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Introduction

Thermography is applied to magnetic fusion devices such as tokamaks and stellarators

to supervise and diagnose the power loading of plasma facing components. 3D numerical

codes are applied to derive power fluxes arriving at these internal components from the

temporal evolution of the measured surface temperature distribution.

In order to check the accuracy of the evaluation procedure applied to the thermography

system of the stellarator W7-AS accompanying laboratory experiments with well defined

heat pulses from an infrared laser applied to the W7-AS divertor CFC target material

have been carried out [1,2]. The measured surface temperature evolution of this material

is compared with theoretical results which are obtained for Gaussian profiles and different

duration of the laser pulse. The temperature variation measured at any surface point

can be well described by the calculations.

Basic equations

The starting point is the time-dependent three-dimesional heat conduction equation for

the temperature in Cartesian coordinates T (x, y, z, t)
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with heat conduction coefficients κi = κi0κ(T ), i = x, y, z, density ρ, heat capacity c(T )

and the source function f . Assuming cρ/κ = s(t)c0ρ0 and introducing the temperature

potential U and the time t∗ determined by
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we obtain the model equation
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We consider a target with dimensions Lx, Ly and Lz, respectively, which is irradiated on

the surface x = 0 by a laser pulse and is in contact with a water bath at x = −Lx at
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the temperature potential UW . The side walls y = 0, y = Ly, z = 0, z = Lz are heat-

insulated, U(x, y, z, t∗ = 0) = UA. This case will be described by the following linear

boundary conditions:

−κx0∂U/∂x|x=0 = G0(y, z, t∗), − κx0∂U/∂x|x=−Lx
= h(U(x = −Lx, y, z, t∗)−UW ), (4)

κy0∂U/∂y|y=0 = κy0∂U/∂y|y=Ly
= κz0∂U/∂z|z=0 = κz0∂U/∂z|=Lz

= 0. (5)

Introducing dimensionless parameters and functions τ = t∗/t0, ξ = x/Lx, η = y/Ly, χ =

z/Lz, dx = t0κx0/L
2
xc0ρ0, dy = t0κy0/L

2
yc0ρ0, dz = t0κz0/L

2
zc0ρ0 the solution without vol-

ume sources (f=0) is given in the form U = UW + U1 + U2 with
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where km is the mth root of the transcendental equation (cp.[3])

h∗coskm = kmsinkm, h∗ =
hLx

κx0
(8)

and gm = 1 + sin2km/2km For the case h∗ = 0 (heat-insulated at the bottom) we obtain

the Neumann problem with km = mπ. The Dirichlet boundary condition follows for

large values h∗ (h∗ → ∞), U = UW , km = (m + 1/2)π.

Numerical results

In order to simplify the problem, we assume UA = UW = 0, G0 = Γ(τ)F (η, χ) with

rectangular pulses and a Gaussian profile

Γ =
S
∑

s=1

Γ(s)Θ(t − ts−1)Θ(ts − t), F = F0e
−a1(η−η0)2e−a2(χ−χ0)2 ,

∫ 1

0
dηdχF = F00 (9)

and obtain

U =
∞
∑

m,n,p=−∞

Um,n,p(τ)Am,n,pcos(kmξ)cos(nπη)cos(pπχ) (10)
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U(ξ, η, χ, τ) is calculated numerically for parameters: C = 1, F00 = 1, Γ(1) = 1, Γ(2) =

0, Γ(3) = 1, Γ(4) = 0, τ1 = 1, τ2 = 2, τ3 = 3, τ4 = 4, dx = 1, dy = 1, dz = 3, α1 =

10, α2 = 10, η0 = 0.25, χ0 = 0.5, h∗ = 1. Fig. 1 shows the U profile on the surface x = 0

at τ = 0.8. The heat propagation in the maximum of the laser pulse (η = 0.25, χ = 0.5)

into the target is demonstrated in Fig. 2.

Experimental results

The temperature variation on a polished graphite target surface is measured by an in-

frared camera during and after a heat pulse with a duration of 4 ms applied by an infrared

laser. The central power density was 50 MW/m2. The data hase been taken from the

center of the laser spot and is compared with theoretical results for h∗ = 0, s=1, κ = 1

at ξ = 0 in Fig. 3.

Summary

The starting point is the time-dependent 3D heat conduction equation for the target

temperature. The evaluation domain is a cube with a given heat influx with a Gaussian

profile at the top, heat-insulated side walls and a water bath at the bottom as bound-

ary conditions. The measured temperature excursion at surface points of a polished

graphite target can be well described by the calculations. The theoretical model has to

be improved for the description of the temperature propagation in graphit targets with

unpolished surfaces.
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Figure 1: Temperature potential profile at the surface ξ = 0 at τ = 0.8

Figure 2: Heat propagation in the point η = 0.25, χ = 0.5 into the target

Figure 3: Comparision of the measured surface temperature excursion in the center of

the laser spot with theoretical results
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