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Abstract

We present an extension of the Nemov algorithm to compute magnetic coordinates in

stellarators and their associated metric coefficients using only field line tracing, and

covering not only the core of the plasma, but also island chains and scrape-off layer

regions in the plasma edge. The algorithm is tested against both analytic and numerical

benchmarks, and then applied on the full W7–X vacuum field geometry. The method has

been optimized for numerical accuracy by minimizing recourse to derivatives of derived

quantities. The only requirements are the foreknowledge of the magnetic field and its

topological structure.
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1 General algorithm

1 General algorithm

1.1 Goal and procedure

The magnetic coordinate system for a given magnetic field plays a fundamental role in

the study of magnetic fields for plasmas in stellarator machines. For example, the 3-D

plasma fluid modelling code BoRiS [1] is based on magnetic coordinates.

Here we give a brief overview of the method we are about to follow and give a list-

ing of the quantities we are trying to compute. We then introduce sequentially each

step to be taken and emphasize what quantities are known at the end of each of

these steps. We use both a Cartesian (x, y, z) and a cylindrical coordinate system

(R,ϕ, z) for the spatial variables. The Boozer coordinate system is noted (ψ, θ, ζ)

and the BoRiS coordinate system (s, ϑ, φ). We assume the magnetic field (and only

the magnetic field) is given on a cylindrical grid within a annular box domain [B]

ranging over [Rmin . . . Rmax; 0 . . . 2π;Zmin . . . Zmax]. In essence, we will be mapping

the spatial box [B] to m + 1 boxes in Boozer space, with m domains ranging over[
0 . . . FT (Ψisland

sep ); 0 . . . 2π; 0 . . . 2π
]

for the islands and one domain, which includes both

the core and SOL regions, covering [0 . . . FT (ΨSOL); 0 . . . 2π; 0 . . . 2π]. These domains

then will get renormalized into m + (1 + εSOL) unit cubes in BoRiS coordinates. This

mapping and the calculation of the metric coefficients describing it are the goal of this

work. We will thus compute:

• The rotational tranform: ι(ψ)

• The flux surface function: FT ≡ ψ → s and its radial derivative
∂FT
∂R

∣∣∣∣
±

z=0
ϕ=0

• The flux surface derivatives: F ′T and F ′P

• The toroidal and poloidal currents: J(ψ) and I(ψ) respectively

• The Boozer and BoRiS Jacobians: J [ψ, θ, ζ] and
√
g

• The angle-like coordinates: θ = 2πϑ and χ→ ζ = 2πφ

• The Clebsch vectors: ∇ψ and (∇θ − ι∇ζ)

• Secondary metric coefficients: β̃, σ̃, gϑs, g
ss, gϑs and gφs.

In Step I, we define some of the indices used to refer to the flux surfaces and magnetic

axes. In Step II, we do a first pass at field-line tracing, in which we find where the

magnetic axes are, as well as identify the islands and SOL regions. This step also yields

the χ toroidal-like coordinate. In Step III, we re-arrange the field-line data so as to define

the flux surfaces. In Step IV, we compute the rotational transform ι. Step V yields the

toroidal flux function FT and its radial derivative. In Steps VI and VII respectively, we
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1 General algorithm

calculate the toroidal (J) and poloidal (I) currents. In Step VIII, we deduce the angle-

like coordinates θ, ϑ, ζ and φ. In Step IX, we resort to the Nemov algorithm in order

to determine the Clebsch components of the field: ∇ψ and its conjugate (∇θ − ι∇ζ).

In Step X, we obtain the ∇s and gss information. In Step XI, the Jacobians for both

the Boozer and the BoRiS coordinate systems are calculated. Step XII takes care of

determining the covariant component of the magnetic field, β̃. Finally, Step XIII gives

the relations necessary to complete the set of needed physical quantities.

1.2 Step I: How many flux surfaces?

We define N = Nc +m(Ni + 1) +Ns where m is the number of islands to be considered

(from 4 to 6 in W7–X, depending on the ι value, but most commonly m = 5), and Nc,

Ni and Ns are the number of flux surfaces we wish to determine in the core, one island,

and the SOL, respectively. Typical values may be Nc ∼ 75, Ni ∼ 25 and Ns ∼ 10, for an

average distance of 5 mm between neighbouring flux surfaces. We then define the index

Ψ to run from 0 to N . This will be the final flux surface index for all the arrays to follow

in this Section. Since the actual position of the separatrix is not known a priori, the

actual values of Nc, Ni and Ns are not pre-determined. See Step II for their evaluation.

The index Ψ = 0 corresponds to the core magnetic axis, and m other axes are included

for the islands by using (Ni + 1) surfaces per island.

1.3 Step II: Following the field lines

We wish to define the flux surfaces by following one field line per flux surface, long enough

so that the field line gives us enough Poincaré puncture points in the (ϕ = 0) half-plane

(or any other symmetry plane, e.g. for W7–X, (ϕ = π/5) is also possible) to appro-

priately define the flux surface (see Step III). This may mean several hundred toroidal

turns. This can however be reduced by a factor m (or Nper) if one takes advantage of the

field symmetries. The number of field line following steps is thus a surface-dependent

quantity and will be noted Nstep(Ψ). The position of the magnetic axes and X-points

is found by minimizing the distance between two successive Poincaré puncture points.

We then differentiate by hand between O- and X-points, using the knowledge that the

core magnetic axis and one of the island axes are somewhere on the outer half of the

(ϕ = 0, z = 0) half-line (which we refer to as the ”axes-line”). We then go around

the plasma envelope alternating O- and X-points. Other geometries would lead to a

different choice of ”axes-line” and thus of field-line-following starting points. Along this

”axes-line”, we choose a resolution spacing ∆R, for example 5 mm, from which we start

each flux surface field line.

We note the flux surface index Ψ. Then, we attempt to follow a field line. We set the

starting point to be (R0 = ROpt + Ψ∆R;ϕ0 = 0; z0 = 0). As long as we can follow field

lines for many toroidal turns without getting outside the box [B], we increment Ψ and
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1 General algorithm

proceed from field line to field line. This procedure is done for the core flux surfaces and

the outer island. In order to reach the other islands, we move the startpoints toroidally

by multiples of 2π/m. As we follow the field lines, we store the arrays:

χ(Ψ, istep) = χ(Ψ, istep− 1) +

istep∫

istep−1

~B · d~̀ · · ·with ~̀ along the field line; (1.1)

Θp(Ψ, istep) = number of poloidal turns made since start; (1.2)

Φt(Ψ, istep) = number of toroidal turns made since start. (1.3)

These arrays need only be stored at regular toroidal spacings, with a resolution ∆ϕ ≡
2π/ntor, where, for example ntor ≡ 32 × Nper, and Nper is the number of toroidal field

periods. In W7-X, we have Nper = 5. One should use a multiple of both m and Nper for

ntor so as to take advantage of the field symmetries. Since in most cases m = Nper, this

is not a very limiting constraint. Then, formally: Nstep(Ψ) = ntor × Φt (Ψ, Nstep(Ψ)).

