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The following neoclassical phenomena are studied with drift-kinetic simulations: (i) the ion
polarization current at a rotating island of a neoclassical tearing mode and (ii) the bootstrap
current at a large gradient, e.g. H mode pedestal.
(i) Neoclassical tearing modes (NTM) play an important role in long-pulse tokamak exper-
iments, since they often set the dominant limitation to the maximum pressure achievable in
a given magnetic field. The NTM occurs when a sufficiently strong magnetic perturbation
creates a ’seed island’ in the plasma. It is driven by the loss of the bootstrap current inside
the island (due to the flattening of the pressure profile), but is possibly damped by the polar-
ization current in the time dependent electric field of the rotating island (the ion current is
dominant due to the larger gyro radius). The polarization current is strongly enhanced due
to the finite banana orbit width. Recently we have shown that due to finite orbit size there is
no complete loss of the bootstrap current in small islands[1]. Here, we report on studies of
the effect of the finite orbit size on the polarization current. Also, the dependence of the po-
larization current on the collisionality was studied. From the analytic theory only the limits
for very low and for high collisionality are known.
(ii) The neoclassical theory of the bootstrap current is based on the assumption that the ba-
bana orbit width is small compared to the gradient length. We calculated the ion contribution
to the bootstrap current in the opposite case of steep density and temperature profiles.

The neoclassical contribution to the rate of change of the island half-width w is propor-
tional to an integral over the helical part of the parallel current,

dw

dt
neo

∼ 1

w

∫ ∞

−1

dΩ

∫∫

j‖neo cos ξ√
Ω + cos ξ

dξdθ, (1)

where Ω = (q′
s/2qsψ̃)(ψ − ψs)

2 − cos ξ is the normalized helical flux, Ω = 1 defines the
island separatrix, Ω = −1 the O-point. ψ is the unperturbed poloidal flux, ψ̃ cos ξ is the
perturbation that causes the island to form, and the prime denotes the derivative with respect
to ψ. The index s denotes the resonant surface, where q = m/n, and ξ = mθ− nφ+ ωt is a
helical angle, θ and φ are the poloidal and toroidal angles in Boozer coordinates, ω/2π is the
rotation frequency of the island. One contribution to the current j‖neo in Eq. (1) is the parallel
electron current that closes the ion polarization current which is directed across the helical
flux surfaces. For our study we take an analytically defined equilibrium magnetic field with
flux surfaces of circular cross section and a safety factor varying as q = 1 + 2(ψ/ψedge).
Also, we assume a perturbation of time independent size with mode numbers m = 3 and
n = 2 resulting in an island of half-width w = wψ dr/dψ with wψ = (3ψedgeψ̃)

1/2.
Simulations of rotating islands were performed with different sets of parameters ν, ω, ε, Ti

and with flat density and temperature profiles such that no bootstrap current is driven. The
drift-kinetic equation is solved numerically with the guiding-centre δf code HAGIS[2]. The
deviation δf of the distribution function from a prescribed Maxwellian is represented by
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marker particles whose equations of motion are solved in Boozer’s magnetic coordinates.
The pitch angle part of the Fokker-Planck collision operator is modeled by a Monte Carlo
procedure[3,4]. However, here the conservation of momentum is maintained not on average
over the flux surface, but locally with respect to the helical angle. In the following the banana
orbit width is denoted by wb = qρi/ε

1/2, ρi is the ion gyro radius and ε = r/R. We use the
following form of the time-dependent electric potential of the rotating island[5],

Φ = −qω
m

{

(ψ − ψs)− sign(ψ − ψs)
wψ√
2
(
√
Ω− 1)Θ(Ω− 1)

}

(2)

(Θ(x) = 1 for x > 0, Θ(x) = 0 for x < 0) which consists of two contributions. The
first part is constant on the unperturbed flux surfaces and causes the plasma in the island to
co-rotate with the island. The second part is constant on helical flux surfaces, rotates with
the island and vanishes inside. Far away from the island, where the plasma is at rest, the
two contributions to the electric field cancel each other. The resulting electric field along
a radius through the O-point of the island is shown by the green curves in Fig. 1. Outside
the separatrix the electric field has a scale length proportional to the island width. The first
consequence of the radial electric field Er is a parallel flow of magnitude u‖ = 〈Er/Bp〉
(the brackets denote the flux surface average, Bp is the poloidal magnetic field), because the
trapped particles on average cannot follow the poloidal E×B rotation, and by collisions the
rotation of the passing particles is damped, too. In Fig. 1 the parallel flow is shown for two
cases with islands of different sizes. If the island width is not large compared to the orbit
width, the parallel flow is reduced inside the island and spread out to the plasma outside the
separatrix; hence, the relation u‖ = 〈Er/Bp〉 is not valid then.

