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Abstract. Bispectral analysis has been proposed as a diagnostic for Reynolds
stress (RS) as a driving mechanism of zonal flows (ZF) in toroidally confined
plasmas. A turbulence simulation code was used to test this technique on a
well-defined system. It turned out that the geodesic acoustic mode dominates
the poloidal flow spectrum and that it reduces radial transport in the same way as
does a low-frequency ZF. Using the total cross-bicoherence, a correlation between
RS and large-scale poloidal flows could be detected. The experimentally more
accessible auto-bicoherences did not prove to be a useful quantity for studying
this interaction. RS was not observed as a precursor of the flow; rather it appears
simultaneously in the region of radial flow shear.
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1. Introduction

Zonal flows (ZF) are poloidally and toroidally symmetric (k, = k; = 0), radially localized
(k, # 0) potential structures [, 2]. They can be described as low-frequency E x B shear flows
and therefore play an important role in turbulent transport. ZFs limit the radial correlation
length via the shear decorrelation mechanism [3] and can trigger transitions into transport
barriers. In this work it turns out that ZFs come in two types: low-frequency flows, which
were originally considered for turbulence decorrelation, and flows at the geodesic acoustic mode
(GAM) frequency, which should appear together with the pressure side-band p = pgsin(6).
The term ZF is used for both types of flow. If a distinction is needed, the terms GAM and
low-frequency ZF are used explicitly. The GAM is a result of poloidal pressure asymmetries,
which are induced by poloidal E x B rotation. The dominant restoring force is due to the radial
component of the diamagnetic current which appears because of the displacement of the pressure
contours with respect to the flux surfaces. In wavenumber space, the structure of the ZF and the
GAM is the same. The difference occurs in frequency space. It will turn out that the GAM is
the dominant flow in this analysis.

It has been proposed that the drive of ZFs is due to Reynolds stress (RS) [4]. This has
been considered as a mode-coupling problem in which the energy of small-scale radial and
poloidal velocity fluctuations v,, vy is transferred to the large-scale ZF V, via three-wave
interactions [5]-[8]. Treated as a mode-coupling problem the ZF generation turns out to be
related to the cross-bispectrum of these quantities [5], namely v,, vy and the ZF potential &,
defined as B(w;, @>) = (0, (w1) vy (wz)ci)*(a)l + w,)). Experimental investigations of the driving
mechanism of ZFs are difficult to carry out, since in order to obtain the quantities v,, vg, Vj
expensive multipoint measurements in time and in space are required. The limitation to the
auto-bispectrum of potential and density fluctuations [6, 7] provides an experimentally more
accessible quantity, since single point measurements are sufficient for temporal Fourier analysis.
It must be noted, however, that 7 and gZ have different nonlinear properties [9].

Since the measurement of bicoherence is a very ambitious task, it is worthwhile testing
this technique on a well-defined system like a turbulence simulation code. Simulations have the
advantage that all the information is available. Hence simplified forms of the bicoherence can
be checked against the full form. Furthermore, since the simulation is carried out on a spatial
grid, equivalent grid points as in the poloidal direction can be used to perform sample averages.
Hence the causality between RS and ZF can be studied much more carefully than in experiment,
where the sample average has to be done in time.

The objective of this paper is twofold. First, the results from a turbulence simulation code
are used to investigate the RS as a driving mechanism of ZFs. The analysis is done by different
bispectral quantities which have been predicted to be related to the ZF generation. Second the
applicability of these different bispectral quantities as a diagnostic of ZF drive is investigated.

In section 2 the simulation code is introduced. Section 3 describes the different bispectral
analysis tools. In section 4 the simulation data are analysed for ZFs and in section 5 the relation
to the bispectral quantities is investigated. The results are discussed in section 6.

2. The simulation code DALF3

The drift Alfvén turbulence code DALF3 [10] solves a two-fluid model in three-dimensional
flux tube geometry. The model includes interchange and drift wave turbulence, which is coupled
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to shear Alfvén waves. The dependent variables are fluctuations in electrostatic potential (@),
electron density (72.), parallel current (J;) and parallel ion flow (i), with the parallel magnetic