This computation can be performed in parallel for each field line start point. Note, that

the direction of fieldline defines the kind of magnetic coordinate system (left handed or

right handed system).

1.4 Step III : Form flux surfaces

Using a least-squares approximation method, we can form the flux surfaces and obtain

an ordered set of angles ξ(Ψ) = {θ (Ψ,Φt(Ψ, istep))} for each Poincaré section of a flux

surface. This ordered set is chosen to be in the (ϕ = 0) plane for simplicity and the

curve it forms will be noted C(Ψ). This step can be undertaken for each Ψ index value

in parallel.

1.5 Step IV : Compute the rotational transform ι

For simplicity, we will use the relation:

ι(Ψ) =
Θp (Ψ, Nstep(Ψ))

Φt (Ψ, Nstep(Ψ))
. (1.4)

Here, the rotational transform ι is computed as a running average of the ratio above (see

Section 2.3). This method guarantees an accuracy of at least ∆θ/(2πΦt), where we use

Φt = 400 and typically the individual angular excursion of a point ∆θ is of the order of

degrees. We have found this to be sufficient, with the possible exception of the immediate

neighbourhood of small island chains within the core plasma (e.g. at ι = 10/11), where

adjustements by hand were necessary (see Section 2.8). Although other methods exist

to compute ι, mostly through Fourier decomposition, they are either not adapted to the

problem at hand, where one needs to compute ι across region boundaries, or do not

provide significantly greater accuracy without significant additional effort.
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1 General algorithm

1.6 Step V : Compute the toroidal flux function FT

We can now compute the toroidal flux coordinate:

ψ ≡ FT = toroidal flux = FT (Ψ) = FT (Ψ− 1) +

∮

C(Ψ)−C(Ψ−1)

~B · d ~A. (1.5)

Thus, the toroidal flux is computed by adding the flux from the last enclosed flux surface

already known and adding the contribution of the current plasma shell.

We may now compute the radial derivative
∂FT
∂R

∣∣∣∣
±

z=0
ϕ=0

, which will be needed as an initial

condition in the Nemov algorithm when computing ∇ψ. This derivative is to be com-

puted along the ”axes-line” we chose for our starting points in the field-line tracing step

(i.e. at θ = 0,−π). Since we will use staggered flux surfaces for the Nemov step, we need

to compute the radial derivative of FT at the mid-points between our field-line tracing

starting points.

1.7 Step VI : Compute the toroidal current J

Using Stokes’ theorem and Maxwell’s equations, one can readily obtain the toroidal

current J(Ψ):

∮

C(Ψ)

~B · d~̀= µ0J(Ψ), (1.6)

where µ0 is the magnetic permittivity of vacuum.

1.8 Step VII : Compute the poloidal current I

As above, but using a toroidal-like path loop, one can enclose the poloidal current I(Ψ):

∮

Γ(Ψ)

~B · d~̀= µ0I(Ψ) =

~R(Ψ,ntor)∫

~R0(Ψ)

~B · d~̀+

~R0(Ψ)∫

~R(Ψ,ntor)

~B · d~ξ(Ψ). (1.7)

The toroidal path Γ(Ψ) is constructed by starting at the flux surface Ψ at the point
~R0(Ψ)(in the (ϕ = 0) plane), then following the field line once toroidally, ending at the

point ~R(Ψ, ntor) and closing along the flux surface contour ξ(Ψ) from Step III, towards
~R0 in the direction opposite to the projection of ~B in the (ϕ = 0) plane.
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1 General algorithm

1.9 Step VIII : Computation of J
We turn now to the evaluation of the Jacobian J in Boozer coordinates, which we must

also compute it for the BoRiS coordinate system. The appropriate relations are:

JBoozer ≡ J [ψ, θ, ζ] = − (2π)2 · µ0(I + ιJ) · (FT (Ψsep))
2

B2
, (1.8a)

√
g ≡ JBoRiS ≡ J [s, ϑ, φ] =

J [ψ, θ, ζ]

(2π)2FT (Ψsep)
= −µ0(I + ιJ)FT (Ψsep)

B2
, (1.8b)

where FT (Ψsep) is the total toroidal flux enclosed within the relevant separatrix.

1.10 Step IX : Compute the angle-like coordinate pairs (θ, ζ) and (ϑ, φ)

We now have all the necessary pieces to define the θ, ζ, ϑ and φ coordinates:

θ(Ψ, istep)/(2π) ≡ ϑ(Ψ, istep) = θ0 +
ι(Ψ)χ(Ψ, istep)

µ0(I(Ψ) + ι(Ψ)J(Ψ))
(mod 1); (1.9a)

ζ(Ψ, istep)/(2π) ≡ φ(Ψ, istep) =
χ(Ψ, istep)

µ0(I(Ψ) + ι(Ψ)J(Ψ))
(mod 1); (1.9b)

where θ0 is the poloidal angle-like coordinate of the starting point of the field-line follow-

ing, here θ0 ≡ 0. Having established those coordinates, we can now also build equivalency

relations between space and magnetic coordinates (see Section 2.10).

