-,

and L-mode discharges versus the poloidal flux label ρ. The differently coloured areas

show the range of coefficients which were measured in the different confinement regimes.

transport coefficients and the heat diffusion coefficient, which has also been observed for

the transport of the main ion species [164, 165, 166]. The diffusion coefficient of He and

Ne is independent of the injected species within the uncertainties of the measurement.

At ρ=0.8, inward drift velocities approximately proportional to D with v/D≈-3.5 m−1

are observed. The magnitude of v/D decreases with decreasing radius. In the centre at

ρ=0.2 the diffusion coefficient is quite low, i. e. in the range of 0.3-0.6 m2/s, where these

values are effective diffusion coefficients including the transport due to sawtooth crashes.

In CDH-discharges [167, 168] without sawteeth, even lower central values D≈0.1m2/s

were measured and accumulation of Ne was observed inside of ρ≈0.5 (see below).

Since the investigations of Seguin et al. at Alcator-C [73], it is known that sawtooth

collapses effectively flatten the impurity density inside a certain mixing radius rmix being

approximately
√

2rq=1, where rq=1 is the radius of the flux surface with safety factor

q = 1. The analysis of the CXRS measurements in sawtoothing L-mode and H-mode

plasmas averaged over the sawteeth, and the evaluated central diffusion coefficient is thus

above the diffusion coefficient between the collapses. In order to separate the sawteeth

effect from the transport in the time intervals between sawtooth crashes, measurements

with soft X-ray cameras were used due to their excellent time resolution. The detection of

injected impurities from the change of soft X-ray radiation was mostly used for medium-

Z impurities from Al up to Ni, however, there were also experiments with Ne, Kr, and

Xe. Lighter elements than Ne do not emit sufficiently energetic line radiation to pass

the conventionally used Be-filters.

In JET L-mode discharges, the transport in the quiet phase between the sawtooth crashes

was investigated by analysing soft X-ray data after LBO of metallic impurities (Fe,

Ni, and Ag) [135]. The investigated discharges explored a wide range of parameters

Ip=2-7 MA, BT=1.45-3.4 T, 〈ne〉=1-5 ×1019 m−3 and heating powers up to 20 MW. Most
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Figure 5.2: At time t0 argon was injected into a steady state phase of an H-mode

discharge in ASDEX Upgrade. The density evolution of argon is shown versus the major

radius R in the mid plane. The magnetic axis is at R0 = 1.72m.

discharges were run in 4He and some in D2 with Zeff=3-4 for both working gases. No

dependences of the transport parameters on impurity species and working gas was found

being not in contradiction to the Alcator-C scaling (τAlcator−C ∝ ZeffmM/ZM) since Zeff

did not significantly vary between the two working gases. The data were modelled by a

radial impurity transport code using a smoothed step function for the diffusion coefficient

with D(r) = Dout in the edge region, D(r) = Din in the centre, with Dout being much

larger thanDin and an approximately constant drift parameter α = v(r)a2/(2D(r)r) ≈ 1.

Dout could be determined with a typical uncertainty of ±30% and Din with ±70%. The

transition radius from high to low diffusion coefficient varied between 0.6 and 1.45 m

depending upon the values of Ip and BT and was identified to be associated with shear

s =0.5±0.15. Din was never substantially lower than 0.1 m2/s or higher than 0.3 m2/s,

and a moderate anomalous contribution to Din was concluded from comparisons with

estimates of the neoclassical diffusion coefficient Dneo. Dout showed a marked increase

with increasing values of Pheat/〈ne〉, and Te, but no clear dependence on ne could be

detected, when the Te profile was kept constant.

At ASDEX Upgrade, a set of experiments [76] was performed, where the transport

of low to high Z-impurities (neon, argon, krypton and xenon) was investigated in the

centre(ρ ≤ 0.4) of H-mode discharges with 5 MW heating power from the 60 kV NI beams

and line averaged density n̄e= 7.5 × 1019 m−3. In Fig.5.2 an example of Ar injection

is shown. Ar is puffed for 1s and the density evolution after the start of the puff at

t0 =1.95s is shown versus the major radius at the mid plane for ρ≤0.7. The magnetic
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Figure 5.3: Kr density evolution for several poloidal flux labels ρ (Fig.5.3b, dashed lines)

and the solution of the transport equation (Fig.5.3b , solid lines) with D and v from

Fig.5.3a.

axis is at R0 =1.72 m. At t =2.05 s, the argon density in the major part of the plasma is

already considerably increased but very little argon has reached the centre. Steep radial

gradients build up indicating, that the diffusion coefficient must be very small. This

situation persists until the first sawtooth crash occurs. The crash leads to a flattening

of the impurity density, i. e. a strong increase of the central transport. After about

four crashes a quasi stationary situation is reached. The impurity density develops a

pronounced peaking in the quiescent phase of the sawtooth, which is flattened by every

crash. Due to the slow evolution in the centre, this feature can not be seen in the first

cycles and the central transport parameters were evaluated by analysing the temporal

evolution of the impurity density profile between sawtooth crashes in the stationary

phase of the gas puff.

Diffusion coefficients and drift velocities were evaluated by analysing the temporal evo-

lution of the density profile between sawtooth crashes, where each crash caused a fast

perturbation, i. e. a complete flattening of the impurity profile. The radial transport

equation was solved for a time interval from 3 ms after the last sawtooth crash to 3 ms be-

fore the next crash in the radial range ρ<0.4, where the initial distribution at tcrash+3ms

and the density development at ρ=0.4 were chosen as the boundary conditions for the

solution. A constant value was used for D and a linear function for the drift parameter

α = va2/(2Dr)= α0 + α1r. The three coefficients D, α0 and α1 of these test functions

were computed by applying a non-linear χ2–fit to the measured density development for

ρ <0.4. An example of the fitting procedure is shown in Fig.5.3. One sawtooth period

for Kr is depicted. Note, that the sawtooth period is too short to reach an equilibrium

distribution of the impurity density and that the sawtooth crash leads to a flattening

of the Kr density profile. Even in the short phase in between sawteeth, the central Kr

density rises by a factor of 3, demonstrating the necessity of sawteeth for a tolerable

central impurity content. Assuming a standard deviation of 20% for the impurity den-
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Figure 5.4: Line averaged values over the radial range 0.1<ρ<0.3 of measured and neo-

classical diffusion coefficient D and drift velocity v as a function of the mean atomic

charge of the impurity 〈Z〉 in that radial range. The neoclassical values are shown as

bands representing the cases without and with collisions with C/O.

sity the standard deviation of D and v was calculated from the curvature of χ2 in the

fit parameter space and is shown as bands in Fig. 5.3.

Fig.5.4 depicts the line averaged diffusion coefficient 〈D〉 and drift velocity 〈v〉 for the

radial range 0.1<ρ<0.3 obtained from typically 10 sawtooth cycles versus the line aver-

aged impurity charge 〈Z〉 in the same radial range. With rising impurity charge Z, the

convective transport increasingly dominates over the diffusive transport, which is very

small with 〈D〉 ≤ 6× 10−2m2/s. The drift velocity is always inwardly directed. For Kr

and Xe the ratio 〈v/D〉 reaches enormous values of 〈v/D〉 ≈ −35m−1.

Neoclassical transport parameters were calculated with a combination of STRAHL and

NEOART [76, 8, 39]. The neoclassical values are shown in Fig. 5.4 as bands represent-

ing the three cases with and without inclusion of collisions with C/O for a flat and a

peaked concentration profile with cC≈1% and cO≈0.1%. The total neoclassical diffusion

coefficient is dominated by the banana-plateau values for low Z and by the sum of the

classical and the Pfirsch-Schlüter contributions for high Z. The diffusion coefficient Dneo

decreases with rising Z and is in the same range as the measurements. Anomalous dif-

fusion is obviously ineffective in the plasma centre. The drift velocity vneo is dominated

by the banana-plateau value for all Z and is more or less constant. For low to medium

Z the measurement is well reflected by vneo, for high Z the deviation is strong. The

neoclassical calculations assume constant impurity density on a flux surface. Due to the

centrifugal force toroidal rotation causes a poloidal gradient of the impurity density on

the flux surface with the maximum density appearing on the outboard side of the toka-

mak [130]. The observed poloidal variation of the impurity density is small for the lighter

elements Ne and Ar. However, for the heavier elements Kr and Xe with higher toroidal

Mach numbers around 2, poloidal asymmetries are important. For Kr, the asymmetry is

clearly observable and the density on the outboard side exceeds the inboard value by up
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Figure 5.5: Measured and neoclassical diffusion coefficent of Si, measured effective and

neoclassical ion heat diffusivity, for a series of H-mode discharges at ASDEX Upgrade

with NBI heating (PNBI=5 MW) and additional ECR heating at different radial positions

r=0.075 m, 0.13 m, and 0.43 m (PECRH=0.8 MW). The various power deposition profiles

are shown in the right graph.

to 50%. This effect is not taken into account by the neoclassical calculations and might

account for the discrepancy of the pinch velocity.

