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Abstract

Within the scope of this work, a versatile large linear magnetised plasma experiment was
designed, constructed, and subsequently put into operation. The magnetised plasma was
used to investigate the dispersion of whistler waves (circular polarised electromagnetic
waves) with regard to the influence of the plasma boundaries. After a brief review over
electromagnetic plasma waves and the three discharge modes of a helicon source, the
experimental device and the diagnostic tools are explained in detail. Great attention is de-
voted to the identification of a reliable, calibrated magnetic fluctuation probe design. To
the understanding of dynamical phenomena in ionospheric plasmas, whistler wave mea-
surements in laboratory experiments may contribute significantly because of the ability to
vary plasma parameters and to do measurements with high spatial and temporal resolu-
tion. However, the boundaries of laboratory experiments change the dispersion behaviour
of whistler waves significantly if compared to the unbounded ionospheric situation. The
influence of the plasma boundary is studied in the present work on three different levels
of increasing complexity. First, a high density, small wavelength regime is established
to make the effect of the boundary negligible. Measurements are in full agreement with
whistler wave theory for unbounded plasma geometry. Measurements below the ion cy-
clotron frequency reveal the strong influence of the ion dynamics on whistler wave prop-
agation, but are not straightforward to interpret in terms of dispersion theory. Second, the
other limit case is examined: bounded plasma helicon modes. These waves are, mathe-
matically speaking, eigenfunctions of the plasma-boundary system and are of great prac-
tical importance for high density plasma discharges, the helicon source. Careful measure-
ments of the equilibrium plasma parameters as well as the magnetic fluctuation profiles
of the helicon source are done in all three modes of operation, the capacitive, inductive,
and helicon wave sustained mode. The first two modes are fairly well understood and the
measurements are consistent with existing models. The high density helicon mode, how-
ever, is still a scientific case. The measurements partially confirm existing assumptions.
It is demonstrated that the plasma production is detached from the antenna edge region.
Moreover, it is shown that the plasma parameters are self-consistently determined by the
antenna geometry and the discharge parameters according to basic helicon wave theory.
Finally, it is ruled out that the plasma density is the control parameter determining the
transition point into the high density helicon mode. The measurements rather suggest that
the rf power density is the important value. As a third aspect, whistler waves in an in-
termediate wavelength regime are studied and the transition from unbounded to bounded
plasma wave dispersion is systematically investigated. It is shown both experimentally



and numerically that the wave dispersion in a plasma filled metal waveguide cannot be
determined solely from wave vector measurements parallel to the magnetic field. For a
correct description, the perpendicular mode profile has to be correctly taken into account.
In contrast to simple helicon wave theory, it is demonstrated that the perpendicular mode
profile is not only determined by the conducting vessel boundaries alone but the entire
plasma-boundary system has to be considered as a unity. To summarise, this work has
contributed to a better understanding of the physics of the propagation of whistler waves,
where the particular role of metal boundaries acting as wave guides was highlighted. This
basic science approach to the waves’ dynamics is believed to be of significance in the
course of the scientific debate on the physics principles of helicon discharges.



Zusammenfassung

Im Rahmen dieser Arbeit wurde eine große, universell einsetzbare, linear magnetisierte
Plasmaanlage entworfen, konstruiert und erfolgreich in Betrieb genommen. In dieser
Anlage wurden Experimente durchgeführt, die den Einfluss der Plasmaberandung auf die
Dispersion von Whistlerwellen untersuchen. Die Arbeit wird durch eine kurze Einführung
in die Physik von Plasmawellen und einem Überblick über die drei Entladungsmodi
einer Helikonquelle eingeleitet. Anschließend werden das Plasmaexperiment und die
verwendeten Diagnostiken erläutert. Besonderes Augenmerk ist auf die Konstruktion
einer zuverlässigen und absolut kalibrierten magnetischen Fluktuationssonde gelegt wor-
den. Im Gegensatz zu natürlichen, ionosphärischen Plasmen können die Plasmaparameter
in Laborplasmen über einen großen Bereich hinweg kontrolliert werden und Messun-
gen können mit hoher räumlicher und zeitlicher Auflösung durchgeführt werden. Dafür
sind Laborplasmen aber gezwungener Maßen immer berandet und die Dispersionseigen-
schaften von Wellen werden dadurch mehr oder weniger stark verändert. In dieser Ar-
beit wird der Einfluss der Plasmaberandung in drei verschieden starken Ausprägungen
untersucht. Zum einen wird gezeigt, dass der Einfluss der Berandung in Plasmen ho-
her Dichte und bei kleinen Wellenlängen vernachlässigbar gering ist. Messungen in der
Nähe der Ionenzyklotronfrequenz zeigen den Einfluss der Ionen auf die Dispersion. Zum
zweiten werden Wellen in stark berandeten Plasmen untersucht, so genannte Helikon-
wellen. Diese sind Eigenfunktionen des Plasma-Berandungs-Systems und haben z.B. in
Helikonquellen eine weit verbreitete Anwendung gefunden. Räumlich hoch aufgelöste
Messungen sowohl der Plasmaparameter als auch der magnetischen Fluktuationsprofile
sind in allen drei Entladungmodi der Helikonquelle aufgenommen worden. Die Mecha-
nismen des kapazitiven und induktiven Entladungsmodus sind in der Literatur zufrieden-
stellend erklärt und können mit den hier gezeigten Messungen voll bestätigt werden. Der
Entladungsmechanismus des Helikonmodes hingegen ist immer noch in der Diskussion
und gängige Annahmen können teilweise bestätigt werden. So ist z.B. die Plasmapro-
duktion von der Antennenrandschicht entkoppelt, was eindeutig gezeigt werden kann und
auf Wellenheizung hindeutet. Desweiteren stellen sich die Plasmaparameter in Über-
einstimmung zur Theorie selbstkonsistent mit den geometrischen Antennenabmessun-
gen und den Entladungsparametern ein. Hingegen wird ausgeschlossen, dass die Plas-
madichte der Kontrollparameter ist, der den Punkt des sprunghaften Übergangs in den
Helikonmodus bestimmt. Die Messungen deuten eher darauf hin, dass die Leistungs-
dichte der RF-Antenne hierfür verantwortlich ist. Als dritten Aspekt des Berandungs-
einflusses wird die Wellenausbreitung in einem Bereich zwischen stark berandetem und



unberandetem Plasma untersucht. In Experimenten und mit Hilfe numerischer Berech-
nungen wird gezeigt, dass die Bestimmung der Wellenvektoren parallel zum Magnet-
feld allein nicht ausreicht, um die Dispersion zufriedenstellend anzugeben. Vielmehr
muss auch das senkrechte Wellenfeld für eine exakte Beschreibung berücksichtigt wer-
den. Das senkrechte Wellenfeld ist, ganz im Gegensatz zu einfachen Theorien, nicht
allein durch die leitende Berandung des Experiments gegeben, sondern muss aus dem
gesamten Plasma-Gefäß-System bestimmt werden. Alles in allem trägt diese Arbeit zur
wissenschaftlichen Diskussion um die Grundlagen der Wellenausbreitung in Plasmen bei.
Besonders die Rolle der oft vernachlässigten Plasmaberandung wird dabei berücksichtigt
und somit auch ein Beitrag zur derzeitigen intensiven Diskussion um den effizienten Ent-
ladungsmechanismus der Helikonquelle geleistet.
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1

Introduction

Waves are almost ubiquitous in plasmas, which are mostly not in global thermal equilib-
rium. Waves can be driven by electric and magnetic fields or density and temperature gra-
dients. There are numerous different waves in plasmas and especially the anisotropy due
to an ambient magnetic field creates a great complexity in wave description and opens up
an entire ‘zoo’ of plasma wave eigenmodes. Plasma waves are often classified in electro-
static or electromagnetic waves. Moreover, the direction of propagation and polarisation
with respect to the magnetic field is often used for detailed classification. Mostly, the
wave polarisation is a mixture of transverse and longitudinal polarisation. Wave modes
are identified by their dispersion relation, the functional dependence between wavelength
and wave frequency. From the dispersion relation, phase and group velocity of the wave,
resonances and cut-off points can be derived.

The first observations of plasma waves were reported more than a century ago by Preece
[1894] and Barkhausen [1919], long before plasma physics became a field of research it-
self. These so-called ‘whistler waves’ were heard on telephone lines and during the inter-
ception of enemy radio communication as whistling sounds with constant amplitude and
declining frequency. Owing to their typical sound, they were named whistler waves. It
was not until 1930 that this phenomenon was correctly described as the highly dispersive
broadening of a sharp pulse, initiated by lightning [Barkhausen, 1930], that propagates
in the ionosphere [Eckersley, 1935]. Whistler waves are right-hand circular polarised
electromagnetic waves propagating mainly parallel to the magnetic field with frequencies
below the electron cyclotron frequency. Since their first observation and subsequent ex-
planation, the interest in whistler waves has steadily grown since they are an excellent
diagnostic probe of the ionosphere. Whistler waves yield information, especially on the
plasma density, along their path of propagation through the ionosphere.