1.11 Step X : Nemov algorithm

We now follow the Nemov algorithm [2], using the Clebsch description of the magnetic

field: ~B = ∇ψ × (∇θ − ι∇ζ). This will allow us to obtain the flux gradient ∇ψ as well

as the angle gradient combination (∇θ − ι∇ζ). We define P =
∂ψ

∂R
, Q =

∂ψ

∂ϕ
, G =

∂ψ

∂z
,

U =
∂θ

∂R
− ι ∂ζ

∂R
, V =

∂θ

∂ϕ
− ι ∂ζ

∂ϕ
and W =

∂θ

∂z
− ι∂ζ

∂z
, such that:

∇ψ = P êR +
Q

R
êϕ +Gêz, (1.10a)

∇θ − ι∇ζ = UêR +
V

R
êϕ +Wêz. (1.10b)

Then the following sets of differential equations hold:

dP

dϕ
= − R

Bϕ

(
∂BR
∂R

P +
∂

∂R

(
Bϕ
R

)
Q+

∂Bz
∂R

G

)
, (1.11a)

dQ

dϕ
= − R

Bϕ

(
∂BR
∂ϕ

P +
1

R

∂Bϕ
∂ϕ

Q+
∂Bz
∂ϕ

G

)
, (1.11b)

dG

dϕ
= − R

Bϕ

(
∂BR
∂z

P +
1

R

∂Bϕ
∂z

Q+
∂Bz
∂z

G

)
, (1.11c)
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dU

dϕ
= − R

Bϕ

(
∂BR
∂R

U +
∂

∂R

(
Bϕ
R

)
V +

∂Bz
∂R

W

)
, (1.12a)

dV

dϕ
= − R

Bϕ

(
∂BR
∂ϕ

U +
1

R

∂Bϕ
∂ϕ

V +
∂Bz
∂ϕ

W

)
, (1.12b)

dW

dϕ
= − R

Bϕ

(
∂BR
∂z

U +
1

R

∂Bϕ
∂z

V +
∂Bz
∂z

W

)
. (1.12c)

We choose as initial conditions for ∇ψ: P0 =
∂FT
∂R

∣∣∣∣
±

z=0
ϕ=0

and G0 = 0. The initial con-

ditions for (∇θ − ι∇ζ) are, by the same token: U0 = 0, V0 = RBz

/ (
∂FT
∂R

)∣∣∣
±
z=0
ϕ=0

and

W0 = −Bϕ
/ (

∂FT
∂R

)∣∣∣
±
z=0
ϕ=0

. These initial conditions correspond to the fact that at the

starting points we chose, the magnetic field has no radial component by symmetry,

hence the vector ∇ψ points in the radial direction and (∇θ − ι∇ζ) is tangent to an

(R = cst) cylinder. In order to properly follow the equation sets (1.11)-(1.12), arrays

of the relevant partial derivatives of ~B should be built beforehand. This step is expected

to be the most computer-time intensive and can therefore be very advantageously par-

allelized. The starting points are chosen along the ”axes-line” where the values of P0,

V0 and W0 are known, i.e. at the mid-points between the starting points used in Step

II. For some geometries, for example the ring test case in Section 3, the second set of

differential equations has a zero determinant and cannot be used (specifically the V

equation collapses to 0 = 0). Moreover, the numerical integration of these equations is

numerically sensitive, as they are exponential in character and thus likely to be unstable.

This is detailed in Section 2.9.

1.12 Step XI: Computation of ∇s and gss

In order to compute s, one need only divide ψ by the value it takes at the relevant

separatrix (noted FT (Ψsep)), since s is normalized to run from 0 to 1. When computing

∇s, one obtains:

∇s =
∇ψ

FT (Ψsep)
(1.13)

and thus

gss = ‖∇s‖2 =
1

FT (Ψsep)
2

(
P 2 +

(
Q

R

)2

+G2

)
. (1.14)

1.13 Step XII : Covariant component β̃ = ~B · ~es
We must also compute, in cases of non-zero plasma pressure (otherwise we have the

trivial identity β̃ = 0), the first covariant component of ~B, noted β̃, which is the dot

6
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product of the magnetic field vector with the covariant basis vector ~es. We have, by

definition:

~es =
∂ ~R

∂s
=

∆R

∆s
êR +R

∆ϕ

∆s
êϕ +

∆z

∆s
êz. (1.15)

~eϑ =
∂ ~R

∂ϑ
=

∆R

∆ϑ
êR +R

∆ϕ

∆ϑ
êϕ +

∆z

∆ϑ
êz. (1.16)

The covariant basis vectors can be readily obtained from the coordinate equivalency

relations deduced from Section 1.10.

Then, noting ~es = x̃êR + ỹRêϕ + z̃êz, we simply get β̃ as:

β̃ = ~B · ~es = x̃BR + ỹRBϕ + z̃Bz. (1.17)

1.14 Step XIII : Other constitutive relations

Now that we have the three independent quantities
√
g, gss and (∇θ − ι∇ζ) or β̃, we

can now compute all the other quantities we need by using the following constitutive

relations:

F ′T ≡
dFT
ds

= FT (Ψsep), (1.18a)

F ′P ≡
dFP
ds

= ιF ′T = ιFT (Ψsep), (1.18b)

gsϑ = ~eϑ · ~es, (1.19)

σ̃ = −F
′
T

B
((∇θ − ι∇ζ) · ∇s) , (1.20a)

σ̃ = − 1

F ′T ·B
[
B2 · gsϑ − µ0J · β̃

]
, (1.20b)

gφs = −F
′
T · β̃ · gss + J · σ̃B
µ0(F ′T · I + F ′P · J)

, (1.21a)

gϑs = −F
′
P · β̃ · gss − I · σ̃B
µ0(F ′T · I + F ′P · J)

. (1.21b)
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2 Comparison with numerical results from the VMEC program

2 Comparison with numerical results from the VMEC program

2.1 The magnetic field and fieldlinetracing

The assumption is that we have the components of a magnetic field (Bx, By, Bz) on a

grid. R,ϕ, z are cylindrical coordinates.

Bx = f(R,ϕ, z) By = f(R,ϕ, z) Bz = f(R,ϕ, z) (2.1)

The solutions of the following sets of differential equations give the fieldline of the mag-

netic field.

Bx =
∂x

∂h
By =

∂y

∂h
Bz =

∂z

∂h
(2.2)

The fieldlines can be calculated with the help of the three-dimensional Runge-Kutta

method. For the interpolation of components between the grid points, the method of

cubic splines is used.

K1,x = ∆h ·Bx(xi, yi, zi)

K1,y = ∆h ·By(xi, yi, zi) (2.3)

K1,z = ∆h ·Bz(xi, yi, zi)

K2,x = ∆h ·Bx (xi + 0.5 ·K1,x, yi + 0.5 ·K1,y, zi + 0.5 ·K1,z)

K2,y = ∆h ·By (xi + 0.5 ·K1,x, yi + 0.5 ·K1,y, zi + 0.5 ·K1,z) (2.4)

K2,z = ∆h ·Bz (xi + 0.5 ·K1,x, yi + 0.5 ·K1,y, zi + 0.5 ·K1,z)

K3,x = ∆h ·Bx (xi + 0.5 ·K2,x, yi + 0.5 ·K2,y, zi + 0.5 ·K2,z)

K3,y = ∆h ·By (xi + 0.5 ·K2,x, yi + 0.5 ·K2,y, zi + 0.5 ·K2,z) (2.5)