Ida et al. [75] was the first to determine the transport coefficients from the time-varying

impurity distributions after sawtooth crashes. In PBX H-mode discharges, he also found

a strong Z-dependence of the central impurity drift velocity. In this case, the temporal

evolution of Zeff during the buildup phase of sawteeth (dominated by low Z elements C

and O) and of the total radiated emissivity (dominated by medium Z elements Fe and

Ni) could best be described when using D = 0.1 m2/s for both types of species and a

Z-dependent drift parameter α with α(Z ≈ 20)/α(Z ≈ 8) = 5 .

In another study at ASDEX Upgrade, the influence of the heating profile on the transport

coefficients of silicon in type-I ELMy H-mode discharges was investigated [169]. The total

heating power was in the range from 4.2-5.8 MW, and variations of the heating profile

were achieved by using NBI heated discharges at high and low density, by additional

heating with ECRH in the centre or at the edge, and by using pure ICRH with central or

periferal power deposition. It was found that the central transport of Si was neoclassical

for low central power deposition and became anomalous, when the heating power in the

centre was high. Further out, Si diffusion is always strongly anomalous.

An example is shown in Fig.5.5. The experimentally determined diffusion coefficent
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of Si is compared with the neoclassical values calculated with NEOART for four heat

deposition profiles shown in the right graph. All discharges had 5 MW of NBI heating and

in three discharges 0.8 MW ECRH were added using different deposition radii r=0.075 m,

0.13 m, and 0.43 m. For the pure NBI case and for off-axis ECRH, D can be explained

by neoclassical transport inside of r≈0.15 m. There is a drastic change of the transport

parameters for the cases with central ECR heating. χeff rises by up to a factor of 10 for

radii greater or equal to the deposition zone, while the local change of χeff is small at

the edge due to the small change of total heating power by ECRH. In the core, also the

measured diffusion coefficient of Si increases with additional central ECRH by a factor

of 3 to 4.5 to values around D=0.3 m2/s, while in the radial range around r=0.4 m, there

is only a minor change between the different heating scenarios. Thus, it is obvious, that

the addition of central ECRH leads to an increase of the turbulent diffusion coefficient of

Si in the plasma core, which is a factor ≥3 above the neoclassical level. The differences

of ECR heating at r=0.13 m and at r=0.075 m can not be resolved with the restriction

on the number of nodes for the fitting function of D. Similar results were obtained with

ICRH. For a discharge with central ICRH deposition, D was above the neoclassical level

by a factor of 2, and the turbulent contribution vanished for off-axis ICRH heating.

Perturbative transport studies in plasmas with strong internal transport barriers (ITB)

are more complicated than in conventional scenarios. Up to now, plasmas with a strong

ITB do not have long steady phases with constant plasma parameters. The evolving

electron density, electron temperature, and impurity concentration make it especially

difficult to detect the injected impurity by the change of the soft X-ray emission. CXRS

measurements are less affected even though a constant plasma background, where signal

changes are only due to the density evolution of the puffed impurity, is advantageous.

The assumption, that the transport parameters do not change during the analysed time

interval, is probably not severely violated as long as the barrier is not too short living.

Efthimion et al. [170] studied helium and tritium transport in TFTR plasmas with

extended reversed shear and internal transport barrier (ERS regime). He was detected

with CXRS and T from the collimated neutron detector array via the 14 MeV neutrons

from the DT fusion reaction. The q-profile had a minimum at r/a ≈ 0.4 with qmin ≈ 2.2

and q0 on axis was in the range 4-5. The electron density inside of r/a ≈ 0.4 was strongly

peaking and analysis of the electron balance indicated, that nearly all of the neutral beam

electron fuelling rate within the reversed shear region accounted in the density rise,

∂ne/∂t, i. e. little particle flux was leaving the reversed shear region. The analysis of the

helium and tritium puff experiments also showed, that the respective diffusion coefficients

within the reversed shear region is by a factor of ≈ 10 lower than outside of r/a ≈ 0.4 and

that this low diffusion coefficient can be explained by neoclassical transport according

to calculations with the NCLASS code. Both diffusion coefficients were approximately

equal and equal to the effective thermal diffusion coefficient DHe ≈ DT ≈ χeff .
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Helium transport in reversed shear plasmas with ITB were investigated in JT-60U by

Takenaga et al. [55]. Here, the ITB has a rather different appearance, since the sup-

pression of the anomalous transport is localised in a narrow radial region just inside the

radius with minimum q. Modulated He puffs were used and the transport parameters

were determined from the radial profiles of the amplitudes and phases using Eq.(4.16).

The reversed shear region is wider in the JT-60U plasma with qmin slightly above 2 at

r/a ≈ 0.55 and q0 is between 5 and 6. There is a strong gradient in Ti in the range

r/a =0.45-0.55 and in ne in the range r/a=0.4-0.5. Inside of the electron barrier ne is

very flat, and the the ion temperature gradient is low again. The measured diffusion

coefficient of helium was 0.2 m2/s in the barrier and ≈1 m2/s inside and outside of the

ITB.

For JET ITB discharges with flat monotonic shear profile, transport of LBO injected

Ni was determined by the change of the soft X-ray emission and by measurement of Ni

line emission by Chen et al. [141]. A low diffusion coefficient of D =0.05 m2/s was found

inside the ITB, i. e. for r/a <0.4, in accordance with neoclassical values of 0.03-0.06 m2/s.

The diffusion coefficient outside the ITB was about an order of magnitude larger at a

value of D =0.6 m2/s. Line radiation from Be-like Ni, which is emitted outside the ITB,

had a fast rise and decay after the LBO, while lines from inside the ITB, emitted by

the Li-like and He-like stage, did not decay after the initial rise during the remaining

discharge time of ≈ 0.8 s.

The perturbative studies, which have been discussed, indicate the following conclusion

on the contribution of anomalous and neoclassical transport. In the outer part of the

plasma bulk, impurity transport is always anomalous with similar values for the diffusion

coefficients D and the effective heat diffusion coefficient χeff . The anomalous D has no

strong dependence on impurity charge or mass. For conventional confinement modes,

the turbulent transport in the plasma core is low for cases, where the central heating

is low, while central wave heating increases again the anomalous diffusion coefficient.

For advanced confinement modes with reversed or flat shear inside a certain radius, the

anomalous diffusion coefficient can be strongly reduced even for high central heating

powers. The suppression of turbulent diffusion is either inside a narrow region inside the

radius with minimum q or in the whole radial range inside that radius.

5.3 Central Accumulation

The term impurity accumulation describes the situation, where the impurity den-

sity gradient is much stronger peaked than the main ion density gradient, i. e.

(1/nimp)dnimp/dr � (1/nm)dnm/dr. Central impurity accumulation has been observed

since the first tokamak plasmas [171, 172, 173].
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In the previous section, it was found that impurity transport in the plasma centre can be

predominantly neoclassical and it is the low anomalous transport, which causes concern

about the danger of impurity accumulation, because the peaking due to neoclassical

drifts is not suppressed by large anomalous diffusion coefficients (see Eq.(3.45)). Since

vneo/Dneo is approximately proportional with the impurity charge Z, high-Z elements

have a stronger tendency to accumulate [174]. The direction of the neoclassical drifts

are determined by the ratio of the normalised main ion density gradient to the normalised

main ion temperature gradient, where the former causes an inward pinch and the latter

an outward pinch (temperature screening). A peaking of the main ion density is thus

a necessary pre-requiste for neoclassical impurity accumulation, and all experimental

observations of impurity accumulation coincide with the appearance of peaked main ion

density profiles. The peakedness of the main ion density can either be caused by an

inward pinch or by the fuelling from NBI heating beam or pellets in combination with a

low main ion diffusion coefficient. Due to the stiffness of the ion temperature profile in

conventional confinement modes, d(lnTi)/dr and the according temperature screening

usually does not become large enough to balance the inward pinch due to the main ion

gradient. An outwardly directed neoclassical impurity pinch in the plasma core was only

found in one case: in VH-mode plasmas at DIII-D [161].