A good understanding of the ionosphere, e.g. the plasma density distribution and its tem-
poral variations, was and still is important. In the first half of the 20th century, long range
radio communication used electromagnetic waves with medium and long wavelengths
(≈ 100 m–1 km). Reflections at the ionospheric plasma boundary enabled transmission
beyond the horizon and therefore, a good knowledge of the ionospheric layer was impor-
tant [Hutchinson, 2001]. Nowadays, much shorter wavelengths in the microwave range
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are used for satellite based communication and positioning systems [Hofmann-Wellenhof
et al., 2001; Klawitter, 2000]. For the increasing demand in precision in the operation
of such systems, an even more detailed understanding of the ionosphere and its temporal
evolution is required. The analogous counterpart, the left-hand polarised electromagnetic
wave called ion whistler wave, propagates at frequencies below the ion cyclotron fre-
quency and was observed in ionospheric plasmas by means of satellite recordings [Smith
et al., 1964]. Gurnett et al. [1965] showed the coupling of these two types of waves
and the generation of ion whistler waves was explained by the coupling to a convention-
ally triggered whistler wave. Refined analysis [Smith and Brice, 1964] in plasmas with
multiple ion species enables the possibility of determining the ion species composition
in the ionosphere [McEwen and Barrington, 1968]. And in our days, still, whistler wave
measurements are amongst the key diagnostic tools to probe the ionosphere, passively ob-
served as well as actively excited [Clilverd et al., 1991; Richards et al., 2000; Sonwalkar
et al., 2001]. They are used to study daily or annual variations, as well as for the inves-
tigation of turbulent phenomena in the ionosphere [Muschietti et al., 1997; Trakhtengerts
and Rycroft, 1998]. Whistler waves are not only interesting as a diagnostic tool. They
are important as well for the understanding of certain dynamical phenomena itself. For
example, high intensity bursts of lower hybrid waves near density striations were shown
to be caused by linear mode-coupling with whistler waves [Bamber et al., 1994].

Early measurement in ionospheric plasmas were only possible from ground-based sta-
tions. Later, satellites and sounding rockets were increasingly used for whistler wave
investigations. All these measurements are naturally limited in spatial resolution and lack
the possibility of systematically studying the dependence of the whistler waves on plasma
parameters. Experiments performed in the laboratory do not encounter these shortcom-
ings and since the first laboratory whistler wave experiments by Gallet et al. [1960],
measurements on propagation, damping, ducting as well as on resonance cones and an-
tenna radiation patterns led to a profound understanding and stimulated many advances in
plasma wave theory. The current whistler wave research deals primarily with their role in
magnetic reconnection and energetic particle precipitation as well as antenna-wave cou-
pling and the coupling into the earth-ionosphere waveguide [Stenzel, 1999]. The main
difference to ionospheric plasmas is that laboratory plasmas are naturally always bounded.
The influence of the plasma boundaries on the dispersion of electromagnetic waves was
already theoretically investigated [Klozenberg et al., 1965; Uhm et al., 1988] but in exper-
iments mostly circumvented by using small wavelengths [Gallet et al., 1960; Mahaffey,
1963] and large sized experimental devices [Stenzel, 1976; Mattoo et al., 2001].

Low frequency whistler waves in bounded plasma geometry, so-called ‘helicon’ waves,
have attracted a lot of attention since Boswell [1984b] reported on their use for producing
a plasma with surprisingly high efficiency. They have been studied in cylindrical radio
frequency (rf) produced plasma by Lehane and Thonemann [1965] as well as in the free
electron gas of solid metals by Legéndy [1965] and Harding and Thonemann [1965]. In
contrast to the above discussed whistler waves, the dispersion of these waves depends
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strongly on the boundary conditions as the waves are essentially the eigenfunctions of the
plasma-boundary system [Boswell, 1984a; Chen, 1991]. Today, helicon plasma sources
are widely established in research labs all around the world. Nevertheless, the discharge
mechanism itself is still strongly discussed. Different explanations have been proposed
[Chen, 1991; Shamrai and Taranov, 1996; Kwak et al., 1997; Cho, 2000], but so far no
clear-cut picture could be developed, despite intensive experimental and numerical ef-
fort (see e.g. the reviews by Boswell and Chen [1997] and Chen and Boswell [1997]).
Current research activity focusses on characterising the discharge to clarify the heating
mechanism itself and on identifying the important plasma parameters that lead to effi-
cient transfer from wave to particle energy. An overview of current topics is found in the
contributions to the APS Mini-Conference on Applications of Helicon Plasma Sources
[2001]. Finally, the role of reliable diagnostics for increasingly accurate measurements in
helicon discharges is becoming more and more recognised [Light et al., 1995; Chen and
Blackwell, 1999; Blackwell et al., 2002].

The present work analyses the whistler wave dispersion in bounded plasma geometry.
According to the influence of the boundaries on the wave, three different research areas
can be defined. First, electron and ion whistler waves are excited and measured in a
regime, where the influence of the plasma boundary is negligible. In a second regime,
the boundaries are essential as the wave is established as an eigenfunction of the plasma-
boundary system. Low frequency helicon waves and their role in helicon plasma sources
are investigated. And third, the wave dispersion in the intermediate regime between both
extreme situations, the transition from unbounded to bounded plasma geometry, is studied
both experimentally and numerically.

The present work is structured as follows: The theoretical framework on whistler waves
in unbounded and bounded plasma geometry is briefly reviewed in Chap. 2. Helicon
sources are known to operate in three different modes, depending on the ambient mag-
netic field strength and the applied rf power. In Chap. 3, the capacitive, inductive, and
helicon wave sustained discharge modes are introduced and, as far as possible, explained
in their physics. In the subsequent Chap. 4, the diagnostic tools and the experimental setup
are described. Special attention is devoted to the new plasma device VINETA which was
developed and constructed in the frame of the present work. The flexibility of the device
not only enabled the present experimental investigations but also ensures numerous fur-
ther experiments and other research activities. The main diagnostic tools for the present
work are magnetic fluctuation probes that were carefully characterised and calibrated in
an independent test bed. Basic electron and ion whistler wave experiments are reported
in Chap. 5. To our knowledge, ion whistler waves have been excited and measured in a
laboratory plasma for the first time. Chap. 6 is devoted to a detailed experimental char-
acterisation of the different rf discharge modes in the VINETA. The stationary plasma
profile parameters are measured with high spatial resolution and the different magnetic
eigenmode structures are studied. The helicon mode is characterised in some more detail,
thereby combining measurements of the mode structure in planes parallel and perpendic-
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ular to the magnetic field with dispersion measurements at different ambient magnetic
fields. The role of parameters that define the critical point of the transition to the helicon
discharge mode is investigated. Chap. 7 reports on detailed measurements and numerical
simulations to analyse the dispersion of waves in the transition regime between approx-
imately unbounded and strongly bounded plasma geometry. The discussion in Chap. 8
and the summary in Chap. 9 conclude the work.



2

Theory of Whistler Waves

Whistler waves belong to the class of waves in magnetised plasmas with the group veloc-
ity mainly parallel to the magnetic field. The basic theory of whistler waves is covered in
textbooks and review articles such as Swanson [1989]; Stix [1992]; Yeh and Liu [1972],
and Al’pert [1980] and Stenzel [1999]. In order to interpret and classify the wave ex-
periments considered in the present thesis, plasma waves are introduced theoretically in
this chapter. The derivation follows the well established approach of Stix [1992] and
Swanson [1989] and the waves are classified by their different roots in the cold plasma
wave dispersion relation. Starting from Maxwells’ equations and the cold plasma particle
equations, the dielectric tensor and the dispersion relation are derived in Secs. 2.1 and 2.2.
This general formalism leads directly to the dispersion of ion and electron whistler waves
which are covered in Sec. 2.3. In laboratory experiments the plasma is necessarily al-
ways bounded and the theoretical models on bounded wave propagation are reviewed in
Sec. 2.4.

2.1 Plasma Dielectric Tensor

The dispersion relation for a plasma can be obtained from solving Maxwells’ equations
together with the currents and fields in the plasma.

∇ × B = µ0

(
j + ε0

∂E

∂t

)
= µ0

(
∂D

∂t

)
(2.1)

∇ × E = −∂B

∂t
(2.2)

∇ · D = ρel (2.3)

∇ · B = 0 , (2.4)

where E is the electric field and D = εE is the electric displacement. In a anisotropic
medium like a magnetised plasma, the scalar dielectric permittivity ε is replaced by the
effective dielectric permittivity tensor ε and

D = ε · E = ε0εr · E . (2.5)



6 Theory of Whistler Waves

Here, εr is the dimensionless relative dielectric permittivity tensor and will be derived
below. The electric displacement current ∂D/∂t includes the vacuum displacement cur-
rent ε0∂E/∂t and the plasma current j. Furthermore, B is the magnetic induction and
is related to the magnetic field H by B = µrµ0H . For plasmas it is suitable to take the
relative magnetic permittivity µr = 1. Finally, ρel is the electric charge density. As a
consequence of charge conservation, electric charges and currents in a plasma are related
to each other via the continuity equation

∇ · j +
∂ρel

∂t
= 0 . (2.6)

When the plasma can be treated as a conductor with losses due to particle collisions, it is
convenient to relate the plasma current to the electric field using Ohm’s law:

j = σ · E . (2.7)

But, the displacement currents in a plasma often dominate and it is common to take the
dielectric tensor ε instead of using the conductivity tensor σ. To simplify the subsequent
calculations, a first set of assumptions is made.

