The influence of plasma density, heating power and plasma shape on type-I ELM energy and particle losses in ASDEX Upgrade

H. Urano, W. Suttrop, L. D. Horton, A. Herrmann, J. C. Fuchs and ASDEX Upgrade Team Max-Planck-Institut für Plasmaphysik, D-85748, Garching, Germany

1. Introduction

The existing design of ITER requires ELMy H-mode as the reference regime for inductive operation with favourable energy confinement at steady state. However, the energy loss produced by ELM bursts can increase erosion of the divertor targets to the point where component lifetime becomes unacceptably short. A basic observation in several devices is that the ELM energy loss can generally become larger with increasing pedestal stored energy and is reduced with increasing plasma density $[1,2]$. When the pedestal pressure is limited by type-I ELMs, plasmas with high pedestal temperature $T_{\text {ped }}$ or low pedestal density $n_{\text {ped }}$ are expected to generate a large ELM energy loss. In a situation of stiff temperature profiles, higher energy confinement is accompanied by higher $T_{\text {ped }}$ [3-6]. Mitigating the heat load onto the divertor target simultaneously without deterioration of the energy confinement is a crucial issue in recent ELM studies. In this study, we examine the characteristics of ELM energy and particle losses in type-I ELMy H-modes in ASDEX Upgrade.

2. Experimental data

ELMy H-mode phases in ASDEX Upgrade are selected, which provide maximum variation of upper triangularity δ_{u}, plasma current I_{p}, toroidal magnetic field B_{t}, auxiliary heating power $P_{\text {aux }}$ and gas fuelling rate Γ_{0}. The dataset is restricted to single-null divertor configuration discharges with ion ∇B-drift direction towards X-point. All discharges are fuelled by deuterium gas puffing. All time intervals used in the dataset are selected from stationary phases.

3. ELM energy losses

3.1. Effects of plasma density and shape

Plasma density and shape dependence of ELM energy losses are examined at $I_{\mathrm{p}}=1 \mathrm{MA}, B_{\mathrm{t}}=1.5-2.5 \mathrm{~T}$ and the power crossing the separatrix $P_{\text {sep }}=4 \mathrm{MW}$. At fixed $P_{\text {spp }}$, the ELM frequency $f_{\text {ELM }}$ and the ELM energy loss $\Delta W_{\text {ELM }}$ are roughly inversely proportional (see figure 1(a)). While $f_{\text {ELM }}$ becomes higher when the pedestal density $n_{e}{ }^{\text {ped }}$ is raised, $f_{\text {ELM }}$ decreases with increasing triangularity δ_{u} at a given $n_{\mathrm{e}}{ }^{\text {ped }}$ (see figure 1 (b)). From the relation between $f_{\text {ELM }}$ and $\Delta W_{\text {ELM }}$, one can expect that $\Delta W_{\text {ELM }}$ increases with increasing triangularity at a given $n_{\mathrm{e}}{ }^{\text {ped }}$.

Figure 2(a) and (b) show the normalised ELM energy loss ($\Delta W_{\mathrm{ELM}} / W_{\text {ped }}$) as a function of the pedestal electron density normalised to the Greenwald density

Figure 1. (a) Relation between $f_{\text {ELM }}$ and $\Delta \mathrm{W}_{\text {ELM }}$. (b) Dependence of $f_{\text {ELM }}$ on $n_{e}^{\text {ped }}$.