The importance of the main ion density profile for the accumulation of impurities can be

seen from observations at various tokamaks, where a strong main ion density peaking was

invoked by injection of hydrogenic pellets. For ohmic Alcator-C plasmas, peaked profiles

of carbon and molybdenum evolved after the pellet injection [175]. Strong peaking of

carbon and oxygen was also measured in ohmic plasmas at TEXT with pellet injec-

tion [176]. In H-mode plasmas at JET with pellet enhanced perfomance (PEP-mode),

accumulation of carbon was found with CXR spectroscopy [177].

For H-mode discharges at ASDEX Upgrade, the characteristics of the total radiation

profile in the main plasma was collected for a number of discharges [178]. During the

experimental campaign, where these discharges were performed, almost all tiles of the

central column were covered with tungsten [178], which due to its high Z is very critical

with respect to neoclassical transport. Fig.5.6[a,b] shows the rather wide range of central

densities and temperatures included in the data base. In Fig.5.6[c], the radiation fluxes

of bolometer channel 24 are drawn versus the according signals of bolometer channel

27, whose lines-of-sight are tangent to the flux surfaces with poloidal flux label ρ= 0.4

and 0.7. Fig.5.6[d] depicts the behaviour of channel 21 versus 24, where the former has

a line-of-sight through the plasma axis. Open symbols are used for discharges without

central wave heating by ECR or ICR, and circles represent plasmas without sawteeth.

The two more peripheral channels show a simple proportionality between each other for

all cases. The data points for the central channel 21 versus channel 24 have a branch,

where both brightnesses are propotional to each other, and a branch where the central
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Figure 5.6: Characteristics of the total radiation profiles in the main plasma for dif-

ferent H-mode discharges at ASDEX Upgrade: (a) shows the range of central electron

densities versus central electron temperatures, (b) gives the total main plasma radiation

versus the total heating power, (c) and (d) depict the relation of the brightnesses of two

bolometer lines-of-sight as indicated in the left drawing. Open symbols represent dis-

charges without central wave heating and circles are used for plasmas without sawteeth.

Note the occurence of strong central radiation for plasmas without sawteeth and without

central wave heating.

channel can have much larger brightness than the channel tangent to ρ ≈ 0.4. These

large differences can only be explained by strong central radiation of medium-Z to high-Z

elements, like Fe, Cu or W, which must have a large density gradient inside of ρ ≈ 0.4.

This central accumulation appears only for discharges without central wave heating and

without sawteeth. Outside of ρ ≈ 0.4, strong gradients of the total radiation are not

observed, indicating that anomalously dominated impurity transport does not lead to

strong impurity gradients or large inward pinches for these impurities.

In all ASDEX Upgrade discharge scenarios, where impurity accumulation was observed,

low central heating was used, peaked electron densities were present and sawteeth were

eventually lost as will be demonstrated in the following examples. A discharge sce-

nario with peaked electron density at high line averaged density n̄e≈1.2×1020 m−3 is

the CDH-mode [167, 168]. Here, accumulation of the injected radiating impurity neon

could only be avoided if the sawtooth activity was maintained. The accumulation of

neon in CDH-mode discharges could be simulated with D = Dneo and v = 1.5× vneo in

the central region of the plasma [179]. In high density H-modes with pure NBI-heating

at n̄e≈1.4×1020 m−3 and triangularity δ = 0.3 [164], a similar signature was observed.
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Constant gas puffing caused a constant edge density and a steadily increasing central

electron density. Eventually, the sawtooth activity stopped and impurities accumulated

in the centre as inferred from the evolution of soft X-ray and bolometric profiles. Addi-

tional central heating with ICRH or partial replacement of NBI-heating by central ICRH

prevented from electron density peaking and no impurity accumulation was observed.

Due to the stiff T -profiles central heating increases the central heat conductivity χ and

most likely the anomalous D. The effect of central heating on the impurities is thus

twofold by reducing the neoclassical inward drifts proportional to the density gradient

and by increasing the anomalous diffusion. This behaviour could also be observed in

off axis NBI-heated H-mode discharges at lower line averaged densities n̄e≈8×1019 m−3.

When the NBI energy was reduced from 60 keV to 35-40 keV, a peaked electron density

profile was observed accompanied by an eventual loss of sawteeth leading to high cen-

tral tungsten concentrations of ≈4×10−5 [180, 181, 178]. The evolving electron density

peaking and tungsten accumulation can be stopped by addition or partial replacement

of NBI with central ECRH heating. After switching off ECRH ne peaking and tungsten

concentration rise again [181].

A reduction of central tungsten confinement by application of central ECRH could also

be demonstrated in improved H-mode discharges at average triangularity of δ=0.35 [178,

78]. Improved H-mode plasmas are characterised by a loss of the sawtooth activity and

generally improved confinement over ordinary H-modes. They can be performed in quasi

steady state [182] and the operational space has recently been enlarged towards higher

densities by increasing the triangularity of the plasma shape to δ=0.35 [183]. As in

ordinary H-mode discharges at δ≈0.35 without central heating, the density was observed

to peak slowly throughout the discharge and a very strong peaking of the radiation

power inside a poloidal flux label of ρ≈0.3 occurred, which can only be explained by

accumulation of tungsten and other metallic impurities.

The effect of central ECRH on the impurity behaviour is demonstrated in Fig.5.7. Var-

ious time traces of the improved H-mode discharge #15524 with Ip=1 MA, BT=2.5 T,

δ=0.35 and constant NBI heating power PNI=5 MW are shown. Central ECRH is ap-

plied from t=2.5-4.5 s with PECRH=1.2 MW from 2.5 to 3 s and PECRH=0.8 MW from 3

to 4.5 s. During the ECRH phase, the thermal confinement time τE is reduced by ≈17%

with respect to the pure NBI phase, while the scaled thermal confinement is only slightly

reduced with τE/τITERH−98p(y,th,2)≈1.2. The frequency of the type-I ELM’s changes from

fELM=50 HZ to fELM=70 Hz. ne, Te and Ti is depicted for ρ=0 and ρ=0.5. Only the

central values are influenced with an increase of central Te and a decrease of central ne.

A much stronger effect is found on the tungsten concentrations cw, which are derived

from spectroscopic measurements. cw at ρ=0.75 is deduced from the W-quasi-continuum,

which is emitted from ions around W28+ [102] and cw at ρ=0.1 from a Ni-like (W46+) line

at λ=0.793 nm [103]. Accumulation of tungsten is suppressed by ECRH, i.e. the central
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Figure 5.7: Time traces for the improved H-mode discharge #15524 at ASDEX Upgrade.

W-concentration is reduced to the constant edge value of cW≈10−6. After the ECRH

phase, cW at ρ=0.1 is steadily increasing and reaches ≈3×10−5 at t=6 s, which is 30

times the edge value. Total and soft X-ray radiation also evolve a strong peaking in the

phases without ECRH. The total central emission is approximately a factor of 4 above

the value calculated for pure tungsten accumulation and a strong rise of central Fe lines

were also found. The soft X-ray data show m=1-mode activity without sawteeth, when

ECRH is off. In the ECRH phase there are three minor sawtooth crashes at t=2.95, 3.1

and 3.2 s, after the accumulation has disappeared.

