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Chapter 1

Introduction

1.1 Basics

Fusion, the way in which the Sun obtains its energy, has the potential of providing an essen-
tially unlimited source of energy. Human beings have been searching for a long time for a way
to reproduce such a source of energy. The Sun generates its energy by means of the following
reactions:

p+ p = D+ e+ +νe +1.5 MeV (1.1)
D+ p = 3He+ γ+5.4 MeV (1.2)

3He+3 He = 4He+2p+12.9 MeV (1.3)

The cross-section for the whole cycle due to the weak interaction involved in reaction (1.1) is
too low to reproduce on Earth ( the Sun overcomes this problem by its huge mass ). Because
of this, for controlled Fusion on Earth only the following reactions are possible candidates:

D+T = 4He+n+17.6 MeV (1.4)
D+3 He = 4He+ p+18.4 MeV (1.5)

D+D = n+3 He+3.27 MeV (1.6)
D+D = p+T +4.032 MeV (1.7)

However, in order to reach the ”ignition” conditions (when the fusion-born particles heat the
plasma and compensate for the heat losses) even for the most favorable reaction between deu-
terium and tritium (1.4), the D-T Plasma must be heated to a temperature of T ≈ 20keV 1(230
million K) and must be confined to satisfy the Lawson criterion:

1Following the convention accepted in Fusion, temperatures are written in eV. Thus, in place of conven-
tional kT 0 ( where k is Boltzmann’s constant and T 0 is in degrees Kelvin) we write T(eV), so that T 0 =
T ( joules)/1.381 ·10−23, where T ( joules) = T (eV ) ·1.602 ·10−19.
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Figure 1.1: Cross-section of different fusion reactions

nτE > 1.5 ·1020 m−3s (1.8)

where τE is the energy confinement time and n is the D-T fuel density.
As Fig (1.1) shows, all reaction’s cross sections highly depend on the relative kinetic energy
of the nuclei in the center-of-mass system. The D-T reaction is the one with the largest cross-
section at the lowest energies. Therefore, the most suitable candidate for a fusion reactor is
the reaction (1.4). Here, a resonant metastable state is formed, (4He) providing the highest
cross-section of all fusion reactions.
In present experiment, usually D fuel is used to avoid the large neutron flux produced in re-
action (1.4), as well as the T-handling, despite the fact that the cross section in reactions (1.6)
and (1.7) is lower by a factor of 10-100 compared to the D-T reaction.
It is important to remark that to be a candidate for an energy-producing system, the fusion
fuel has to be sufficiently abundant. Deuterium comes as a fraction of 3.3 · 10−5 in water.
Given the water of the oceans, the static energy range is larger than the time the Sun will
continue to burn ( a few billion years). The other reactive for the fusion, tritium, is an unstable
radioactive isotope of the hydrogen, with a half-life of 12.3 years. Due to the unstable nature
of the tritium, a significant amount does not exist. But tritium can be produced easily with
nuclear reactions of the neutrons from D-T reaction and lithium. In this way, the only fusion
fuels will be deuterium and lithium. Keeping in mind that lithium is also very abundant on the
Earth’s crust and even in the ocean’s water, table (1.1) summarizes the estimated world energy
resources [Wesson, 1997].
From the Lawson Criterium is easy to understand the importance of a long confinement time
for the fusion. That is because of the high cross-section for the elastic Coulomb scattering,
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Present world annual 31011

primary energy consumption gigajoules Time
Resources
Coal 1014 300 years
Oil 1.2 ·1013 40 years
Natural Gas 1.4 ·1013 50 years
235U (fission reactors) 1013 30 years
238U and 232T h (breader reactors) 1016 30000 years
Lithium (D-T fusion reactors):
Land 1016 30000 years
Oceans 1019 3 ·107 years

Table 1.1: Energy resources

higher than the cross-section for a fusion process σFus by a factor of 104 at 10 keV and even
higher at lower temperatures. That makes the use of cross particle beams not suitable for the
generation of fusion energy. Thus, the particles must long enough be confined to a volume in
order to undergo many collisions.
Nowadays, two methods of confinement are investigated in fusion research to reach an ignited
plasma.

Inertial confinement High density and short confinement time. A solid pellet is heated by
a laser or a heavy ion beam in order to achieve a density of 1030m−3 in a volume of a
fraction of mm3. Thus, for a very short time (µs), a dense hot plasma is produced and
confined by its inertia. During this time, fusion can take place. Problems arise due to
the low efficiency of the driver beams and the need for a highly symmetric irradiation
(asymmetries lead to instabilities during the compression process).

Magnetic confinement Low density and long confinement time. Since charged particles gy-
rate around magnetic field lines, a plasma may be confined in a magnetic cage. A
typical gyroradius of a deuteron in a field of B = 3T , with an energy of T = 10keV
is ρD ' 6.8mm. Therefore, the particles are tied to the field lines. There are differ-
ent magnetic topologies, being stellarators Fig.(1.2.a) and tokamaks Fig(1.2.b) the most
common . The one that is most promising at present is the Tokamak configuration.

1.2 Tokamaks

As a first attempt to confine particles by magnetic fields, a cylindrical configuration could be
taken into account . As particles can move freely along field lines, such devices suffer from end
losses. To overcome this problem, the cylinder can be bent into a torus, generally allowing par-
ticles to be confined in all directions. The tokamak is a toroidal plasma confinement machine.
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a) b)

Figure 1.2: Schematic drawing of a tokamak and a stellarator

The main magnetic field is a toroidal one, but the plasma could not be confined only with this
one. The toroidal magnetic field is produced by coils. In order to achieve an equilibrium, the
different drifts have to be compensated by means of a poloidal magnetic field. This field is
produced by an internal current flowing in the toroidal direction, IPlasma. The combination of
both fields gives rise to magnetic field lines which have helical trajectories around the torus,
Fig. (1.2.b)and form the so-called magnetic surfaces, Fig. (1.3).
Tokamak plasmas are heated to temperatures of a few keV by the ohmic heating of the plasma
current. The required temperatures around 10 keV are then achieved by additional heating by
particle beams or electromagnetic waves. Nowadays tokamak plasmas have particle densities
of around 1019 − 1020m−3. This is a factor 106 lower than in the atmosphere. Therefore, the
plasma has to be contained within a vacuum vessel and to minimize the presence of impurities,
low background pressures must be maintained. Impurities in the plasma give rise to radiation
losses and also dilute the fuel. The limiting of the amount of impurities into the plasma plays a
fundamental role in the successful operation of tokamaks; in order to do so, the plasma has to
be separated from the vessel wall. There are two techniques to carry this out. Both possibilities
give the plasma a different shape. The first one is to define an outer boundary of the plasma
with a material limiter. The second one is to keep the particles away from the vacuum vessel
by means of a modification of the magnetic field to produce a magnetic divertor as shown in
Fig. (1.3)

1.3 Fast Particles

In order to reach the ignition conditions described above, the tokamak plasma is heated by
the ohmic dissipation of the induced current by additional heating schemes such as the injec-
tion of high energy neutral beams, or by launching electromagnetic waves into the plasma.
Once ignited, the plasma is intended to become entirely self-heated through the fusion-born
α-particles ( He4 nuclei of energy 3.52 MeV).
It is the aim of this work to study in depth the behavior of fast ions by means of particles which
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Figure 1.3: Magnetic surfaces of a typical discharge in ASDEX Upgrade.

are generated by the NBI heating. Considering the distribution function of the background ions
in the velocity space as a Maxwellian distribution, this work concerns particles which have a
much higher energy that the thermal energy of the background plasma and their density is
much higher than that in the tail of the Maxwellian.

Larmor Radius Temperature
100 eV 1 keV 10 keV 100 keV

ρe 0.011 mm 0.035 mm 0.11 mm 0.35 mm
ρp 0.48 mm 1.5 mm 4.8 mm 15.18 mm
ρD 0.68 mm 2.1 mm 6.8 mm 21.5 mm

Table 1.2: Typical Larmor Radius of various fast ions, B=3T.

As table (1.2) shows, such ions have a Larmor radius much larger than the electrons’ one,
rli >> rle, due to their high energy and mass. Differences between the 5 keV fast particle
trajectory and the one with 100 keV , due to its Larmor radius, can be easily seen in Fig. 1.4.
Expected velocities of such ions are very high compared with thermal ions ones, but not high
enough for considering the relativistic correction. The given values for ions with an energy of
several dozens of keV (40-100 keV) are around 106 m/s. Thus, the relativistic correction is
small and the non relativistic mechanic is accurate enough.
In general, the performance of fusion plasmas is affected by fast ion confinement in different
ways [Werner, 2001]:

• Fast ions can be lost within µs, i.e. before they have slowed down. This deteriorates the
efficiency of the heating scheme by which they were initially produced. A charged
particle detector installed at the edge of the plasma could measure the flux and the
energy of the fast ions. Experiments have been undertaken at several tokamaks PLT
[Heidbrink, 1984], ASDEX [Bosch, 1987], JET [Kallne, 1987], DIII-D [Duong, 1990],
TFTR [Boivin, 1993] and TEXTOR [Bonheure, 2000].
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Figure 1.4: Typical orbits of a deuterium with 93 keV and 5 keV respectively.

• If fast ion fluxes encounter the first wall, excessive heat loads and additional impu-
rities are generated by sputtering or desorption processes. In discharges with good
impurity confinement this may endanger stationary plasma operation as envisaged for
fusion reactors.This effect has been observed in the Tokamak Fusion Test Reactor
(TFTR)[Hawryluk, 1991].

• In order to prevent accumulation of the helium ash, it has to be removed from the vacuum
vessel, that plays even a much more important role for further Tokamak reactors like
ITER. Since helium particles are produced with a high velocity, the study of fast ions
becomes much more important.

Thus, the confinement properties of these highly energetic particles ( α-particles and NBI-
particles) are therefore of crucial importance for further tokamak reactors.
Several studies with neutral beam injection (NBI) and α -particles on different Tokamaks are
carried out in order to understand in depth the possible loss mechanisms.
In order to simplify the study of the different loss mechanisms two groups are suggested.

• Fast ions can be lost due to insufficient confinement properties of the magnetic field
topology, [Darrow, 2002]. The so-called prompt losses are particles which, after the
ionization, are on a such orbit that they are immediately lost from the plasma. For
particles that are initially well confined, collisions can lead to transitions from an initially
confined orbit to an unconfined orbit, resulting in the loss of this particle.

• Losses may also be induced by magnetohydrodynamic (MHD) perturbations. Ex-
periments with neutral beam injection (NBI) and α -particles on Tokamaks DIII-D
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[Duong, 1993a] and TFTR [Darrow, 1992] in D-T plasmas have shown that under cer-
tain conditions Alfvén instabilities can cause a significant loss of those particles. Due
to their relatively high phase velocity, vA ∼ 5 · 106m/s, Alfvén waves mainly resonate
[Rosenbluth, 1975] with these highly energetic particles by means of their ∇B drifts.
This interaction can destabilize the MHD modes whenever ω < ωb, where ωb is the
diamagnetic frequency of the beam. Different MHD-induced loss mechanisms are sug-
gested, [Duong, 1993b].

Beam ions that circulate at the mode frequency can experience convective radial trans-
port. This mechanism was studied on PDX tokamak, [White, 1983] with ”fishbones”
activity . This ”mode particle pumping” loss mechanism causes the fast ions to migrate
radially outward due to E × B drifts. The initial value of the magnetic moment µ is
conserved, and the radial velocity is linearly proportional to the mode amplitude B̃. This
kind of losses are concentrated near the midplane and occur only when the beam has a
particular phase with respect to the instabilities.

A second loss resonant mechanism is associated with the loss of parallel velocity, due to
resonant interaction between high energetic α particles and Alfvén waves. They become
resonant and lose energy to the wave. With the loss of parallel energy, initially passing
particles can become trapped in the inner leg of their orbit and move onto a large, uncon-
fined banana orbit. The losses are predicted to scale linearly with the mode amplitude
B̃ [Sigmar, 1992]. According to studies on DIII-D tokamak [Duong, 1993b] with TAE
modes, there is no threshold amplitude in the scaling of fast ion losses with mode ampli-
tude, suggesting that mode particle pumping is the dominant loss mechanism. In simu-
lations, this mechanism can dominate alpha losses during TAE modes, [Sigmar, 1992].
Experiments with neutral beam injection (NBI), [Wong, 1991] and [Heidbrink, 1991],
and α-particles, [White, 1995] and [Duong, 1993a], on TFTR and on DIII-D have shown
that under certain conditions such Alfvén instabilities can cause significant losses.

Another possible mechanism is orbit stochasticity [Sigmar, 1992]. This process does
not depend on a resonant interaction with the mode; rather the helical distortion of the
field beats with harmonics of the orbital motion causing island overlap in phase space.
Once island overlap occurs, the particles diffuse rapidly. Transport associated with orbit
stochasticity only occurs above a threshold in the mode amplitude. It is important to
understand that even fast particles on passing drift orbits, which are normally thought
of as well confined, can be affected by orbit stochasticity. Several studies of beam ion
transport during MHD activity [Carolipio, 1998] show that these losses scale approx-
imately as B̃2. In that work large coherent MHD modes were observed to reduce the
neutral beam current drive efficiency by a factor of 40 % through orbit stochasticity.
On a positive side, orbit stochasticity has been connected with a technique of removing
intermediate energy α-particles in a reactor through the external application of helical
perturbations [Mynick, 1993].
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1.4 Scope of this Work

The confinement of fast ions was studied in detail in deuterium-deuterium (DD) scenarios of
the ASDEX Upgrade tokamak. As seen in the previous section, the performance of fusion
plasmas is affected by fast ion losses. In order to understand theoretically the fast ion losses, a
full description of fast ion trajectories from birth to loss was made. Collisions between beam
ions and background ions as well as electrons were taken into account. It is the aim of this
work to compute the deposition patterns of injected 93 keV deuterons on the tokamak wall,
under normal operating conditions as well as in the presence of MHD instabilities.
To measure these losses, the installation of a detector in ASDEX Upgrade is intended. The
most favorable place to install it was calculated using the code-packages. In order to interpret
measurements once the detector is installed, the code-packages will be of great value.
A real magnetic field configuration was taken from the ASDEX Upgrade tokamak.
The complexity of the magnetic field configuration does not allow an analytical integration
of the trajectory. So it was found necessary to use a computational method. The numerical
calculations are performed using the following three codes: FAFNER [Lister, 1985], HAGIS
[Pinches, 1996] and GOURDON [Gourdon, 1970], each one for each period of the fast ion
trajectory.
For this magnetic configuration, the FAFNER code calculates the distribution function of fast
ions from the NBI heating. FAFNER calculates exactly where each particle was ionized and
also its pitch angle. That conforms the initial distribution function for HAGIS code. Thousands
of co- and counter-injected deuterons are traced inside and outside the plasma until they either
reach the wall or a time limit is reached. Inside the plasma boundary, the guiding centers
are traced with the HAGIS code using Boozer-coordinates. Pitch angles scattering, MHD
instabilities and also the slowing down of the particles are taken into account. In the edge
region, to trace real orbits as well as to compute fast ion deposition on the wall, an extended
version of GOURDON code was used. The underlying code system is summarized in Fig(1.5),
which serves as a reminder throughout the thesis.