Figure 2. Dependence of $\Delta W_{\text {ELM }} / W_{\text {ped }}$ on (a) $n_{\mathrm{e}}^{\text {ped }} / n_{\text {GW }}$ and on (b) $v_{\text {ped }}{ }^{*}$. (c) Relative changes to the T_{e} profiles due to an ELM for the discharges with $0.8 \mathrm{keV}<T_{\mathrm{e}}^{\text {ped }}<1.2 \mathrm{keV}$. Data points A and B discussed in the text are highlighted.
($n_{\mathrm{e}}{ }^{\text {ped }} / n_{\mathrm{GW}}$) and the normalised pedestal collisionality $\left(v_{\text {ped }}{ }^{*}\right)$ for the same discharges as in figures 1 , respectively. It can be seen that at fixed $I_{\mathrm{p}}, P_{\text {sep }}$ and δ_{u} the ELM size ($\Delta W_{\mathrm{ELM}} / W_{\text {ped }}$) decreases with $n_{\mathrm{e}}{ }^{\text {ped }} / n_{\text {GW }}$ or $v_{\text {ped }}{ }^{*}$. However, we also find an explicit difference of $\Delta W_{\text {ELM }} / W_{\text {ped }}$ between lower and higher δ_{u} at fixed $n_{\mathrm{e}}{ }^{\text {ped }} / n_{\mathrm{GW}}$ or $v_{\text {ped }}{ }^{*}$. The higher triangularity plasmas obviously produce larger ELM energy losses by a factor of 3-4 than the lower triangularity plasmas at a given $n_{\mathrm{e}}{ }^{\text {ped }} / n_{\mathrm{GW}}$ or $v_{\text {ped }}{ }^{*}$. Note that since $\Delta W_{\text {ELM }}$ is normalised to $W_{\text {ped }}$, the incease of $\Delta W_{\text {ELM }}$ with the elevated triangularity is stronger than the increase of $W_{\text {ped }}$. We select two cases for comparison that are marked (A) and (B) in figure 2(a) and (b). These two discharges have different δ_{u} but similar $n_{\mathrm{e}}^{\text {ped }} / n_{\mathrm{GW}} \sim 0.45$ or $v_{\text {ped }}{ }^{*} \sim 0.15$. Both cases (A) and (B) are also near $T_{\mathrm{e}}{ }^{\text {ped }} \sim 1 \mathrm{keV}\left(\beta_{\text {ped }} \sim 0.01\right)$. Figure 2(c) plots the relative changes of the T_{e} profiles due to an ELM measured with the ECE radiometer for the discharges with $T_{\mathrm{e}}^{\text {ped }}$ in the range of 0.8-1.2 keV. In figure 2(c), profiles of $\Delta T_{\mathrm{e}} / T_{\mathrm{e}}$ have a peak near the plasma boundary for all discharges with similar relative change. The higher triangularity discharge (A) shows that the ELM perturbation extends radially inward to $\rho_{\mathrm{pol}} \leq 0.7$, while in the lower triangularity discharge (B) the ELM-affected area extends from the separatrix to $\rho_{\text {pol }} \sim 0.8$, inside which the perturbation rapidly becomes negligibly small. Therefore, the increased ELM energy loss at higher triangularities cannot merely be explained by the increased pedestal pressure but also involve the extended width of the ELM-affected area.

Figure 3. (a) Dependence of $f_{\text {ELM }}$ on $P_{\text {sep }}$. (b) Dependence of $\Delta W_{\text {ELM }} /$ $W_{\text {ped }}$ on $\mathrm{P}_{\text {sep. }}$. (c) Relation between $f_{\text {ELM }}$ and $\Delta W_{\text {ELM. }}$. (d) Dependence of $P_{\text {ELM }} / P_{\text {sep }}$ on $v_{\text {ped }}{ }^{*}$.

3.2. Effects of heating power

The power dependence of ELM energy losses are also investigated for discharges performed at $I_{\mathrm{p}} \sim 1 \mathrm{MA}$ and $B_{\mathrm{t}} \sim 2 \mathrm{~T}$. In order to analyse the effects of the power crossing the separatrix $P_{\text {sep }}$ on ELMs, we select two possible power scans at low (A $\rightarrow B$) and high triangularity discharges (C $\rightarrow \mathrm{D}$) in which $P_{\text {sep }}$ is varied over a wide range at a fixed Γ_{0}. In the discharges (A) and (B) performed at $\delta_{\mathrm{u}}=-0.05$ and $\Gamma_{0} \sim$ $1 \times 10^{21} \mathrm{~s}^{-1} \quad\left(n_{\mathrm{e}}{ }^{\text {ped }} \sim 0.3 n_{\text {GW }}\right), P_{\text {sep }}$ is varied from 2 to 5 MW , while in the discharges (C) and (D) conducted at $\delta_{u}=0.20$ and $\Gamma_{0} \sim$ $3 \times 10^{22} \mathrm{~s}^{-1} \quad\left(n_{\mathrm{e}}{ }^{\text {ped }} \sim 0.6 n_{\mathrm{GW}}\right), P_{\text {sep }}$ is varied from 5 to 10 MW . Figure 3(a) shows $f_{\text {ELM }}$ as
a function of $P_{\text {sep }}$ for the two power scans (A)-(B) and (C)-(D). We observe that for each case $f_{\text {ELM }}$ increases in proportion to $P_{\text {sep }}$. Figure 3(b) shows $\Delta W_{\text {ELM }} / W_{\text {ped }}$ as a function of $P_{\text {sep }}$ for the discharges (A)-(D). The increased power does not change the ELM energy loss for each of the two configurations. From figure 3(a) and (b), one sees that at fixed gas fuelling rate $P_{\mathrm{ELM}} / P_{\text {sep }}$ remains constant $\left(P_{\text {ELM }}=f_{\text {ELM }} \Delta W_{\text {ELM }} \propto P_{\text {sep }}\right)$ because $f_{\text {ELM }} \propto P_{\text {sep }}$ and $\Delta W_{\text {ELM }} \sim$ const. The relation between $f_{\text {ELM }}$ and $\Delta W_{\text {ELM }}$ for the discharges $(\mathrm{A})-(\mathrm{D})$ is plotted in figure 3(c). The data point in each power scan is simply shifted towards larger $f_{\text {ELM }}$ by the factor of the increased $P_{\text {sep }}$ while $\Delta W_{\text {ELM }}$ is not changed.