potential (A”) given through Ampere’s law. The equations read

n.M;c* d

B3 4@ V2ip = VyJ, — K(p.), (1)
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This set consists of equations for the conservation of charge (1), parallel electron (2) and ion
momentum (4) and energy (3), where
d 8
i~ o B
m., p. and e are the electron mass, the electron pressure and the electron charge, and v, is the
Braginskii electron collision frequency [11]. 7, is the background electron temperature and M;
is the ion mass. Electric and magnetic field fluctuations are coupled by the Maxwell equations.
The equations are solved in a flux tube modelling closed flux surface tokamak geometry,
with globally consistent boundary conditions [12] and using a ‘shifted metric’ technique to
represent both slab and toroidal eigenmode types equally well [13]. The background density and
magnetic pitch parameter (g) are both given gradients (L, = |V logn,|™!, hence p, = —x /L
under d/dt and V|, and § = rq’/q, respectively); the equations are otherwise homogeneous.
The coordinates x and y describe the drift plane perpendicular to the magnetic field B, similar
to but importantly different from the poloidal (r, #) plane. The coordinate z projects the position
along B onto the poloidal location 6, so that the flux tube samples the entire poloidal structure
(hence, the perpendicular angle coordinate, y, actually tracks the toroidal position although its
gradient is nearly poloidal; see [12] for details).
The turbulence resulting from the equations is controlled by the dimensionless parameters

. m,/qR\? ~  4nn,T, ;/qR\? . L,
n= ( ) = (—) v=0.51v,
M LJ_ BZ LJ_

where R is the toroidal major radius and ¢ is the sound speed given by ¢ = T,/M;. The
significance of the three parameters is, respectively, the ability of the turbulence to compete with
the long ( ) and short () wavelength limits of the Alfvén response, and the relative collisionality.
All three parameters are typically greater than unity for edge turbulence.

From the potential fluctuations the contravariant components of the E x B velocity are found
according to v* = = —(3¢/dy) and ¥ = (3¢/dx). The mean flow has only a y-component, found
from the flux surface averaged (over y and z) potential & = (¢), . according to V¥ = (0P /0x).
The flux surface averaged turbulent transport is ['* = (n,0").

In this paper the results are presented in physical units with respect to L, = 5 cm and
geometrical parameters of the Kiel torsatron TJ-K as presented in [ 14, 15], offering the possibility
of direct comparison with experimental results in future work.

c
B><V¢ V, E—V-EBXV. (&)

(6)

N
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3. Zonal flows and bispectral analysis

Details of bispectral analysis of experimental data have been given elsewhere [16]. The method
is briefly summarized here. The normalized cross-bicoherence of three fluctuating parameters
f. g, h is given by

|B (@1, w2)|?

(1f (@) (@) ) (| (w)?)

(7

where
Bran (@i, ) = (f(01)§(@)h* (w3)) (8)

is the cross-bispectrum, evaluated at the resonance condition w; = w; + w,, f is the Fourier
transform of f, ‘“*’ denotes the complex conjugate and (-) averaging over a large number of
realizations of the spectral function inside the brackets. In particular, the auto-bicoherence and
the auto-bispectrum of a single parameter f is obtained by replacing g and % in (7) and (8) by f.

The bispectrum measures the degree of phase coherence between three modes at w;, @,
and w; (i.e. the degree of a fixed phase relation between these modes). The bicoherence gives
the respective normalized measure. A measure of the relative contribution of a mode at w3 in
coherent three-mode coupling is provided by the integrated bicoherence

Dr(w3) = Y b (01, 02) 8o sam.on- ©)

w1,w2

For the purpose of temporal or spatial comparisons the total integrated bicoherence

b = sz(a)3) (10)

provides a measure of the total amount of coherent three-mode coupling.

From fluid theory it follows that the energetic drive term for ZFs is given by
(Q)y,.(v0”), . [17,18], where (-), . stands for the zonal average. The quantity relates the
RS to the vorticity 2 and can be represented as the cross-bispectrum B,y (w1, @) [5] under
the resonance condition for the frequencies, where w; = wzr & 0. In order to study the energy
transfer between modes, (£2), .(v*v”), . has to be decomposed in wavenumber space. Hence,
the physical process happens in k not in w space. In this case, the resonance condition applies to
the wavevectors k3 = k; + k,, where k3 = kzg with kzp g = kzp | = 0. The correlation between
the ZF, vorticity and the RS should be reflected in the respective total integrated bicoherences.
The summation in (10) has to be restricted to the low frequencies of the ZF. In wavenumber
space we restrict ourselves to the poloidal wavenumber k3 = kzp 9 = O.