K3,z = ∆h ·Bz (xi + 0.5 ·K2,x, yi + 0.5 ·K2,y, zi + 0.5 ·K2,z)

K4,x = ∆h ·Bx (xi +K3,x, yi +K3,y, zi +K3,z)

K4,y = ∆h ·By (xi +K3,x, yi +K3,y, zi +K3,z) (2.6)

K4,z = ∆h ·Bz (xi +K3,x, yi +K3,y, zi +K3,z)

xi+1 = xi +
1

6
(K1,x +K2,x +K3,x +K4,x)

yi+1 = yi +
1

6
(K1,y +K2,y +K3,y +K4,y) (2.7)

zi+1 = zi +
1

6
(K1,z +K2,z +K3,z +K4,z)

If ∆h > 0 the magnetic coordinate system is a left-handed system. Otherwise, we get a

right-handed system.
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2 Comparison with numerical results from the VMEC program

Figure 1 shows the accuracy of the solution dependent on resolution and step value

∆h of the Runge-Kutta method. The vacuum magnetic field of the W7–X stellarator

(variant hs5v10u), was used. The grid distance has a range of 0.110 m to 0.013 m and

the coefficient ∆h has a variation of 0.5 to 0.001. If the resolution or the step value is

too large then it is possible that the coordinates of fieldlines be calculated incorrectly or

wrongly.

For the vacuum magnetic field of the W7–X stellarator (standard), the field components

and the core separatrix position (as Fourier coefficients) are given.

The magnetic coordinates and Fourier coefficients were calculated with the 3-D ideal

MHD equilibrium code VMEC_2000, the mapping (JMC) and the interface_stability.

The VMEC program works with fixed boundary conditions. The input were the core sep-

aratrix position, the absolute value of the magnetic field at the magnetic axis at ϕ = 0

(|B| = 3.13 T ) and the stellarator geometry. This computation required a resolution

of 500 radial grid points, 80 poloidal grid points and 60 toroidal grid points per period,

20 poloidal and 15 toroidal harmonics, in order to properly resolve the edge region

The input for the program aam10 (the used methods are described in this paper) was

only the magnetic field in cylindrical (R,ϕ, z) coordinate. The grid resolution of the

magnetic field is 81× 124 × 81 points:

- 81 points between R = 4.25 m and R = 6.45 m (∆R = 0.0275 m)

- 124 points between ϕ = 0 and ϕ = 2π/5 (r ·∆ϕ = 0.0430 m . . . 0.0653 m)

- 81 points between z = -1.30 m and z = 1.30 m (∆z = 0.0325 m)

2.2 Calculation of Poincaré sections

A step value of h = 0.0005 for the Runge-Kutta method is used to calculate the

fieldlines and points of Poincaré sections.

The closed Poincaré curves were calculated with the method of least-square approxima-

tion (Core with Fourier coefficients and islands with polynomials).

Figure 2.1 a shows the Poincaré section with the Poincaré puncture points at ϕ = 0◦

and Figure 2.1 b shows only the Poincaré sections, calculated with 400 toroidal turns.

The scrape-off layer surrounds the core and the five islands.

The comparison of the given core separatrix and the calculated separatrix with the

program aam10 is shown in Figure 2.1 c.
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2.3 Calculation of ϑreal, ι and χ

As a first step to get the values ϑreal and ι, we performed the calculation for the fieldline

of magnetic axis x0(i) , y0(i), z0(i). ϑreal is the angle in real coordinates relative to the

magnetic axis. The other fieldlines have got the coordinates x(j), y(j), z(j).

The angle of the start point ϑ0 at ϕ = 0◦ is:

ϑ0 = arctan

(
zstart − z0start

xstart − x0start

)
(2.8)

The poloidal angle ϑreal is :

ϑreal(j) = arctan

(
z(j) − z0

r(j)− r0

)
− ϑ0 + Θp · 360◦ Θp . . . number of poloidal turns (2.9)

with:

r(j) =
√
x(j)2 + y(j)2 (2.10)

r0 =
√
x2

0 + y2
0 (2.11)

ϕ(j) = arctan
(
y(j)
x(j)

)
(2.12)

ϕ0 = arctan
(
y0

x0

)
(2.13)

If the maximum numbers of turns is 400 then the rotational transform ι is:

ιt(Φt) =
ϑreal(Φt)

Φt · 360◦
Φt . . . number of toroidal turns (2.14)

ι =
1

50
·

400∑

Φt=350

ιt(Φt) (2.15)

r0 and z0 are interpolated by x0, y0, z0, so that is ϕ(j) = ϕ0.

Figure 2.2 a shows the average angle ϑreal dependent on the distance to the magnetic

axis. Radii under 260 mm represent the core region and greater than 330 mm the

scrape-off layer.

Within each calculated fieldline turn (there are 400 turns), the poloidal rotational trans-

form has a variation on each turn, see Figure 2.3.
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The calculation of an exact rotational transform ι is difficult. The average after 400

turns is not constant, see Figure 2.3 b. Therefore the average of the last 50 averages was

used to compute ι, Equation 2.15.

The average values of χ after 400 turns are shown in Figure 2.2 b.

The integral, see 1.3, is:

χreal =

∫
~B · d~̀ ~̀ . . . along a fieldline (2.16)

the numerical realisation is:

χreal =
∑

(Bx ·∆x+By ·∆y +Bz ·∆z) (2.17)

~̀= ∆x · êx + ∆y · êy + ∆z · êz êx, êy, êz . . . unit vectors (2.18)

χt(Φt) =
χreal
Φt

Φt . . . number of toroidal turns (2.19)

χm =
1

50
·

400∑

Φt=350

χt(Φt) (2.20)

The average of χ after 400 turns is not constant. Therefore the average of the last 50

averages was used to compute χm, Equation 2.20.

Because ∆h > 0 the results of ι and χ are calculated for a left-handed magnetic coordi-

nate system.
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2.4 Calculation of the flux functions FT , F ′T , FP , F ′P and magnetic
coordinate s

FT and FTr, see 1.6, are determined by:

FT =

∮
~B · d ~A ~A . . . normal area to the Poincaré section (2.21)

FTr =
dFT
dr

(2.22)

The finite formulations are:

FT =
∑

By ·∆x ·∆z (2.23)

FTr

∣∣∣
i

=
FT (i+ 1)− FT (i− 1)

x(i+ 1)− x(i− 1)
(2.24)

where i is the index of start point ri or index of toroidal flux FT i.

Figure 2.5 shows the components of magnetic field By with Poincaré sections of the core

and the islands.