1.4.1 GOURDON

The final version of GOURDON used here has some differences compared to the original one,
which was planed to compute trajectories with a stellarator magnetic field configuration and
did not run under the computer platform used at ASDEX Upgrade. Therefore, several changes
were made in order to adapt GOURDON code to the ASDEX Upgrade topology and to the
work environment (which means the Sun machines used for computation). The magnetic field
equilibrium was computed using the routines which allow to calculate the equilibrium using
different statistical methods. Since these routines provide the equilibrium in toroidal coordi-
nates and GOURDON works in cartesian coordinates, the appropriate coordinate transforma-
tion in the code was made. GOURDON then writes the magnetic field in a 2-D grid though it
calculates particle trajectories in 3-D. The implementation of the ASDEX Upgrade geometry
was made, taking into account that the number and position of the target-plates vary with the
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Figure 1.5: Overview of the codes

shot number. The corresponding coordinates to each target-plate were calculated. The imple-
mentation of the geometry in the code was made as follows: at each step of the integration of
the trajectory, it was asked if the particle had crossed a target-plate or not. Several tests were
carried out, following magnetic field lines in order to validate the final code.

1.4.2 HAGIS

The input data required by HAGIS-code consist of four parts: the equilibrium field configura-
tion, the perturbed field data, the fast particles initial condition, and the collision parameter.
The magnetic field configuration is supplied by the HELENA-code [Huysmans, 1990], by
solving the Grad-Shafranov equation. The perturbed field is given by computing the changes
in the poloidal flux function, by means of Fourier harmonics which represent the MHD-mode.
The fast particles initial conditions are supplied by the FAFNER-code, considering the param-
eter corresponding to the discharge used in this work, and making the density of fast ions to
be zero outside the separatrix.
Since FAFNER supplies the fast ions’ initial conditions in toroidal coordinates, the correct
transformation to Boozer coordinates was made.
The collisions were implemented into the code by computing a specific Fokker-Planck colli-
sion operator given by [Littlejohn, 1982].
In order to obtain the desired data of the lost particles, for a better understanding of ion losses,
a subroutine which supplies all of these data in m.k.s. units was also programmed.

1.4.3 Results

The study of fast ion losses in ASDEX Upgrade was made during this work, using the code-
package here presented. The trajectory of thousands of particles was computed from the begin-
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ning, where the particles are born, until they leave the plasma, striking the wall of the vessel.
The initial distribution of the fast ions, calculated using the NBI parameters with FAFNER, is
fully described in its section, representing the distribution in the real space as well as in the
space of velocities. It is shown that the distribution in the plane, formed by the two toroidal
coordinates, φ and z, has two branches, since the beam simulated was almost tangential to the
inner side of the torus. The distribution in the velocity space seems to be not homogeneous
since all injected particles have the same energy and almost the same direction. The expo-
nential decay of the ionization with the radial coordinate is shown in this section, the largest
number of the neutral atoms are ionized just after they enter the plasma.
The NBI simulation supplies the initial distribution for the HAGIS code. The behavior of the
fast ions inside the plasma was studied using HAGIS. Fast ion’s trajectories were computed
under different conditions. It was found that the final distribution of losses is always localized
in the poloidal angle, but not always in the toroidal direction. Different cases with collisions
and MHD-modes were considered leading to different distributions in the plane formed by
the flux coordinates φ and θ as well as in the velocity plane. In absence of collisions and
MHD-modes, the distribution of fast ion losses was studied for two different cases, co- and
counter-going particles. It was proved that the number of prompt losses due to counter-injected
particles was larger than in the case of co-injected particles. Once collisions were considered,
the velocity of the lost particles was found all over the plane of velocities, but distributed in
three regions: The one where the lost particles had not changed their velocity, the one where
the particles, which leave the plasma, have velocities lying in the loss cone, (trapped orbits
cause large radial excursions) and the region where the particles have slowed down and have
given their energy to the bulk of the plasma, thermal particles. The effect of collisions on the
ions leads to a symmetrization of the spatial distribution of the losses in the toroidal direction.
Two time-independent different modes were studied with a high amplitude and a given radial
profile, leading to different distributions in the real space, as well as in the velocity space.
Since the location of each mode is different in the radial coordinate, two different radial pro-
files, each one for each mode, were computed. The fast ion losses, considering the mode n=1
and m=4, were found along the field lines, corresponding to the flux surface q=4. Thus, the
spatial distribution is not localized around any toroidal or poloidal angle anymore. However,
more losses around the location of the neutral beam injector were found, where the prompt
losses are.
The effect of the mode m=2 on the spatial distribution of the losses leads to a symmetrization
in the toroidal direction, still being localized around the midplane. However, more losses were
also found in this case around the X-point of the inland.
In order to validate the code, the confinement time and the slowing down of particles were cal-
culated and compared with analytical results obtained under the neoclassical approach. Once
particles have left the plasma, they are followed by means of the real orbits’ code, GOUR-
DON. Between the separatrix and the vessel walls, the orbits were traced using GOURDON,
in order to know where they strike the vessel. That made possible the following of a particle
which starts at the wall with specific parameters and cross the separatrix at a (φ,R,z) position,
allowing the study of the reason for such a loss. The validation of GOURDON with AS-
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DEX Upgrade configuration was made tracing some trajectories of fusion born particles and
then comparing it with the guiding center trajectory calculated with HAGIS. Finally, the code-
packages here presented was used as a first attempt to name the particles which strike a further
detector. The operation of a detector based on the mechanism of a magnetic spectrometer was
studied and is also presented.
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Chapter 2

Particle Motion in Toroidal Magnetic
Devices

2.1 Introduction

As is well-known, a charged particle must follow a homogeneous magnetic field line as long
as there is no other interaction.
The motion of a non-relativistic particle of charge q and mass m in an electric field E and
magnetic field, B is given by the following equation:

m
dv
dt

= e(E+v×B) (2.1)

In a tokamak, external forces such as gravity are negligible in comparison with electromagnetic
ones. Considering only the magnetic field, the components of this equation are:

dvx

dt
= ωcvy,

dvy

dt
= ωcvx, (2.2)

dvz

dt
= 0, (2.3)

where

ωc =
eB
m

(2.4)

is the cyclotron frequency and the z axis has been chosen to be along the magnetic field.
From this set of equations one derives that the particle trajectory is a helical orbit composed
of the circular motion perpendicular to the field and a constant velocity in the direction of the
magnetic field. The radius of this circular motion is the Larmor radius:

ρl =
mv⊥
qB

(2.5)
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where v⊥ is the velocity component in the plane perpendicular to the magnetic field. The fast
gyro motion can be separated from the guiding center motion, when the Larmor radius ρl is
small compared to the characteristic length of the magnetic field variation :

L =
B

|∇B| � ρl (2.6)

2.1.1 Adiabatic Invariants

It is well known from classical mechanics [Goldstein, 1980], that whenever a system has a
periodic motion, the action integral

∮

pdq taken over a period is a constant of motion. Here p
and q are the generalized momentum and coordinate. If the fields in the system change slowly
compared with the characteristic period and on a scale large compared with the characteristic
length of the motion, then the quantity

∮

pdq remains constant too, and is called an adiabatic
invariant. Adiabatic invariants play an important role in plasma physics. There are three
adiabatic invariants, each corresponding to a different type of motion. Being the magnetic
moment defined as µ = mv2

⊥/2B, the first adiabatic invariant with respect to the motion of
charged particles in an electromagnetic field. The periodic motion is the Larmor gyration, p
is the angular momentum mv⊥ρ , and the coordinate q is the angle θ. Considering the action
integral yields

∮

pdq =
∮

mv⊥ρldθ = 2πρlmv⊥ = 4π
m
e

µ. (2.7)

The invariance of µ plays an important role in the study of the particle motion parallel to the
magnetic field.

2.1.2 Guiding Center Motion

The evaluation of the confinement time of particles in fusion devices and the determination of
particle diffusion requires to follow particle orbits for very long times [White, 1989]. In order
to integrate the particle motion for the required length of time, an expansion of the equations
of motion in the gyro radius must be made, and the rapid particle gyro phase motion averaged
out, leaving equations for the guiding center motion. The Larmor radius of a charged particle
in a tokamak plasma is small, compared to the plasma dimensions and the curvature radius
of the magnetic field. Even fusion products with energies of a few MeV have Larmor radius
1/20 of the minor radius of a typical tokamak reactor design. Thus, charged particle motion is
well described using the drift approximation. The guiding center equations of motion, which
describes this drift motion, were first developed by Alfvén [Alfvén, 1940].
Taking F as an external force, the motion of charged particles can be studied by means of the
following formula:

m
dv
dt

= F+ e(v×B) (2.8)
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Figure 2.1: Guiding center coordinates

The guiding center approximation Fig. (2.1) provides the possibility to separate the motion
of charged particles in a magnetic field into two different motions, the gyration due to B and
the effect of an external force. If the guiding center ”c” is the center of the gyration cycle, its
position can be written as

rc = r+ rg (2.9)

where r is the position of the particle and rg the gyration radius vector

rg =
m

qB2 v ×B (2.10)

In strongly magnetized plasmas, such as in fusion experiments, the Lorentz force dominates
other forces F. Then, ρl is often much smaller than other length scales, and ωc much higher
than other frequencies. Consequently, the particle orbit is well described by the motion of the
guiding center. Deriving the equation (2.9), the velocity of the guiding center for a constant
magnetic field is given by:

vc = ṙc = v+
m

eB2
dv
dt

×B (2.11)

= v+
1

eB2 (e(v×B)+F)×B. (2.12)

Finally, from the vector relation

(v×B)×B = (v⊥× B)×B = B(v⊥ ·B)−v⊥(B ·B) = −v⊥B2, (2.13)

arises the guiding center velocity

vc = v‖ +
F×B
qB2 (2.14)

The motion of the guiding center can then be split into the two components referred to the
magnetic field
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vc,⊥ =
F⊥×B

eB2 ,
dvc,‖

dt
=

F‖
m

. (2.15)

Any force with perpendicular components to the magnetic field leads to a perpendicular motion
to B and F with the velocity vc,⊥.

2.1.3 Particle drifts

A non-homogeneous magnetic field or an electric field can lead to a guiding center particle
drift perpendicular to the magnetic field.

E ×B drift

A constant electric field is just a force with perpendicular components to the magnetic field,
taking the electric force as an external force F and substituting it into the equation for the drift
motion of the guiding center (2.15), leads to a drift,

vE =
E×B

B2 . (2.16)

The E×B drift leads to a macroscopic movement of the plasma since it does not depend on
the sign of the charge or the mass of the particles.

∇B drift and Curvature drift

Inhomogeneous magnetic fields lead to two different drifts because of the perpendicular com-
ponent of ∇B and the curvature of their field lines.
For magnetic fields that vary slowly in space, equation (2.15)can still be applied if the relative
variation of B is small along one gyration of the particle.
In case of a magnetic field with a transverse gradient, the particle gyro-motion has a smaller
radius of curvature on that part of its orbit, located in the stronger magnetic field, which leads
to a drift perpendicular to both the magnetic field and its gradient. The force on a particle with
a magnetic moment µ is given by

F ∇B = −µ∇B, (2.17)

which leads to

v∇B = − mv2
⊥

2eB3 (∇⊥B)×B. (2.18)

If there are curved magnetic field lines, a perpendicular drift appears in the plane in which the
curvature lies. To understand this effect, a coordinate system which rotates with the angular
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velocity, v‖/R of the particle is introduced where R is the radius of curvature of the field line.
In this frame, the particle experiences a centrifugal force

Fc = −
mv2

‖
R2 R. (2.19)

Taking this centrifugal force as an external force, the equations (2.15) can be applied to obtain
the curvature drift.

vR = −
mv2

‖
B2R2 R×B. (2.20)

In the absence of plasma current, ∇×B = 0, the ∇B drift goes into the same direction as the
curvature drift and takes a similar form since there is a correlation between the field gradient
and the curvature radius R

R
R2 = −∇⊥B

B
. (2.21)

Combining the equations (2.18), (2.20) and (2.21) leads to a total drift of the form,

vR +v∇B =
m
e

R×B
B2R2 (v2

‖ +
1
2

v2
⊥). (2.22)

Taking an isotropic velocity distribution and ε = 1
2mv2, the resulting drift due to these two

contributions is proportional to the particle energy

v =
4
3

ε
e

R×B
B2R2 (2.23)

Collecting together the various drifts, described in this section, as [Morozov, 1966] shows, the
guiding center drift velocity can be written as

v = v‖B̂+
B̂
eB

× (mv2
‖(B̂ ·∇)B̂+µ∇B+ e∇φ) (2.24)

The first term in this expression clearly represents the parallel velocity of the guiding center
along a field line,which will be studied in the following section, while the second term de-
scribes the perpendicular drift away from it. This second term may be considered to be made
up of three separate parts, being the first one the perpendicular drift motion due to the cur-
vature of the field lines. Particles following a curved field line experience a centripetal force
which gives rise to a drift motion perpendicular to the instantaneous curvature vector and the
magnetic field. The next term describes the so-called ∇B drift which occurs whenever the field
strength varies. As the particle moves into a region of stronger or weaker field, its Larmor ra-
dius changes and its guiding center drifts accordingly. The final term in the above expression
represents the so-called E × B drift.
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Figure 2.2: Mirror force scheme

2.1.4 Particle motion along B

Acceleration due to E‖

A parallel electric field provides an acceleration given by

d
dt

(mv‖) = eE‖ (2.25)

so that if E‖ is a function of t, v‖ is given by

mv‖ = e
∫

E‖dt. (2.26)

There are circumstances where the velocity resulting from such acceleration is relativistic.
Therefore, if m0 is the rest mass, the mass m is given by

m = m0γ where γ =
1

√

1− v2/c2
(2.27)

If E‖ is a function of the distance x‖ along the magnitude field and of time, it is necessary to
solve the equation

d
dt

(

m
dx‖
dt

)

= eE‖(x‖, t) (2.28)

Mirror Force

The existence of the mirror force is a direct consequence of the adiabatic invariance of µ . If
a particle moves into a region of increased field strength, it’s perpendicular velocity increases
while it’s parallel velocity decreases in order to keep µ and ε, the particle energy, constant. If
the B field becomes strong enough, then the parallel velocity may be reduced to zero and then
be reversed before the particle is accelerated in the direction of the weaker field, see Fig (2.2).

The force on the particle which leads to this motion is parallel to the magnetic field at the
center of its gyro-orbit, and is given by the Lorentz formula:
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F = e( v×B) (2.29)

If the magnetic field is slowly varying, the component of this force, parallel to the field line at
the guiding center of the orbit is

F = α · |e · (v×B)| (2.30)

where α is the small angle between the magnetic field at the position of the particle and that at
the guiding center, the force is clearly in the direction of the weaker magnetic field.
Taking cylindrical coordinates with the z axis along the line of the guiding center motion and
a radial coordinate r, the angle α is given by

α =
Br

Bz
(2.31)

where Br can be approached, using the Taylor formula, by

Br '
∂Br

∂r
ρ, (2.32)

being ρ the Larmor radius. Since ∇ ·B = 0 and Br ' r∂Br/∂r,

1
r

∂
∂r

(rBr) = 2
∂Br

∂r
= −∂Bz

∂z
. (2.33)

Taking ∂Bz
∂z at the guiding center,

∂Bz

∂z
= |∇‖B| (2.34)

where ∇‖ is the gradient parallel to B. Taking Bz = B , from equations (2.31) and (2.34), the
angle α is given by:

α =
1
2

ρ
| ∇‖B |

B
. (2.35)

From the force balance of the Larmor orbit

| e(v×B) |= mv2
⊥

ρ
(2.36)

and so, using equations (2.30), (2.35) and (2.36)the mirror force arising from ∇‖B is therefore

F = −
1
2mv2

⊥
B

∇‖B. (2.37)

If a magnetic field has a minimum along a field line, particles in this region of weaker field
can be trapped between the two resulting mirrors. This resultant force is responsible for many
processes in the universe, for example the Van Allen belt around the earth.
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2.2 Tokamak Orbits

As seen before, a charged particle moving in an homogeneous magnetic field gyrates around
a field line, and the guiding center of the particle’s orbit moves with constant velocity along
the magnetic field. The non-uniformity of the magnetic field leads to different drifts, which
strongly influence the motion of the guiding center of the particle, especially curvature and
∇B drifts. In a toroidal system there are essentially two types of orbits, trapped and passing
orbits. The transition from one to the other can be led by many causes. Particles which
circulate continually round the torus are called passing particles. Particles whose parallel
velocity vanishes at any point of their trajectory are called trapped particles. In tokamaks,
two types of particles can be distinguished, since their parallel velocity has different signs
compared with the plasma current (ASDEX Upgrade definition). Therefore, if the parallel
velocity of the particles has the same sign as the plasma current, they are the so-called co-
going particles, because if the velocities have the opposite sign than the plasma current, they
are the so-called counter-going particles. The orbits of these two types of particles are different
because of the drift sign.
The nature of the particle orbits in a tokamak plasma influences the physical properties of the
plasma on a macroscopic scale, [Edegal, 2000]. The following cases are examples:

• Trapped particles do not contribute to the conductivity of a plasma but are responsible
for bootstrap current;

• Current drive can be obtained by neutral beam injection into co- or counter-passing
orbits;

• Due to finite orbit widths, the distribution function of fusion born α particles is
anisotropic in velocity space.