Assumptions 1

- Zero order quantities are constant in time and space; specifically:
background magnetic field B0 and plasma density n0.

- First order quantities are small compared to zero order quantities and can be
expressed as monochromatic waves ∝ exp[i(k · r − ωt)]; in particular the
magnetic and electric fluctuations E1, B1.

- Linear Approximation:
The product of two first order quantities is negligibly small.

The spatial and temporal derivatives of first order quantities (e.g. B1) read in Fourier
space

∂B1

∂t
= −iωB1 and ∇rB1 = ikB1 .

A further assumption is generally fulfilled as well:

Assumption 2

- There is no static electric field (E0 = 0) and no particle drift (v0 = 0) in
the plasma.
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Eqs. (2.1) and (2.5) can be rewritten in Fourier representation as

σE1 − iωε0E1 = −iωD1

or D1 = ε0

(
1 +

iσ

ε0ω

)
E1 . (2.8)

Comparing Eq. (2.8) with Eq. (2.5) yields that the dielectric tensor εr is connected to the
conductivity tensor σ of the plasma via

εr = 1 +
iσ

ωε0

, (2.9)

combining the conductive and the dielectric picture of the plasma mentioned above. But
still, an explicit expression from basic plasma properties for the conductivity or dielectric
tensor is missing. The calculations are further simplified by making

Assumption 3

- The plasma is cold and collisionless, i.e., there are no effects due to pressure
gradients (e.g. acoustic waves).

The total current density j in the plasma is due to the motion of the charged particles of
all involved species s

j =
∑

s

js =
∑

s

nsqsvs . (2.10)

The particle equations of motion in the cold and collisionless limit read

ms
d

dt
vs = qs (E + vs × B) . (2.11)

With assumptions 1, these equations can be written in Fourier representation as

B = B0 + B1 exp [i(k · r − ωt)]

E = E1 exp [i(k · r − ωt)] (2.12)

v = v1 exp [i(k · r − ωt)] .

Without loss of generality, B0 is taken to be along the z-axis B0 = B0êz. Substituting
Eq. (2.13) into the equations of motion (2.11) yields

−iωmsv1s = qs (E1 + v1s × B0) . (2.13)
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The solution to these equations for each species s is

vxs =
iqs

ms(ω2 − ω2
cs)

(ωEx + iεsωcsEy)

vys =
iqs

ms(ω2 − ω2
cs)

(−iεsωcsEx + ωEy) (2.14)

vzs =
iqs

msω
Ez .

Here, ωcs = |qs|B0/ms denotes the cyclotron frequency of the species s and εs = qs/|qs|
is the sign of its charge. Eqs. (2.14) combined with Eq. (2.10) are used to express the
current density components in the plasma caused by particle motion

jx =
∑

s

iq2
sns

ms(ω2 − ω2
cs)

(ωEx + iεsωcsEy)

= iε0

∑
s

ω2
psω

ω2 − ω2
cs

Ex − ε0εs

∑
s

ω2
psωcs

ω2 − ω2
cs

Ey (2.15)

jy =
∑

s

iq2
sns

ms(ω2 − ω2
cs)

(−iεsωcsEx + ωEy)

= ε0εs

∑
s

ω2
psωcs

ω2 − ω2
cs

Ex + iε0

∑
s

ω2
psω

ω2 − ω2
cs

Ey (2.16)

jz =
∑

s

iq2
sns

msω
Ez

= iε0

∑
s

ω2
ps

ω
EZ , (2.17)

where ωps = (nsq
2
s/msε0)

1/2 is the plasma frequency of the sth species. Comparing the
set of Eqs. (2.15–2.17) with Ohm’s law (2.7) yields an expression for the conductivity σ

of the plasma and the dielectric tensor εr can be written from Eq. (2.9) as

εr =




1 −
∑

s

ω2
ps

ω2 − ω2
cs

−iεs

∑
s

ω2
psωcs

ω(ω2 − ω2
cs)

0

iεs

∑
s

ω2
psωcs

ω(ω2 − ω2
cs)

1 −
∑

s

ω2
ps

ω2 − ω2
cs

0

0 0 1 −
∑

s

ω2
ps

ω2




. (2.18)

For future calculations it is convenient to introduce Stix [1992] notation

S ≡ 1 −
∑

s

ω2
ps

ω2 − ω2
cs

(2.19)

D ≡
∑

s

εsω
2
psωcs

ω(ω2 − ω2
cs)

(2.20)
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P ≡ 1 −
∑

s

ω2
ps

ω2
(2.21)

R ≡ S + D = 1 −
∑

s

ω2
ps

ω(ω + εsωcs)
(2.22)

L ≡ S − D = 1 −
∑

s

ω2
ps

ω(ω − εsωcs)
. (2.23)

The dielectric tensor in this notation reads

εr =


 S −iD 0

iD S 0

0 0 P


 . (2.24)

2.2 Cold Plasma Dispersion Relation

As pointed out above, deriving the plasma dispersion relation means solving Maxwells’
equations self-consistently including the plasma currents due to the plasma particle mo-
tions. Maxwells’ Eqs. (2.1) and (2.2) written in Fourier space combined with Ohm’s law
Eq. (2.7) and Eq. (2.9) read

ik × B = µ0 (σE − iωε0E) = −iωµ0ε0εrE (2.25)

ik × E = iωB. (2.26)

After taking the cross product with k, Eq. (2.26) is substituted into Eq. (2.25) and c2 =

1/µ0ε0 is used to obtain the wave equation

n × n × E + εrE = 0 , (2.27)

where n = kc/ω is the index of refraction vector and εr the dielectric tensor derived in
the previous section. n is pointing in the direction of the wave vector k and its magnitude
is the index refraction. The convention is to choose n to lie in the x-z-plane as depicted
in Fig. 2.1. θ is defined as the angle between n and the ambient magnetic field B0.

x

z

n

y

θ

Figure 2.1: The wave vector is defined to lie in
the x-z-plane.

n =


nx

0
nz


 =


|n| sin θ

0
|n| cos θ


 (2.28)
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In this coordinate system, the first term in Eq. (2.27) reads

n × n × E =


 −n2 cos2 θ 0 n2 cos θ sin θ

0 −n2 0

n2 cos θ sin θ 0 −n2 sin2 θ





Ex

Ey

Ez


 . (2.29)

The wave equation (2.27) now has the form
S − n2 cos2 θ −iD n2 cos θ sin θ

iD S − n2 0

n2 cos θ sin θ 0 P − n2 sin2 θ





Ex

Ey

Ez


 = 0 . (2.30)

The requirement for nontrivial solutions is that the determinant of the coefficients vanishes

(S sin2 θ + P cos2 θ)n4 + [(RL sin2 θ + SP (1 + cos2 θ)]n2 + PRL = 0 . (2.31)

Eq. (2.31) is biquadratic in n and is solved for n2

n2 =
RL sin2 θ + SP (1 + cos2θ) ±

√
(RL − PS)2 sin4 θ + 4P 2D2 cos2 θ

2(S sin2 θ + P cos2 θ)
. (2.32)

The most interesting features of the solution are resonances and cut-offs.

- Resonances are characterised by a phase velocity going to zero (vp = ω/k → 0)
which is equivalent to the index of refraction n = kc/ω going to infinity (n → ∞).
The wave energy is absorbed by the plasma at resonance points. Resonances can
be used for plasma heating. The cold plasma approximation is no longer valid at
resonance points, but the electrostatic approximation can be used instead.

- Cut-offs are defined by the index of refraction going to zero (n → 0). At these
cut-off points, the wavelength goes to infinity and the waves are reflected. Cut-off
points can be used for plasma density measurements.

From Eq. (2.32) the general resonance condition can be found by setting the denominator
to zero:

2(S sin2 θ + P cos2 θ) = 0 ⇔ tan2 θ = −P

S
. (2.33)

The general cut-off condition in turn can be seen from Eq. (2.31) by setting n = 0:

PRL = 0 . (2.34)

If the dispersion relation is used to make statements about waves travelling into a certain
direction, it is more suitable to express (2.31) in terms of the propagation angle θ. After
lengthy but straightforward algebraic manipulation one obtains

tan2 θ =
P (n2 − R)(n2 − L)

(Sn2 − RL)(n2 − P )
. (2.35)
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With Eqs. (2.33), (2.34) and (2.35) the necessary equations to study waves in the cold and
small amplitude limit are completed. From Eq. (2.35) the two special cases of perpendic-
ular (θ = π/2) and parallel (θ = 0) wave propagation are easily investigated.