Note that the discharges (B) and (C) are performed at the same $P_{\text {sep }}$ of $\sim 5 \mathrm{MW}$ with variations of Γ_{0} and δ_{u}. If $P_{\text {ELM }}$ was simply proportional to $P_{\text {sep }}$, then $f_{\text {ELM }}$ and $\Delta W_{\text {ELM }}$ would be inversely proportional at fixed $P_{\text {sep }}$. However, figure 3(c) shows that despite of the same $P_{\text {sep }}$ the data points (B) and (C) do not follow the expected inverse proportionality. This indicates that there are residual parameters controlling the ELM loss power so that $P_{\text {ELM }} / P_{\text {sep }}$ is not constant. There is a correlation between ${v_{\text {ped }}}^{*}$ and $P_{\text {ELM }} / P_{\text {sep }}$ as shown in figure $3(\mathrm{~d})$. The fraction of ELM loss power is reduced when ${v_{\text {ped }}}^{*}$ is increased since the data points (A)-(D) can be laid on a single trend with the pedestal collisionality. Shown in figure 4 is $P_{\text {ELM }} / P_{\text {sep }}$ as a function of $v_{\text {ped }}{ }^{*}$ for the discharges shown in figure 1(a). Regardless of wide ranges of δ_{u} and Γ_{0}, we observe the reduction of $P_{\text {ELM }} / P_{\text {sep }}$ along a single trend with increasing $v_{\text {ped }}{ }^{*}$. The pedestal collisionality therefore seems to be playing a key role controlling the ELM loss power $P_{\text {ELM }}$. This finding has implications for the inter-ELM perpendicular transport losses. The dimensionless quantity $P_{\text {ELM }} / P_{\text {sep }}$ represents the fraction of ELM loss power assigned from the power crossing the separatrix. It follows that the inter-ELM perpendicular transport losses ($1-P_{\text {ELM }} / P_{\text {sep }}$) also depends on $v_{\text {ped }}{ }^{*}$. Figure 4 amounts to saying that with increasing $\nu_{\text {ped }}{ }^{*}$ the inter-ELM perpendicular transport at the plasma edge is enhanced and the ELM transported loss power is reduced.

Figure 4. The fraction of ELM loss power ($P_{\text {ELM }} / P_{\text {sep }}$) as a function of $v_{\text {ped }}^{*}$ for the discharges shown in figure 1.

Figure 5. Relation between $f_{\text {ELM }}$ and $\Delta N_{\text {ELM }}$ for the discharges shown in figure 1.

4. ELM particle losses

At a fixed $P_{\text {sep }}$ an inverse proportionality between $f_{\text {ELM }}$ and $\Delta W_{\text {ELM }}$ is found with varying Γ_{0} in which $P_{\text {ELM }}$ remains roughly constant within a finite range (see figure 1(a)). Figure 5 shows the relation between $f_{\text {ELM }}$ and $\Delta N_{\text {ELM }}$ for the same data set in figure 1 (a). In figure 5 , the data points are classified into two groups of discharges with relatively low $\Gamma_{0}\left(<1.5 \times 10^{22} \mathrm{~s}^{-1}\right.$; squares) and high Γ_{0} ($>$ $1.5 \times 10^{22} \mathrm{~s}^{-1}$; circles). It is then seen clearly that the data points with the low Γ_{0} exist in the region of low ELM particle flux $\Gamma_{\text {ELM }}\left(=f_{\text {ELM }} \Delta N_{\text {ELM }}\right)$ bounded by $\Gamma_{\text {ELM }}$ of $2.0 \times 10^{21} \mathrm{~s}^{-1}$, while those with the
high Γ_{0} are located inside the region above $\Gamma_{\text {ELM }}$ of $2.0 \times 10^{21} \mathrm{~s}^{-1}$. Thereby, $\Gamma_{\text {ELM }}$ rises with increasing Γ_{0}. This feature is analogous to the ELM loss power $P_{\text {ELM }}$ which rises with increasing $P_{\text {sep }}$. For detailed analysis of the particle balance at the plasma edge, it is desirable to evaluate the particle flux crossing the separatrix $\Gamma_{\text {sep }}$. Nevertheless, it seems reasonable to use the global parameter Γ_{0} as an ordering parameter subsequently. At a fixed $\Gamma_{0}, f_{\text {ELM }}$ and $\Delta N_{\text {ELM }}$ in type-I ELMs are roughly inverse proportional to each other in spite of a wide variation of $P_{\text {sep }}$.