For the experimental study of ZF generation as a mode-coupling problem, alternative
bispectral quantities—the auto-bispectrum of potential and density fluctuations in frequency
space—have been derived in [6,7]. Accordingly the generation of ZFs is also supposed to be
reflected in an increase in the respective total integrated auto-bicoherence, which would provide
an experimentally more accessible quantity.

In tokamak devices an increase in the amount of three-wave coupling has been observed
during L-H transitions as a precursor of £ x B shear flow development [6, 7]. A similar type
of correlation between three-wave coupling and ZF-like structures has been reported in [19]. In
this case the non-ambipolarity of the turbulent transport was important for generating the ZF. So
far no clear proof exists that three-wave coupling is responsible for ZF generation.
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Figure 1. (z, x)-profiles of average poloidal flow (left) and radial transport (right)
calculated from a simulation run with parameters ,3 = 0.7, v = 4.0. The
dominant flow oscillations are due to GAMs. Regions with the highest values
of V7 are marked by boxes. They are characterized by the highest contrast.
Transport minima are found in the vicinity of these flow maxima.

4. Analysis of zonal flows

In a first step, the simulated data for various values of B and D were analysed to detect ZFs.
Turbulence properties of these data have been analysed in [14]. In this paper results of simulation
runs are analysed whose control parameters basically belong to the drift wave regime. The other
parameters are [t = 1.1 and ¢, = (gR/L)? = 2025. With L, = 5 cm this refers to hydrogen
gas.

Figure 1 shows contour profiles of the average poloidal flow V"~ and the radial transport I'*
calculated from a simulation run with ,3 = 0.7 and ¥ = 4.0. For the calculation of the average
in the z direction only two planes were used: one at the magnetic low-field side and one at the
high-field side.

The most apparent feature is a periodic oscillation in the entire radial range. To examine
these oscillations, an arbitrary segment of a time trace at a fixed position x is shown in figure 2
(left). It turns out that the characteristic frequency of the oscillation is approximately consistent
with f = 0.015¢,/L . It appears as a peak in the frequency spectrum of V> shown in figure 2
(right). The spectrum was obtained by averaging the spectra of all time traces in figure 1
(left). The frequency agrees rather well with the prediction for GAMs [20], which is given
by weam = «/ics/R = wg cs/(«/_ L)), where wg = 2L, /R. For the parameters used this
yields fgam = 0.0146 ¢;/L, . The low-frequency ZF appears as a smaller peak in the averaged
spectrum. Further simulation runs with b = 1.0-6.0 holding B = 0.7 fixed and with 8 = 0.7
2.25 holding ¥ = 4.0 fixed have been analysed as well. In all cases a peak of the mean poloidal
flow at the GAM frequency of f = 0.015¢,/L, was present. As expected for GAMs the
frequency scales with ¢;/R and not with ,é or v. The relative amplitude of the low-frequency
ZF and the GAM changes with time and location. But in all cases the GAM peak is at least
of similar magnitude as the low-frequency peak. For comparison, another spectrum at a fixed
position x is also shown on the right-hand side of figure 2.

The search for ZFs has revealed that GAMs, which can be considered as the damping
mechanism of the ZFs [18], make the dominant contribution to the average poloidal flow. The
GAMs are rather dominant fluctuations in the entire plasma and the ZFs rather show up as the
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Figure 2. Segment of a time trace of V' from figure 1 at fixed positions x; , (left).
The full curve belongs to a region with high values of V' (x;) and the dashed curve
to a region with lower values (x;). The oscillation has a period of T ~ 70 L /¢,
reflected in the autopower spectrum of V' (right) by a peak at f ~ 0.015¢,/L .
Also a smaller peak at zero frequency is visible. For comparison another spectrum
at fixed x is shown.

envelope of the GAM amplitude. However, the effect of GAMs on radial transport is similar to
that of ZFs. This can be seen on the right-hand side of figure 1, where transport events with long
radial correlation length are decorrelated when the GAM amplitude is large enough.

In order to examine the correlation of the radial transport with poloidal flow shear more
quantitatively, a cross-correlation analysis was carried out. The degree of correlation as a function
of the spatial lag Ax was calculated according to
1 / (uCx, 1) = (u(x, D)) O+ Ax, 1) = (v(x, D))

(Cuv)t = -
T

dxdr (11)
Oy x Ovy,x

where o denotes the respective standard deviation and t the time window used for averaging.
Interchanging x and ¢ in (11) yields the degree of correlation as a function of the time lag Ar.
Figure 3 shows the result for the temporally averaged (left) and the spatially averaged (right)
cross-correlation between radial transport (v = I'*) and poloidal flow shear (u = [0, V”]). A
clear anti-correlation is found in space and time. Regions with strong flow shear are related with
regions of reduced radial transport. Furthermore, the reduction in transport is delayed by about
15 L, /c; with respect to the maximum in flow shear. This points to the fact that the flow shear
suppresses transport. Hence, the GAM has a similar effect on transport as the low-frequency ZF.