2.3 Plasma Waves in a Cold and Unbounded Plasma

2.3.1 Perpendicular Propagation (k ⊥ B0, θ = π/2)

Within this work, waves propagating perpendicular to the direction of the magnetic field
are not investigated experimentally. For completeness, however, perpendicular propagat-
ing waves are introduced in brief. A more detailed analysis can be found in textbooks on
plasma waves, e.g. Swanson [1989] or Stix [1992]. For perpendicular wave propagation,
in which case the denominator of Eq. (2.35) must vanish, there are two possibilities:

1. Ordinary waves: (n2 − P ) = 0

The dispersion relation for the O-mode wave reads

k2c2 = ω2 −
∑

s

ω2
ps . (2.36)

The wave propagation is not affected by the magnetic field as the electric field
vector is parallel to the axial magnetic field (E1‖B0). The dispersion, plotted
dashed on the left-hand side of Fig. 2.2, has real solutions (the wave propagates)
above the cut-off ω > ωpe. As the dispersion depends on the plasma density only,
O-waves can be used for plasma diagnostics, e.g. reflectometry and interferometry
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Figure 2.2: Normalised dispersion relation k(ω) and group velocity vg(ω) of the X-wave (solid
line) and the O-wave (dashed line). Only electrons are taken into account and ωce = ωpe/2.
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[Hutchinson, 1987; Wesson, 1997; Hartfuß, 1998]. The group velocity of the O-
mode wave increases monotonically up to the speed of light.

2. Extraordinary waves: (Sn2 − RL) = 0

The dispersion of the X-mode wave is more complicated as neither the resonances
nor the cut-offs can be seen straightforward

k2c2

ω2
=

(
1 −

∑
s

ω2
ps

ω(ω + εsωcs)

) (
1 −

∑
s

ω2
ps

ω(ω − εsωcs)

)

1 −
∑

s

ω2
ps

ω2 − ω2
ce

. (2.37)

Fig. 2.2 shows the high frequency approximation (static ion background) of the X-
mode wave (solid lines). It propagates (has real solutions) in the two frequency
regimes ωL < ω < ωuh and ω > ωR. The two cut-off frequencies are defined by

ωL,R =

[(
ωci + ωce

2

)2

+ ω2
pe + ω2

pi

]1/2

± ωci − ωce

2
, (2.38)

where the plus sign is attributed to ωL and the minus sign to ωR, respectively. The
X-wave resonates at the upper and the lower hybrid frequency: ω2

uh = ω2
ce +ω2

pe and
ω−2

lh = (ωceωci)
−1 + (ω2

pi + ω2
ci)

−1. They are called hybrid frequencies, because the
wave resonates with a hybrid motion of the electrons and ions (ωlh) and the hybrid
electron motion determined by density and magnetic field (ωuh). The lower hybrid
resonance cannot be seen in Fig. 2.2 as it does not appear in the high frequency
approximation. The X-mode wave is used for plasma diagnostics at the cut-off
frequencies [Wesson, 1997] and for plasma heating at the resonance frequencies
[Schumacher, 1993; Pinsker, 2001], predominantly in hot magnetically confined
plasma devices. Close to the lower hybrid frequency, the X-wave becomes mainly
electrostatic (k⊥ → ∞) [Swanson, 1989; Stix, 1965] and transfers its energy via
Landau damping mainly to the electrons [Schumacher, 1993; Pinsker, 2001].

2.3.2 Parallel Propagation (k‖B0, θ = 0)

For parallel wave propagation, in which case the numerator of Eq. (2.35) has to vanish,
there are three possible solutions:

1. Plasma oscillation: P = 0

This is the simplest plasma motion. Combined with Eq. (2.21) this reads

ω2 =
∑

s

ω2
ps. (2.39)

This degenerate case is not a propagating wave as the group velocity is zero for
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Figure 2.3: Normalised dispersion relation k(ω) and group velocity vg(ω) of the R-wave (solid
line) and the L-wave (dashed line). Only electrons are taken into account and ωce = ωpe/2.

all frequencies. It represents an oscillation at the plasma frequency. Usually, this
frequency is the electron plasma frequency ωpe as this term is by far the largest in
the sum (ωpe 	 ωpi).

2. R-waves: (n2 − R) = 0

The dispersion relation resulting from this root is

k2c2 = ω2 −
∑

s

ωω2
ps

ω + εsωcs

. (2.40)

There is one resonance at the electron cyclotron frequency ωce. This wave is right-
hand circular polarised and thus couples to the electron gyration at ωce. The disper-
sion and the group velocity are plotted in Fig. 2.3 (solid line), where, again, only
the electron motion with a static ion background is assumed. There is a cut-off at
ωR, but in contrast to the O-mode and the X-mode, there is as well a propagating
low frequency wave (ω < ωce). This part of the R-wave is the only electromagnetic
wave mode that propagates at low frequencies. It is called a ‘whistler wave’ and
will be treated in more detail in Sec. 2.3.3.

3. L-waves: (n2 − L) = 0

The dispersion relation for the L-wave has only one different sign in the denomina-
tor compared to Eq. (2.40), but the consequences are much more far reaching

k2c2 = ω2 −
∑

s

ωω2
ps

ω − εsωcs

. (2.41)

The resonances are now at the cyclotron frequencies of the positive ion species in
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the plasma. The wave is left-hand circular polarised and couples to the ion gyration.
Fig. 2.3 (dashed line) shows this dispersion relation for an electron plasma alone
(high frequency approximation). Obviously, there is no resonance but a wave cut-
off at ωL. For frequencies well above the ion cyclotron frequency, the magnetic field
has no influence on the ion motion. The more interesting case of low frequency L-
waves, called ’ion whistler waves’, is treated for a single and a two component ion
species plasma in Sec. 2.3.4.

2.3.3 R-Waves at Low Frequencies:
Whistler waves

The R-wave dispersion (2.40) for parallel propagation simplifies at small frequencies
ωci 
 ω 
 ωce, ωpe (static ion background) to

k2c2 =
ωω2

pe

ωce

, (2.42)

the so-called whistler wave dispersion (see the low frequency part of the R-wave in
Fig. 2.3) . The group velocity

vg =
∂ω

∂k
=

2c

ωpe

√
ωωce (2.43)

increases monotonically with increasing frequency up to the approximate limit ω ≈ ωce/4

[Yeh and Liu, 1972]. That means, high frequency signals propagate faster than those with
lower frequency. An initially broadband signal thus disperses along its path of propaga-
tion with high frequencies arriving first. A schematic representation of such a dispersed
signal is shown in Fig. 2.4. A broadband signal can be initiated from a short impulse like
a lightning as the Fourier transform of a pulse, e.g. a delta peak, is a white noise spectrum
with constant amplitude for all frequencies:

Φ̂δ(ω) =
1

2π

∫
eiωtδ(T0)dt = 1 . (2.44)

These sounds of declining tones were first heard at the end of the 19th century on tele-
phone lines [Preece, 1894]. Barkhausen [1919] was the first to link these observations to

Figure 2.4: Schematic drawing of a dispersed whistler wave signal with high frequencies arriving
first.
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Figure 2.5: Example ionospheric whistler observation. Shown are the signal amplitude (top) and
the spectrogram (bottom). Taken from http://www-pw.physics.uiowa.edu/mcgreevy/.

Figure 2.6: Schematic of the whistler wave propagation along the field lines of the earth magnetic
dipole.

atmospheric phenomena. Later, Barkhausen [1930] and Eckersley [1935] related this to
the dispersive broadening of a white noise spectrum initiated from a lightning stroke in
the ionosphere. A sample spectrogram (temporal evolution of the frequency spectrum) of
whistler waves in the ionosphere is shown in Fig. 2.5. Clearly visible are the declining
tones. The four events are initiated by a lightning. They are triggered at different points
and thus propagate along different paths (magnetic field lines, cf. Fig. 2.6). Depending on
the length of the path, the magnetic field strength and the plasma density along the path,
the signal dispersion is different. According to this, the received signals show differences
in the spectrogram with respect to their duration and slope.

The dispersion relation and group velocity of whistler waves are shown in the low fre-
quency part of Fig. 2.3. Dispersion diagrams are usually plotted as the normalised wave
vector kc/ωpe vs normalised frequency ω/ωpe. In laboratory experiments, however, the
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Figure 2.7: Whistler wave dispersion (2.42) plotted for physical quantities as parallel wavelength
λ‖ vs frequency f . The ambient magnetic field and the plasma density are: B0 = 56 mT, n =
4 · 1016 m−3 (solid line), B0 = 56 mT, n = 2 · 1016 m−3 (dotted line), and B0 = 36 mT, n =
4 · 1016 m−3 (dashed line).

observed quantities are wavelength λ‖ = k‖/2π parallel to the ambient magnetic field
and frequency f = ω/2π. Fig. 2.7 shows the whistler wave dispersion branch as deter-
mined by Eq. (2.42) with these quantities for three different sets of plasma conditions:
B0 = 56 mT, n = 4 · 1016 m−3 (solid line), B0 = 56 mT, n = 2 · 1016 m−3 (dotted line),
and B0 = 36 mT, n = 4 · 1016 m−3 (dashed line). The dispersion is sensitive to both
parameters, the ambient magnetic field B0 and the plasma density n. One can see from
Fig. 2.7 and Eq. (2.42) that the wavelength at a given frequency decreases for decreasing
magnetic field and for increasing plasma density. Moreover, the wavelength depends on
the frequency as well, it decreases monotonically with increasing frequency. The nomen-
clature in ‘space research’ unfortunately deviates from that of ‘laboratory research’. I will
follow the latter one and call low-frequency R-waves ‘electron whistler waves’ or simply
‘whistler waves’ and the low-frequency L-waves ‘ion whistler waves’. In the space com-
munity, a whistler wave is only defined as ‘an electromagnetic wave excited by lightning
and dispersed while propagating through the ionosphere or the magnetosphere’ [Stenzel,
1999]. All other phenomena are classified by their appearance on spectrograms or their
sound as hiss, roar, chorus, risers, hooks, etc. [Helliwell, 1965].