The most interesting case is the large-trapped orbit of fast ions since they can strongly affect in
different ways the plasma equilibrium, [Hsu, 1992]. They are becoming increasingly common
as a results of auxiliary heating and in the near future due to fusion reactions (e.g., TFTR,
[Grove, 1985] and JET, [Rebut, 1985]). The importance of the existence of these particles is
two-fold:

1. If confined, their energy can be transferred to the background plasma, heating the bulk
of the plasma;

2. As seen in previous section, they also may have destabilizing effects on the back-
ground plasma instabilities such as fishbones [Chen, 1984] or shear-Alfvén instabilities
[Cheng, 1985].

2.2.1 Passing Orbits

Passing and trapped orbits lie on toroidally symmetric drift surfaces. Let d be the distance
between the drift surface and the magnetic surface. For the passing case, this distance may be
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Figure 2.3: Trapped and passing orbits of a deuterium with 93 keV

calculated using the expression for the drift velocity.
The drift surfaces of passing particles may be determined by two components of the particle
motion. The first one is the motion parallel to the magnetic field, giving rise to a poloidal rota-
tion. For particles which are strongly passing, this rotation has a frequency of ω = (Bθ/B)v‖/r
[Wesson, 1997]. The second component is the vertical drift due to the gradient and curvature
of the toroidal field as given by equation (2.22), that is

vd =
m(v2

‖ + 1
2v2

⊥)

eRBφ
(2.38)

Combining these motions the equations for the drift orbit are

dR
dt

= ωz,
dz
dt

= −ω(R−Rc)+ vd (2.39)

where z is the vertical coordinate and Rc is the R coordinate of the center of the cross-section
of the magnetic surface.
The resulting equation for the drift surface is

(

R−Rc −
vd

ω

)2
+ z2 = constant. (2.40)

It represents a circular surface displaced from the magnetic surface by a distance

d =
−vd

ω
'− r

R
v‖
ωθ

(2.41)

where ωθ = eBθ
m .
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2.2.2 Trapped Orbits

The responsible force of the trapped orbits is the mirror force, which is given by the equation
(2.37). This force appears only when a particle is moving into a magnetic field of increasing
magnitude. Since, in a tokamak, the magnetic field is a function of 1/R, particles which are
on the outer side of the torus and are moving to the inner side, may undergo a magnetic
mirror reflection. Only particles with a small parallel velocity suffer this effect. In absence of
collisions and instabilities, the particles are trapped in the low field region, suffering repeated
reflections.
Since µ is a constant of motion, the criterion for particle trapping can be calculated using this
condition. Taking the maximum and minimum value of the magnetic field along the trapped
orbit, and denoting the velocity at this point by a subscript zero, the constancy of µ gives

v2
⊥

Bb
=

v2
⊥0

Bmin
(2.42)

At the bounce point, v‖ = 0, and from the conservation of the energy

v2
⊥ = v2

⊥0 + v2
‖0 (2.43)

equation (2.42) becomes
Bb

Bmin
= 1+

(

v‖0

v⊥0

)2

. (2.44)

The requirement then for trapping, given an initial value of v‖0/v⊥0 at the midplane, is that
the magnetic field of the particle along its motion reaches the Bb value. That means that the
particles have velocities lying within the cone of velocity space, so that satisfying the equation

v‖0

v⊥0
<

(

2r
R0 − r

)1/2

. (2.45)

Such relationship between v‖0 and v⊥0 is given by the so-called pitch angle, v‖/vtotal , and is
one of the most important parameter in the study of particle trajectories in magnetic fields.
Once the particle is trapped, its orbit may be calculated using the equation

F = −µ∇‖B, where µ =
1
2mv2

⊥
B

(2.46)

Writing the major radius coordinate of the particle R = R0 + cosθ, the parallel gradient of the
magnetic field, dB/ds, may be obtained using

B = B0
R0

R
=

B0

1+(r/R0)cosθ
(2.47)

which for strongly trapped particles θ =
v‖
v⊥ � 1 gives
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dB
ds

=
rB0

R0

dθ2/2
ds

. (2.48)

The equation of a field line is rdθ/ds = Bθ/B and so θ = (Bθ/rB)s. Therefore substituting
equation (2.48) into equation (2.46) the equation of motion is

d2s
dt2 = −ω2

bs (2.49)

where the bounce frequency is

ωb =
v⊥
qR0

(

r
2R0

)1/2

(2.50)

with q = rB0/R0Bθ. The solution of equation (2.49)is clearly an oscillation given by:

s = sb sinωbt. (2.51)

Since θ = (Bθ/rB)s, the θ component of the motion is given by

θ = θb sinωbt. (2.52)

The turning point θb is obtained using the equation (2.44) for the bounce condition. For θb � 1,
equation (2.47) gives

θb =
v‖0

v⊥0

(

2R0

r

)1/2

. (2.53)

The drift surface on which the trapped particle lies is now obtained by including the r compo-
nent of the vertical drift due to the toroidal magnetic field as given by equation (2.38).
Taking v⊥ � v‖, this drift is almost constant vd = 1

2mv2
⊥/qRBφ and its radial component is

dr
dt

= vd sinθ ' vdθ (2.54)

Deriving equation (2.52) gives

dθ
dt

= ωbθb

(

1−
(

θ
θb

)2
)1/2

. (2.55)

Therefore, the differential equation of the drift surface is

dr
dθ

=
vd

ωbθb

θ
(

1−
(

θ
θb

)2
)1/2 . (2.56)
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Integrating the previous equation leads to the equation of the drift surface

(r− r0)
2 =

(

θbvd

ωb

)2
(

1−
(

θ
θb

)2
)

. (2.57)

This equation represents a curve with the shape of a banana as shown in Fig(2.3). The half-
width, 4r, of the orbit is

4r =
θbvd

ωb
=

v‖0

ωθ
(2.58)

where ωθ = eBθ/m, therefore 4r is equal to the Larmor radius calculated for a particle of
velocity v‖0 using the poloidal magnetic field Bθ. Since

Bθ =
ε
q

Bφ, and v‖0 = ε1/2vT (2.59)

the 4r becomes

4r =
q

ε1/2 ρl (2.60)

with ρl = vT m
eBφ

, being vT the thermal velocity.

Figure 2.4: Transition from passing to trapped orbit due to collisions
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2.3 Collisions

In order to have a full description of the behavior of fast ions and their confinement, a depth
study of the diffusion mechanisms has to be taken into account.
The dependence of the diffusion coefficient on the collision frequency is shown in Fig.(2.5).
The region νe f f > vT /Rq is called the MHD region or collision region, where vT is the thermal
velocity. The region vT /Rq > νe f f > ε3/2vT /Rq is the plateau region or the intermediate re-
gion; and the region ε3/2vT /Rq > νe f f is the banana region or the collisionless region. Where
the bounce frequency was taken as

ν

Pfirsch-Schlüter
   RegimePlateau

RegimeBanana
Regime

D
 [a

.u
.]

Classical transport

1ε3/2
*

Figure 2.5: Different Collisional Regimes

ωb '
ε3/2vT

qR
(2.61)

These diffusion processes are collectively called neoclassical diffusion, [Miyamoto, 1989].
The study here presented is limited to the banana region, since fast ions have so high energy
that the previous factor is , by far, lesser than ε3/2. For ASDEX Upgrade, typical fast ion
values, T=100 keV, R=1.65 m, q=4, this factor results in

νiRq
vT

∼ 10−7 � ε3/2 (2.62)

and even for a density of n = 1021m−3, the collisionality still is low enough.

2.3.1 Banana Region

When a small collisionality is allowed, the trapped particles dominate the transport. When
the collisionality is sufficiently low that particles complete at least one bounce orbit before
suffering a collision, Fig.(2.4), the plasma is said to be in the banana regime. Collisions give
rise to the diffusion of these particles in velocity space, they will then go out of the trapping
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cone. The condition for collisions to prevent trapping is that the detrapping time be shorter than
the bounce time ω−1

b . This transition requires collisional diffusion in velocity space through
an angle 4θ ∼ ε1/2and so the effective collision frequency for detrapping is ν/(4θ)2 ∼ v/ε,
where ε is the inverse aspect-ratio of the magnetic surface and therefore varies across the
plasma radius. Thus the banana regime requirement becomes

ν � ε3/2vT

qR
(2.63)

The collisions which scatter the particles out of their trapped orbits displace the particles across
the flux surface by a distance ∼ 4r, the banana width. This provides the step length for
the diffusion process. Because of the banana width step length and the effective collision
frequency, an estimate value of the diffusion could be

D ∼4r2νe f f where 4r =

(

q
ε1/2

)

·ρl and νe f f =
νi

ε
(2.64)

But only a fraction, ε1/2, of the particles are trapped and so the effective banana regime diffu-
sion coefficient becomes

D ∼ q2

ε3/2 νiρ2
l . (2.65)

where q is the safety factor, ε = r/R is the inverse aspect ratio, νi is the ion collision frequency
and ρlthe Larmor radius.
Actually, the calculation of the transport coefficients is much more complicated than the sug-
gested above. A detailed study of the transport mechanisms was carried out using the HAGIS-
Code improved with the Fokker-Planck collision operator.
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Chapter 3

The NBI Spectra

3.1 Introduction

In chapter 1 it was shown that the reaction D + T →4 He + n + 17.6MeV will be most likely
used in a fusion reactor because it has the highest cross-section at the lowest energies. In
this case the required central plasma temperature to ignite the fusion plasma is about 20keV
and thus much higher than what occurs during plasma start-up in tokamaks. Therefore, some
additional heating is required to raise the plasma temperature until the fusion reaction supplies
the necessary heating. Some heating methods have been found to be particulary suitable to
heat a fusion plasma to a sufficiently high temperature. The most used heating schemes at
present are: Ohmic heating, electromagnetic wave heating, and neutral beam injection (NBI)
heating. The last one was deeply studied in this work, since it generates the fast ion distribution
[Staebler, 1999].

3.2 The NBI Scheme in ASDEX Upgrade

A brief description of the NBI-scheme is now here presented. The neutral beam injection
heating consists of injecting a beam of neutral fuel atoms at high energy into the plasma.
In the plasma the beam atoms are ionized through ionization by electrons (dominant only
at low electron temperatures of 1 keV), charge exchange (dominant process below 90 keV
for deuterium beam), and ionization by ions (dominant process above 90 keV for deuterium
beam). In total, these different processes lead to an approximately exponential decay of the
beam neutral density along its path.
The energetic neutral atoms are created by extracting positive ions from suitable ion sources,
accelerating the ions to the high energies, and finally neutralizing the energetic ions by colli-
sions with a gas target in the so-called neutralizer. However, not only protons or deuterons are
created in the ion source, but also the hydrogen or deuterium molecular ions H+

2 and H+
3 or

D+
2 and D+

3 respectively. These molecular ions are also extracted, accelerated and dissociated
in the neutralizer. Hence, the final neutral beam consists not only of neutral atoms with the full
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Figure 3.1: NBI overview in ASDEX Upgrade.

acceleration energy, but also of neutral atoms with the half and the third energy. After pass-
ing through the magnet, which reflects the non-neutralized ions, the neutral atoms are injected
into the plasma through the duct between the beam lines and the torus vessel. The NBI system
of ASDEX Upgrade consists of two beam lines. Each beam line is equipped with four ion
sources. The sources of the first beam line is routinely operated at 55 kV for hydrogen (H 0)
and 60 kV for deuterium (D0), respectively. The sources of the second beam line are upgraded
for operation at 70 kV for hydrogen and 100 kV for deuterium respectively. A total power of
14 MW H0 and 20 MW D0 can be injected in the ASDEX Upgrade torus.
The species and power distributions of these species depend on the special conditions in the ion
source. Different plasma generating methods lead to different electron temperatures and den-
sity profiles in the ion source which influence the species distribution. Typical mean electron
energies in a RF source are about 10 eV.
The injection geometry of both beam lines in a top view is shown in Fig.(3.1). A poloidal view
is shown in Fig.(3.2).

3.3 FAFNER-Code, Numerical Simulation of NBI Spectra

3.3.1 Structure of the Code

FAFNER code is a computer program designed to model neutral beam injection into 3-D
plasmas. The beam line section of the code provides a source function of coordinates of
neutral particles in the velocity space as well as in the real space which is used to determine
the initial ionization of the neutrals in the plasma. Plasma temperatures and densities are
defined to be constant on flux surfaces, the magnetic field configuration is supplied for the
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Figure 3.2: NBI Poloidal view

specific discharge. First, we have to define the beam lines used to inject neutral atoms into
the plasma, which will provide a source of neutrals to use later in the code to compute power
deposition profiles in the plasma, that will permit a detailed simulation of the power loading
on scrapers along the beam line due to collisions with escaping neutrals.
The initial positions and directions of fast atoms emerging from the neutral beam source are
chosen using the Monte Carlo techniques, appropriate to the provided input data. Then, it
is calculated which of these particles reach the plasma and which are lost due to collisions
with scrapers and ducts along the beam line. Initial conditions for the calculation of the fast
ion deposition profile are supplied by the distribution of neutral atom generated in the source
and computed in the beam line section. A Monte Carlo algorithm is then used to compute
the deposition in the plasma in which the atom is ionized, either by ion or electron impact
ionization or by charge exchange with plasma ions. The computation of mean free paths for
these processes is made for each of the relevant injected energy species.

3.3.2 Description of Physics in Code

The NBI Scheme in FAFNER

A NT number of beam lines are assumed, each containing ns neutral beam sources with a total
number nB of sources available to heat the plasma. Neutral particles are assumed to emerge
from a planar surface with a rectangular or circular shape. The code provides an option to
supply details of the ion source. In the case where one of the isotopes of the H is to be
injected, three species of ion H+,H+

2 and H+
3 , different energies, are emitted from the source

with different power fractions, p1, p2 and p3. A fraction ηk with k = 1,3 of these ions are
dissociated and neutralized into H atoms with energies T, T/2 and T/3 respectively, where T
(eV) is the energy of ions leaving the ion source. As seen in the previous section, the angle
formed by the particle trajectory and the field lines, always governs the behavior of the particle,
FAFNER calculates the so-called pitch angle. However, the definition of pitch angle varies in
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many works, being here defined by the relationship,

ϒFAFNER =
v‖

vtotal
. (3.1)

Neutral Beam Ionization

The deposition of fast ions in the plasma due to interaction with neutral beams is governed by
the equation

F(s) =
∫

f (xi,vi)e
−∫ x

0
dl

λ(xp,vi) dxidvi (3.2)

where F(s) represents the flux of neutral particles crossing the flux surface s, f (xi,vi) is the
source function of neutral particles with space and velocity coordinates, xi and vi respectively,
and λ is the total mean free path to collision for all ionization and charge-exchange processes,
which is a function of vi and of the plasma coordinates xp. The integral dl represents an
integration along the path of each neutral particle from its origin point to its intersection with
the flux surface s, at point x.
A representation of the source function f (xi,vi) is computed in the beam line section of the
code.