Fig. 5.8 shows the result of impurity transport simulations for the above discharge

#15524. Dashed lines give radial profiles for a time slice during the ECRH phase (t=3.5–

4.5 s) and solid lines are used for t=5.8–6.0 s, which is at the end of the second pure NBI-

heating phase. Neoclassical impurity transport coefficients were calculated numerically
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Figure 5.8: Measured profiles of ne, Ti, neoclassical transport coefficients of tungsten

with (dark grey) and without (light grey) inclusion of additional impurities, used Dan,

calculated tungsten radiation and measured total radiation for two time slices of the

ASDEX Upgrade discharge #15524. In the lower right corner, a time traces of measured

and simulated central tungsten concentration are shown.

with NEOART [39, 8, 33], which can include the effect of impurity-impurity collisions

for an arbitrary number of species. The transport simulation starts at t=1.5 s with flat

impurity concentrations and the impurity densities at the edge are kept constant during

the simulation. In one case (light grey) only W was taken into account, while in the sec-

ond case (dark grey) additional impurities were considered with ’typical’ concentrations

of 5% He, 1% C, 0.5% O, 0.02% Fe at the edge. ne, Te and Ti profiles were taken from

measurements and ni followed from the impurity ion distributions and quasi-neutrality.

C, O, Fe and W are in the plateau regime with W at the Pfirsch-Schlüter limit, while D

and He are in the banana regime. The anomalous diffusion coefficient was assumed to be

equal for all impurity species and to decay from edge to centre, where the central value

was chosen to be Dan(0)=0.1 m2/s during ECRH and below neoclassical values during

pure NBI heating. These choices are based on the results from perturbative impurity

transport studies with and without central ECRH as discussed in the previous section
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5.2. The increased central diffusion coefficient with the additional central power flux from

ECRH is interpreted to be a consequence of profile stiffness [164]. Analysis of the local

heat diffusivities with ASTRA [184] yields an increase of central χi and χe. For ρ=0.3

both values change from ≈0.2m2/s with ECRH off to ≈0.7m2/s with ECRH on. The cal-

culated values of v/D are small in the ECRH phase, mainly due to the rather flat density

profile and partly due to the increased Dan. In the pure NBI-phase, the density peaking

increases, while Dan becomes small and v/D reaches large negative (inward pinch) values

inside ρ=0.5. In the case with inclusion of all impurities, the inward pinch is smaller

and the v/D-profile is broader. The simulated W profile evolves the strongest peaking

of all impurities as expected from Eq.(3.45). The calculated peaking of W is smaller

than experimentally observed. This can be seen by comparing the calculated tungsten

radiation profiles with the unfolded total radiation, which shows an even stronger peak-

ing, even though there have to be large contributions from less peaked medium-Z metals

to the total radiation. Similarly, the high central tungsten concentrations at the end of

the discharge can only be simulated when setting the edge concentrations to 2-5 times

the measured values depending on the inclusion of other impurities in the simulation.

Perfect agreement can be achieved with a v/D profile that reaches a minimum value of

-50 m−1. Thus, the main features of the impurity flattening with ECRH and the strong

peaking without ECRH are well described by the simulation and calculated v/D values

agree with the measurement within a factor of 2. It should be mentioned, that also the

evolution of the main ion density can be understood by a higher anomalous diffusion

being connected to higher χ in the ECRH phase. The increase of Dan counteracts the

neoclassical inward drift due to the Ware pinch [164, 165]. Tungsten has a much higher

collisionality and the Ware pinch, which is included in the simulations was found to yield

a negligible contribution to the drift of W. For t=5.8–6 s, the Ti gradient is increased and

the related outwardly directed drift velocity is ≈50% above the value during the ECRH

phase. Thus, the central radiation is still not large enough to change the temperature

screening and to trigger the instability described in [185].

Experiments with a tungsten test limiter in TEXTOR 94 by van Oost et el. [186] showed

a central accumulation of tungsten for ohmically heated discharges, which had a density

above a critical value of ncr =2.5×1019m−3. In such discharges, additional central heating

by ICRF reduced the central tungsten concentration by more than an order of magnitude.

In Alcator C-Mod discharges, a strong density peaking and impurity accumulation inside

of r/a ≈0.5 was found for discharges with off-axis ICR heating [187]. The impurity

accumulation was deduced from the strongly peaked total radiation profiles and the

Ar16+ line emission profiles. When a minor amount of central ICR heating was added

to the predominant off-axis ICR heating, a further rise of central density and impurity

peaking could be arrested. Following the results at ASDEX Upgrade, avoidance of

impurity accumulation by central ECR heating has also been successfully demonstrated
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Figure 5.9: Evolution of the radial profiles of Ti, ne, nC , nNe and nNi for the JET

discharge #51976 with strongly reversed shear (’current hole’ discharge) and internal

transport barrier. The radial co-ordinate is the major radius R at the height of the

magnetic axis Z=Zmag.

in quiescent double barrier discharges at DIII-D for the case of nickel [188] and in high

βp discharges at JT-60U [189].

Low anomalous impurity transport was also measured in discharges with strong internal

transport barrier and peaking of impurities is observed in ITB plasmas, where the degree

of the peaking depends strongly on the impurity charge. Takenaga et al. [189] compared

the profile evolution of helium, carbon, and argon in JT-60U discharges, which had

strongly reversed magnetic shear with a central current hole and an ITB at r/a ≈0.6.

The temperatures and densities of all species have a box like profile in such plasmas with

a strong negative gradient in the barrier region and a flat part part in the radial range

of the current hole for r/a <0.4. Helium peaked less than the electron density, carbon

had a profile shape similar to ne and argon peaking was a factor of 2.6 stronger than

that of ne. Helium was introduced by gas valves and by helium beams and the peaking
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of helium was increased but still below the ne value when using beam injection. For

quiescent double barrier (QDB) discharges at DIII-D, West et al. [65] observed a strong

accumulation of nickel and copper and a weak accumulation of carbon. The profile of

the safety factor in such discharges was only mildly reversed with q always above 1.

The profiles were not as box like as in JT-60U, and the ion temperature rises strongly

between normalised radii of 0.6 and 0.2, while the electron density peaks from r/a ≈ 0.5

inwards. The Zeff profile peaked inside of r/a ≈ 0.5 mainly due to Ni and Cu.

Impurity behaviour in JET internal transport barrier discharges with reversed shear

has been investigated for low-Z and medium-Z elements [190]. The analysed high per-

formance discharges had a current profile with strongly reversed shear and a central

’current hole’ at the start time of the main heating power phase [191]. The shear rever-

sal was induced by applying Lower Hybrid Current Drive (LHCD) during the current

ramp up before the application of the main heating power. Fig.5.9 gives the evolution of

C, Ne and Ni densities in discharge #51976 [192] with a high performance ITB of ≈1 s

duration. The plasma is constantly heated with 17 MW of NBI and 4 MW of ICRH.

The total neutron rate reaches a maximum value of 4.1×1016 s−1. The toroidal field is

BT=3.4 T and the rising plasma current has a maximum value of Ip=2.4 MA. Before the

formation of the strong barrier, at t=5.8 s, Ti has an almost constant gradient length for

the depicted radial range, and the impurity density profile is hollow or mildly peaked. A

strong barrier in Ti, Te and ne forms at t≈5.9 s. At t=6.2 s, the normalised Ti gradient

is increased at a mid plane radius of R≈3.5 m. The radius with increased normalised

Ti gradient shifts towards larger radii for the following time slices due to an expansion

of the barrier width and due to the increasing Shavranov shift. For the later times, the

radial region of the Ti barrier location is depicted by a vertical light grey bar. Inside

that region Ti becomes progressively flat. Here, ne and the impurity densities develop

the strongest gradient and the radial region with increased density gradients is given by

a darker grey bar. The impurity peaking increases with the impurity charge Z and is

weakest for C and very strong for Ni. At t=6.9 s, the dominant Zeff contribution is due

to Ni and reaches a value of ∆Zeff=1.5 for Zeff=3.5 causing a dilution of ∆ne/ne=6%.

Thus, the profile of the main ion density nD has not much reduced peaking compared

with ne.