2.3.4 L-Waves at Low Frequencies:
Ion Whistler Waves

The L-wave dispersion in the low frequency limit ωci ∼ ω 
 ωce differs qualitatively
from its high frequency approximation. One resonance per ion species (that means per
charge to mass ratio Z/mi) arises. Fig. 2.8 shows the dispersion relation and the group
velocity of the L-wave (dashed lines) with one single charged argon ion species. There
is a resonance at the ion cyclotron frequency ωc,Ar. The group velocity of the L-wave
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Figure 2.8: Normalised dispersion relation k(ω) and group velocity vg(ω) of the R-wave [solid
line, Eq. (2.42)] and the L-wave [dashed line, Eq. (2.41)] at low frequencies in a pure argon plasma
(ωce = ωpe/2). The vertical dotted line indicates the cyclotron frequency of argon ωc,Ar.
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Figure 2.9: Normalised dispersion relation k(ω) and group velocity (vg(ω) of the R-wave (solid
line) and the L-wave (dashed line). Now there are two ion species (50% Helium and 50% Argon)
and again ωce = ωpe/2. The vertical dotted lines indicates the cyclotron frequency of argon ωc,Ar

and helium ωc,He as well as the pass-band frequency ωpb.
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decreases monotonically up to the resonance. Above this limit, no low frequency L-wave
can propagate. The ionospheric plasma mostly consists of more than one ion species. The
L-wave dispersion changes dramatically if a second ion species is added. The L-wave
has now two resonances, one at each ion cyclotron frequency. In Fig. 2.9 the dispersion
relation and the group velocity for a 50% Argon–50% Helium plasma are shown together
with the R-wave dispersion (2.42). There are two regions of wave propagation, one for
frequencies ω < ωc,Ar and one for frequencies in a pass-band with ωpb < ω < ωc,He,
where ωpb = αArωc,Ar+αHeωc,He. The relative ion densities of the two species are defined
by αAr = nAr/n and αHe = nHe/n such that αAr + αHe = 1. The dispersion relation of
the R-wave and the L-wave intersect at the ‘crossover frequency’ ω×. From Eqs. (2.40)
and (2.41), the crossover frequency can be calculated to ω2

× = αArω
2
c,Ar + αHeω

2
c,He. For

frequencies above ω×, the group velocity of the L-wave decreases, whereas the group
velocity of the R-wave is still monotonically increasing. At the crossover frequency in
such a multicomponent plasma, mode coupling can occur between the R-mode and L-
mode wave [Smith and Brice, 1964; Gurnett et al., 1965; Yeh and Liu, 1972; Leer et al.,
1978].

In a spectrogram recorded at a distant point away from the excitation by a lightning pulse,
the R-wave would still appear as the well-known whistler, but the L-wave, excited from
mode coupling at the crossover frequency, would occur as a signal with the frequency
ω× arriving first. From its appearance in a spectrogram, such as Fig. 2.10, this is called
‘nose whistler’. These type of spectrograms are typical for an ion whistler and have been
detected in satellite data in the ionosphere [Ruud, 2000]. Clearly visible in Fig. 2.10
are the common trace of a whistler wave (t > 0.15 s) and the ion whistler wave (t >

0.35 s), both emphasised by white dashed lines. The measured ion cyclotron frequency

Figure 2.10: Example spectrogram of a whistler measurement from the Freja-satellite showing
the typical trace of an electron whistler and an ion whistler waves (white dashed lines) with a
nose frequency of ω× = 195 kHz. The horizontal solid line indicates the cyclotron frequency of
hydrogen ωc,H = 375 kHz. Adapted from Ruud [2000].
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ωc,H = 375 kHz corresponds well to the expected value calculated from the magnetic
field strength. The crossover frequency of ω× = 195 kHz was found between ωc,He and
ωc,H . As the crossover frequency varies with the ion species ratio, the spectrograms have
been used to determine the ion composition of the plasma at the detection point [McEwen
and Barrington, 1968; Ruud, 2000]. These compositions partially deviate [Ruud, 2000]
from models that are based on measurements with different techniques. Confer e.g. the
‘International Reference Ionosphere’ [Bilitza, 1997].

2.3.5 Propagation at Arbitrary Angles

R-waves in unbounded plasmas do not necessarily have to propagate purely parallel to the
ambient magnetic field. In this section, the R-wave propagation oblique to the ambient
magnetic field is treated. The angle between the wave vector k and the ambient magnetic
field B0 is called θ (cf. geometry in Fig. 2.1). Taking in Eq. (2.35) only the electron
motion into account, the dispersion reads to be similar to Eq. (2.40)

k2c2 = ω2 − ωω2
pe

ω − ωce cos θ
. (2.45)

The total wave vector is the sum of the perpendicular and the parallel components k2 =

k2
⊥ +k2

‖ and in contrast to Eq. (2.42) this formula holds true not only in the low frequency
limit. For parallel propagation (θ = 0), the wave resonance frequency is again ωce, as
previously derived for parallel R-wave propagation and k = k‖. For increasing propaga-
tion angle, the resonance frequency decreases up to an angle θres = cos−1(ω/ωce). Above
θres, no propagation is possible. This means, the R-wave propagation is restricted to a
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Figure 2.11: R-wave dispersion (2.45) plotted in a polar plot for normalised k⊥ vs k‖ (solid line).
The resonance cone limit for the maximum angle of propagation θres is plotted dashed. The three
approximated cases, the whistler, the helicon, and the slow mode wave are marked. Note the
different scales of the axis.
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cone along the magnetic field with the angle θres, called the ‘whistler resonance cone’
[Kuehl, 1962; Fisher and Gould, 1969]. For whistler waves, the maximum angle of the
group velocity is 19.5◦ [Swanson, 1989] and thus the energy flow is restricted within that
cone. This means that the whistler wave is strongly guided by the magnetic field and
whistler waves propagating in the earth’s magnetosphere can often be found at conjugate
magnetic points away from their excitation. Furthermore, it can be shown that the wave
is purely electromagnetic for parallel propagation and becomes purely electrostatic at the
resonance cone angle. At intermediate angles, the wave shows both characteristics [Swan-
son, 1989]. The resonance cone can be seen in the diagram if the wave vector is plotted in
polar representation as normalised k⊥c/ωpe vs k‖c/ωpe at a given ω/ωpe. Fig. 2.11 shows
such a normalised graph for ωpe = 2ωce = 1 and ω = 0.01. The whistler wave is found
for parallel propagation (k⊥ = 0). The resonance cone angle θres can as well be seen from
the plot to be the maximum permitted angle. The two marked points are explained below.

2.4 Whistler Waves in a Bounded Plasma

Laboratory plasmas are necessarily always bounded and mostly non-uniform. Significant
changes of the propagation behaviour of waves are expected if compared to predictions
of unbounded plasma theory that deals with plane waves in infinite and homogeneous
plasmas (cf. Sec. 2.3.2). Low frequency whistler waves in bounded geometry, the helicon
mode, is introduced in Sec. 2.4.1. A more rigourous treatment starting with a wave in a
cylindrical plasma-filled waveguide is presented in Sec. 2.4.2, following the work of Uhm
et al. [1988]. As these bounded waves are not only identified by the axial wave number
k‖ but also by their radial modenumber k⊥, the radial wave mode structure is considered
in Sec. 2.4.3. The waves are treated in a plane wave ansatz in cylindrical geometry

A(r) exp[i(k‖z − mφ − ωt)] . (2.46)

2.4.1 Helicon Waves

Helicon waves are R-waves at frequencies in between the ion and electron cyclotron fre-
quencies ωci 
 ω 
 ωce in a radially bounded plasma. Helicon waves were investigated
first in the 1960’s in metal solids [Aigrain, 1960; Legéndy, 1965] and the gaseous plasma
of an rf discharge [Lehane and Thonemann, 1965]. Helicon waves became popular in
laboratory experiments and industrial plasma engineering since the mid 1980’s, when
Boswell [1984b] discovered that helicon wave sources are surprisingly efficient in plasma
production. The dispersion relation of helicon waves can be derived from that of an R-
wave Eq. (2.45) with oblique propagation in the low frequency limit ωci 
 ω 
 ωce with
wave number k⊥ and thus, the wave vector is k2 = k2

⊥ + k2
‖ .