Cross Sections of Neutral Beam Collisions

In a uniform, pure hydrogen plasma of density n, the neutral beam of intensity I0 is attenuated
exponentially, along its direction x,

I = I0e−x/λ, (3.3)

where λ is the mean free path for ionizing collisions

λ = (nσ∑)−1. (3.4)

σ∑, the total trapping cross section, is the sum over all relevant rate coefficients

σ∑ =
3

∑
i=1

〈σiv〉vb, (3.5)

with vb being the beam velocity. σ∑ is made of mainly three contributions:

• collisional ionization by electrons:

H0
f + e− → H+

f +2e− (σ1) (3.6)
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• collisional ionization by plasma ions:

H0
f +H+ → H+

f +H+ + e− (σ2) (3.7)

• charge exchange with plasma ions:

H0
f +H+ → H+

f +H0 (σ3) (3.8)

where the subscript ’f’ denotes fast neutrals or ions, respectively.
A reasonable approximation for an energy per nucleon in the several 10 keV range is

λ =
T

18nA
(3.9)

with λ in meter, n in 1019m−3, T in keV, and A, the atomic number in amu. A typical value for
a 93 keV neutrals is λ ∼ 0.3m.
The total cross section σ∑ depends mainly on the energy per nucleon, with a small dependence
on the electron temperature. Typical values for a purely hydrogenic plasma are (13− 15) ·
10−16cm2 at 10 keV/amu, decreasing to about 3 ·10−16cm2 at about 80 keV/amu.

Computation of the Fast Ion Deposition Profiles

The computation of the equation (3.2) is explained here. A set of NN neutral particle coordi-
nates are selected from the source computed in the beam line code. The velocity coordinates
are normalized and energy must be assigned to each neutral. This is done using the particle
species fraction, pn

k . A random number, ξ1 is selected, and the energy Ei of the neutral is set,
according to

pn
1 > ξ1 Ti = T (3.10)

pn
1 < ξ1 < pn

1 + pn
2 Ti = T/2 (3.11)

ξ1 < p1 + pn
3 Ti = T/3. (3.12)

where E represents the injection energy of the beams. The smallest mean free path in the
plasma, λmin for each neutral injected species is computed, and then the neutral is advanced a
distance

d = −ln(ξ2)λmin (3.13)

where ξ2 is a random number. The atom is now located between the flux surfaces s j−1 and s j
and the probability that a collision occurs is

p =
λmin

λ(s j,vi)
(3.14)
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where λ(s j,vi) is the total collision mean free path, given by the equation (3.4) on the flux
surface s j for an atom with velocity vi.
The details of all particles are then summarized by the quantities H(s) and fs, where fs is the
total energy loss due to neutrals failing to ionize and H(s) is defined such that

1
Vp

∫

H(s)dV = 1− fs (3.15)

where the integral is over the whole plasma volume. Therefore the deposition profile H(s) is a
function of the flux coordinate s.

3.3.3 Results

The ionization pattern of a beam of the second neutral beam injector of ASDEX Upgrade
was simulated considering only one specie in the source with the parameters corresponding
to a specific real discharge. Two different magnetic field equilibrium were used during this
work, one for the simulation of counter-injected particles (16095@3.10s) and the other for
co-injected particles (15839@4.45s). However, most of the final results here presented are
computed for the co-injected configuration, since it is more common in a typical ASDEX
Upgrade discharge. The input data given in FAFNER were the following: The electron density
was considered to be zero outside the separatrix in order to avoid the existence of fast ions in
such region, since HAGIS can only calculate inside the last closed flux surface. In order to
deeply study the trajectories of fast ions, only deuterium with 93 keV was considered. The
ionization profile was calculated for 10.000 ions with the geometry of the beam number 5 of
ASDEX Upgrade. The results for the initial distribution for the rest of the calculations are
presented in the following pictures. As shown in Fig.(3.3), the ionization profile decays with
the R coordinate as expected from the equation (3.3),that means the most particles are ionized
just after they enter into the plasma.
The location of the beam in the toroidal direction can be observed in the ionization pattern
shown in Fig.(3.4). Most of the atoms are ionized in a certain toroidal angle, constituting
the largest branch. The other branch appears because some atoms of the neutral beam go
through the first section of the plasma and are ionized in the second one, as shown Fig.(3.5).
That occurs only if the beam is injected tangential to the torus. In other way the particles
which form the second branch collide with the intern wall of the vessel. In the z-direction, the
distribution is centered around z=-10 cm, where the beam is injected, as shown in a poloidal
view of the beams, see Fig.(3.2).
The ionization distribution in the pitch angle is not uniform as shown in Fig.(3.6) and (3.7),
since all particles enter into the plasma with almost the same direction and the same energy. It
can be seen in Fig.(3.6) that the particles which are in the second branch have a certain pitch
angle and that not all the particles with every pitch angle can go through the first section of the
plasma. As shown in Fig.(3.7), the particles which are ionized at the beginning of the injection
have a smaller pitch angle than the particles which reach the intern side of the plasma. This
picture shows the trapped-passing boundary in ASDEX Upgrade. It can be seen that most
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Figure 3.3: Simulation of the ionization pattern of the fifth beam of the second injector in
ASDEX Upgrade. Only one specie with the full energy, 93 keV, was considered. Density of
the background plasma n=8.4 ·1019m−3.
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Figure 3.4: The two branches of the ionization distribution due to a tangential neutral beam
injector in the plane formed by the toroidal coordinates φ and z .

particles are generated on trapped orbits. Using other injector or other beam geometry, the
fraction of trapped particles is different.
Due to all the particles, which are ionized, have the same energy, the parallel and perpendicular
components of the velocity lie on the circumference of radius vtotal = 2.99 · 106m/s which is
the velocity of a deuterium with 93 keV. The initial distribution of the velocities is shown in
Fig. (3.8) where the analytical circumference of radius R = 2.99 ·106 is also plotted.

36



Figure 3.5: Illustration of the formation of two branches in the ionization pattern.
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Figure 3.6: Pitch angle distribution in the φ direction of all co-injected particles. Pitch angle
distribution in both branches.
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Figure 3.8: Initial velocity distribution of the ionized particles with the circumference of radius
2.99 ·106.
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Chapter 4

HAGIS-Code

4.1 Introduction

The following description of the HAGIS-code follows the original work, which was carried
out by [Pinches, 1996]. The study of trajectories of low energy background ions, which are
frozen in the magnetic field, is well described by the magnetohydrodynamic approach (MHD),
but for high energetic particles, these trajectories do significant excursions away from the
magnetic field lines. In that case, ion motion has to be described using the guiding center
approximation in which their parallel and perpendicular motion to the field lines are studied
individually. A real magnetic configuration was taken from a specific discharge in ASDEX
Upgrade. Together with the perturbation, this unperturbed magnetic field is the responsible for
determining the particle orbits. In order to simplify the problem, the most suitable coordinate
system was taken. The total field structure is in HAGIS represented as the superposition of a
real magnetic configuration of a standard discharge, and a small electromagnetic perturbation
representing the MHD-mode. In toroidal geometry, due to the periodicity in the toroidal and
poloidal directions, each mode can be naturally decomposed into its Fourier components. In
consequence, the spatial structure of the mode is here given by means of its toroidal and
poloidal harmonic.

4.1.1 Particle Motion in Toroidal Magnetic Devices; Boozer coordinates

Solving any problem in Physic implies first to choose the most suitable coordinates system for
the configuration. As shown in Fig. (1.3), for axisymmetric equilibria, the magnetic field lines
lie in nested toroidal magnetic surfaces. From the equation of the equilibrium ∇p = j×B,
there follows

B ·∇p = 0 (4.1)
j ·∇ = 0. (4.2)

Then j and B lie in the magnetic surfaces of constant pressure. In this case, natural coordinates
for a toroidal system are the so called flux coordinates. For non-circular, Shafranov-shifted flux
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Figure 4.1: Set of toroidal coordinates used in HAGIS.

surfaces, the choice of these flux coordinates is not obvious, being one of these coordinates
usually denoted by ψ, a constant over each flux surface. The other two coordinates form a
grid within each surface, see Fig.(4.1). This set of coordinates forms a natural system because
they allow to separate the rapid motion of the particle along the field line from the slow drift
across the flux surface, since charged particles and field lines are closely tied. This enables the
description to be characterized by the flux label ψ. The most suitable system of coordinates,
in order to represent this description, was first used by Boozer [Boozer, 1981].
Giving the flux coordinates in a general form, a solenoidal field in a toroidal domain may be
given by

B = ∇ψ×∇θ+∇ζ×∇ψp(ψ,θ,ζ) (4.3)

where ψ denotes the toroidal flux, and ψp the poloidal flux

ψ =
1

2π

∫

B ·dst (4.4)

ψp = − 1
2π

∫

B ·dsp (4.5)

with B the total magnetic field, dst a closed surface with its unitary vector in the toroidal
direction and dsp a closed surface with its unitary vector in the poloidal direction.
If the field has perfect surfaces, one can chose ψ,θ and ζ so that ψp is a function of ψ alone.
However, if the field has a so complex topology that it can not be described by a set of nested
flux surfaces, ψp must be considered as a function of all three coordinates. Therefore the field
lines are given by

dψ
dζ

=
B ·∇ψ
B ·∇ζ

,
dθ
dζ

=
B ·∇θ
B ·∇ζ

, (4.6)

while taking into account equation (4.3), become
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dψ
dζ

= −∂Ψp

∂θ
,

dθ
dζ

=
∂Ψp

∂ψ
, (4.7)

If the magnetic field has a continuous symmetry such as toroidal symmetry, the field lines
reduce to an integrable Hamilton form. Therefore, in the previous equation, Ψp(ψ,θ,ζ) can be
identified as the field line Hamiltonian, being θ, ψ and ζ, analog to position, momentum and
time respectively.
Taking the specific Boozer coordinate system used by White and Chance [White, 1984], ψpis
taken as the radial coordinate and we deform the toroidal and poloidal angle coordinate ζ and
θ to obtain straight field lines. The general poloidal angle was chosen by selecting a specific
form for the Jacobian to obtain a covariant representation of the magnetic field in which the
angular components are functions of the poloidal flux alone.
Therefore, the covariant form for B may be written as

B = Bψp∇ψp +Bθ∇θ+Bζ∇ζ, (4.8)

The ζ and θ contravariant components of the field may be calculated, taking into account that
the local helicity (B ·∇ζ)/(B ·∇θ) ≡ Bζ/Bθis independent of θ.
And the contravariant form of B may now be written as

B = ∇ζ×∇ψp +q∇ψp ×∇θ = ∇∇(ζ−q(ψp)θ)×∇ψp. (4.9)

where q∇ψp = ∇ψ, also q = dψ
dψp

.

From this equation, the vector potential A may be written as

A = ψ∇θ−ψp∇ζ. (4.10)

Let δ be the radial covariant component of B, the covariant representation then becomes

B = δ(ψp,θ)∇ψp +(J B2 −qg)∇θ+g(ψp)∇ζ, (4.11)

where J is the jacobian, if it is chosen to be of the form J = F (ψp)/B2, Bθ is then a flux func-
tion since Bθ = F (ψp)−g(ψp)q(ψp) ≡ I(ψp). Therefore, the final covariant form becomes,

B = δ(ψp,θ)∇ψp + I(ψp)∇θ+g(ψp)∇ζ, (4.12)

where
J =

I +gq
B2 . (4.13)

and I(ψp) and g(ψp) may be interpreted in terms of the currents flowing in the device, being
2πI/µ0 the total toroidal current inside the flux surface ψp and 2πg/µ0 the poloidal current.
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4.2 Guiding Center Equations

The equation of the guiding center motion is calculated here by means of a variational principle
for guiding center motion, [Littlejohn, 1982].
Taking the Lagrangian of the system as

L =
1
2

mv2 + eA ·v− eΦ. (4.14)

where A and Φ are the vector and scalar potential respectively and v is the particle velocity
relative to the magnetic field in contravariant form.
Assuming the exact invariance of the magnetic moment, µ = mv2

⊥/2B, it becomes an ’internal’
process analogous to electron spin and is coupled to the external degrees of freedom by means
of the mirror force, Fm = −∇(µB). This suggest the interpretation of µB as a potential energy
term rather than a kinetic one and allows the Lagrangian to be written in the form first given
by Taylor. [Taylor, 1964],

L =
1
2

mv2
‖ + eA ·v−µB− eΦ. (4.15)

Suitable canonical variables were initially presented in two works [White, 1984] and
[White, 1982] using a rather laborious procedure. They tried to find the time variation of a
particular coordinate,qi say, while following the guiding center position. This meant demon-
strating that ḃi = v ·∇qi = ∂H/∂pi, where the Hamiltonian H is the total energy of the system
expressed in term of the canonical variables and v is the guiding center drift velocity given in
equation (2.24). By adopting a Lagrangian approach, [Littlejohn, 1982]was able to consider-
ably reduce the labour involved in finding a reduced set of guiding center canonical variables.
The procedure used is based upon Hamilton’s variational principle which may be written as

δ
∫

Ldt = 0, (4.16)

with the guiding center Lagrangian given by [Littlejohn, 1982]

L = eA∗ · ẋ+
m
e

µξ̇−H, (4.17)

where ξ is the gyro-phase and ẋ is the guiding center velocity and represents the total time
derivative of the guiding center location, x. The term A∗ = A+ρ‖B is known as the ’modified
vector potential’ and was first used by Morozov & Solov’ev in 1963 [Morozov, 1966]. It makes
use of ρ‖ = v‖/ωci, which is referred to as the parallel gyroradius, with the Hamiltonian given
by

H =
1
2

mv2
‖ +µB+ eΦ. (4.18)

It is convenient to choose units based around characteristic system quantities. Since the case
being examined is the interaction of a distribution of fast particles with a perturbed magnetic
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field, it is appropriate to express all masses and charges in terms of those of the fast particles
and to express all lengths in terms of the toroidal major radius at the magnetic axis. Time
units are specified in terms of the inverse fast particle cyclotron time at the magnetic axis,
1/Ω0 = 1/B0 in these units. Since we only consider a single species of fast particle we may
subsequently omit all occurrences of charge and mass in the following formulae. Physical
formulae consequently result by restoring these physical factors.
Canonical variables are obtained by substituting expressions for A and B into the equation
(4.17) and rewriting it as

L = ∑
i

piq̇i −H. (4.19)

Once this form is obtained, the canonical momenta and coordinates can immediately be iden-
tified. Substituting equations (4.10) and (4.12) for A and B into the Lagrangian gives

L = (ρ‖I +ψ)θ̇+(ρ‖g−ψp)ζ̇+µξ̇−H +δρ‖ψ̇p (4.20)