The values of FT (r) and FTr(r) may be found from Figure 2.6 a. The values r > 0 (r+)

are the startpoint of the fieldline. The values r < 0 (r−) are the second intersection of

the Poincaré section with the x-axis. These points are to the left of the magnetic axis,

therefore is r negative.

There are :

r−i 6= −r+
i (2.25)

F−T i = F+
T i (2.26)

The derivatives FTr were calculated with the help of the centered finite difference quo-

tient (+ sign) and the derivative of a polynomial (line).

The form of polynomial is :

FT = a2 · x2 + a2 · x3 + a2 · x4 + a5 · x5 + a6 · x6 + a7 · x7 (2.27)

The coefficients ai were calculated with the least-squares approach.

The derivatives Ftr is :

FTr = 2 · a2 · x+ 3 · a2 · x2 + 4 · a2 · x3 + 5 · a2 · x4 + 6 · a6 · x5 + 7 · a7 · x6 (2.28)

18



2 Comparison with numerical results from the VMEC program

The best way to estimate the derivatives is the polynomial method (line).

The magnetic coordinate s and its derivative, see 1.6, are calculated :

s =
FT

FT (Ψsep)
(2.29)

F ′T =
dFT (s)

ds
(2.30)

FT (Ψsep) is the end value of the core curve of FT .

The comparison of values FT (s) and F ′T calculated with programs VMEC and aam10 may

be found in Figure 2.6 c.

FP = FT · ι (2.31)

F ′P = F ′T · ι (2.32)

The values of FP (s) and F ′P may be found in Figure 2.6 d.

The values of rotational transform ι and χ (see Section 2.3) and their spline approxima-

tion may be found in Figure 2.6 f.

The Figure 2.6 g shows the dependence of the value r on s. The line is the spline

approximation.

The way to get FT as a function of s consists of two steps:

- The coordinates r, FT (r) and s(r) are given.

1. With the help of the polynomial interpolation we get FT (r), see Figure 2.6 a.

2. With the help of the spline interpolation we get s(r), see Figure 2.6 g.

- Then we find FT (s).

Figure 2.6 g shows the comparison of value FTr dependent on s calculated with the VMEC

program (line) and aam10 (points). Near the X-Point of magnetic field (F −Tr(s = 1))

there are great differences.
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2.5 Compute the toroidal current J

The next step is the calculation of the values of toroidal current J , see Section 1.7:

J · µ0 =

∮
~B · d~̀ ~̀ . . . along the Poincaré sections (2.33)

J =
1

µ0

∮
Bx,z dx dz (2.34)

The numerical formulation is:

J =
1

µ0

∑
(Bx ·∆x+Bz ·∆z) (2.35)

The components of magnetic field Bx and Bz with Poincaré sections of the core are

shown in Figure 2.7.

The comparison of values J calculated with program VMEC and aam10 may be found in

Figure 2.8. The values of J are esentially zero. The VMEC output includes the factor µ0.
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2.6 Compute the current I

I is a sum of 2 integrals, see Section 1.8. The total path of these integrals is closed.

I · µ0 =

∫
~B · d~̀1 +

∫
~B · d~̀2 (2.36)

`1 along the fieldline (toroidally) from the start-point to the end-point of one turn

`2 along the Poincaré sections (poloidally backwards) from end-point to the start-

point

The first integral is χ (see Section 2.3) for one turn. The second integral is a part of J

(see Section 2.5).

The numerical formulation is:

I =
1

µ0

[∑
(Bx ·∆x+By ·∆y +Bz ·∆z) | `1

+
∑

(Bx ·∆x+Bz ·∆z) | `2
]

Figure 2.9 shows the calculated current I. In the vacuum magnetic field, I is the sum

of the currents in the coils. The VMEC output includes the factor µ0 and is reduced to

one period.

Because ∆h > 0 the results of I is calculated for a left-handed magnetic coordinate

system.
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2.7 Calculation of coefficient
√
g

The next step is the calculation of the coefficient
√
g, see Section 1.9. The magnetic

coordinates has a ranging over [0 . . . 1; 0 . . . 1; 0 . . . 1] and because ∆h > 0 the formular

is for a left-handed magnetic coordinate system.

The start-points rp(R, ϕ = 0, z = 0) of Poincaré sections fix the values of I(rp), J(rp),

ι(rp) and FT (Ψsep). With the help of the transformation from r to s, see Figure 2.6 g,

are also given rp(s, ϑ = 0, Φ = 0), I(s), J(s) and ι(s).

In this case, the current I is constant and J is zero. Therefore
√
g is only a function of

magnetic field B.

√
g(R,ϕ, z) = − [I(rp) · µ0 + ι(rp) · J(rp) · µ0] · FT (Ψsep)

B2(R,ϕ, z)
. (2.37)

or

√
g(s, ϕ, z) = − [I(s) · µ0 + ι(s) · J(s) · µ0] · FT (Ψsep)

B2(s, ϕ, z)
. (2.38)

or

√
g(s, ϑ,Φ) = − [I(s) · µ0 + ι(s) · J(s) · µ0] · FT (Ψsep)

B2(s, ϑ,Φ)
. (2.39)

The Figures 2.10 show the comparison of the coefficient
√
g dependent on s for the start

point at ϕ = 0, z = 0 or ϑ = 0, Φ = 0.

The VMEC output is reduced to one period.
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2.8 Calculation of magnetic coordinates

The start point in magnetic coordinates rp(s, ϑ = 0, Φ = 0) is given. The equivalent

real coordinates are rp(R, ϕ = 0, z = 0).

The algorithm, see Section 1.10, to calculate the magnetic coordinates ϑ and Φ are :

ϑ(`) =
ι(s) · χ(`)

µ0 · [I(s) + ι(s) · J(s)]
(mod 1) ` . . . along a fieldline (2.40)

Φ(`) =
χ(`)

µ0 · [I(s) + ι(s) · J(s)]
(mod 1) ` . . . along a fieldline (2.41)

or

ϑ(`) =
ι(s) · χ(`)

χm(s)
(mod 1) ` . . . along a fieldline (2.42)

Φ(`) =
χ(`)

χm(s)
(mod 1) ` . . . along a fieldline (2.43)

` is a function of R, ϕ and z. Now it is possible to estimate the real coordinates R, ϕ

and z for given magnetic coordinates s, ϑ, Φ. The range of s, ϑ, Φ is from 0 to 1.

The Figures 2.11 show the comparison of the real coordinates on the (x, z) plane at

s = 1, Φ = 0 and at s = 0.4, Φ = 0.