For the discussion of the heating mechanism, it is helpful to consider wave damping.
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The collisional damping is expressed in the dispersion relation as an imaginary collision
frequency iν, including electron collisions with both ions and neutrals. Substituting ω by
ω + iν, the helicon wave dispersion reads

k2c2 =
ωω2

pe

ωce cos θ − ω − iν
. (2.47)

Again, θ is the angle between the wave vector k and the ambient axial magnetic field (cf.
Fig. 2.1, cos θ = k‖/k). The conducting boundary of a cylindrical vacuum vessel with
radius Rc introduces two boundary conditions for the axial z-components of the electric
and magnetic field fluctuations:

δEz(Rc) = 0 and
∂

∂r
δBz(Rc) = 0 . (2.48)

In cylindrical geometry with homogeneous plasma density, the resulting eigenfunctions
are Bessel functions. A k⊥ has to be chosen such that the solutions vanish at the plasma
boundary r = Rc

Jn(k⊥Rc) = 0 → k⊥ = γnm/Rc , (2.49)

where γnm is the mth root of the nth order Bessel function and m represents the poloidal
modenumber of the eigenfunction solution. Rearranging Eq. (2.47) for the frequency
yields

ω = ωce cos θ
k2c2

ω2
pe + k2c2

(
1 − i

ν

ωce cos θ

)
. (2.50)

Two approximations of Eq. (2.50) can be derived [Boswell, 1984b; Shamrai and Taranov,
1996]. First, for short wave lengths (k 	 ωpe/c = δskin), the dispersion Eq. (2.50)
simplifies to

ω = ωce

k‖
k

− iν . (2.51)

These waves are quasi-electrostatic (n = k‖c/ω 	 1) and strongly damped. In helicon
research they are commonly referred to as slow mode waves (phase velocity ω/k⊥ ∼ vth,i)
or Trivelpiece-Gould modes, since they were first identified by Trivelpiece and Gould
[1959] as eigenmodes of an electrostatic wave in a bounded cylinder. This wave can also
be derived from Eq. (2.45) in the limit of θ → θres including collisions. Second, in the
limit of long wavelengths (k 
 ωpe/c), one obtains helicon waves. From the dispersion
relation it is seen that they are much weaker damped

ω = ωce

k‖kc2

ω2
pe

− iν
k2c2

ω2
pe

. (2.52)

Both approximations can be related to different points in the polar plot Fig. 2.11. For a
given k‖ (dotted line), two different k⊥ are possible in the dispersion. One for a large k⊥
(slow mode wave) and one for a small k⊥ (helicon wave). The real part of the helicon
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dispersion Eq. (2.52) simplifies further to

k‖k
ω

=
neµ0

B0

. (2.53)

This equation relates the wave parameters ω, k⊥, and k‖ with the plasma parameters n

and B0 [Komori et al., 1991; Chevalier and Chen, 1993]. In Sec. 6.2 this relation is
investigated in detail.

2.4.2 Waves in a Waveguide

In the previous section, the introduction of a boundary condition results in a non-zero per-
pendicular wave number that changes the dispersion of whistler waves substantially. This
leads to a satisfying result only under the assumptions of low frequencies (ω 
 ωpe, ωce)
and homogeneous plasma density distribution. A more rigourous treatment of electro-
magnetic waves in a plasma filled waveguide with axial magnetic field was developed
by Uhm et al. [1988]. From the linearised equations of motion and the continuity equa-
tion, self-consistently coupled to Maxwells’ equations, a set of two coupled eigenvalue
equations is obtained, which describes the wave’s electric and magnetic fields δEz(r) and
δBz(r)

∇2
rδEz(r) +

(
T 2 − m2

r2

)
δEz(r) + iU∇2

rδBz(r) = 0 , (2.54)

∇2
rδBz(r) +

(
S2 − m2

r2

)
δBz(r) − iV ∇2

rδEz(r) = 0 , (2.55)

where m is the poloidal modenumber and ∇2
r = d2/dr2 + r−1d/dr the radial Laplace

operator in cylindrical coordinates. T 2, S2, U , and V are defined as follows:

T 2(r) =
p2

(
1 − ∑

j=e,i ω
2
pj/ω

2
)

1 − q2(1 − α/(α2 − β2))
, (2.56)

S2(r) =
p2

α/(α2 − β2)
, (2.57)

U(r) =
kcβ/(α2 − β2)

ω[1 − q2(1 − α/(α2 − β2))]
, (2.58)

V (r) = kcβ/ωα (2.59)

with

α = 1 − ω2

c2p2

∑
j=e,i

ω2
pj

ω2 − ω2
cj

, (2.60)

β = − ω

c2p2

∑
j=e,i

ω2
pj

ω2 − ω2
cj

εjωcj , (2.61)
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with p2 = ω2/c2 − k2 and q = kc/ω. The dispersion relation of the wave is obtained by
solving for the two eigenvalues of the two ordinary differential Eqs. (2.54) and (2.55). The
dispersion relation k(ω) is contained implicitly in the parameters T , S, U , and V . Math-
ematically speaking, this requires solving a non-linear eigenvalue equation of a fourth
order ordinary differential equation. Numerically this is quite demanding but can in prin-
ciple be done using the Ricatti-shooting-method [Scott, 1973; Davey, 1977]. Results from
a numerical study with a code adapted from Kleiber [1996] are discussed in Chap. 7. An
algebraic expression for the dispersion is only found for the simple case of a flat-top
density distribution

n0
e,i =


n̂e,i = const. 0 ≤ r ≤ Rp ,

0 Rp < r ≤ Rc ,
(2.62)

with Rp the plasma radius and Rc the radius of a conducting boundary. The parameters
ωp(r), T (r), and S(r) are similarly expressed as ω̂p, T̂ , and Ŝ for r ≤ Rp and as the
vacuum terms for Rp < r ≤ Rc. The conducting vessel sets the boundary conditions of
Eq. (2.48) and together with the continuity condition at the plasma boundary (r = Rp),
the dispersion relation finally reads [Uhm et al., 1988]

[
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= 0 . (2.63)

Here â = a(r = 0) and b̂ = b(r = 0), ξ2 and η2 are the independent solutions of X2 of
the biquadratic equation (X2 − T̂ 2)(X2 − Ŝ2)−UV X4 = 0, and the geometrical factors
fm and gm are defined as

fm(p) = pRp
Nm(pRc)J

′
m(pRp) − Jm(pRc)N

′
m(pRp)

Jm(pRp)Nm(pRc) − Jm(pRc)Nm(pRp)

and

gm(p) = pRp
N ′

m(pRc)J
′
m(pRp) − J ′

m(pRc)N
′
m(pRp)

N ′
m(pRc)Jm(pRp) − J ′

m(pRc)Nm(pRp)
.

Eq. (2.63) describes the full dispersion for any combination of Rc and Rp and can be used
as the starting point for further approximations. For the case of an infinite uniform plasma
(Rc = Rp = ∞), the whistler wave Eq. (2.42) is recovered. A low frequency approxima-
tion is obtained (ω 
 ωce, ω 
 kc) similar to the helicon wave dispersion (2.52). For a
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Figure 2.12: Dispersion relation (2.64) is plot-
ted for different radii Rc (dashed lines) to-
gether with the dispersion Eq. (2.40) for un-
bounded plasma geometry [solid line].

0 0.1 0.2 0.3 0.4
0

10

20

30

40

50

60

ω / ω
pe

λ ||ω
pe

/c

Figure 2.13: Comparison of different theoret-
ical dispersion curves. Shown are the disper-
sion for unbounded plasma geometry [solid,
Eq. (2.40)], the approximation Eq. (2.64)
[dashed], and the dispersion Eq. (2.63) [dash-
dotted].

completely filled waveguide Rp = Rc it reads

ω =
ωcekc/ω̂pe

(K2
c − 1)1/2

([
Kc

kc

ω̂pe

]2

+ 1

)1/2

. (2.64)

In contrast to the simple helicon wave dispersion, two points are noteworthy. First, the
parameter K2

c = ω̂2
peR

2
c/γ

2
0nc

2 needs to be larger than unity for propagating waves (γm0

is again the mth root of the zero order Bessel function). This means that a wave needs
a certain minimum density to propagate in a plasma of a certain radius Rc. Second,
the influence of the geometry on the wave propagation is clearly be seen from the fac-
tor (Kckc/ω̂pe)

2. The low frequency approximation Eq. (2.64) is plotted for different
plasma radii Rc in Fig. 2.12 (dashed lines) together with the unbounded whistler wave
Eq. (2.40) (solid line). For a given frequency, the parallel wavelength λ‖ increases for de-
creasing plasma radius Rc. In the limit of infinite plasma radius Rc → ∞, the dispersion
of whistler waves in unbounded plasma geometry is recovered at low frequencies. The
low-frequency approximation Eq. (2.64) does not give the correct wavelengths at higher
frequencies but overestimates them. Fig. 2.13 shows the full dispersion of Eq. (2.63) for
an m = 0 mode at Rc = 0.2 m (dash-dotted line). Again, for a given frequency, the wave-
length increases with decreasing plasma radius. For low frequencies, the limit of Eq. 2.64
(dashed line) is approached. In the opposite limit for high frequencies, corresponding
to small wavelengths, the limit of the whistler wave dispersion Eq. 2.40 in unbounded
plasma geometry (solid line) is approached.
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2.4.3 Wave Field Structure

In order to gain a physical picture of helicon waves or to prove their presence in experi-
ments, it is helpful to understand their magnetic and electric wave field structure. Starting
from Maxwells’ equations and neglecting again the displacement current (low frequency
approximation), the basic wave equation is derived as [Chen, 1991]