The observed impurity accumulation is a pure transport effect due to convective particle

flows. The radial transport of C, Ne and Ni has been simulated for #51976 with the

impurity transport code STRAHL. In Fig.5.10, various profiles for three time points

during the ITB phase t=6.2, 6.6, and 6.8 s are shown and compared with measurements.

ne(Fig.5.10a), Ti (Fig.5.10b), and Te profiles were taken from the experiment. nD follows

from the impurity ion distributions and quasi neutrality. The classical, Pfirsch-Schlüter

and banana-plateau contribution of the transport parameters were numerically evaluated

by solving the coupled equations for the parallel velocities of a four component plasma
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Figure 5.10: Three radial profiles of ne, Ti, Dan, Dneo, vneo/D, nNe and nNi from the

impurity transport simulation of the JET discharge #51976. The overlaid symbols give

experimentally measured profiles.

(D,C,Ne,Ni) with NEOART [39, 33, 8] using the fractional abundances of the different

ion stages from the impurity transport code. Collisions between the different impurity

species are included in the calculation of the neoclassical transport parameters. The

value of Dan, which is assumed to be equal for all species, is set ad hoc. Close to the axis

(r≤0.2 m) the poloidal field becomes very low, the orbits of trapped particles are very

large and standard neoclassical theory may not be applied. Here, the measured profiles

are flat and a high value of Dan=1 m2/s is used to describe this situation. For r>0.2 m,

the anomalous diffusion coefficient is chosen to be below Dneo with Dan=0.02 m2/s for

radii inside the radius of the ITB and to increase from the ITB radius towards the edge.

The radial evolution of the ITB radius is thus reflected in a broadening of the region with

low Dan (see Fig.5.10c). Transport analysis of this discharge was performed by Budny

[193]. The ratio of the ion thermal diffusivity to the neoclasscical diffusivity χi/χneo

was found to decrease strongly in the ITB to values around 1, and adds support to the

assumption of low impurity diffusion coefficient in the ITB.
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The simulation starts at t=5.8 s using radially constant impurity density with

nC=5×1017m−3, nNe=7×1016m−3, and nNi=1.5×1016m−3. Fixed impurity densities at

r=0.8 m are used as boundary condition. During the ITB phase, the neoclassical trans-

port becomes increasingly convective with inwardly directed (negative) drift velocities

in the radial region with weaker temperature gradient and pronounced electron peaking

while in the region with strong temperature gradient vneo is close to zero or outwardly

directed in the case of Ni. For Ne and Ni, the according diffusion coefficients Dneo are

shown in Fig.5.10c while the ratio vneo/(Dneo+Dan) is depicted in Fig.5.10d. The plot of

vneo/D demonstrates, that transport is more convective for Ni, the element with higher

Z compared to Ne and stronger peaking is expected for Ni. This can be seen in Fig.5.10e

and Fig.5.10f, where the simulated density profile of Ni evolves a much stronger peak-

ing than Ne. While the measured Ne densities are well described by the model, there

is still not enough peaking of Ni in the simulation. The central density at t=6.8 s is

nNi=8×1016m−3, i.e. 27% below the measured value. An artificial increase of the neo-

classical drift of Ni by a constant factor of 1.4 yields a perfect match of measured and

simulated profile evolution. When choosing the value of Dan inside the ITB a factor of

5 higher, i.e. Dan=0.1 m2/s, the central Ni density rises only to nNi=6.4×1016m−3 at

t =6.8 s and an increase of the neoclassical drift by a factor of 1.8 is needed to fit the

observed Ni peaking.

The screening effect due to the ion temperature gradient, which induces an outwardly

directed contribution to the neoclassical drift velocity, was tested by two additional sim-

ulations. When retaining the ion temperature gradient in the pressure driven thermody-

namic force while setting the thermodynamic force due to the ion temperature gradient

to zero, the inward convection becomes much too large and the central Ni density at

t=6.8 s is 350% above the measured value. When neglecting the ion temperature gra-

dient in both thermodynamic forces the central Ni density evolves to values 80% above

the measurement. Thus, the screening due to the ion temperature gradient yields an

important contribution to vneo even though it is not sufficient to suppress the accumula-

tion of Ni. Due to the uncertainties in the choice of Dan and in the measured gradients,

it is difficult to quantify the goodness of the neoclassical transport description, however,

there is certainly qualitative agreement between measured impurity evolution and the

simulation, which assumes a dominating neoclassical transport.

Finally, the peaking of the main ion species D has been investigated. When assuming

purely diffusive transport for D, the formation of the strong nD gradient in the radial

range r=0.3-0.5 m can be explained from the centrally peaked particle fuelling density

due to the NBI heating together with a diffusion coefficient of D≈0.1 m2/s in this radial

range. However, it cannot be excluded, that the transport of D also contains additional

inward/outward pinch velocities combined with a higher/lower diffusion coefficient.
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5.4 Impurity Transport in the H-Mode Barrier

The radial impurity transport in the edge region of H-mode plasmas is temporally mod-

ulated when Edge Localised Modes (ELMs) are present. ELMs expel impurities from

the confined plasma and are essential to achieve stationary H-mode discharges with low

impurity concentrations. Assessments of the transport parameters in the edge region of

ELM free H-mode plasmas on ASDEX [194], JET [195, 196, 132, 145], DIII-D [197] and

Alcator C-Mod [109, 198] showed, that the assumption of an inward drift is indispensable

to explain the rapid rise of impurity radiation [194, 195], the observed shape of the total

[196] and soft X-ray(SXR) radiation [198] and the SXR and VUV radiation from injected

impurities using Laser Blow-Off [132, 145, 109]. Transport simulations of the experimen-

tal findings were most sensitive to the ratio of drift velocity v and diffusion coefficient D

and the used values in the barrier region were in the range v/D≈−(50-100) m−1.

The above mentioned investigations are in some respect indirect, since they are not based

on a measure of the impurity density evolution in the H-mode barrier, which has to be

detected with very high spatial resolution of a few mm on a dense grid of measurement

points to resolve the large gradients. Furthermore, a high temporal resolution of ≈100µs

is required to follow the impurity evolution during an ELM cycle and to determine

transport parameters from the density evolution. Te and ne, whose profiles exhibit very

steep gradients, need to be known with the same precision for the transformation of the

radiation measurements to impurity densities. The required mapping of the different

measurements on the flux surface geometry creates a further challenge for the precision

of magnetic equilibrium reconstruction.

At ASDEX Upgrade, 1D simulations of impurity transport in the H-mode barrier were

performed for a discharge with several ≈50 ms long ELM free H-mode phases and Ne

puffing [199]. An inward pinch with v/D ≈ −30 m−1 had to be used inbetween ELMs,

where the modeling of the measured radiation patterns yielded only the ratio v/D as a

robust quantity.

Independent determination of v and D can be achieved, when combining the analysis of

supplementing transport experiments, using constant impurity puffing and laser blow-off

injection respectively. In the first experiment[200], neon was puffed during the plateau

phase of an H-mode discharge with type-I ELMs, ELM frequency fELM≈100Hz and

discharge parameters: PNI=5 MW (D→D+), BT=2.5 T, Ip=1.2 MA, q95=3.3, average

triangularity δ=0.15, and n̄e=6.3×1019m−3 = 0.4 n̄GW . At the edge, Te and ne were

measured with the vertical Thomson scattering system, while the measurements with the

DCN interferometer and the ECE radiometer complemented the profiles in the core. The

soft X-ray camera system was equipped with 12µm thick Be-filters (detection efficiency

>0.1 for photons with energies > 0.84 keV) and had a radial resolution of ∆R≈10 mm.

A slow radial shift of the plasma column by ∆R=2 cm was performed to get a dense
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Figure 5.11: For the H-mode discharge #13158 with Ne puffing, the SXR radiation

flux Isxr, ne, and Te are shown versus the radial distance ∆R of the flux surface to the

separatrix for different times during an ELM cycle. The measured SXR radiation (red

and blue symbols) is dominated by Ne line radiation of the H- and He-like ion. The

black dashed lines are calculated SXR radiation fluxes applying the impurity transport

model from Fig.5.12.

spatial grid of measurement points for Te, ne and SXR radiation. Measurements during

many ELM cycles were overlayed by mapping onto the time difference to the start of the

preceding ELM ∆tELM in order to determine the time evolution of Te, ne and soft X-ray

radiation during an average ELM cycle.