The second effect of the time-dependent electric field is a polarization current across
flux surfaces which is strongly enhanced over the classical value nmiĖr/B

2 due to the finite
banana orbit width. According to the analytic theory [5], in the collisional regime ν �
ω it is jp = (nmi/Bp) du‖/dt, the enhancement factor is q2/ε2. In the low-collisionality
regime, the parallel flow is to leading order constant on the flux surface, only the next order
contribution leads to a polarization current which is smaller by a factor ε3/2. The polarization
current is carried by the ions since their orbits have a much larger radial extent than the
electron orbits, and it is closed by electron currents parallel to the magnetic field which
contribute to the current in the integral in Eq. (1).
From ∇‖j‖ = −∇⊥ · ~j⊥ we obtain j‖ ∼ j⊥/w

2, since the parallel gradient k‖ ∂/ ∂ξ is pro-
portional to the island width w, whereas the perpendicular gradient is inversely proportional
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Fig. 1: Parallel flow in the island versus radius through the O-point (red) compared to Er/Bp (green)
and to the flux surface average 〈Er/Bp〉 (blue) for two ratios of island size to orbit width.
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Fig. 2 (left): Flux surface averages Ip± along the radius through the O-point.
Fig. 3 (right): Ip = 〈(∇⊥ ·~j⊥) sin ξ〉 varies quadratically with the island rotation frequency ω.

to w (the scale length of the electric field). The ion current across the flux surface is

~j · ∇Ω/|∇Ω| =
∫

~vd · ∇Ω/|∇Ω| δfd3~v =
∫

Ω̇/|∇Ω| δfd3~v. (3)

Here, Ω̇ is the rate of change of the helical flux Ω along the ion trajectory. We calculate
integrals of j⊥ over part of the helical flux surface

Ip+ =

∫∫

sin ξ>0

Ω̇

|∇Ω|
dξdθ√
Ω + cos ξ

Ip− =

∫∫

sin ξ<0

Ω̇

|∇Ω|
dξdθ√
Ω + cos ξ

(4)

which are of opposite sign and combine them as follows, Ip = Ip+ − Ip− (s. Fig. 2). We
observe the quadratic dependence of Ip on ω (Fig. 3) derived in Ref. [5] for the regime
ω � k‖vth (note that ω∗ = 0 owing to the flat density and temperature profiles). Also, for
big islands with w >

∼ wb the scaling Ip ∼ w0 (i.e. j‖ ∼ 1/w2) from the thin-orbit theory is
obtained (Fig. 4). At small islands, however,the polarization current is strongly reduced by
a factor proportional to (w/wb) (Fig. 4). This implies that in small islands the drive for the
NTM [Eq. (1)] increases only like 1/w2, not like 1/w3. Hence, for w < wb not only is the
drive by the loss of bootstrap current reduced[1], but a possible stabilizing contribution of
the polarization current is reduced, too.

Next, the transition from the low-collisionality limit valid for ν/εω � 1 to the collisional
limit for ν/εω � 1 is examined. We find that the transition occurs at about ν/ω = 1, hence
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Fig. 4 (left): Ip/Ip(ν � εω) versus the ratio of island half-width to the banana orbit width. Different
parameters ε, w, T .
Fig. 5 (right): Collisionality dependence of the polarization current. The curves show the function
g(ν/ω, ε) = (ν2/ω2 + ε1/2)/(ν2/ω2 + ε−1) [6].
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Fig. 6 (top): The bootstrap
current at a steep ensity profile.
Fig. 7 (left): The bootstrap
current at a steep density and
temperature profile (see text for
colors).

at rather large values of ν/εω. The results are close to the relation derived in Ref.[6]. (Results
reported in Ref.[7] were different, because the momentum was conserved during collisions
only on average over the flux surface.) Within the regime ω > k‖vth high values of ν/ω
can be in the plateau regime ν∗ = νqR/ε3/2vth > 1, then the high collisionality limit is not
attained.

The same code, but without the helical field perturbation, is used to calculate the boot-
strap current in the presence of a large density or temperature gradient. Large gradients exist,
e.g., at the position of a transport barrier. A density profile of the form n = ncexp(−(ψ −
0.5ψedge)/Lψ) for ψ > 0.5ψedge is assumed, and either a similar temperature profile or a
flat temperature profile. Results for a steep density profile and a flat temperature profile are
given in Fig. 6. Shown are the numerical results (red) and the results of the neoclassical
theory (blue); also shown is the ratio of gradient length and orbit width (green) for both
the prescribed profile of the distribution function f0 (dashed) and the profile of the resulting
distribution function f = f0 + δf (solid). As compared to the neoclassical theory the cur-
rent obtained from the simulations is reduced, if the gradient length is smaller than a few
orbit widths. When also the temperature profile is steep (Fig. 7), the current can depend
non-locally on the gradient; then it can be locally enhanced.
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