It is thus, natural to select the Boozer coordinates introduced in the previous section to form
the canonical coordinates, enabling the canonical conjugate momentum variables to be read
straight from equation (4.20). Upon closer inspection however there are seen to be four terms
of the form piq̇i: ψp appears as a momentum term and consequently the final term interferes
with this interpretation and must be removed.
One method of achieving this involves the observation that the equations of motion remain in-
variant under the addition of exact differential to the Lagrangian [Goldstein, 1980]. Therefore,
terms such as d(δρ‖ψ)/dt may be safely subtracted from equation (4.20) with no effect and
the remaining terms absorbed into the canonical coordinates θ and ζ through their definition,
or neglected if they are higher order in ρ [White, 1984] and [White, 1990]. This approach
is unsatisfactory, however, since the resulting canonical coordinates no longer coincide with
the Boozer magnetic coordinates derived above and also since the equations of motion do not
exactly conserve H. A more desirable approach is one that while only reproducing particle
motion to second order in ρ, exactly conserves the Hamiltonian. This is achievable by a mod-
ification of the guiding center velocity ẋ = v, so that v → v+w. This adds an additional term
to equation (4.20)of the form A∗ ·w, where w may be chosen such that

A∗ ·w = −δρ‖ψ̇p. (4.21)

With this choice the reduced set of canonical coordinates are θ, ζ and ξ, with the corresponding
canonical momenta given by

Pθ = ρ‖I +ψ, (4.22)
Pζ = ρ‖g−ψp, (4.23)
Pξ = µ, (4.24)
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and the equation of motion following from the Hamiltonian in the usual manner

θ̇ =
∂H
∂Pθ

, Ṗθ = −∂H
∂θ

, (4.25)

ζ̇ =
∂H
∂Pζ

, Ṗζ = −∂H
∂ζ

, (4.26)

ξ̇ =
∂H
∂Pξ

, Ṗξ = −∂H
∂ξ

. (4.27)

Before proceeding to derive the equations of motion that follow from equations (4.25), (4.26)
and (4.27), consider the inclusion of a general electromagnetic perturbation described by the
vector and scalar potentials

Ã(x, t) = Ãψp∇ψp + Ãθ∇θ+ Ãζ∇ζ, and Φ̃(x, t). (4.28)

Replacing then A with A+ Ã, and Φ with Φ+ Φ̃, means that the Lagrangian now becomes

L = (ρ‖I +ψ+ Ãθ)θ̇+(ρ‖g−ψp + Ãζ)ζ̇+µξ̇−H +(δρ‖ + Ãψp)ψ̇p. (4.29)

The final term is treated as before and the canonical variables are now modified such that the
canonical momenta are

Pθ = ρ‖I +ψ+ Ãθ, (4.30)

Pζ = ρ‖g−ψp + Ãζ, (4.31)
Pξ = µ. (4.32)

Examining these equations, it is easy to see that they are of the same structure as a free particle
in classical electrodynamics for which the canonical momenta P = p+A, where p is the known
mechanical momentum. This is seen from equation (4.10) where it is observed that ψ and
−ψp are the θ and ζ covariant components of A. Noting that ρ‖B is the parallel momentum, it
follows from equation (4.12) that the particle momenta corresponding to θ and ζ are ρ‖I and
ρ‖g respectively.
The equation of motion may now be evaluated in accordance with equations (4.25), (4.26)
and (4.27). The Hamiltonian of this system is the total energy and is therefore given by equa-
tion (4.18). Taking ρ‖ as the normalized parallel velocity (since m=e=1 in the units adopted
here)the Hamiltonian can be re-written as

H =
1
2

ρ2
‖B2 +µB+ Φ̃. (4.33)

Since H is not written in terms of the canonical momenta, this first involves evaluating the
partial derivatives of ψp and ρ‖ with respect to the canonical variables. Recalling that g, I and ψ
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are all functions of ψp alone, equations (4.30), (4.31) and (4.32) give that ψp = ψp(θ,ζ,Pθ,Pζ)
and that ρ‖ = ρ‖(θ,ζ,Pθ,Pζ). Eliminating ρ‖ from the first two of these equations gives

g(Pθ −ψ− Ãθ) = I(Pζ +ψp − Ãζ). (4.34)

Differentiating this expression with respect to θ, ζ, Pθ and Pζ is now possible to find the equa-
tions of motion from equations (4.25), (4.26)and (4.27) by making use of the chain rule, see
[Pinches, 1996]. Although the equations for θ̇, ζ̇, Ṗθ and Ṗζwhich are obtained, describe com-
pletely the motion of the guiding center, they do not represent the easiest numerical scheme
to implement since it is necessary to invert Pθ and Pζ to obtain ψp and ρ‖. A more practical
approach is to evolve ψp and ρ‖ directly by means of their time derivatives. The equations of
motion are then

θ̇ =
1
D

[

ρ‖B2(1−ρ‖g′− Ã′
ζ)+g

(

(ρ2
‖B+µ)B′ + Φ̃′

)]

, (4.35)

ζ̇ =
1
D

[

ρ‖B2(ρ‖I′ +q+ Ã′
θ)− I

(

(ρ2
‖B+µ)B′ + Φ̃′

)]

, (4.36)

ψ̇p =
1
D

[(

I
∂Ãζ

∂θ
−g

∂Ãθ
∂θ

)

θ̇+

(

I
∂Ãζ

∂ζ
−g

∂Ãθ
∂ζ

)

ζ̇+gṖθ − IṖζ

]

, (4.37)

ρ̇‖ =
1
I

[

Ṗθ −
∂Ãθ
∂θ

θ− ∂Ãθ
∂ζ

ζ̇− ∂Ãθ
∂t

−
(

q+
∂Ãθ
∂ψp

+ρ‖I′
)

ψ̇p

]

. (4.38)

with prime referring to differentiation with respect to ψp and

D = ρc[gI′−g′I]+ I +qg. (4.39)

To describe the path in real space, the vector function x = x(ψp,θ,ζ) which allows the trans-
formation to the inertial laboratory frame of reference, must be known. The given equations
of motion may be simplified taking a particular form for the perturbed field instead of the gen-
eral perturbation. Since a typical tokamak equilibrium is considered to be in low-β regime, as
shown in [Pinches, 1996], δB = 0 and E‖ = 0. The first of these conditions places a constraint
upon Ã⊥ which can be encompassed by representing the perturbed magnetic field through the
variable, α̃(ψp,θ,ζ, t) defined through the relation

Ã = α̃(x, t)B. (4.40)

From this definition it can be seen that α̃ is closely related to the parallel component of the
perturbed vector potential and it follows that the resulting perturbation to the magnetic field is
given by

δB = ∇× (α̃B0). (4.41)
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Since the electron parallel conductivity has a very large value, the electric field is perpendicular
to the magnetic field. The condition that E‖ = 0 provides a relationship between α̃ and the
scalar potential Φ̃:

E‖ = −∇‖Φ̃− ∂
∂t

(α̃B0) = 0. (4.42)

Hence only one scalar field is required to describe the field perturbations arising from the
MHD-mode present. Substituting for the covariant components of α̃B into the above equations
of motion produces the same expressions as used by White and Chance [White, 1984]:

θ̇ =
1
D

[

ρ‖B2(1−ρcg′−gα̃′)+g
(

(ρ2
‖B+µ)B′ + Φ̃′

)]

, (4.43)

ζ̇ =
1
D

[

ρ‖B2(ρcI′ +q+ Iα̃′)− I
(

(ρ2
‖B+µ)B′ + Φ̃′

)]

, (4.44)

ψ̇p =
1
D

[

ρ‖B2
(

g
∂α̃
∂θ

− I
∂α̃
∂ζ

)

−
(

g
∂Φ̃
∂θ

− I
∂Φ̃
∂θ

− I
∂Φ̃
∂ζ

)

−g(ρ2
‖B+µ)

∂B
∂θ

]

, (4.45)

ρ̇‖ =
1
D

[(

I
∂α̃
∂ζ

−g
α̃
∂θ

(

(ρ2
‖B+µ)B′ + Φ̃

)

)

− (q+ρcI′ + Iα̃′)
∂Φ̃
∂ζ

]

(4.46)

+
1
D

[

(ρcg′−1+gα̃′)

(

(ρ2
‖B+µ)

∂B
∂θ

+
∂ ˜Phi
∂θ

)]

− ∂α̃
∂t

, (4.47)

where ρc = ρ‖ + α̃.
Given the equilibrium functions, g, I, q and B, and the perturbation parameter α̃, particle
trajectories may be accurately followed in the presence of a perturbation.

4.3 Fokker-Planck Collision Operator

In order to study the Neoclassical Transport mechanisms together with any instabilities, the
Hagis-code was improved by computing the Fokker-Planck collision operator with the AS-
DEX Upgrade parameters. The following algorithm was taken from the work of [Lin, 1995].
The numerical simulation of neoclassical transport based on the drift-kinetic formalism was
carried out by [Tsang, 1975]. More recently, [Wu, 1993] used a hamiltonian guiding center
Monte Carlo code to study the bootstrap current. [Ma, 1992] developed a particle simulation
scheme using the conventional gyrokinetic algorithm and binary collisions. The present work
is intended to improve the original Hagis code with the study of binary collisions simplifying
the approach of [Lin, 1995]. Since only fast ion trajectories constitute the goal of this work,
momentum and energy conservation in the whole system was not taken into account. That
makes the algorithm significantly easier, since a δ f model is not considered. Simulation re-
sults of the diffusion time in the banana regime are found to agree very well with the standard
neoclassical theory, see section 4.5. Based on the approach adopted by Xu and Rosenbluth
[Xu, 1991], an accurate collision operator is developed and implemented [Bergmann]. It was
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proved that in the banana regime, the neoclassical enhancement of the viscosity is a Pfirsch-
Schlüter factor times the classical viscosity.
The usual drift kinetic equation for a guiding center distribution function f(E,µ, x), where E is
the particle kinetic energy, µ is the magnetic moment, and x is a guiding center coordinate has
the form

∂ f
∂t

+(v‖b̂+v d) ·
∂ f
∂x

−C( f ) = 0 (4.48)

In dealing with collisions of test particles (α) with background particles (β), first the Rosen-
bluth potentials are taken, assumed both distribution functions f α and f βto be close to
Maxwellian. The linearized operator is [Xu, 1991]

C( f α) =
∂
∂v

· (vF f α)+
1
2

∂2

∂v∂v
: [G(Iv2 −vv)+Hvv] f α, (4.49)

where the first term is the test-particle drag and the second one is the diffusion term. Functions
F, G and H are defined by

F =

(

1+
mα
mβ

)

φ(x)ναβ, (4.50)

G =

[(

1− 1
2x

)

φ(x)+
dφ(x)

dx

]

ναβ, (4.51)

H =
1
x

φ(x)ναβ, (4.52)

respectively. Here x = v2/v2
th and φ(x) is the Maxwellian integral defined by

φ(x) =
2√
π

∫ x

0
e−t√tdt. (4.53)

Since electrons and ions have a different mass, the study of their collisions with beam ions has
to be made separately. The basic collision frequency here is defined for collisions between fast
ions with background ions by

νib =
ne4lnΛ

8πε2
0m1/2

b T 3/2
0

·
(

T0

Tb

)3/2

(4.54)

and with electrons by

νeb =
ne4lnΛ

8πε2
0m1/2

b T 3/2
0

·
(

T0

Tb

)3/2

·
(

me

mb

)5/2

(4.55)

where n is the electron density, lnΛ is the Coulomb logarithm, mb is the fast ion mass, T0 is
the background energy and Tb is the fast ion energy.
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The diffusion tensor can be diagonalized by transforming to the coordinate system w in which
the z axis is the direction of the particle velocity, w‖ = wz = v. This leads to

C( f α) =
∂

∂w‖
(vF f α)+

1
2

∂2

∂w2 (v2H f α)+
1
2

(

∂2

∂w2
x
+

∂2

∂w2
y

)

(v2G f α), (4.56)

where wx and wy are orthogonal to w‖ and to each other. In the drift kinetic limit, velocity
space coordinate may be transformed to cylindrical coordinate (v‖,v⊥,φ), with φ representing
the gyroangle. After averaging over gyrophase φ, the operator becomes

C( f α) =
∂

∂v‖
(νs‖ f α)+

∂2

∂v2
⊥

(νs⊥ f α)+
∂2

∂v‖∂v2
⊥

(ν‖⊥ f α) (4.57)

+
1
2

∂2

∂v2
‖
(ν‖ f α)+

1
2

∂2

(∂v2
⊥)2

(ν⊥ f α), (4.58)

where the collision coefficients are

νs‖ = v‖F, (4.59)

νs⊥ = 2v2
⊥F − v2

⊥H − (2v2
‖ + v2

⊥)G, (4.60)

ν‖ = v2
‖H + v2

⊥G, (4.61)

ν⊥ = 4v2
⊥(v2

⊥H + v2
‖G), (4.62)

ν‖⊥ = 2v2
⊥v‖(H −G). (4.63)

Xu and Rosenbluth , [Xu, 1991], found from the gyroaveraged Fokker-Planck operator an
expression for the mean parallel and perpendicular components of the test particle velocity
after a short time 4t

v′‖ = v‖[1−νs‖4t], (4.64)

v′⊥ = v2
⊥− v2νs⊥4t. (4.65)

This result is valid for νs‖4t � 1,νs⊥4t � 1 and indicates the monotonic decrease of parallel
test momentum as a result of Coulomb collisions. The perpendicular and parallel velocity
diffusion processes indicated by ν⊥,ν‖, and ν‖⊥ have to be treated differently.
Because they are diffusive, they lead to a probability distribution p(v − v) of the velocity
about the mean velocity given in equations (4.64)and (4.65). Since the diffusion results from
purely random processes in the parallel and perpendicular directions, we can anticipate that
this probability distribution will be Gaussian and of the form
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p(4v‖,4p) =
1

2πδ‖δ2
⊥
· e

−
4v2

‖
2δ2
‖
−4Γ2

2δ4
⊥ , (4.66)

where

4Γ = 4v2
⊥−β4v‖. (4.67)

By requiring

〈4Γ4v‖〉 = 0, (4.68)

the average diffusive spreads of the probability distribution are given by

〈4v2
‖〉 = δ2

‖, (4.69)

〈(4v2
⊥)2〉 = δ4

⊥ +β2δ2
‖, (4.70)

〈4v2
‖4v2

⊥〉 = βδ2
‖. (4.71)

From this gyroaveraged collision operator, they obtained

δ‖ =
√

ν‖(v2
‖,v)v

24t, (4.72)

β =
ν‖⊥(v‖,v2

⊥)

ν‖(v‖,v⊥)
· v, (4.73)

δ2
⊥ = v2

√

√

√

√

(

ν⊥(v2
⊥,v)−

ν2
‖⊥(v‖,v2

⊥)

ν‖(v‖,v⊥)

)

4t. (4.74)

Equations (4.64)-(4.74) provide a basis for a probabilistic numerical approach for the inclusion
of Coulomb collisional effects in a gyrokinetic system. The test-particle drag and diffusion
terms can be then implemented by utilizing the following Monte Carlo method. The diffusive
spreads of particle velocity are obtained by computing a random number between -1 and 1
and then multiplying this number by the average diffusive spreads [(4.72) -(4.74) ]. Thus, we
find the new parallel v′‖ and perpendicular component v′2⊥ of particle velocity which can be
evaluated from the old velocities (v‖,v2

⊥,v) by

v′‖ = v‖0 −νs‖4t +2
√

3(R1 −0.5)
√

ν‖4t, (4.75)

v′2⊥ = v2
⊥0 − v2νs⊥4t +2

√
3(R2 −0.5)

√

√

√

√

(

ν⊥−
ν‖⊥2

ν‖

)

4t (4.76)

+ 2
√

3(R1 −0.5)
ν‖⊥
ν‖

√

ν‖4t, (4.77)
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where R1 and R2 are two independent uniform random numbers.