∇2B + k2B = 0 . (2.65)

The wave number k reads to be

k =
k‖
ω

B0

eµ0

n . (2.66)

In general, the plasma density is a function of the radius n(r), but the analysis is sim-
plified with the assumption of radially constant plasma density. Numerical and analytic
calculations for a non-homogeneous plasma density have been made for special profiles
[Chen et al., 1994; Sudit and Chen, 1994a; Cho and Kwak, 1997]. Using the Laplacian
operator in cylindrical coordinates

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2
(2.67)

gives for the z component of Eq. (2.65)

B′′
z +

1

r
B′

z +

(
k2
⊥ − m2

r2

)
Bz = 0, (2.68)

where k2
⊥ = k2−k2

‖ is the wave number perpendicular to B0. This is Bessel’s differential
equation of order m. The solution is Bessel’s function Jm(k⊥r). The z-component of the
magnetic helicon field is

Bz = CJm(k⊥r). (2.69)

Using the nabla operator in cylindrical coordinates

∇ =
∂

∂r
êr +

1

r

∂

θ
êθ +

∂

∂z
êz (2.70)

one can determine the r- and the θ-components of Eq. (2.65)

im

r
Bz − ik‖Bθ = kBr (2.71)

ik‖Br − B′
z = kBθ. (2.72)

Solving these equations for Bz and B′
z and substituting Eq. (2.69) for Bz yields

Br = i
C

k2
⊥

(m

r
kJm(k⊥r) − k‖J ′

m(k⊥r)
)

(2.73)

Bθ =
C

k2
⊥

(m

r
k‖Jm(k⊥r) + kJ ′

m(k⊥r)
)

. (2.74)
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Using the recurrence relations for Bessel functions [Abramowitz and Stegun, 1984]:

2m

k⊥r
Jm(k⊥r) = Jm+1(k⊥r) − Jm−1(k⊥r) (2.75)

2

k⊥

∂

∂r
Jm>0(k⊥r) = Jm+1(k⊥r) − Jm−1(k⊥r) (2.76)

leads to the solutions of the magnetic field of a helicon wave of the form

Br = i
C

2k⊥
[(k + k‖)Jm−1(k⊥r) + (k − k‖)Jm+1(k⊥r)] (2.77)

Bθ = − C

2k⊥
[(k + k‖)Jm−1(k⊥r) − (k − k‖)Jm+1(k⊥r)] (2.78)

Bz = CJm(k⊥r). (2.79)

Again, the conducting vessel of radius Rc imposes boundary conditions, Eqs. (2.48), and
determines thus the perpendicular wave vector k⊥. A plot of the magnetic modestructures
in radial direction is shown for mode number m = 0 and m = +1 in Fig. 2.14 for
typical experimental conditions: B0 = 50 mT, f = 13.56 MHz, k‖ = 2π/0.15 m−1, and
k⊥ = 3.83/0.05 m−1. A colour-coded plot of the axial magnetic fluctuations in the entire
poloidal plane is depicted in Fig. 2.15 for the same experimental conditions. Clearly
visible is the great difference between the m = 1 mode with a centre minimum (left) and
the m = 0 mode with a centre maximum (right). Note that there is a principle difference
of the modestructure between the previously used cylindrical coordinate system and the
cartesian frame used for the measurements. However, both coordinate systems can are
related by simple trigonometric formulae and for purely vertical and purely horizontal
cuts through the centre, both systems coincide.
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Figure 2.15: Poloidal profile of Bz calculated for an m = 1 mode (left) and m = 0 mode
helicon wave. The parameters are B0 = 50 mT, f = 13.56 MHz, k‖ = 2π/0.15 m−1, and
k⊥ = γm0/0.05 m−1





3

RF Discharges

The main plasma source used at the VINETA device is a conventional helicon source. It is
made of an rf driven m = +1 antenna of length l = 300 mm that is placed around a cylin-
drical glass vacuum extension with 100 mm diameter (see Figs. 4.2 and 4.21). Depending
on the input rf power, the discharge operates in three qualitatively different modes, the
capacitive, the inductive, and the helicon wave sustained mode. The first two discharge
modes are fairly well understood. In Secs. 3.1 and 3.2 a brief introduction is given, follow-
ing the modelling of Lieberman [1988]; Lieberman and Lichtenberg [1994], and Eckert
[1986]. Although helicon sources are used since the mid 1980’s, the physical principle
of their surprisingly efficient discharge mechanism in the third mode, the helicon wave
sustained mode, is still a scientific case. With the theoretical framework of the previous
chapter on (bounded) electromagnetic plasma waves in mind, this chapter reviews the lit-
erature on helicon sources and discusses the most promising discharge models (Sec. 3.3).

3.1 Capacitive Discharges

A simple and widely used rf source is the capacitive discharge. Its easiest design is shown
schematically on the left-hand side in Fig. 3.1. It consists of two parallel electrodes that
are driven by an rf source with no applied external magnetic field. It is operated in a
frequency range of 1–100 MHz, but mostly at the technical frequency of 13.56 MHz or its
higher harmonics. Thin positive ion sheaths form in front of the electrodes as the electron
mobility is much higher than that of the ions (vth,e ≈ 100vth,i) [Stangeby, 2000; Riemann,
1991]. The electrons are therefore faster lost to the electrodes and the electrodes charge
up negative with respect to the plasma (cf. right-hand side of Fig. 3.1). The sheath thick-
ness varies during an rf cycle as the electrons of the bulk plasma between the sheaths are
attracted or repelled by either electrode, depending on their instantaneous voltage. The
ion inertia is much higher due to the larger ion mass so that the ions cannot react to the
changing electric fields during an rf cycle (f = 13.56 MHz > fpi ≈ 3 MHz). Their
motion is due to time-averaged electric potentials only. The plasma potential φpl (= Vp

in Fig. 3.1) establishes to a few kBTe/e with respect to the wall potential to confine the
electrons. The ion bombardment energy, the energy the ions gain in the potential drop of
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Figure 3.1: Schematic of an asymmetric capacitive discharge with two parallel plates (left). The
radial plasma density and plasma potential distribution is depicted on the right. Taken from
[Lieberman and Lichtenberg, 1994].

the sheath, on the walls is thus in the order of a few kBTe/e. In industrial plasma etching
applications, the substrate is usually placed on the driven electrode and a blocking capac-
itor is introduced between the rf source and the electrode. In such discharges, also called
rf diodes, the energy of the ions accelerated towards the substrate can be substantially
higher, as high as the applied rf voltage.

The energy transfer of rf power is mainly to the electrons, which in turn ionise the neutral
atoms by inelastic collisions. The heating mechanism itself it twofold: First, power is
absorbed in the bulk plasma by Ohmic heating. The oscillating electrons of the bulk
plasma collide with the neutral particles and transfer energy by inelastic collisions. The
power deposition per unit area due to Ohmic heating can be derived analytically for a
simple symmetric discharge [Lieberman and Lichtenberg, 1994] and reads

S̄Ohm =
1

2

meνend

e2n
j2
rf . (3.1)

Here, d is the bulk plasma length between the electrodes, νen is the electron-neutral col-
lision frequency, and jrf the rf current density. Secondly, stochastic heating provides a
collisionless way of power deposition. Electrons are reflected by the fast moving electric
fields in the sheath regions. Assuming a Maxwellian electron energy distribution, there
is a net positive energy transfer to the plasma. Again, the power absorption can be given
analytically [Lieberman and Lichtenberg, 1994]

S̄stoc =
1

2

mevth,e

e2n
j2
rf . (3.2)

In magnetically enhanced discharges, an external magnetic field is superimposed parallel
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to the electrodes [Park and Kang, 1997; Lieberman et al., 1991]. Here, the Lorentz force
introduces an anisotropy in the plasma. While the charged particle motion along the mag-
netic field is not affected, their mobility perpendicular to the magnetic field is strongly
reduced. The electrons of the bulk plasma can therefore no longer oscillate freely be-
tween the electrodes during an rf cycle. The magnetic field effectively suppresses Ohmic
heating. The stochastic process in turn is enhanced by the magnetic field as the elec-
trons close to the sheath can collide several times with the fast moving sheaths; a gyrating
electron can now collide again after approximately half a gyro period instead of moving
directly into the bulk plasma after the first collision and thus gain considerably more en-
ergy [Lieberman and Lichtenberg, 1994]. The plasma density is magnetically mapped
along a region parallel to the surface of the electrodes, which yields a maximum plasma
density in the sheath edge.

Major disadvantages of capacitive discharges (also magnetically enhanced) are their rela-
tively low plasma density (n ≤ 1017 m−3) and their lack of independent control of plasma
potential and plasma density. Controlling plasma density and plasma potential indepen-
dently from each other is particularly important in etching reactors, where a high ion flux
is necessary but high ion energy leads to defects in the etching substrate [Lieberman and
Lichtenberg, 1994]. A dielectric material (glass or ceramics) between the electrodes and
the plasma reduces the voltage across the sheath and thereby the ion impact energy. A sec-
ond electrode can control the ion energy if necessary [Schneider et al., 1999a; Aanesland
et al., 2001]. The problem of relatively low plasma densities, however, remains.

