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Abstract The value of bootstrap current in stellarator configurations depends strongly on

the type of configuration. For stellarators with mod-B contours closed in the poloidal direction,
one expects that bootstrap current value can be made nearly vanishing as, e.g. in W7-X. In
the present paper, the effect of the behaviour of the contours of B on the magnetic surfaces on
the value of the structural factor describing the bootstrap current in the long mean free path
(lmfp) is analyzed numerically by using analytical expressions. The effect of such parameters
as the number of periods and the value of < β > on the structural factor is studied. It is found
that in the type of stellarators considered, it is possible to make the lmfp bootstrap current
negligible without violation of good neoclassical confinement properties.

Introduction

The value of bootstrap current in stellarator configurations depends strongly on the topog-
raphy of the surfaces B = constant. For stellarators with axial quasisymmetry, B = B(s, θB),
where s, θB, ζB are magnetic flux coordinates, this current causes the rotational transform to in-
crease [1]. In quasihelically symmetric stellarators [2], when B = B(s, θB−NζB), the bootstrap
current increases the rotational transform counted relative to the direction of quasisymmetry,
θB = NζB, thus, it diminishes the tokamak-like rotational transform and can impede plasma
equilibrium. For the third type of stellarators, in which the contours of B on magnetic surfaces
close poloidally [3], the direction of the bootstrap current cannot be predicted a priory (see
Fig. 1).
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Fig. 1. Structural factor of bootstrap current for
examples of tokamak (1), quasi-helically symmet-
ric (2) and quasi-isodynamic (3) stellarator con-
figurations.
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Fig. 2. Particle drift trajectory in near quasi-
isodynamic configuration with B=constant lines
on the magnetic surfaces in the poloidal direction.

The characteristic feature of the particle drift trajectories in near quasi-isodynamic configu-
rations with B=constant lines in the poloidal direction on the magnetic surfaces [3] is seen from
Fig. 2, where the projection of drift motion of one guiding centre on the plasma cross-section is
shown. The red (blue) color corresponds to positive (negative) parallel velocity. One can con-
jecture that the same particle during its drift motion should contribute to the bootstrap current
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with different signs on the inward and outward parts of the trajectory. Thus, by appropriate
choice of the positions of points with zero banana size one can make the bootstrap current
vanishing. This argument can be illustrated also by the example of a mirror type configuration
with mirror symmetry, when all magnetic field lines are closed and the rotational transform
is equal to zero [4]. In this case, it is forbidden to have non-zero current in cross-sections of
mirror symmetry, so that the bootstrap current should be equal to zero exactly in order to
conserve the mirror symmetry.

In addition, it is known that the value of bootstrap current is nearly vanishing in the
optimized stellarator W7-X which is close to being quasi-isodynamic. It was shown also [5]
that for a six-period stellarator optimized with respect to quasi-isodynamicity [6], the bootstrap
current changes the rotational transform only slightly. In the present paper, the possibility to
nullify the structural (geometric) factor GB of the bootstrap current is analyzed numerically
by using the optimization procedure based on codes for calculation of equilibrium (VMEC
code [7]), transition to magnetic (Boozer) coordinates (JMC code [8]) and on calculations of
the GB-factor from analytical expressions. Some N=6 and N=9 configurations optimized with
respect to quasi-isodynamicity are studied for different values of < β >. The calculations were
performed on the supercomputers Himiko (Germany) and Prometeo (Switzerland).

Results of the optimization

The bootstrap current model in 1/ν regime that has been used in this paper has been very
compactly described in [9]. The formulas presented there have evolved from previous research
on the subject [10]. The specific equations have the form:

< jB >= Gb(L1

dp

dΦ
+ L2

dT

dΦ
),

where the structural factor GB can be expressed as:

Gb(s) =
1

ft

[< g2 > −
3 < B2 >

4B2
max

∫

1

0

dλλ
< g4 >

< g1 >
],

g1 =
√

(1− λB/Bmax)

B · ∇(g2/B
2) = B×∇Φ · ∇B−2,

B · ∇(g4/g1) = B×∇Φ · ∇g−1

1
,

g2(Bmax) = g4(Bmax) = 0.

To calculate GB in magnetic coordinates (which are used in the optimization), one needs
to know only the flux functions and the magnetic field strength B. In the present paper,
the structural factor was calculated for net current free configurations, so that the effect of
bootstrap current itself on the geometric factor was not taken into account. Configurations
with numbers of periods N = 6 and N = 9 and < β >= 10% are optimized with respect to
vanishing bootstrap current structural factor. The configurations obtained were investigated
then for different values of < β >. It is worth to note that during the optimization only the
requirement of elimination of the bootstrap current was imposed. In spite of this, the main
favourable properties (collisionless particle confinement and local interchange-mode stability)
were conserved.

N=6 configuration. The 3D view of the N = 6 configuration [6] is shown in Fig. 3. Fig. 4
shows the cross-sections of the optimized configuration and some flux functions. The history of
the optimization procedure is shown in Fig. 5 (compare the scales of GB in Fig. 1 and Fig. 5).
Fig. 6 shows that the quality of closure of contours of the second adiabatic invariant J =

∫

V||dl
is not violated seriously during the optimization.
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Fig. 3. 3D view of the N = 6 configuration.
Fig. 4. Cross-sections of the N = 6
configuration.
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Fig. 5. Minimization of the geometric factor of the
bootstrap current for the N = 6 configuration.
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Fig. 6. Contours of the second adiabatic invariant.

N=9 configuration [11]. Fig. 7 shows the cross-sections and flux functions for the N = 9
configuration. The characteristic differences in comparison with the N = 6 system are the
increased rotational transform and the negligibly small Shafranov shift for the large value of
plasma pressure considered, < β >= 10%. The value of the structural factor here is larger
than that the for the N = 6 configuration (see Fig. 8).

Fig. 7. Cross-sections of the optimized
N = 9 configuration.
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Fig. 8. Minimization of the geometric factor of the
bootstrap current for the N = 9 configuration.

Fig. 9 shows the Mercier and resistive mode stability properties of the configurations found.
Finally, in Fig. 10, the dependencies of maximum |GB| on < β > for boundaries optimized at
< β >= 10% are shown.
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Fig. 9. Mercier and resistive mode stability properties
for the configurations considered.
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Fig. 10. Dependencies of maximum |GB | on < β >

for < β >= 10% optimized configurations.

Conclusions

It is shown by numerical optimization that in near quasi-isodynamic configurations with
B=constant lines on the magnetic surfaces in the poloidal direction, the bootstrap current can
be eliminated with high accuracy.

The requirement of vanishing of the bootstrap current is not in contradiction with the
conditions of improved collisionless particle confinement and local mode stability.
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