4.4 Island Simulation

A change in the magnetic topology may be induced by the inclusion of a small helical magnetic
perturbation. The magnetic field structure is no longer composed of nested flux surfaces. This
occurs at surfaces with rational values of q. At these surfaces, the magnetic field lines break
and reconnect to form magnetic islands, see Fig.(4.2). The formation of magnetic islands
is generally associated with resistive instabilities and particularly tearing modes. A general
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Figure 4.2: Reconnection of magnetic field producing magnetic islands

description of the perturbed fields is introduced. Only one toroidal mode is considered here,
since each wave is characterized by a distinct toroidal eigenfunction, and represented as a sum
of poloidal harmonics m,

Φ̃ = ∑
m

φ̃m(ψ)ei(kmn·x−wt) = ∑
m

φ̃m(ψ)ei(nζ−mθ−wt), (4.78)

where the wave vector,
kmn = n∇ζ−m∇θ, (4.79)

and in general φ̃m may be a complex quantity containing information regarding the relative
phase-shifts between neighboring harmonics.
Since E‖ = 0, a relationship between Φ̃ and α̃ is given by

E‖ = 0 ⇒ ∇‖Φ̃+
∂
∂t

(α̃B0) = 0 (4.80)

⇒ ∑
m

k‖mφ̃mei(nζ−mθ−ωt)) = ωB0 ∑
m

α̃mei(nζ−mθ−ωt) (4.81)

⇒ α̃m =
k‖m

ωB0
φ̃m. (4.82)
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Although in this study only one poloidal harmonics is considered at each time, to illustrate the
destruction of nested flux surfaces, a small time independent perturbation of the poloidal flux
function is considered and described by the perturbation parameter α̃. Once decomposed into
Fourier harmonics and written in terms of the unperturbed toroidal flux, ψp becomes,

ψp =
∫ 1

q
dψ−∑

m,n
αmnei(nζ−mθ). (4.83)

where q was taken here as q = m/n, which in our case becomes

ψp =
∫ 1

q
dψ−αmnei(nζ−mθ). (4.84)

Following with this simplified model of an island and from equations (4.6), field lines are
described, in general, by the equations

dψ
dζ

= imαmnei(nζ−mθ),
dθ
dζ

=
1
q
, (4.85)

being in this equation q a function of the flux, q = q(ψ).
From equation (4.12),it is easy to see that the perturbation has introduced a small component
of B across the original flux surfaces

B ·∇ψ = imαmnei(nζ−mθ). (4.86)

If αmn is finite and q is not close to a rational surface q = m/n, then q may be approximated
by a constant and the equations integrated to give

θ =
ζ
q

+θ0, (4.87)

and

ψ = −mαmnqei(nζ−mθ)

m−nq
+ψ0. (4.88)

Therefore, the flux surfaces are distorted but remain topologically nested. If m− nq(ψ) ≈ 0,
however, the resonant denominator creates large excursions in ψ and this solution is not valid.
Restricting attention to a single harmonic described by the mode numbers m and n, the resonant
surface will lie on q = m/n, given by its toroidal eigenfunction

Φ̃ = φ̃m(Ψ)ei(nζ−mθ) (4.89)

Field lines on this surface define a helix and χ = θ−nζ/m is a convenient angular coordinate
orthogonal to this helix (parallel to k on this surface). Expanding q around ψ0 such that
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Poincare Particle Plot. Phi=0 Poincare Particle Plot. Phi=180 

Figure 4.3: View of a Magnetic Island at two different toroidal angles φ1 = 0 and φ2 = π.
Poincaré plot mapped out by a particle with an energy of 5 eV and a pitch angle of ϒHAGIS =
v‖/vtotal = 0.9.

q(ψ) =
m
n

+
dq
dψ

(ψ−ψ0) (4.90)

gives, using equation (4.85)

dχ
dζ

= −
(

n2q′

m2

)

(ψ−ψ0), and
dψ
dζ

= imαe−imχ, (4.91)

where q′ = dq/dψ. These equations may be integrated to give

(ψ−ψ0)
2 =

2m2

n2q′
α
[

e−imχ + c
]

, (4.92)

where c is a constant determined by the initial position. In order to examine island structures,
the so-called Poincaré plot is often made, which is constituted by the points formed of succes-
sive transits of a field line in the θ,ψ plane at ζ = 0, see Fig. (4.3). Poincaré is usually mapped
out by particles with large v‖/v⊥ and a small energy. It is seen from the definition of χ that at
ζ = 0, χ = θ. Expanding near θ = lπ/m, l ∈ Z, it is found that

(ψ−ψ0)
2 +

αm2

n2q′
(mθ)2 = constant, (4.93)

i.e. for α/q′ > 0 and c < 1 the points lie on elliptic manifolds about the periodic points, while
for c > 1 the points lie on hyperbolic manifolds. Thus, there is a chain of elliptic and hyperbolic
points at ψ = ψ0. This island chain is separated from the topological toroidal surfaces by a
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separatrix. The separatrix is described by choosing the integration constant c = 1, giving
islands with width

4ψ =
4m
n

√

α
q′

(4.94)

In order to validate the numerical approach, the obtained island width using HAGIS code was
compared by [Pinches, 1996]with the analytical estimate found, using equation (4.94) with an
accuracy of

4ψHAGIS

4ψAnalytical
= 0.909 (4.95)

4.5 Numerical Simulations

4.5.1 Confinement Time

In order to validate the code, several comparisons were made between analytical values and
numerical values generated by HAGIS-code.
The confinement time was calculated theoretically, using the following expressions for the
banana regime.

τ =
a2

5.8 ·DGS
(4.96)

where a is the minor radius, DGS is the diffusion coefficient in the banana regime, and the 5.8
is a factor coming from the cylindrical geometry. As seen in previous section, equation (2.65)

DGS =
q2

ε3/2 νiρ2
l (4.97)

where q is the safety factor, ε is the inverse aspect ratio, νi is the ion collision frequency and
ρlthe Larmor radius. Taking for the ion collision frequency, the simplified form corresponding
to singly charged ions, [Wesson, 1997], becomes

ν−1
i = τi = 6.60 ·1017

(

mi

mp

)1/2 T 3/2
i

nlnΛ
, (4.98)

where Ti is the fast ion energy, n is the electron density and lnΛ is the Coulomb logarithm and
was taken lnΛ = 17. This gives for deuterium with an energy of T = 100keVand a test-density
of n = 8.4 · 1021m−3, a value of νi = 1.67 · 102s−1. Such a density is not real under ASDEX
Upgrade conditions, but the validity of this approach was proved, since the confinement time
scale with the density as 1/n. Such a density was taken in order to speed up the calculations.
Calculating for the specific values of an ASDEX Upgrade discharge
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R = 1.6m, ε = 0.26, q = 4 and ρi = 21.5mm (4.99)

we obtain analytically a confinement time of

τ = 0.0093s (4.100)

while with the right density, n = 8.4 · 1019m−3 we obtain analytically a confinement time of
τ = 0.93s.
Simulating the behavior of 400 co-injected fast ions in ASDEX Upgrade with the improved
version of HAGIS, but only with collisions and not with MHD modes, the expected exponential
function for the fast ion losses was obtained, see Fig.(4.4).
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Figure 4.4: Exponential growth of ion losses due to collisions. Computation made with a
density of n = 8.4 ·1021m−3. The peak at short times due to prompt losses is also shown.

Modelling the rate of fast ion losses as in the following equation

Nloss(t) = Nprompt +(Ntot −Nprompt)(1− e−t/τ) (4.101)

taking logarithms and rewriting it, the confinement time τ, is easily calculated by means of the
following equation

ln(Ntot −Nloss) = −1
τ

t + ln(Ntot −Nprompt) (4.102)

and the linear regression of the numerical data, see Fig. (4.5).
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τHAGIS = 0.0059s (4.103)

The approach is then proved to be correct, since

τHAGIS

τ
∼ 0.6 (4.104)

However, the accuracy is not the best one, since the coefficient τHAGIS
τ was not equal to 1. That

is because the particles were not ionized directly in the center of the plasma, also they were
not thermal and the equation used for calculating the confinement time is valid for thermal
particles. Although, the deviation from the expected value, due to these inaccuracies, was not
too important, as shows the final result.
The scaling of the confinement time with the density was proved computing the behavior of
500 co-injected particles with the real density, giving a confinement time of τHAGIS = 0.45s.
The small divergence of this two values obtained by means of the simulations is due to the
approach in the linear regression and the limit of the prompt losses, since the calculations
must be done without the prompt losses, in other case the exponential behavior of the losses is
not satisfied.
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Figure 4.5: Numerical results and its linear regression. The prompt losses were not considered
in order to have a suitable exponential behavior.
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4.5.2 Slowing down Time

Once the neutral beam particles entering the plasma have become ionized, the resulting fast
ions are slowed down by Coulomb collisions. By means of these collisions, the fast NBI-ions
transfer their energy to the background particles, electrons and ions.
Since electrons and ions have a different mass, the study of collisions with background parti-
cles must be made separately. Collisions with electrons cause only a small scattering of the
beam ions. Consequently if the drag force which the electrons transmit to the beam ion is Fbe,
and beam ion velocity is vb, the heating of the plasma electrons is given by

Pe = −Fbevb. (4.105)

Giving the force Fbe as the rate of momentum loss [Wesson, 1997], the electron heating is then
given by

Pe =
em1/2

e mbADεb

3(2π)1/2T 3/2
e

. (4.106)

where

AD =
ne4lnΛ
2πε2

0m2
b
. (4.107)

and εb is the beam energy 1
2mv2

b.
The study of collisions with ions is similar, but the difference in mass causes another effect
on the beam ions. Due to their similar mass, the slowing down process of the beam ion is
accompanied by a scattering of the beam ion velocities principally perpendicular to the initial
direction of the beam. This scattering constitutes a ’heating’ of the beam ions, energy which
will heat the plasma but not in the initial direct heating. Therefore, the initial direct heating of
the plasma ions is

Pi = −Fbivb −
1
2

mb〈v2
⊥〉 (4.108)

where 〈v2
⊥〉 can be seen as the diffusion term, and Fbi is the drag force on the beam ion due to

the plasma ions.
Therefore, the direct heating of the plasma ions appears as

Pi =
m5/2

b AD

23/2miε
1/2
b

(4.109)

And the total direct heating per beam ion, P = Pe +Pi, given by the combination of equations
(4.105) and (4.109) is
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P =
2m1/2mbAD

3(2π)1/2T 3/2
e

εb

(

1+

(

εc

εb

)3/2
)

(4.110)

where εc is the critical energy, given by

εc =

(

3
√

π
4

)2/3(mi

me

)1/3 mb

mi
Te. (4.111)

In order to study the slowing down of the beam ions, just consider the power balance equation

P = −dεb

dt
(4.112)

and with equation (4.110), it follows

dεb

dt
= − 2

τse
εb

(

1+

(

εc

εb

)3/2
)

(4.113)

where

τse =
3(2π)1/2T 3/2

e

m1/2
e mbAD

(4.114)

Therefore, integrating the equation (4.113), being εb0, the initial value of εb, the solution for
the beam energy at each time is:

εb = εb0

[

e−3t/τse −
(

εc

εb0

)3/2
(

1− e−3t/τse
)

]2/3

(4.115)

The slowing down characteristic time may be calculated, just putting εb = 0, that follows

τ =
τse

3
ln

(

1+

(

εb0

εc

)3/2
)

. (4.116)

The validation of the code results is here proved just by comparing the theoretical curve for
the equation of the beam energy and the results obtained using HAGIS. The theoretical curve
was represented using the same parameter as in HAGIS, that means,

Te = 4keV, n = 8.4 ·1019m−3, εb0 = 93keV and τse = 0.3129s. (4.117)

Giving a slowing down time of τ ' 0.071s which is in agreement with the numerical results,
as shown in graphic (4.6) and (4.7), where both curves are represented.
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Figure 4.6: Numerical slowing down and its analytical behavior of a test particle with an initial
energy of 93 keV.
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Figure 4.7: Numerical slowing down and its analytical behavior in logarithmic scala.
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Chapter 5

GOURDON-Code

5.1 Introduction

GOURDON is a full 3-D computer program that computes 3-D particle trajectories using a
3-D magnetic field configuration. The code was developed in 1970 by C.Gourdon to compute
magnetic fields and field lines in toroidal devices.
It is the aim of this work to deeply study the fast ion losses in tokamaks and since HAGIS
traces particle trajectories only inside the last closed magnetic surface, this 3-D version of
GOURDON was improved to compute particle trajectories outside the separatrix in ASDEX
Upgrade. The real orbits of all particles which cross the plasma boundary are traced without
collisions by means of the GOURDON code. A real magnetic configuration was computed
from a specific discharge in ASDEX Upgrade. Together with the present vessel geometry of
this discharge, the deposition pattern of the high energetic particles on the vessel walls was
calculated. The computation of the magnetic field is stored on a grid in toroidal coordinates, a
transformation of coordinates to cartesians is then made and finally the interpolation for further
calculations, [Kisslinger]. Since this version of GOURDON was thought to work with stel-
larator devices, the existence of plasma currents had to be introduced. A final improvement of
the code was the implementation of the geometry of a further detector, where the manipulator
is in ASDEX Upgrade, in order to name the particles which strike the detector.

5.2 Structure of the Code

First of all, the magnetic field of a real discharge is computed from an ASDEX Upgrade
equilibrium reconstruction (LIBKK-routines). Once the magnetic field and its derivatives are
computed in cylindrical coordinates , they are stored in a 2-D grid. This grid supplies the input
data for further calculations with GOURDON. Since GOURDON computes the guiding center
trajectory as well as the real orbit in cartesian coordinates, the appropriate transformation of
coordinates is made here. The next step is the calculation of the geometry of the limiting
structures in ASDEX Upgrade corresponding to the discharge. The corresponding geometry
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is supplied by the LIBKK-routines. The obtained data are stored in cylindrical coordinates in
a file.
During the calculation of the trajectories, as well as the pursuit of field lines, it was asked at
each integration step if the corresponding trajectory crossed any target plate. In that case, the
coordinate of the cross point in cylindrical coordinates and the number of the target plate is
written in a file.

5.3 Description of Physics in Code

5.3.1 Magnetic Field Configuration

Computing the magnetic field from the discharge using statistical methods, needs much more
computational time than interpolating it from magnetic field values given on a grid. There-
fore, the magnetic field is computed once on a grid and then stored. This grid has to cover
the relevant region, i.e. the plasma region and the boundary region including the first wall.
Furthermore, it has to be good enough to guarantee results, independently of its discreteness.
The grid points are equidistant in cylindrical coordinates (R,φ,z). They are defined on a region
satisfying the first requirement (for ASDEX Upgrade geometry Rmin = 1.0m, zmin = −1.80m
and Rmax = 2.50m and zmax = 1.80m).
The magnetic field as well as its derivatives, are computed from a real discharge using different
statistical methods by means of the LIBKK-routines. Then, the field is stored and serves as
an input to GOURDON. Since this version of GOURDON makes the calculations in cartesian
coordinates and the magnetic field was stored in cylindrical coordinates, the appropriate trans-
formation was made, taking into account that in tokamaks the ansatz ∇×B = 0 is not valid
anymore. Details can be found in appendix A.