5. Discussion and conclusions

The prediction and control of ELM energy loss in type-I ELMs are of significant concern because it is not clear as yet how ELMs of tolerable size can be obtained in a reactor. Integrating the results obtained in this study enables us to identify a scaling for the energy and particle transport of ELMs. Assuming steady state condition, we split energy and particle losses across the separatrix into ELMs and inter-ELM transport phases as follows:

$$
\begin{array}{ll}
P_{\text {sep }}=P_{\text {ELM }}+P_{\text {transport }} & \left(P_{\text {ELM }}=f_{\mathrm{ELM}} \Delta W_{\text {ELM }}\right) \\
\Gamma_{\text {sep }}=\Gamma_{\text {ELM }}+\Gamma_{\text {transport }} \approx \Gamma_{\text {ELM }} & \left(\Gamma_{\mathrm{ELM}}=f_{\mathrm{ELM}} \Delta N_{\mathrm{ELM}}\right)
\end{array}
$$

where $P_{\text {transport }}$ and $\Gamma_{\text {transport }}$ denote the inter-ELM perpendicular energy and particle transport losses, respectively. In the particle balance, $\Gamma_{\text {transport }}$ seems negligibly small. As shown in figures 1(a) and 4, the fraction of ELM loss power $P_{\mathrm{ELM}} / P_{\text {sep }}$ is not constant but varies in a finite range. With increasing Γ_{0}, the pedestal collisionality $v_{\text {ped }}{ }^{*}$ is raised. The increased $v_{\text {ped }}{ }^{*}$ enhances the inter-ELM perpendicular transport losses and reduces the ELM loss power (see figure 4), i.e. $P_{\mathrm{ELM}} / P_{\mathrm{sep}}=$ $H\left(v_{\text {ped }}{ }^{*}\right)$ where the function H seems empirically independent of δ_{u}. At fixed $P_{\text {sep }}$ with a variation of Γ_{0} (see figure 5), $f_{\text {ELM }}$ increases with increased particle flux across the separatrix. Therefore, the increase of $f_{\text {ELM }}$ and the reduction of $P_{\text {ELM }}$ with increased $v_{\text {ped }}{ }^{*}$ force $\Delta W_{\text {ELM }}$ to decrease with $v_{\text {ped }}{ }^{*}$ more quickly than $f_{\text {ELM }}$ increases.

Taking it into account that $f_{\text {ELM }}$ is a function of $\Gamma_{\text {sep }}\left(f_{\text {ELM }} \propto G\left(\Gamma_{\text {sep }}\right)\right)$, we obtain $f_{\text {ELM }}=P_{\text {sep }}$. $G\left(\Gamma_{\text {sep }}\right) \cdot K$, where K is a function of the other parameters such as δ_{u}. Then, since $P_{\text {ELM }}\left(=f_{\text {ELM }} \Delta W_{\mathrm{ELM}}\right)$ $=\Delta W_{\text {ELM }} \cdot P_{\text {sep }} \cdot G\left(\Gamma_{\text {sep }}\right) \cdot K$ and $P_{\text {ELM }} / P_{\text {sep }}=H\left(v_{\text {ped }}{ }^{*}\right)$, the ELM energy loss $\Delta W_{\text {ELM }}$ can be expressed as:

$$
\Delta W_{\mathrm{ELM}}=\frac{H\left(v_{\mathrm{ped}}^{*}\right)}{G\left(\Gamma_{\mathrm{sep}}\right) \cdot K}
$$

This formula shows why $\Delta W_{\text {ELM }}$ does not just depend on $v_{\text {ped }}{ }^{*}$ but also explicitly on plasma shape even if $P_{\text {еLм }}$ is a function of pedestal collisionality only. Empirically, $H\left(v_{\text {ped }}{ }^{*}\right)$ is given to scale
 $\Delta W_{\text {ELM }}$ at a given $v_{\text {ped }}{ }^{*}$, is of significant concern and thus will be obtained in a future study.

References

[1] A. Loarte, et al.: Plasma Phys. Control. Fusion 44 (2002) 1815
[2] A. Leonard, et al.: Plasma Phys. Control. Fusion 44 (2002) 945
[3] G. Saibene, et al.: Nucl. Fusion 39 (1999) 1133
[4] G. Janeschtz, et al.: in Proc. of 26th Eur. Conf. on Controlled Fusion and Plasma Physics (Maastricht, 1999) vol 23J (Geneva: EPS) p 1445
[5] J. Stober, et al.: Plasma Phys. Control. Fusion 42 (2000) A211
[6] H. Urano, et al.: Plasma Phys. Control. Fusion 44 (2002) A437