5. Relation of zonal flows with Reynolds stress

Reynolds stress (RS) as a possible driving mechanism of ZFs and GAMs has been investigated
by means of cross-bicoherence analyses. The energetic drive of the ZF is given by the zonally
averaged vorticity (2), . times the zonally averaged RS (v*v”), . [17,18]. As a measure of
the correlation of small-scale turbulence with large-scale ZF/GAM the cross-bicoherence of
fluctuations of velocity components v*, v” and the temporally varying flow potential ® can be
used [1]. Here we use the flow shear instead of the flow potential, since the flow shear is exactly
the zonally averaged vorticity.

All the information needed to calculate this expression is only available from simulated
data. In experiments, a reduced number of data, sometimes even single point measurements,
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Figure 3. Temporally averaged cross-correlation (C, ,), (left) and spatially
averaged cross-correlation (C, , ), (right) of radial transport v = I'* with absolute
flow shear u = |9, V”|. The anti-correlation between the flow shear and the radial
transport is apparent.

have to be used. The objectives are to investigate whether there is a correlation if use can be
made of the full data and if so whether the correlations also show up in a reduced data set as
used, for example for the auto-bicoherence. Hence four different bicoherences are calculated:
the full one using the appropriate velocities in k-(b, ;) and in frequency space (b, ;) as well
as auto-bicoherences in density (b,) and potential (bg), which are both, of course, calculated
in frequency space. In figures 4 and 5 the estimates for the total integrated bicoherences are
compared with the poloidal flow and the flow shear.

Details of the data analyses are as follows: for the cross-bicoherence in wavenumber space
the quantities v*, v” and (£2), . are calculated on a grid of 128 points in the y direction. Note
that (£2), . represents the value of the Fourier spectrum at k, = 0. For averaging, 24 realizations
are taken from a time window of size T = 70 L, /c,. This corresponds to one GAM period.
The resulting total integrated bicoherence b, ; 1s assigned to a point in time at the centre of the
window, from which the realizations are taken.

Similarly the cross-bicoherence in frequency space is calculated: frequency spectra are
calculated on time windows of size T = 70L, /c;, and 128 samples are averaged along the
y coordinate, i.e. from 128 realizations the total integrated bicoherence b, ; is calculated and
assigned to one point in time determined by the centre of the time window. The integrated
bicoherence is calculated in a small range around w = 0. A sliding window is used for temporal
resolution.

Using the same method, the total integrated auto-bicoherences of potential and density
fluctuations b, and b, are calculated: time windows with a length T = 70 L /c, are applied
to time series and averaging is done along the y direction resulting in an average over 128
realizations.

The results shown in figures 4 and 5 are from the area indicated by the horizontal box
in figure 1. The profiles of the total integrated cross- and auto-bicoherences are shown in the
top row. The magnitudes are depicted in units of the respective noise level. In the middle the
profiles of the average poloidal flow are overlaid with contour lines of the bicoherence profiles
from the top. The bottom row shows the overlay of the flow shear profiles with these contour
lines. Figure 4 refers to the cross-bicoherences b, ; (left column) and b, ; (right column) and
figure 5 refers to the auto-bicoherences by (left column) and b,, (right column).

The overlay of the flow and the vorticity (flow shear) profiles with contours of b, ¢ in figure 4
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Figure 4. (¢, x) profiles of total integrated cross-bicoherences in comparison with
the average poloidal flow and the flow shear. The left column refers to b, ¢ (al)
and the right column to b, ; (b1). Contours from both quantities are overlaid on
the flow V” (a2, b2) and the flow shear 0, V" (a3, b3) profile. High values of b, s
are located at high values of the flow shear.

clearly shows that high values of this bispectral quantity exist in the vicinity of high flow values
and coincide in rather good agreement with high values of the flow shear. b, ; is in phase with
the flow shear on the high-pressure side (small x) and out of phase on the low-pressure side.
This is due to the fact that the bicoherence is positive by definition while the flow shear changes
its sign. In wavenumber space the correlation of b, ; with the flow or the flow shear is not as
clear as in frequency space.