5.3.2 Particle Trajectories

Originally, the code was programmed to compute magnetic field lines in toroidal devices as
well as to show the magnetic surfaces and to study the magnetohydrodynamic stability by
means of the the integral V ′ = 1

M
∫ dl

B . The field line is followed from a starting point by means
of the ADAMS method of integration. The present version of GOURDON follows field lines
as well as computes guiding center trajectories and real orbits of particles. The input data for
the computation of guiding center trajectory are the same as for the computation of real orbits,
requiring also the last one, the gyro phase. The definition of pitch angle in code has to be taken
into account, since it is different as in the other two codes used during this work,

ϒGOURDON =
v⊥

vtotal
. (5.1)

Therefore, the input data for the computations are: the coordinates of the guiding center, the
velocity of the particle (energy) and its pitch angle with its sign in order to differentiate co-
going particles from counter-going particles.
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Guiding Center Trajectories

The motion of the guiding center is calculated here under the adiabatic approach. As seen
in chapter 2, the motion of the guiding center can be written in terms of the velocity compo-
nents, parallel and perpendicular to the magnetic field line. Therefore, the equations of motion
programmed in GOURDON are the following:

dv‖
dt

= − µ
m
· B ·∇B

B
(5.2)

dx
dt

=
m

eB2 · v
2
‖(B×k)+

µ
eB2 (B×∇B)+v‖. (5.3)

where

B×k =
1
B

(B×∇B)+∇×B− 1
B2 B(B ·∇×B). (5.4)

The radius of curvature of the field line is given by

ρ =
1
|k| (5.5)

and the magnetic moment by

µ =
m · v2

⊥
2B

= const. (5.6)

Since the program does not check if the adiabatic approach is correct or not, when the particle
has a large gyro radius, this approach must be checked. The validity of the approach can be
proved by comparing the obtained guiding center trajectory with the real orbit of the particles
computed using the code.
The computation of the motion of the guiding center goes on, whilst the guiding center stays
in the given space, which is the plasma vessel.

Real Orbits

In this section, the real orbit of charged particles in magnetic fields is computed. The trajectory
is computed step by step by integrating the equation of motion

dv
dt

=
e
m

(v×B) (5.7)

The integration step is given by the user. The value of the integration step depends on the
curvature radius of the particle trajectory, so that the step integration should be around 0.03
times the curvature radius.
The rise of errors because of an inappropriate integration step is checked at each step by means
of the total velocity. Since the total velocity must be constant, only magnetic field is considered
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Figure 5.1: Projection in poloidal plane of the trajectory of a deuterium with 93 keV and
ϒGOURDON = 0.81. The initial magnetic field is B=1.75T and the guiding center initial posi-
tion: R=2.10m and z=0.20m.

and it does not lead to any change in the total velocity, v
v0

is calculated at each step, the program
stops if this coefficient does not lie inside the interval (0.99, 1.01).
The input data for this calculation are the same as in the section for guiding center trajectory but
here the initial gyro phase must be given as well. The initial gyro phase is given by the angle
which form the projection of v on the R-z plane with R at the initial point of the trajectory.
The calculation of the trajectory goes on while the particle is inside the given space, geometry
of the vessel. Then, the program stops and gives the final coordinates of the particle.

5.4 Results

Different particles of interest in fusion reactions as well as particles of the NBI were followed
using the code here presented in order to validate the calculations. The real magnetic field
configuration corresponds to the discharge number 15839@4.45s of ASDEX Upgrade. The
difference between these trajectories is due to the different particle energy and mass. A typical
deuterium generated by the neutral beam injection system with an energy of 93 keV was fol-
lowed with different pitch angles and initial positions. The Fig. (5.1) shows the projection in
the poloidal plane of the trajectory of a deuterium which was ionized closed to the separatrix,
with a pitch angle ϒGOURDON = 0.85. Since there are no collisions and no magnetic perturba-
tions the particle follows the magnetic field line, ending its trajectory as the separatrix does,
on the wall.
In Fig.(5.2), a deuterium also with an energy of 93 keV but with a pitch angle of 0.51 was fol-
lowed. The relationship between the components of the velocity does not satisfy the equation
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Figure 5.2: Projection in the poloidal plane of the trajectory of a deuterium with 93keV and
Pitch=0.51. The initial magnetic field is B=1.88T and the guiding center initial position:
R=1.90m and z=0.20m.

(2.45) for the condition of trapping orbits, so the particle does a passing trajectory.
In order to test the code with different particles of fusion reactions, the following reaction was
considered,

D+D = p(3.024MeV )+T (1.008MeV ). (5.8)

and trajectories of tritium (1.008 MeV) and protons(3.024 Mev) were computed.
In Fig.(5.3) is shown the projection in the poloidal plane of the trajectory of a fusion born
tritium with 1.008 MeV, it can be seen that the tritium makes a confined orbit but with large
excursions in the radial direction.
The trajectories of a fusion born proton with 3.024MeV at two different pitch angles are shown
in Fig.(5.4). The one with a pitch angle of 0.81 trace a large unconfined banana orbit, since its
velocity components satisfy the trapping condition seen in chapter 2.
According to equation (2.23), the 3.024MeV protons vertical drift velocity is the largest be-
cause its energy is the largest. They have a gyroradius around 11 cm in the region of high
magnetic field. They always leave the plasma before the calculation time expires, though they
start at the same point and with the same pitch angle than the tritium. Since the dependence of
the magnetic field on the radius, R, can be approached by 1

R , the gyro radius of each particle
always is much larger in the outer side of the plasma, as can be seen in Fig.(5.3) and Fig.(5.4).
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Figure 5.3: Projection in the poloidal plane of the trajectory of a tritium with 1.008MeV and
ϒGOURDON = 0.51, ’confined passing orbit’. The initial magnetic field is B=1.88T and the
guiding center initial position: R=1.90m and z=0.20m.
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Figure 5.4: Projection in the poloidal plane of the trajectory of two protons with 3.024MeV
and ϒGOURDON = 0.81, ’large unconfined banana’, and ϒGOURDON = 0.51, ’passing-orbit with
large excursion’ .The initial magnetic field is B=1.88T, and the guiding center initial position:
R=1.90m and z=0.20m.
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Chapter 6

Results

Four different cases were examined in order to make a deep study of the behavior of fast
ions with their environment. Counter-injected particles, as well as co-injected particles were
followed with the code-package, being the last one the most interesting, since in ASDEX
Upgrade they are the most common. However, several calculations were also made for counter-
injected ions, proving that losses from counter-injection always appear to be stronger than from
co-injection. The results shown here were calculated using 1000 co-injected particles with an
energy of 93keV. No important differences can be observed on the poloidal direction of all of
the ion loss distribution.

6.1 No Collisions

In absence of collisions and MHD-modes, ion losses appear just before the first 10−5s, since
there are no more mechanisms to cause any other losses. They are the so-called prompt losses
which were defined in section 1.3. Taking into account that the initial distribution function
of fast ions was almost localized at two φ toroidal angles, prompt losses are also localized in
the toroidal coordinate, as shown in Fig.(6.2). Particles which lie on such an orbit but come
from the second branch of the initial distribution supplied by FAFNER, see Fig. (3.4) explain
the few prompt losses at different φ angles. They were ionized in the inner side of the plasma
so that they have to do longer excursions in order to leave the plasma. For that reason, these
losses are not so localized around a given φ angle.
Prompt losses appear at a time shorter than 10−5s, that implies that they do not have enough
time to collide with background particles. Therefore, the orbits of such particles are either
directly lost orbits or trapped and lost orbits. Two examples of such orbits are presented in
Fig.(6.1). Both of them correspond to deuterium from the NBI system which are ionized with
velocities lying within the loss cone, see equation (2.45), and then followed with their specific
parameter, using the GOURDON code. Since there are no collisions, no change in the energy
of the particles is expected. Therefore, there is also no change in the prompt losses velocity,
and their perpendicular and parallel components lie on a circumference of radius vtotal = const,
see Fig.(6.3). As expected, the velocities of the prompt losses lie on the same interval than the
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Figure 6.1: Projection in poloidal plane of the trajectory of two prompt lost deuterium with
93keV and ϒGOURDON = 0.85, but started at different guiding center positions giving rise to a
’large unconfined banana’ and an ’unconfined banana’. The initial magnetic field is B∼ 1.75T .

velocities in the initial distribution, supplied by FAFNER.

6.2 With Collisions

Since the slowing down process is of crucial importance in the study of ion orbits, it also has
to be considered for the study of ion losses. The influence of collisions in the distribution of
ion losses is shown here, following the description made in section 2.3. Because the slowing
down time is much shorter than the confinement time τSlowdown < τCon f , as seen in the previous
section, the particles slow down to the thermal energy, giving rise to the symmetrization in the
toroidal direction. As Fig.(6.4) shows, the particle distribution is no longer localized along the
φ angle. Fast ions cross the separatrix at every toroidal location due to the symmetrization in
the toroidal direction.
Since fast ions slow down by means of collisions, their velocity is not a constant anymore.
Perpendicular and parallel components of the lost ions do not lie on the circumference of
radius vtotal = const, as happened in the previous case with the prompt losses, see Fig.(6.5).
Since the losses occur at different times, in this picture three regions can be differentiated, : the
first one where the lost particles have not changed their initial velocity thus, their velocities lie
on the circumference of radius vtotal = const, the second one where the particles slow down,
in this region the lost particles have a velocity within the loss cone, and the third region where
the velocity of the lost particles lies inside the circumference of radius v = 1.2 · 106m/s. The
first region is constituted by the prompt losses and the particles which were ionized closed to
the separatrix in a passing orbit and leave the plasma after the first collisions.
It can be deduced from this picture that the particles which leave the plasma in the second
region, due to collisions, have a relationship between perpendicular and parallel component of
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Figure 6.2: Prompt losses distributions in the plane given by the flux coordinates θ and φ.
Distributions obtained using co- and counter-going injected particles.

the velocity. They lie in the region of the loss cone, see section 2.2.2, defining the loss cone to
be the region where

v‖
v⊥

<

(

2r
R0 − r

)1/2

=

(

2ε
1− ε

)1/2

' 1 f or ε = 0.25. (6.1)

As shown in this picture, most particles which leave the plasma between the two external
circumferences, are inside the loss cone. Therefore, these losses are a result of their banana
orbits. Banana orbits also seem to be the reason for the losses between the region which is
dominated by the prompt losses and the region which is dominated by the losses of thermal
particles. Only the right side of the loss cone is filled, that is just because the initial velocity
of the particles were in this side.
Inside the circumference of radius v = 1.2 ·106m/s, the fast injected particles which leave the
plasma have velocities within the whole circumference, their velocities do not just lie in the
loss cone anymore. That is because the Maxwell distribution of the background particles is
symmetric around the zero. The losses should be grouped around the circumference, defined
by the radius of the background energy, v = 0.62 · 106m/s, now we also find passing losses
from the edge of the plasma.
In concordance with the expected results, a peak in the ion losses appears at short time, due to
the prompt losses, which are particles that leave the separatrix before the exponential decay is
achieved, see Fig.(6.6).
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Figure 6.3: Velocity distribution of the lost particles in absence of collisions and MHD-modes.
Prompt losses.

6.3 MHD-modes

A single toroidal mode, n = 1, was considered with certain radial profile and frequency. Dif-
ferent cases, namely m=4 and m=2 were studied separately. In a simplified study, to see much
more better the influence of the mode, non-rotational modes with different amplitudes were
taken into account. The effect of the MHD-perturbation on the motion of each particle is pre-
sented in Fig.(6.7), where the projection in the poloidal plane of an unperturbed banana orbit
is plotted together with the corresponding perturbed trajectory in order to see the influence of a
mode with a high amplitude, ∼ 6 ·10−2, on such an orbit. As shown in that picture, the pertur-
bation can induce a transition from passing to trapped orbit, causing more losses, as occurred
with collisions, see Fig. (2.4). As shows Fig.(6.8), the good localization of ion losses seen in
Fig.(6.2) is broken in the presence of MHD modes, as well as in the presence of collisions.
This distribution was obtained studying the effect of MHD-induced losses on the delocaliza-
tion, using a mode with n=1, m=2, and a high amplitude. The mode then produces a more
delocalized ion loss distribution, accompanied by a higher number of ion losses).
However, in this case, the distribution seems to be partially localized around a certain toroidal
position, φ = π which coincides with the X-point of the island, formed by the mode m=2. The
topology of the island is shown in Fig.(4.3) at two different toroidal positions in a poincaré
plot in order to identify the X-point of the island at φ = π.
In order to understand much better the effect of a MHD-mode on the spatial distribution of
losses, a mode m=4 with a high amplitude was studied. As Fig.(6.9) shows, the losses are
distributed along the magnetic field lines on the flux surface, q=4. Therefore, the distribution
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Figure 6.4: Symmetrization due to collisions. Study of the effect of the collisions on the
spatial distribution of the losses. Energy of the background T=4 keV and electron density of
n = 8.4 ·1021m−3

of losses is not localized in the toroidal or poloidal angle anymore. On the left side of this
picture, the field lines on the q=4 surface were plotted, since the distribution of the losses was
plotted on the right side.
The radial profiles considered for each mode, together with the safety factor, are shown in
Fig.(6.10) in order to see which perturbation amplitude (radial profile) corresponds to each
magnetic surface, q=2 or q=4.
No effect on the change of the total velocity of the lost particles was observed with the two
modes and this fast ion configuration, since the interaction between both of them appears only
under certain resonance conditions, as seen in chapter 1. Because of that, as Fig.(6.11) shows,
the velocity distribution lies on the circumference of radius vtotal = const. The difference
which was found between the two velocity distributions is that the mode m=4 also induces
losses in the region of v‖ < 0. Such result will be of great value in further works to deter-
minate the mechanism for these mode-induced losses. As seen in chapter 1, three possible
mechanisms of losses induced by MHD-perturbations are considered, being the stochasticity
not possible in this work, since only one harmonic was considered.

6.4 MHD-modes and Collisions

The influence of MHD-modes, together with collisions on the ion loss distribution, is shown
in this section. As shown in Fig.(6.12), the distribution of lost ions due to collisions and the
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Figure 6.5: Velocity distribution due to collisions. Collisions distinguish three regions in the
distribution. The loss cone.

mode m=2, is totally delocalized in the toroidal direction, but not in the poloidal direction, as it
was also the case only with collisions. However, the spatial distribution of losses considering
collisions and the mode m=4 is found delocalized in the toroidal direction, as well as in the
poloidal direction. The losses appear along the field lines as Fig.(6.13) shows. Comparing
Fig.(6.9) with Fig.(6.13), it can be seen that the effect of the collisions produces a better distri-
bution of the losses in the poloidal direction, since the particles do not leave the plasma only
along the field lines.
The effect of the MHD-mode on the ion losses is more important in the presence of collisions,
720 losses of 1000 injected particles with the mode m=4,which is more than in the case with
only MHD-modes, 525 losses of 1000 injected particles with the same mode. That is because
the particles make excursion in the radial direction by means of collisions reaching the region
where the island is, and suffering in that way the effect of the perturbation.
Since the particles slow down, they leave the plasma with different velocities and due to that,
the velocity distribution does not lie on the circumference of vtotal = const anymore. No
noticeable difference can be seen due to the MHD-mode because the mode does not change
the total velocity of the particles. The velocity distribution stays similar to the case in which
there were only collisions, as shows Fig.(6.14). However, it can be seen that there are some
losses on the left side of the loss cone that appears as an effect of the mode m=4. As seen in
the previous section, this perturbation induces some losses in the region where v‖ < 0, but due
to the collisions not only on the circumference of vtotal = const.
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Figure 6.6: Peak at a very short time due to prompt losses.