In Fig.5.11 radial profiles of the SXR radiation flux Isxr, Te, and ne are shown versus

the radial distance ∆R of the flux surface to the separatrix at the low field side in the

equatorial plane of the plasma. Te and ne are shown for a time point shortly after

the ELM at ∆tELM=1 ms and shortly before the next ELM at ∆tELM=9.5 ms. Isxr

is depicted for four time points during an ELM cycle and the radial coordinate is the

minimum ∆R of the line-of-sight. The SXR profiles are dominated by the line radiation

of He- and H-like Ne with photon energies around 1 keV. A strong modulation of Isxr

during an ELM cycle is observed for ∆Rmin≥ −10 cm, which can not be explained by

the change of Te or ne. This is particularly obvious for the channels which are nearly

tangent to the separatrix. Here, each ELM produces a large positive spike in a plasma

region with Te≈100eV.

The temporal evolution of Isxr was simulated by a 1D edge impurity transport model,

whose features are shown in Fig. 5.12. The ELM is assumed to cause a strong rise

of the diffusion coefficient in the edge region, while the drift velocity is assumed to be
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Figure 5.12: Edge profiles of D and v used in the model for the impurity transport during

an ELM and in between ELMs versus ∆R and the resulting Neon density distribution.

negligible for the impurity transport during an ELM. At the start of the ELM a large

diffusion coefficient with Dmax=20 m2/s is switched on followed by a linear decrease to

the Pre-ELM values during 1.5 ms. This large diffusion coefficient can only cause a loss

of the impurity content if the impurity density in the edge of the confined region de-

velops a negative slope in the quiescent phase of an ELM cycle. Since the impurity

source is located outside the separatrix, an inwardly directed pinch must be present in

the phase between ELMs. For the pinch velocity in between ELMs a parametrisation is

used which connects the drift parameter v/D to the electron density gradient length with

v/D=d(lnne)/dr, where v/D is assumed to decay in the SOL. The resulting v/D-profile

(see Fig. 5.12) reaches a minimum value of −70 m−1. The equilibrium density ratio be-

tween pedestal top and separatrix Fpeak = exp [−
∫ a
r

(v/D)dr] of the chosen v/D-profile

is Fpeak=5 being very similar to the peaking factor Fpeak=4.5 used in [199], where the

width of the inward pinch region was given a larger radial extent. D is set to decrease

from the edge to the centre for ∆R<−2.5 cm as shown in previous experiments on im-

purity transport in ASDEX Upgrade H-mode plasmas [162, 163, 76] with a maximum

value of Dmax=2m2/s. For ∆R>−2.5 cm, a strongly decreasing diffusion coefficient is

chosen which reaches the edge value Dedge=0.2m2/s at ∆R≈−1 cm. The resulting loss of

impurity content in the confined plasma during an ELM is ≈7%. The Ne profile before

and after the ELM is shown in Fig.5.12. It evolves a strong negative gradient between

ELMs, which is flattened during the ELM.

For the calculation of the SXR radiation during an ELM cycle, neon, carbon and silicon

are considered. The C concentration is taken from charge exchange recombination spec-

troscopy (CXRS) with values of cC ≈1% and a Si concentration of 0.04% is assumed in

accordance with the SXR emission before the start of the Ne-puff. The SXR radiation

of Ne exceeds the contributions of the other species by about a factor of 4. The anoma-

lous part of the transport is expected to be independent of Z [35] and equal transport

coefficients for all impurities are used disregarding the Z-dependence of the neoclassical

part of the transport. The Ne densities are adjusted to give a good fit of the innermost
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Figure 5.13: Measured (grey) and modelled (black) time traces of the offset reduced

SXR emission after Laser Blow-Off of Si in H-mode discharges with type-I ELMs and

different ELM frequency of 130 Hz (#11578) and 270 Hz (#11580). The edge transport

parameters during an ELM cycle are as in Fig.5.12. Note the excellent agreement of

simulated and measured time evolution during ELMs at ρ=0.9 in #11578! For #11580,

∆εsxr at ρ=0.9 is below noise level. The jumps of ∆εsxr at ρ=0.2 are caused by sawteeth

which in the model are simply described by complete flattening of the impurity density

inside a mixing radius.

line-of-sight of the SXR camera for the time point before the ELM. The calculated SXR

emission is integrated along the lines-of-sight and the evolution of the calculated radia-

tion fluxes is in agreement with the measurements as shown in Fig. 5.11. A variation of

Dedge around the model value of 0.2 m2/s was tested. When changing Dedge the inward

pinch velocity has to be adjusted until the particle loss during an ELM is again ≈7%.

For Dedge=0.05 m2/s the minimum value of v/D is −150 m−1 and for Dedge=1 m2/s the

minimum value of v/D is −18 m−1. The resulting emission profiles before the ELM are

somewhat too steep(flat) with the high(low) edge diffusion coefficient, however, for the

lines-of-sights of the SXR camera simulated and measured radiation fluxes agree always

within ±20% independent of the used combination of Dedge and v/D.

Additional information about the value of Dedge is gained from the analysis of the density

evolution of LBO-injected Si, where the same edge transport model is applied. In Fig.5.13
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the time traces of the offset reduced SXR emission ∆εsxr at several radial positions are

compared with the modeling result for two type-I ELMy H-mode discharges with different

ELM frequencies of 130 Hz(#11578) and 270 Hz (#11580). The decay time constants for

the two discharges differ by about a factor of 2 (85 ms for #11578 and 48 ms for #11580).

When the edge barrier is described with a reduced diffusion coefficient without ELM

model the different decay times can be simulated with effective edge diffusion coefficients

of 0.25 m2/s for #11578 and 0.8 m2/s for #11580.

For the ELM model, the same edge transport parameters as described above (see

Fig.5.12) are used in both discharges and the different decay times are found to be

due to the change in ELM frequency. Again, other values of Dedge were tested. For

each Dedge, the observed decays can only be obtained when the v/D profile is chosen

as in Fig.5.12, i. e. with a minimum value of −70 m−1. However, only the transport

coefficients depicted in Fig.5.12 with Dedge=0.2 m2/s explain both transport situations.

Thus, combined analysis of the quasi stationary situation, where the variation during an

ELM cycle is investigated, and of the decay time after LBO of non-recycling impurities

improves the transport description of the H-mode edge and gives separate values for D

and v in the barrier region.

5.5 Summary of Experimental Findings

Experimental information about impurity transport has been obtained from the impurity

density profile during steady phases, from profile evolutions after density perturbations or

plasma parameter changes, and from simple decay time studies without radial resolution.

For recycling impurities, decay time studies allow for an estimate of the characteristic

measures for the impurity flows into the pump duct. Most attention was drawn to the

global confinement of heilum, and on many tokamks, very effective helium exhaust could

be demonstrated for H-mode plasmas with type-I ELMs.

In the confined plasma, measurements of radially resolved transport coefficients could

be obtained, which can be summarised as follows. In the major part of the plasma

interior, the measured impurity transport coefficients are dominated by turbulent trans-

port, i.e. they are roughly an order of magnitude above the expected values considering

only Coulomb collisions. Turbulent transport is suppressed in the central part of the

plasma, when the central heat deposition is weak. A strong reduction of anomalous im-

purity transport is also measured in transport barriers, which might be either an internal

transport barrier or the H-mode edge barrier.

The impurity diffusion coefficient, connected with the plasma turbulence, is approxi-

mately equal to the effective heat diffusion coefficient, and no strong dependence on

impurity mass or charge was found. A strong turbulent impurity pinch, which would
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lead to impurity accumulation, has never been observed.

For the case of suppressed turbulent transport in the central plasma or in an ITB, the

measured transport coefficients are consistent with the neoclassical values. The pinch

velocity rises with the impurity charge and is almost always directed towards the plasma

axis. The peakedness of the main ion density is the main drive for the inward drift of

the impurities. Heavier impurities are strongly accumulating in the plasma centre, while

impurities of lower charge are much less peaked. The accumulation can be controlled

by addition of central heating for conventional confinement modes, however, in the case

of strong internal transport barriers this scheme has not been successful. Within the

H-mode barrier, a strong inward convection is present, whose dependence on impurity

charge has not yet been resolved by direct measurements.

MHD events like sawteeth and ELMs lead to a flattening of the density profiles in the

respective radial range.