The auto-bicoherence b, in figure 5 (left) does not show any correlation with the flow or

the flow shear. The bicoherence b, related to density fluctuations (figure 5, right), on the other
hand, has regions with a large number of three-mode interactions, which irregularly overlap with
regions of high flow shear. This might be related to the fact that the GAM appears as a pressure
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Figure 5. (¢, x) profiles of total integrated auto-bicoherences in comparison with
the average poloidal flow and the flow shear in the same representation as in
figure 4. The left column refers to b, (al) and the right column to the b, (bl),
both calculated in frequency space. A correlation with the flow or the flow shear
is not observable in the case of b,. The bicoherence related to density fluctuations
reveals an irregular conformance with the flow shear.

perturbation in the poloidal direction.

For a quantitative analysis, cross-correlations between the bicoherences and the absolute
amplitude of the flow shear were calculated according to equation (11), where x and ¢ have to
be interchanged. The results for the spatially averaged cross-correlation (C, ,), are shown in
figure 6. The qualitative results from figures 4 and 5 are confirmed. The only quantity with a
reasonable correlation of 25% is the full bicoherence calculated in frequency space. A time lag,
which would be an indication of RS drive of the flows, is not observed. However, the width of
the correlation function is larger than the GAM period and is asymmetric. This might point to
some correlation of RS drive with the zero-frequency component of the ZF, which always has
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Figure 6. Spatially averaged cross-correlations (C,, ,), of respective bicoherences
with absolute flow shear u = |9, V”|. A reasonable correlation of 25% is found
between the flow shear and the cross-bicoherence b, ; at At = 0.

some amplitude in the system. The correlation of the flow shear with the bicoherence calculated
in k space is less than 15%. The cross-correlations between the bicoherences and the flow itself
are below 10%.

6. Summary and conclusions

Data obtained from the drift Alfvén turbulence simulation code DALF3 were analysed for ZF. The
autopower spectrum of the flux-surface averaged poloidal flow shows two major contributions, a
peak at zero frequency and a second peak at the frequency of the GAM, which scales with ¢,/ R.
The mean poloidal flow is clearly dominated by the GAM oscillations. Hence, the ZFs come in
two types, a low-frequency ZF (w = 0, k, = 0), which was originally considered for turbulence
decorrelation, and flows at the GAM frequency (@ # 0, k, = 0). The GAMs can be considered
as a damping mechanism of the low-frequency ZFs. It was demonstrated that the flow shear due
to the GAMs also contributes to a reduction in radial transport. The maximum in flow shear was
found to occur prior to a reduction in transport.

In the simulation, the drive of ZFs is due to RS. The drive of the GAM by RS should
actually be stronger than that of the low-frequency ZF. Bispectral methods have been suggested
as an appropriate tool for experimental study of this mechanism. The total integrated cross-
bicoherence of E x B velocity fluctuations v*, v* and the zonally averaged vorticity (£2), . is a
measure of the correlation between the mean poloidal flow and the RS. In order to investigate the
efficiency of this technique, different bispectral analyses were carried out on the simulated data.

The strongest correlation was found when the analysis was carried out in frequency space.
The spatial and temporal evolution of flow shear coincides with an increased number of three-
mode interactions indicated by the total integrated cross-bicoherence. The cross-correlation
between the bicoherence and the flow shear is about 25% when averaged over the radial
coordinate. The correlation function is broader than the GAM period and is asymmetric. This
could be a hint to RS drive of the low-frequency ZF. The analysis in k space did not show any
clear relation between flow and bicoherence.
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In experimental investigations, the use of the auto-bispectrum would be much more
appropriate. However, no clear correlation of the mean poloidal flow and the total integrated
auto-bicoherence of plasma potential or density fluctuations was found. In the case of the auto-
bicoherence of density fluctuations some relation with the flow shear was found, which might
be related to the pressure perturbation of the GAM.

In summary, the GAM was found to be the dominant poloidal flow in the simulation data
with a similar effect on radial transport as the low-frequency ZF. A correlation between RS and
ZF/GAM could only be detected in the cross-bicoherence taken in frequency space. The auto-
bicoherences do not appear as a useful quantity to study the interaction of RS and ZF/GAM. RS
has not been observed as a clear precursor of strong ZF or GAM amplitudes. It rather appears
simultaneously in the region of radial ZF and GAM gradients. Although the RS is the only
mechanism in the code driving large-scale ZFs, in the bispectral analysis the RS could not be
detected as such.
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