6.5 Conclusions for the Detector Design

The development and construction of a charged particle detector will allow to measure the fast
ion losses in the ASDEX Upgrade tokamak. The final aim of this work is to have the necessary
tools to analyze and compare the theoretic data with the obtained measurement, using the fast
ion detector. A deep study of the ion loss distributions was made during this work, in order to
know the most suitable place for the detector. As a first attempt to make a model of the fast
ion detector, the work of [Darrow, 2001] was very helpful . Since a typical ASDEX Upgrade
discharge only has co- or counter-going beam ions, the probe will be able to measure only one
of them at each discharge. Because of that, the detector needs to have only one pinhole so that
the particles enter through.
The escaping energetic ions will be detected using a magnetic spectrometer, as shows Fig.
(6.15). The design which will be used is based on the concept of the α-particles detector, that is
used with highly accurate results in the Tokamak Fusion Test Reactor (TFTR), [Darrow, 1995],
as well as in the stellarator W7-AS, [Darrow, 2001], see Fig(6.15).
The probe will be located outside the plasma and will be formed by a metal box with a pair
of apertures mounted in one side. Escaping ions that are able to pass through both apertures
strike the end of the box at a position determined by their pitch angle and gyroradius. The end
of the box contains a plate, coated with a scintillator that emits light when bombarded with the
ions. A three dimensional model of the probe can be seen in Fig.(6.16).
The code-package here developed will supply the necessary information about the pitch angle
and energy (gyro-radius) of the particles which will strike the scintillator plate.
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Figure 6.7: Influence of the MHD-perturbation (n=1, m=4) on the trajectory of the particles.
Parameters considered: amplitude=6 ·10−2, frequency = 10−6s−1 and a radial profile given by
P(s) = s2, where s plays the role of a radial coordinate.

Particles leaving the separatrix at a certain (φ,θ) position are followed using GOURDON-
code till they reach the vessel wall. In the opposite direction, particles can also be followed
just changing the sign of the velocity. These tools will be of great value to identify the reason of
the loss of these particles. Assumed that a particle strikes the detector with a certain pitch angle
and energy. Just following this particle with the same parameter but with opposite velocity, it is
localized by crossing the separatrix at a certain (φ,θ) position. By comparing these coordinates
with the ion loss distributions from the previous section, the most possible reason for such a
loss can be studied.
In order to show the power of the code-package, a particle was released with certain parameters
(energy and pitch angle) at the manipulator position and followed till it crossed the separatrix,
see Fig.(6.17). The initial conditions of the test particle are:

vtotal = 3 ·106m/s, ϒGOURDON = 0.95 (6.2)

The inserts in Fig.(6.17) show where the particle, followed from the detector, left the plasma
in the velocity space as well as in the real space.
The installation of the detector on the midplane manipulator (mobile tube) gives the chance to
modify the original position, in order to solve possible inaccuracy in our calculations. How-
ever, from this work it follows that the most suitable place for the detector is also the midplane,
and wherever in the toroidal direction, since the obtained ion loss distributions were toroidally
symmetric. Cases in which the distribution was neither poloidal nor toroidally symmetric
anymore were also found in the presence of certain MHD-modes. This topic should also be
considered in further works as well as for the installation of the detector.

72



0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7
722/1000 co−injected particles MHD−mode. n=1, m=2. freq E−6s. amp=8E−2.

Phi(rad)

Th
et

a(
ra

d)

Figure 6.8: Symmetrization due to the MHD-mode, n=1 and m=2. Parameters considered:
amplitude=8 · 10−2, frequency = 10−6s−1 and a radial profile given by P(s) = s2 − 2s3 + s4,
where s plays the role of a radial coordinate.
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Figure 6.9: Distribution of losses along the field lines due to the mode n=1 and m=4. The
perturbation was studied with an amplitude of 6 · 10−2 and a frequency of 10−6s. The field
lines on the flux surface q=4 is also presented.
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Figure 6.10: Radial profile of the two perturbations considered with the safety factor (red one).
The two profiles were given by the polynomials: PA(s) = s2 −2s3 + s4 and PB(s) = r2 where s
plays the role of a radial coordinate.
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Figure 6.11: Velocity distributions due to the two MHD-modes, n=1, m=4 and m=2. The
parameters considered for both cases were: amplitude=6 · 10−2, frequency = 10−6s−1 and a
radial profile given by PA(s) and PB(s), where s plays the role of a radial coordinate.
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Figure 6.12: Symmetrization due to MHD-modes and collisions. Distribution calculated for
an electron density of n = 8.4 ·1021m−3. The mode considered was the n=1 and m=2 with and
amplitude of 6 ·10−2 and a frequency of 10−6s−1.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7
Distribution of losses. 720/1000 co−injected particles. MHD+Coll m=4

Phi (rad)

Th
et

a(
ra

d)

Figure 6.13: Distribution due to MHD-modes and collisions. Distribution calculated for an
electron density of n = 8.4 · 1021m−3. The mode considered was the n=1 and m=4 with an
amplitude of 10−2 and a frequency of 10−6s−1. The particles leave the plasma following the
field lines.
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Figure 6.14: Velocity distribution due to MHD-modes and collisions. Distribution calculated
for an electron density of n = 8.4 ·1021m−3. The mode considered was the n=1 and m=4 with
an amplitude of 10−2 and a frequency of 10−6s−1.
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Figure 6.15: Schematic top and side view of the probe with a possible fast ion orbit. The
gyroradius (energy) of the particle determines how far from the apertures it will strike the
scintillator. The pitch angle determines where the ion will strike along the orthogonal di-
mension of the scintillator. Points 1,2, and 3 determine the gyroradius, while points 1 and 3
determine the pitch angle.
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Figure 6.16: Overview of a 3-D model of the operation. Some different particle trajectories
are plotted entering into the detector and thus, striking the scintillator plate.

        

  83.3

   0.0
 170.0

 -83.3

 253.3  86.7

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7
590/1000 co−injected particles. Coll+MHD. n=8.4E21, amp=8E −2, freq=E−5s, t=6E−3s. 

Phi(rad)

T
he

ta
(r

ad
)

−1 −0.5 0 0.5 1 1.5 2 2.5 3

x 10
6

0

0.5

1

1.5

2

2.5

3

3.5
x 10

6 Velocity distribution in  a discharge with  MHD −modes and Collisions.

Vparallel (m/s)

V
pe

rp
en

di
cu

la
r 

(m
/s

)

PARTICLE FOLLOWED:

       

PITCH ANGLE

INITIAL POSITION

Figure 6.17: Particle encountering detector. Projection in poloidal plane of the trajectory of
a deuterium which leaves the plasma with certain parameters given in the velocity and spatial
distributions and strikes the detector.
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Chapter 7

Summary

The tokamak operation is often restricted by the losses of fast ions, especially before they slow
down and lose their energy to the bulk of the plasma. This may lead to different effects on
operation regimes. To avoid these, it is of special importance to understand the reason for
these losses. This can be gained from a combination of a theoretical model of the behavior of
fast ions in tokamaks with the measurements of such losses. A full understanding is possible
only with both methods. The code-package developed here provides the theoretical view of
the losses, in order to understand the measurement obtained, using the appropriate detector.
The main advantage of these tools is the possibility to follow single particles in two directions;
either from where they are born inside the plasma until they strike either the wall or the detec-
tor, or from the strike point at the wall or detector until where they were born, like back in the
time. That gives hints toward the reason for such a loss, i.e. due to insufficient confinement
properties of the magnetic field or due to magnetohydrodynamic perturbations occurred during
the discharge, making possible the identification of the perturbation. Following particles from
where they are born inside the plasma, the code-package simulates the ionization pattern of
the NBI system in ASDEX Upgrade and then computes the trajectory of the fast ions inside
the separatrix, taking into account the specific magnetic configuration of each discharge and
calculating the effect of a perturbation on particle trajectories. Once the particles have left the
plasma, the particles are followed by means of a real orbit code without collisions. By that
the exact cross point where the particles leave the torus is given. First of all, the collision
operator was validated, calculating the slowing down time of the fast ions inside the plasma
as well as proving the dependence of the confinement time on the density. To demonstrate the
power of the developed tools, it has been applied to different types of magnetohydrodynamic
perturbations as well as to different collision parameters in ASDEX Upgrade. The mecha-
nisms of losses were studied in different ways, prompt losses, effects of collisions, effects of
MHD-modes and finally the effect of both together, collisions and MHD-modes were also con-
sidered. The distribution of prompt losses was found to be highly localized for the case with
co-going ions around the NBI injector position in the toroidal direction. However, some losses
were found at different φ angles because the injected beam was tangential. The prompt losses
for counter-going ions was found to be not so localized anymore, since the ions can trace large
banana orbit before they leave the plasma. In absence of magnetohydrodynamic perturbations,
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it was found that the losses appear in three different regions, depending on their velocities.
This result confirms the hypothesis that most particles which leave the plasma while they slow
down, make it in a banana orbit. Two different modes were considered, m=2 and m=4, both
with n=1, providing that the effect of each mode is located on different radial positions and that
such perturbations have no important effect on the velocity distribution of the losses. However,
different spatial distributions of the losses were found with each mode. The mode m=2 leads
to losses localized around a poloidal angle but along the whole torus, finding more losses at
φ = π, where the island had its X-point, while with the mode m=4 was found that the particles
which leave the plasma, make it along the field lines on the magnetic surface q=4.
Together, the effect of collisions and MHD-modes were considered, leading to a no localized
distribution of losses in the toroidal direction but localized around the midplane.
Strictly speaking, these results were obtained only for a small class of fast ions with a particular
energy in the interior of a specific ASDEX Upgrade discharge. However, these results can be
generalized for different particles, since all important parameters in the description of their
orbits are taken into account and can be modified.
Finally, the code-package here presented was applied to a first model of a detector to be in-
stalled in ASDEX Upgrade. It was shown that the code-package will be of great value for
detector design as well as interpretation of the measurements.
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Appendix A

Transformation of Coordinates

In this appendix, the appropriate transformation between cartesian and toroidal coordinates,
used in GOURDON, is calculated. The relationship between the components of the magnetic
field as well as their derivatives in both system of coordinates is here developed. First of all,
the components of the magnetic field can be written in terms of the toroidal coordinates as
follows

Bx = −Bφ · sinφ+Br · cosφ (A.1)
By = Bφ · cosφ+Br · sinφ (A.2)
Bz = Bz. (A.3)

From that, each derivative was calculated as a function of the toroidal coordinates and their
derivatives respect to the toroidal coordinates. So that, the derivative of Bx with respect to x
can be written in toroidal coordinates as follows

dBx

dx
=

d
dx

(−Bφ · sinφ+Br · cosφ) =

− dφ
dx

· sinφ− d
dx

(sinφ) ·Bφ +
dBr

dx
· cosφ+Br ·

d
dx

(cosφ) =

− sinφ · cosφ · dBφ

dr
+Bφ

sinφ · cosφ
r

+ sinφ · cosφ
dBr

dr
+

sin2 φ
r

·Br (A.4)

where the following chain rules were considered and will be used in the rest of the calculations.

dφ
dx

= −sinφ
r

(A.5)

dr
dx

= cosφ (A.6)

d(cosφ)

dx
=

sin2 φ
r

, (A.7)

d(sinφ)

dx
= −sinφ · cosφ

r
(A.8)
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dBφ

dx
=

dBφ

dφ
· dφ

dx
+

dBφ

dr
· dr

dx
=

dBφ

dr
· cosφ (A.9)

dBr

dx
=

dBr

dφ
· dφ

dx
+

dBr

dr
· dr

dx
=

dBr

dr
· sinφ. (A.10)

Since the system was taken as toroidally symmetric, the magnetic field does not vary with the
toroidal angle φ. The derivative of By with respect to x is given by

dBy

dx
=

d
dx

(Bφ · cosφ+Br · sinφ) =

dBφ

dx
· cosφ+Bφ ·

d
dx

(cosφ)+
dBr

dx
· sinφ+Br ·

d
dx

(sinφ) =

dBφ

dr
· cos2 φ+Bφ ·

sin2 φ
r

+ sinφ · cosφ · dBr

dr
−Br ·

sinφ · cosφ
r

. (A.11)

The derivative of Bz with respect to x coordinate seems to be trivial.

dBz

dx
=

dBz

dr
· cosφ. (A.12)

Now, the derivatives with respect to y are calculated.

dBx

dy
=

d
dy

(−Bφ · sinφ+Br · cosφ) =

Br ·
d
dy

(cosφ)+
dBr

dy
· cosφ−Bφ ·

d
dy

(sinφ)− dBφ

dy
· sinφ =

− sinφ · cosφ
r

·Br + cosφ · sinφ · dBr

dr
− cos2 φ

r
·Bφ − sin2 ·dBφ

dr
. (A.13)

Where the following chain rules were taken into account.

dφ
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=
cosφ

r
(A.14)

dr
dy

= sinφ (A.15)

d(cosφ)

dy
= −sinφ · cosφ

r
(A.16)

d(sinφ)
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=

cos2 φ
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(A.17)

dBr
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dBr
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+

dBr

dr
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=

dBr
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· sinφ (A.18)

dBφ
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dBφ

dφ
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dBφ
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dBφ
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· sinφ. (A.19)
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The derivative of By with respect to y can be written as

dBy

dy
=

d
dy

(Bφ · cosφ+Br · sinφ)

Bφ ·
d
dy

(cosφ)+ cosφ · dBφ

dy
+Br ·

d
dy

(sinφ)+ sinφ · dBr

dy
=

− sinφ · cosφ
r

·Bφ + sinφ · cosφ · dBφ

dr
+

cos2φ
r

·Br + sin2 φ · dBr

dr
. (A.20)

And finally the derivative of Bz with respect to y is given by

dBz

dy
=

dBz

dr
· sinφ. (A.21)

The derivatives with respect to z are trivial, as the following equations show.

dBx

dz
= −dBφ

dz
· sinφ+

dBr

dz
· cosφ (A.22)

dBy

dz
=

dBφ

dz
· cosφ+

dBr

dz
· sinφ (A.23)

dBz

dz
= 1. (A.24)
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Appendix B

The ASDEX Upgrade experiment

The ASDEX Upgrade divertor tokamak went into operation at Garching in 1990 and it suc-
cesses ASDEX, which was in operation from 1980 until 1990. At present, it is Germany’s
largest fusion device. Its name is derived from Axial Symetric Divertor EXperiment. To make
experiments under reactor-like conditions possible essential plasma properties, particularly the
plasma density and pressure and the wall load, have been adapted in ASDEX Upgrade to the
conditions that will be present in a future fusion reactor. Like ASDEX, ASDEX Upgrade has
a poloidal divertor, which was optimized to meet the requirements of a future fusion reactor.
In order to get an overview of the experiment, the global parameters are listed here.

Major plasma radius R0 1.65 m
Minor plasma radius a 0.5 m

Plasma height b 0.8 m
Plasma elongation s=b/a 1.6
Plasma aspect ratio A 3.3

Maximum magnetic field Bmax 3.1 T
Plasma volume Vplasma 13m3

Plasma current Iplasma 2 MA
Discharge duration tD 10 s

Plasma density ne ≤ 3 ·1020m−3

Average plasma temperature Ti = Te 5 keV
Heating power P[MW] 20(NBI), 5.7(ICRH), 1.6(ECRH)

Table B.1: ASDEX Upgrade parameters.

The plasma is controlled through a system of 12 vertical field coils and kept in its elliptical
shape with an X-point above the bottom divertor. The purely toroidal field is usually kept
constant during the entire discharge. Nevertheless it can also be varied during the discharge to
some degree, if the physical requirements need such a field variation. Additionally there are
two vertical field coils close to the plasma for a fast control of the plasma.
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The described set of coils is controlled in real-time by a control computer. This computer
calculates through a large number of measurement coils the actual values from the plasma
position and plasma shape and corrects the currents in the field coils in order to achieve the
desired values.

Figure B.1: ASDEX Upgrade Tokamak
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