The Figures 2.12 show the comparison of the real coordinates on the (y, z) plane at

s = 1, Φ = 0 and at s = 0.4, Φ = 0.

To reduce the length of the fieldline and the numeric errors it was started at two points

into two directions. The start points are the intersections of Poincaré curve with the

x-axis and the directions are towards positive ϕ and negative ϕ.

The Figures 2.13 a and 2.14 a show the points of a Poincaré section in the (R, z) plane,

the z values dependent on ϑ and the y values dependent on ϑ. The quality of the

Poincaré sections is good. The method of Runge-Kutta yields good results to calculate

x, y and z values of the fieldlines.

In the neighbourhood of the separatrix of near small island chains, one must be more

careful. The quality of z and y values dependent on ϑ are insufficient. When crossing an

island chain, one must adapt the fitted ι profile to the local value. Otherwise, significant

differences appear between subsequent toroidal passes of the field-line tracing. This case

occurs near s = 0.6, where we find a 10/11 island chain, see Figure 2.20. Similarly, the

separatrix s = 1.0 is at the edge of the ergodic range, where many small island chains

are also present. The sensitivity on the exact ι value is illustrated by Figures 2.13 b

and 2.14 b. One can clear see that a minute change in ι (and of the start-point) can

dramatically improve results.

ι and the second start point according to the method in Section 2.3 (old) and after

fine-tuning (new):

s ι (fit) ι (adjusted) x-start (fit) x-start (adjusted)

1.0 0.9805 0.9789 5.7006 m 5.7011 m

0.6 0.9087 0.9079 5.7622 m 5.7622 m
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2.9 Computation of ∇s and gss

We now follow the Nemov algorithm, see Section 1.11 and Section 1.12, using the Clebsch

description of the magnetic field. It is defined:

~B = ∇ψ × (∇θ − ι∇ζ) (2.44)

P =
∂ψ

∂R
, Q =

∂ψ

∂ϕ
, G =

∂ψ

∂z
(2.45)

The following system of differential equations are solved:

dP

dϕ
= − R

Bϕ

(
∂BR
∂R

· P +
∂Bϕ/R

∂R
·Q+

∂Bz
∂R
·G
)

(2.46)

dQ

dϕ
= − R

Bϕ

(
∂BR
∂ϕ
· P +

1

R

∂Bϕ
∂ϕ
·Q+

∂Bz
∂ϕ
·G
)

(2.47)

dG

dϕ
= − R

Bϕ

(
∂BR
∂z
· P +

1

R

∂Bϕ
∂z
·Q+

∂Bz
∂z
·G
)

(2.48)

The initial conditions are:

P0 =
∂FT
∂R

, Q0 = 0, G0 = 0 (2.49)

The values Bx, By, Bz and their derivatives were interpolated with the help of the cubic

spline method. A local matrix of 12× 12× 12 points was used to estimate the values in

the centre of the cube.

The modified Euler method is used for the numerical solution of the system of differential

equations. This is a Runge-Kutta method of second order.

F ∗i+1 = Fi + F
′
i ·∆x

Fi+1 = Fi + 0.5 · (F ′i + F ∗
′

i+1) ·∆x (2.50)

∇s =
1

FT (Ψsep)
·
(
P · êR +

Q

R
· êϕ +G · êz

)
(2.51)

The coefficient gss is:

gss = |∇s|2 =
1

FT (Ψsep)2
·
(
P 2 +

Q2

r2
+G2

)
(2.52)
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In some cases (near small island chains or at the edge of the ergodic range) the dispersion

of the solution of differential equation 2.46 – 2.48 increases strongly with the length of

fieldline. Therefore it is necessary to reduce the number of turns and use a weighted

averaging, making use of the periodicity of the system, such that the results of the first

few turns are weighed more must than the last.

Figures 2.15 a and 2.16 a show the solutions of P , Q, G and gss along a fieldline (one

startpoint in one direction) with 50 turns and without weighting, in the vicinity of the

ι = 10/11 island chain. The comparison with VMEC results (Figure 2.15 a) shows the bad

results for gss.

Reducing the number of turns, weighting the results and using four fieldlines (two start

points in two directions) improves the quality of the solution considerably, see Fig-

ures 2.15 b, 2.16 b, 2.15 c and 2.16 c. For the analysis, only ten turns are used and the

first five turns are weighted double.

The Figures 2.15 d, 2.15 e, 2.16 d and 2.16 e show results for examples s = 0.20 and

s = 0.96, where the dispersion is small.

Figure 2.17 shows all results of gss. The influence of the five islands is recognisable

in the shape of the curves. The calculation of gss(s) at a flux surface is independent

of the neighbouring flux surface. In comparison with VMEC data the values has a good

agreement.
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2.10 Calculation of coefficients σ̃, β̃, gsϑ, gφs, gsϑ

The covariant basis vectors, see Section 1.13, are:

~es =
∂ ~R

∂s
(2.53)

~eϑ =
∂ ~R

∂ϑ
(2.54)

~eφ =
∂ ~R

∂φ
(2.55)

The coefficients gsϑ and gsφ, see Section 1.14, are:

gsϑ = ~es · ~eϑ (2.56)

gsϑ =
∂R

∂s
· ∂R
∂ϑ

+R · ∂ϕ
∂s
·R · ∂ϕ

∂ϑ
+
∂z

∂s
· ∂z
∂ϑ

(2.57)

gsφ = ~es · ~eφ (2.58)

gsφ =
∂R

∂s
· ∂R
∂φ

+R · ∂ϕ
∂s
·R · ∂ϕ

∂φ
+
∂z

∂s
· ∂z
∂φ

(2.59)

Figure 2.18 shows a comparison of the gsϑ coefficient with VMEC results. For s greater

then 0.9 then great differences between the values are found.

The covariant component β̃, see Section 1.13, is:

β̃ = ~B · ~es (2.60)

β̃ = Br ·
∂R

∂s
+Bϕ · R ·

∂ϕ

∂s
+Bz ·

∂z

∂s
(2.61)

or

β̃ = − 1√
g

(
F ′T · gsφ + F ′P · gsϑ

)
(2.62)

In the case of vacuum field (zero plasma pressure) β̃ is zero.
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A simple way to get the derivatives is to use the function of r(s, ϑ,Φ), ϕ(s, ϑ,Φ) and

z(s, ϑ,Φ), see Equations 2.40 – 2.43 and Figures 2.13 b and 2.14 b.

assumption: Φ = constant

R(s, ϑ) =
∑

i,j

(
aRi · si

)
·
(
bRj · sin (ϑ · j) + cRj · cos (ϑ · j)

)
(2.63)

ϕ(s, ϑ) =
∑

i,j

(
api · si

)
·
(
bpj · sin (ϑ · j) + cpj · cos (ϑ · j)

)
(2.64)

z(s, ϑ) =
∑

i,j

(
azi · si

)
·
(
bzj · sin (ϑ · j) + czj · cos (ϑ · j)

)
(2.65)

i = 0, 4 j = 1, 8 (2.66)

The coefficients aR, bR, cR, ap, bp, cp, az, bz, cz are calculated with the help of the

least-squares approach.