6. Conclusions for Next Step Devices

For the realisation of a burning fusion plasma, it is necessary to keep the impurity

concentrations below a certain critical level in order to avoid large energy losses by ra-

diation and reduction of the α-heating power by dilution of the fuel species deuterium

and tritium. The limits of the allowed concentrations decrease with the nuclear charge

of the impurity species and vary between ≈2% for Be and ≈10−4 for W, when assum-

ing for He, a global confinement time of 5τE. The actual concentrations depend on the

production rate and on the impurity transport. This work focused on the radial impu-

rity transport, it’s mathematical description, the underlying physical phenomena, the

experimental methods and experimental results in comparison with theoretical models.

The main question remains, whether the present knowledge is sufficient, to predict impu-

rity transport and the expected impurity concentrations in a burning fusion plasma. It

has to be said, that predictive calculations of the impurity densities are not yet possible.

To this end, the impurity production at all plasma facing components and the impurity

flows in the scrape-off layer would be needed, which requires a calculation of the plasma

parameters and the transport coefficients in the edge plasma. Measurements of the two-

to three-dimensional distributions of sources and flows are very difficult, and there is no

validated model, which would allow for the calculation of the impurity densities at the

edge of the confined plasma, e. g. at the top of the H-mode pedestal. Thus, the situ-

ation is similar to the predictions of energy transport, where the theory-based models

only calculate the profiles inside of the H-mode pedestal with given pedestal values for

temperatures and density. For the energy transport, there is however a huge database

of energy confinement times, which does not exist for the particle confinement time of

impurities, since the total impurity source rates are generally not known.

Therefore, the first step towards impurity density predictions is a calculation of the pro-

files for a given impurity density at the edge of the confined plasma. There are codes

for the collisional impurity transport parameters, for the turbulent part, however, the

codes deliver only transport coefficients or fluxes for electrons and heat. Here, the exper-

imental observations can be used, that the impurity diffusion coefficient, connected with

the plasma turbulence, is approximately equal to the effective heat diffusion coefficient

without significant dependence on impurity mass or charge. Thus, a possible approach
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Figure 6.1: Predictions for density and temperature profiles in ITER-FEAT for the

Q = 10 reference scenario with inductive operation using GLF23 [184].

is to use the anomalous transport parameters from the electrons for all elements, or to

set Dan = (χi +χe)/2. It is important to realize, that an anomalous impurity transport,

which does not depend on impurity mass or charge, can never lead to impurity accu-

mulation [174]. Actually, only van/Dan has to be the same for main ions and impurity

ions, in order to avoid accumulation due to plasma turbulence. This is not the case for

the collisional transport, where we found the increase of vneo/Dneo with impurity charge,

such that the relative strength of anomalous and neoclassical fluxes becomes crucial. In

the major part of the confined plasma, impurity transport is expected to be predomi-

nantly anomalous, but for the central part, anomalous and neoclassical transport will

become similar or neoclassical fluxes might even dominate. Due to the unknown size of

the turbulent transport in the plasma centre, the predictions of impurity density profiles

in the confined plasma are therfore still case studies, where the turbulent component in

the inner part is varied.

For ITER-FEAT, the spectrum of predictions, which can be achieved for various as-

sumptions about the anomalous impurity transport, shall be illustrated. The starting

point is a calculation of heat and particle transport for the reference scenario with

inductive operation using the ASTRA code [184, 201]. The main parameters are:

R =6.2 m, a=2.4 m, BT=5.3 T, Ip=15 MA, Uloop=0.075 V, PNBI=40 MW, Pfus=400 MW.

The anomalous fluxes of electrons and heat are calculated with the GLF23 code [51],

which is based on ITG/TEM physics. GLF23 does not treat impurity transport and

only diffusive transport of Helium is considered, with Dan = (χi + χe)/2. Dilution and

radiative losses by Be(2%) and Ar(0.12%) are included using fixed concentrations. In

Fig.6.1, the resulting profiles of ne, nDT = nD + nT , nHe, Te, and Ti are shown with the

anomalous heat diffusion coefficients χi and χe. The transport coefficients are not deliv-

ered by GLF23, which just returns radial fluxes. There is an inwardly directed particle

drift, which leads to the peaking of ne and nDT .

In the next step, impurity transport is considered for He, Be, Ar and W inside of r/a=0.8.

All elements are given a fixed edge concentration: cHe = 2.3%, cBe = 2%, cAr = 0.1%,
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Figure 6.2: Simulated density profiles of D+T, He, Be, Ar and W in ITER-FEAT for the

Q = 10 reference scenario with inductive operation using different assumptions about

anomalous impurity transport. 1st column: dominant anomalous transport in centre as

in Fig.6.1 with Dan and van equal for all ions. 2nd column: dominant neoclassical trans-

port in centre. 3rd column: dominant neoclassical transport in centre and Ware pinch

switched off. 4th column: Dan and van scale with 1/Z. The second row gives anomalous

and neoclassical diffusion coefficients for column 1-3, and total diffusion coefficients for

colum 4.

and cW = 0.001%. The anomalous diffusion coefficient is given a very simple shape with

constant levels for r < 0.7 m as well as for r > 1.2 m, which are linearly interpolated

for 0.7 m < r < 1.2 m, and at the beginning, the inner and outer levels are chosen to

be at Dan,in =0.2 m2/s and Dan,out =1 m2/s, which approximately reflects the GLF23

profile of (χi + χe)/2 from Fig.6.1. The anomalous drift velocity van is adopted to fit

the nDT profile, which was calculated by GLF23. Dan and van are assumed to be equal

for all ions. Dneo and vneo for the 6 components D, T, He, Be, Ar, and W is calculated

with NEOART (see Sec. 3.1.4). The transport of all ions is calculated, ne follows from

the condition of quasi-neutrality, and the profiles of Te, Ti, and consequently also of the

fusion reaction coefficient are kept fixed.

Fig.6.2 shows the equilibrium density profiles, the diffusion coefficients, and the radial

shape of the impurity concentrations normalised to their edge value for four different
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cases. In the first column, the Dan levels were taken at about (χi + χe)/2 as given by

GLF23. He is slightly more peaked compared to Fig.6.1, since the anomalous drift has

been taken into account. Dneo is below Dan for all species and all radii, and neoclassical

transport has almost no influence. Since Dan and van are equal for all species, the con-

centrations of Be, Ar and W are radially constant. The profiles of the second column

are calculated for the case of a low anomalous diffusion coefficient in the inner region, i.

e. lower than the neoclassical value of all species. It represents the worst case estimate

with respect to He removal and neoclassical impurity accumulation. For He, the addi-

tional peaking is predominantly caused by the central fusion source at the lower diffusion

coefficient, which requires a larger gradient to maintain the radial flux. For the other

impurities, the central peak in the concentration is caused by the neoclassical inward

pinch, and rises with the impurity charge. D and T are still peaked in the inner region,

even though the anomalous inward pinch plays no role. This is due to the neoclassical

Ware pinch as is demonstrated in the third column. Here, the Ware pinch was switched

off by artifically setting Uloop to zero. The main ion peaking in the neoclassically dom-

inated radial range disappears, the drive for the neoclassical peaking of Be, Ar and W

is lost, and their concentration profiles are almost flat. Only for He, the profile is nearly

unchanged, since here the peaking was mainly caused by the central fusion source. A

strong dependence of turbulent diffusion on impurity mass or charge has not been found

experimentally. Nevertheless, the influence of an anomalous diffusion coefficient, which

decreases with impurity charge is demonstrated in the 4th column. Here, only the ratio

van/Dan is taken not to depend on impurity charge. For D and T, the same levels as in

the first column are chosen, and for the other impurities Dan shall be proportional to

Z−1. Here, D, T, and Be are similarly peaked due to van, while the high-Z elements feel

the neoclassical pinch, which is driven by the peaked low-Z elements. The He profile is

not strongly influenced.

As long as turbulent transport is dominant, no impurity accumulation is expected from

present experimental experience, which tells, that van/Dan does not increase significantly

with ion charge. Only for very low anomalous transport, central accumulation of high-Z

elements is found, which is driven by the peaking of the main ion species due to the

Ware pinch. The GLF23 results for inductive operation without a central transport

barrier suggest sufficient anomalous transport, even in the inner plasma region. Thus,

a prediction for the impurity profile shapes in a next step device is mainly a question

of validated models of turbulent impurity transport in the confined plasma. However,

there is still much work needed, to arrive at a complete picture of the impurity source

distribution and the impurity flows in the scrape-off layer in order to understand impurity

confinement in fusion plasmas.