A comparison of results for Φ = 0 is shown in Figure 2.19. For s < 0.9 the agreement is

good.

The other coefficients, see Section 1.14, can be calculated:

σ̃ = − 1

F ′T · B
[
B2 · gsϑ − µ0J · β̃

]
(2.67)

gsφ = −F
′
T · β̃ · gss + µ0J · σ̃ · B
µ0(F ′T · I + F ′P · J)

(2.68)

gsϑ = −F
′
P · β̃ · gss − µ0I · σ̃ ·B
µ0(F ′T · I + F ′P · J)

(2.69)

gsφ can also calculate :

gsφ = −
√
g · β̃ + gsϑ · F ′P

F ′T
(2.70)
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3 Comparison with analytical results of a ring magnetic field

3.1 The magnetic field

In order to test this new program, we apply it to the simple case of a circular cross-

section system, where the toroidal field is provided by current flowing along a vertical

wire at the axis of symmetry, and the toroidal current distribution is a given function of

the minor radius %. The components of this analytical ring magnetic field are shown in

Figures 3.5 and 3.7.

Bϕ =
B0

R
(3.1)

BR =
−b · z
%

(3.2)

Bz =
b · (R−R0)

%
(3.3)

b = B1 ·
(
%

2
− %3

4a2

)
(3.4)

% =
√

(R−R0)2 + z2 (3.5)

B0 = 10 Tm, B1 = 1 T/m, R0 = 6 m, a = 1 m (3.6)

The input for the program aam10 was only the magnetic field. The grid resolution of the

magnetic field (chosen to match that of the previous Section) is 93× 288 × 93 points:

- 93 points between R = 5.00 m and R = 7.00 m (∆R = 0.0271 m)

- 288 points between ϕ = 0 and ϕ = 2π/5 (R ·∆ϕ = 0.0218 m . . . 0.03054 m)

- 93 points between z = -1.00 m and z = 1.00 m (∆z = 0.0271 m)

3.2 Calculation of Poincaré sections

A step value of h = 0.0005 for the Runge-Kutta method is used to calculate the

fieldlines and points of Poincaré sections.

The Figure 3.1 a shows the Poincaré sections with the Poincaré puncture points at

ϕ = 0◦.
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3.3 Calculation of ϑreal, ι and χ

The calculation of rotational transform ι is the same as in 2.3.

If the maximum number of turns is 400 then the rotational transform ι is:

ιt(Φt) =
ϑreal(Φt)

Φt · 360◦
Φt . . . number of toroidal turns (3.7)

ι =
1

50
·

400∑

Φt=350

ιt(Φt) (3.8)

An approximated analytical solution is :

(
1

2
− %2

4a2

)
·
√
R2

0 − %2 · R0

B0
≈ ι−

(
1

4
− %2

8a2

)
· %

B0π
· sin(2πι)

ι
(3.9)

The analytical results of ι can be found only iteratively.

Figure 3.2 a shows the average angle ϑreal dependent on distance to magnetic axis. The

analytical approximation far from the magnetic axis is insufficient.

On the inside of calculated fieldline (400 turns) the poloidal angle has a variation in each

turn, see Figure 3.3.

The condition, that all points of the Poincaré section are on a plane ϕ = constant, is

the reason of this result.

The equation to calculate χ is also the same as in 2.3. The average value χm is:

χt(Φt) =
χreal
Φt

Φt . . . number of toroidal turns (3.10)

χm =
1

50
·

400∑

Φt=350

χt(Φt) (3.11)

The analytical solution is:

χm = 2π ·B0 + 2π · ι · % ·
(
%

2
− %3

4a2

)
· B1 (3.12)

The average values χ after 400 turns and the analytical results are shown in Figure 3.2.
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3.4 Calculation of the flux functions FT , F ′T , FP , F ′P and magnetic
coordinate s

FT and FTr, see also 2.4, are determined by:

FT =

∮
~B · d ~A ~A . . . normal area to Poincaré sections (3.13)

FTr =
dFT
dr

(3.14)

Figure 3.5 shows the components of magnetic field By with Poincaré sections.

The values of FT (r) and FTr(r) may be found in Figure 3.6 a. The values r > 0 (r+)

are the startpoint of the fieldline. The values r < 0 (r−) are the second intersection of

the Poincaré section with the x axis. These points are on the left side of the magnetic

axis, therefore is r negative. The derivatives FTr were calculated with the help of the

centred finite difference quotient (+ sign) and the derivative of a polynomial (line). Both

methods to estimate the derivatives have the same accuracy in this case, see Figure 3.6 a.

The magnetic coordinate s and its derivative are calculated :

s =
FT

FT (Ψsep)
(3.15)

F ′T =
dFT (s)

ds
(3.16)

FT (Ψsep) is the end value of the curve for FT .

The analytical solution is :

FT (%) = 2π ·B0 ·
(
R0 −

√
R2

0 − %2

)
(3.17)

s =

(
R0 −

√
R2

0 − %2
)

(
R0 −

√
R2

0 − a2
) (3.18)

FT (s) = 2π ·B0 ·
(
R0 −

√
R2

0 − a2

)
· s (3.19)

F ′T = 2π · B0 ·
(
R0 −

√
R2

0 − a2

)
(3.20)

The comparison of values FT (s) and F ′T calculated with program aam10 and the analyt-

ical solution may be found in Figure 3.6 c.
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FP = FT · ι (3.21)

F ′P = F ′T · ι (3.22)

The values of FP (s) and F ′P may be found in Figure 3.6 d.

The values of rotational transform ι and χ (see Section 3.3) and their spline approxima-

tion may be found in Figure 3.6 f.

Figure 3.6 g shows the dependence of r on s. The line is the spline approximation.

Figure 3.6 g shows the comparison of value FTr dependent on s calculated with program

aam10 and analytic solution. The values are the same.
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3.5 Compute the toroidal current J

The next step is the calculation of values toroidal current J :

J · µ0 =

∮
~B · d~̀ ~̀ . . . along the Poincaré section (3.23)

The numerical formulation is:

J =
1

µ0

∑
(Bx ·∆x+Bz ·∆z) (3.24)

The analytical solution is :

J =
2π

µ0
·B1 ·

(
%2

2
− %4

4a2

)
(3.25)

The components of magnetic field Bx and Bz with Poincaré sections are shown in Fig-

ure 3.7. The comparison of values J calculated with program aam10 and the analytic

solution may be found in Figure 3.8. The values of J are the same.

3.6 Compute the current I

I is a sum of 2 integrals. The total path of these integrals is closed.

I · µ0 =

∫
~B · d~̀1 +

∫
~B · d~̀2 (3.26)

`1 along the fieldline (toroidally) from start-point to the end point of one turn

`2 along the Poincaré sections (poloidally backwards) from the end point to the

start point

The first integral is χ (see Section 3.3) for one turn. The second integral is a part of J

(see Section 3.5).

The numerical formulation is:

I =
1

µ0

[∑
(Bx ·∆x+By ·∆y +Bz ·∆z) | `1

+
∑

(Bx ·∆x+Bz ·∆z) | `2
]

The analytic solution is:

I =
2π

µ0
·B0 (3.27)

Figure 3.9 shows the calculated current I. The analytical and the numerical resolution

are the same.
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3.7 Comparison of coefficient
√
g

The coefficient
√
g is:

√
g(ϕ,R, z) =

[I(rp) · µ0 + ι(rp) · J(rp) · µ0] · FT (Ψsep)

4π2 · B2(ϕ,R, z)
, (3.28)

or

√
g(ϑ, s,Φ) =

[I(s) · µ0 + ι(s) · J(s) · µ0] · FT (Ψsep)

4π2 · B2(ϑ, s,Φ)
. (3.29)

The coefficients I, J , ι, and FT (Ψsep) were compared with the analytical solution. The

magnetic field is given. Therefore the comparison of
√
g is omitted.

3.8 Calculation of magnetic coordinates

Given is the start point in magnetic coordinates rp(s, ϑ = 0, Φ = 0). The equivalent

real coordinates are rp(R, ϕ = 0, z = 0).

The algorithm to calculate the magnetic coordinates ϑ and Φ is:

ϑ(`) =
ι(s) · χ(`)

µ0 · [I(s) + ι(s) · J(s)]
(mod 1) ` . . . along a fieldline (3.30)

Φ(`) =
χ(`)

µ0 · [I(s) + ι(s) · J(s)]
(mod 1) ` . . . along a fieldline (3.31)

or

ϑ(`) =
ι(s) · χ(`)

χm(s)
(mod 1) ` . . . along a fieldline (3.32)

Φ(`) =
χ(`)

χm(s)
(mod 1) ` . . . along a fieldline (3.33)

Now it is possible to estimate the real coordinates R, ϕ and z for given magnetic coor-

dinates s, ϑ, Φ .

To reduce the length of the fieldline it was started at two points into two directions.

The start points are the intersections of Poincaré curve with x axis and the directions

are towards positive ϕ and negative ϕ.

The Figures 3.14 show the points of Poincaré section at (R, z) plane, the z values de-

pendent on ϑ and the y values dependent on ϑ. The quality of all sections is good.
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3.9 Computation of ∇s and gss

We now follow the Nemov algorithm, see Section 1.11 and 1.12 , using the Clebsch

description of magnetic field, see also Section 2.9

~B = ∇ψ × (∇θ − ι∇ζ) (3.34)

P =
∂ψ

∂R
, Q =

∂ψ

∂ϕ
, G =

∂ψ

∂z
(3.35)

The following system of differential equations are solved:

dP

dϕ
= − R

Bϕ

(
∂BR
∂R

· P +
∂Bϕ/R

∂R
·Q+

∂Bz
∂R
·G
)

(3.36)

dQ

dϕ
= − R

Bϕ

(
∂BR
∂ϕ
· P +

1

R

∂Bϕ
∂ϕ
·Q+

∂Bz
∂ϕ
·G
)

(3.37)

dG

dϕ
= − R

Bϕ

(
∂BR
∂z
· P +

1

R

∂Bϕ
∂z
·Q+

∂Bz
∂z
·G
)

(3.38)

The initial conditions are:

P0 =
∂FT
∂R

, Q0 = 0, G0 = 0 (3.39)

The values Bx, By, Bz and their derivatives were interpolated with the help of cubic

spline method. The modified Euler method is used for the numerical solution of the

system of differential equations. This is a Runge-Kutta-method second order, see 2.9.

The analytical solution is :

P = 2π · B0 ·
R−R0√

R2
0 − z2 − (R−R0)2

(3.40)

Q = 0 (3.41)

G = 2π · B0 ·
z√

R2
0 − z2 − (R−R0)2

(3.42)

The analytical coefficient gss is:

gss = |∇s|2 =
P 2 + (Q/R)2 +G2

FT (Ψsep)2
=

%2

(
R2

0 − %2
)(
R0 −

√
R2

0 − a2
)2 . (3.43)

Figures 3.15 and 3.16 show the analytical solutions and the numerical results (asterisks)

of P , Q, G and gss at s = 0.9. Figure 3.17 shows all results of gss. The numerical and

the analytical results are the same.
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4 Units of physical terms

4 Units of physical terms

µ0 = 1.256637 · 10−6 V · s
A ·m = 1.256637 · 10−6 T

A
·m = 4π · 10−7 T

A
·m

[B] = T =
V · s
m2

[`] = m

[FT ] = T ·m2 =
V · s
m2
·m2 = V · s

[FTr] = T ·m
[F ′T ] = T ·m2

[FP ] = T ·m2

[F ′P ] = T ·m2

[J · µ0] = T ·m =
V · s
m2
·m =

V · s
m

[I · µ0] = T ·m =
V · s
m2
·m =

V · s
m

[J ] = T ·m · A ·m
V · s =

V · s
m2
·m · A ·m

V · s = A

[I] = T ·m · A ·m
V · s =

V · s
m2
·m · A ·m

V · s = A

[
√
g] =

(T ·m) · (T ·m2)

T 2
= m3

[P ] = T ·m
[Q] = T ·m2

[G] = T ·m

[gss] =
1

T 2 ·m4
·
(
T 2 ·m2 +

T 2 ·m4

m2
+ T 2 ·m2

)
=

1

m2

[σ̃] = −
[β̃] = T ·m

[gsϑ] = m2

[gφs] =
1

m2

[gϑs] =
1

m2
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