A. Detailed Numerical Solution Scheme for the

Impurity Transport Equation

The discretisation of the coupled impurity transport equations (2.12) and the numeri-

cal solution scheme as given in equations(2.58,2.59) is described in detail. We rewrite

Eq.(2.12) for the ion stage z.

∂nz
∂t

=
1

r

d

dr
r(Dz(r)

dnz
dr
− vz(r)nz)−

nz
τ||

+Rz +Qz (A.1)

The parallel loss in the SOL is approximated by a volume loss term with characteristic

decay time τ||. The volume sources due to recombination and ionisation between ions

with z′ = z ± 1 are contained in the reaction term Rz.

Rz = ne(Sz−1nz−1 + αznz+1)− nzne(Sz + αz−1) (A.2)

Qz describes an external source, e.g. fuelling of singly ionised ions by ionisation of

neutrals or generation of He++ ions by fusion of D and T.

The mesh points shall be equidistant in the coordinate ρ = ρ(r). Transformation of the

transport equation to ρ yields with dρ/dr = ρ′.

∂nz
∂t

= Dzρ
′2d

2nz
dρ2

+
(
(ρ′′+

ρ′

r
)Dz+ρ

′2dDz

dρ
−ρ′vz

)dnz
dρ
−
(vz
r

+ρ′
dvz
dρ

+
1

τ||

)
nz+Rz+Qz (A.3)

The change of the density at the radial mesh point i during a time step ∆t, i.e. from t

to t+ ∆t, is calculated by taking the spatial derivatives of the density at time t+ ∆t/2.

This approach leads to the Crank-Nicolson difference scheme. Denoting the densities

at the old time with superscript 0 and the densities at the new time step with 1 the

derivatives at the ith mesh point are given by.

dnz
dt

=
n1
z,i − n0

z,i

∆t
dnz
dρ

=
n0
z,i+1 + n1

z,i+1 − n0
z,i−1 − n1

z,i−1

4∆ρ

d2nz
dρ2

=
n0
z,i+1 + n1

z,i+1 − 2n0
z,i − 2n1

z,i + n0
z,i−1 + n1

z,i−1

2∆ρ2
(A.4)
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The following notation for the derivatives of diffusion coefficient and drift velocity is used

dDz

dρ
=

Dz,i+1 −Dz,i−1

2∆ρ
=

∆Dz

2∆ρ
dvz
dρ

=
vz,i+1 − vz,i−1

2∆ρ
=

∆vz
2∆ρ

(A.5)

This yields the discretisation of the transport equation.

n1
z,i − n0

z,i =
∆t

2

Dzρ
′2

∆ρ2
(n0

z,i+1 + n1
z,i+1 − 2n0

z,i − 2n1
z,i + n0

z,i−1 + n1
z,i−1)

+
∆t

2
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(
ρ′′

2∆ρ
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2∆ρ
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(n0
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z,i+1 − n0

z,i−1 − n1
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− ∆t

2

(vz
r

+
ρ′

2∆ρ
∆vz +

1

τ||

)
(n0

z,i + n1
z,i) + ∆tRz + ∆tQz (A.6)

With p = ρ′/(2∆ρ) and q = ρ′′/(2∆ρ) the equation reads.

n1
z,i − n0

z,i =
∆t

2
4p2Dz(n

0
z,i+1 + n1

z,i+1 − 2n0
z,i − 2n1
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+
∆t

2

(
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r
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)
(n0

z,i+1 + n1
z,i+1 − n0

z,i−1 − n1
z,i−1)

− ∆t

2

(vz
r

+ p∆vz +
1

τ||

)
(n0

z,i + n1
z,i) + ∆tRz + ∆tQz (A.7)

The reaction term changes it form each time step according to equations(2.58,2.59). A

time step (I) with implicit treatment of ionisation and explicit treatment of recombi-

nation is followed by a time step (II) with explicit treatment of ionisation and implicit

treatment of recombination.

Rz =




ne(Sz−1n

1
z−1,i + αzn

0
z+1,i − n1

z,iSz − n0
z,iαz−1) (I)

ne(Sz−1n
0
z−1,i + αzn

1
z+1,i − n0

z,iSz − n1
z,iαz−1) (II)

(A.8)

This difference method leads to the solution of a tridiagonal matrix equation for each

ion stage on the number of mesh points.

an1
z,i−1 + (b + bR)n1

z,i + cn1
z,i+1 = d+ dR (A.9)

The coefficients (b+ bR) are on the main diagonal, a stands in the lower, c in the upper

diagonal and (d + dR) on the right hand side. The coefficients with superscript R are

due to ionisation/recombination reactions.

a = −2p2Dz∆t +
∆t

2

(
(q +

p

r
)Dz + p2∆Dz − pvz

)

b = 1 + 4p2Dz∆t +
∆t

2

(vz
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+ p∆vz +
1

τ||

)

c = −4p2Dz∆t− a
d = −an0

z,i−1 + (2− b)n0
z,i − cn0

z,i+1 + ∆tQz (A.10)
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bR = ∆t


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
neSz (I)
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dR = ∆t




ne(Sz−1n

1
z−1,i + αzn

0
z+1,i − n0

z,iαz−1) (I)
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(A.11)

For case (I), the mz matrix equations are solved in ascending order of z and the density

n1
z−1,i of the next lower stage at the new time point is known when needed in the dR

term of the equation for n1
z,i. For case (II), n1

z+1,i is needed and the matrix equations are

solved in descending order of z.

At the axis r = 0, the density gradient and the drift velocity is zero. Expanding density

and drift velocity in the vicinity of r = 0 yields the transport equation for r → 0.

∂nz
∂t

= 2Dz(0)
[d2n

dr2

]
r=0
− 2
[dvz
dr

]
r=0

nz(0) +Rz +Qz (A.12)

The derivative of vz at r = 0 is replaced by (vz,1 − vz,0)/∆r and the discretisation is.

n1
z,0 − n0

z,0 = 2∆t
Dz

∆r2
(n0

z,1 + n1
z,1 − n0

z,0 − n1
z,0)

− ∆t

2

vz,1 − vz,0
∆r

(n0
z,0 + n1

z,0) + ∆tRz + ∆tQz (A.13)

The coefficients are.

a = 0

b = 1 + 2∆t
Dz

∆r2
+

∆t

2

vz,1 − vz,0
∆r

c = −2∆t
Dz

∆r2

d = (2− b)n0
z,0 − cn0

z,1 + ∆tQz (A.14)

At the outermost radial mesh point k, the density shall decay with decay length λ.

dnz
dr

= −nz,k
λ

(A.15)

The boundary condition defines the density at the virtual mesh point k+1 in terms of

the densities at k and k-1

dnz
dr

= p(nz,k+1 − nz,k−1) = −nz,k
λ

nz,k+1 = nz,k−1 −
nz,k
pλ

(A.16)

Eq.(A.7) is modified for the outermost grid point k by replacing the densities at k+1

with Eq.(A.16). Furthermore, derivatives of Dz and vz are neglected.

n1
z,k − n0

z,k =
∆t

2
8p2Dz(−(1 +

1

2pλ
)(n0

z,k + n1
z,k) + n0

z,k−1 + n1
z,k−1)

− ∆t

2

1

pλ

(
(q +

p

r
)Dz − pvz

)
(n0

z,k + n1
z,k)

− ∆t

2

(vz
r

+
1

τ||

)
(n0

z,k + n1
z,k) + ∆tRz + ∆tQz (A.17)
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The coefficients are.

a = −4p2Dz∆t

b = 1 + 4p2Dz∆t(1 +
1

2pλ
) +

∆t

2

1

pλ

(
(q +

p

r
)Dz − pvz

)
+

∆t

2

(vz
r

+
1

τ||

)

c = 0

d = −an0
z,k−1 + (2− b)n0

z,k + ∆tQz (A.18)

For the hard boundary case nz,edge = 0, the coefficients are.

a = 0

b+ bR = 1

c = 0

d+ dR = 1 (A.19)
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