3.2 Inductive Discharges

The simplest possible inductive discharge consists of a current driven coil placed around
a cylindrical dielectric vacuum tube, as shown schematically in Fig. 3.2. It is operated at
frequencies in the range of 1–100 MHz, well below the self-resonance frequency of the
coil. Again, no magnetic field is necessary to operate an inductive discharge, but it may
help to map the source plasma loss-free to a remote region. With an inductive discharge,
plasma densities up to n ≤ 1018 m−3 can be reached, which is one order of magnitude
above capacitively coupled discharges. In inductive discharges, the rf power coupling to
the plasma is Ohmic and stochastic, as well. But, the oscillating electric fields have now
two origins: First of all, the voltage drop over the coil leads to oscillating electric fields
between the two ends of the coil like in a capacitive discharge. The voltage drop (and
thus the capacitive coupling) can be reduced by using a coil with low winding number
(low inductance) or by inserting a Faraday shield between the antenna and the dielectric
[Hopwood, 1992]. Secondly, the rf current in the antenna induces an electric field inside
the antenna and drives an electron current that heats the plasma via collisions. In contrast
to a classical capacitive discharge, where the rf current path is through the plasma, the
induced electric fields in an inductive discharge can only penetrate the surface of the
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RF

dielectric

Figure 3.2: Schematic of a simple inductive discharge. Inductive fields are created by an rf coil
which is wound around a dielectric.

plasma within the skin depth δ. For a collisionless plasma (νen 
 ω) the skin depth
reads [Lieberman and Lichtenberg, 1994]

δp =
c

ωpe

. (3.3)

Calculating some numbers for the collisionless skin depth and comparing them to the
source radius R of the VINETA experiment used in the present work, one can distinguish
two different regimes:

1. n = 1016 m−3 � δp = 53 mm � R (low density, large skin depth)

2. n = 1017 m−3 � δp = 17 mm < R (high density, small skin depth).

The skin depth is a measure for the distance within which the electric field inside the
antenna has decreased to its 1/e-value compared to the vacuum case. In other words, cur-
rents are induced within the skin depth which shield out the electric fields in the plasma
body. These currents become important and contribute significantly to the plasma heating
process at higher densities and have maximum efficiency if the skin depth becomes the
vessel radius (δp ≈ R) [Lieberman and Lichtenberg, 1994; Hopwood, 1992]. If a mag-
netic field is superimposed on the discharge, the skin depth is even increased. The skin
depth is directly related to the conductivity of the plasma and the magnetic field introduces
an anisotropy that further complicates the calculations. An analytic expression relating
only the directly perpendicular and parallel components of the conductivity tensor σ was
given by Bittencourt [1995]

σ⊥ =
(νc − iω)2

(νc − iω)2 + ω2
ce

σ‖ , (3.4)
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where νc is the collision frequency and ωce the electron cyclotron frequency. Thus, the
perpendicular conductivity decreases with B0 and with it, the perpendicular skin depth in-
creases, δ⊥ ∝ B0. In agreement with this, it has been reported for low magnetic fields that
a transition from the capacitive to the inductive mode occurs at densities where the skin
depth for unmagnetised plasmas, Eq. (3.3), is roughly half of the source radius [Degeling
et al., 1996]. Later, a constant σ⊥/R ratio was reported at various magnetic fields for the
transition to the helicon mode [Degeling et al., 1998].

With inductive discharge setups, two operational modes can be maintained. At lower
densities, where the skin depth is larger than the plasma radius, there is no significant
effect of shielding out electric fields. The electric field distribution is almost equal to the
vacuum case and the power is transferred via the sheath near the antenna, just like in a
capacitive discharge [Ellingboe and Boswell, 1996]. Only at higher rf powers (higher
plasma densities) the induced currents are large enough to contribute significantly to the
heating process. The low density operational regime of a conventional helicon source
is therefore called ‘capacitive’ mode and the higher density regime ‘inductive mode’,
according to their major rf power absorption mechanism. The highest density regime,
where helicon waves sustain the discharge, is called ‘helicon mode’ and is reviewed in
the next section.

3.3 Helicon Discharges

Since their invention in the mid 1980’s by Boswell [1984b], helicon sources are widely
used because of their ability of very efficient plasmas production with plasma densities
up to n ≤ 1020 m−3 with only a few kW of rf power [Boswell and Chen, 1997; Chen
and Boswell, 1997]. A simple estimation for a cylindrical discharge (length l and radius
R) with axial magnetic field underlines the surprisingly effective ionisation (following
Chen [1991]): The axial magnetic field strongly inhibits the radial particle motion due to
the Lorentz force. Usually, even the ion Larmor radius is smaller than the device radius
(ρe ≈ 0.5 mm 
 ρi ≈ 10 mm < R). The plasma is therefore lost predominantly at
the grounded axial endplates (wall). As the electrons are much more mobile than the
ions, the wall potential is negative with respect to the plasma space charge potential and
a positive sheath forms in front of the wall. To maintain such a sheath, the ions have to
be accelerated in a pre-sheath according to the Bohm criterion and the plasma is lost by
drift with the ion acoustic velocity cs [Riemann, 1991]. The ion particle loss rate dN/dt

to one endplate with surface A = πR2 is therefore dN/dt = Ancs. If W is the average
energy necessary for a single ionisation process, the power needed to sustain a steady
state discharge with constant time averaged density is P = WdN/dt. Typical parameters
in VINETA for helicon mode discharge are R = 0.05 m, cs = 3460 m/s, P = 2.5 kW, and
n = 1019 m−3. This leads to an effective ionisation energy of W = 57 eV. The ionisation
energy of argon is Ear = 15.8 eV which means that every fourth inelastic collision must
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ionise an atom. This has to be compared to other discharges, where only about one in ten
to fifteen inelastic collisions ionises, which corresponds to an effective ionisation energy
≈ 200 eV.

Helicon sources are widely used in research laboratories and have been used in material
processing [Perry et al., 1991; Chen, 1995; Chen et al., 2001], for plasma production in
toroidal devices [Loewenhardt et al., 1991; Tripathi and Bora, 2001], and in thruster ex-
periments [Chang Diaz, 1999, 2000]. Helicon sources can even be bought ready made
for material processing applications [HARE c© helicon source; MORI c© helicon source].
In contrast to capacitive and inductive discharges, helicon discharges require a magnetic
field that is typically in the range of 10 − 100 mT. Some sources have also been operated
at low magnetic fields < 10 mT [Degeling et al., 1996; Kaeppelin et al., 2001]. Helicon
sources commonly consist of an rf driven antenna placed around a cylindrical glass vac-
uum tube immersed in a magnetic field parallel to the cylinder axis. The antenna excites a
helicon wave (see Sec. 2.4.1) that is responsible for the plasma production. Many different
antenna designs have been tested and used [Balkey et al., 2001; Light and Chen, 1995],
but mostly antennae with right-hand helical winding (m = +1 antenna, see Figs. 4.2
and 4.21) are used. Experiments measuring the spatial distribution of the magnetic fluc-
tuations of the helicon wave give a detailed understanding of the propagation, damping,
and radial mode structure of the helicon wave [Light and Chen, 1995; Light et al., 1995;
Ellingboe and Boswell, 1996]. Despite this, the damping mechanism itself is still poorly
understood and under intense scientific debate, e.g. during the APS Mini-Conference
on Applications of Helicon Plasma Sources [2001]. The three most promising possible
explanations are briefly reviewed in the following:

1. It was proposed that Landau damping of helicon waves could explain the high
damping rate and thus the efficient wave-particle energy transfer [Chen, 1991].
Landau damping is a collisionless kinetic effect, where the wave energy is trans-
ferred to particles propagating slightly below the phase velocity of the wave. The
Landau damping rate is given by

Im(k)

Re(k)
= 2

√
π

vth3.83

ωcea
ζ4 exp−ζ2 , (3.5)

where a is the plasma radius and ζ = ω/kvth [Chen, 1991; Keiter et al., 1997].
Fig. 3.3 shows the Landau damping rate vs electron temperature for different com-
binations of ω/k. Typical electron temperatures measured in a helicon source are 2–
10 eV. This means, the damping rate is well below 3 %, too small to contribute sig-
nificantly. For higher temperatures around 25–50 eV the damping rate approaches
� 10 % for favourable wave phase velocities ω/k and could well contribute to
wave damping. Therefore, numerous experimental efforts have been made to find
a high temperature electron population in helicon discharges, but the results are
ambiguous. In earlier experiments, direct measurements with Langmuir probes
[Loewenhardt et al., 1995] and energy analysers [Molvik et al., 1997], as well as
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Figure 3.3: Plot of the Landau damping rate [Im(k)/Re(k), Eq. (3.5)] for different driving fre-
quencies and wavelengths. f = 13.56 MHz, λ = 150 mm (solid), f = 13.56 MHz, λ = 200 mm
(dashed), and f = 27.12 MHz, λ = 150 mm (dash-dotted).

spectroscopic measurements [Ellingboe et al., 1995] showed the existence of high
energy electrons. On the other hand, more recent experiments used carefully com-
pensated probes and energy analysers and clearly ruled out the existence of high
energy electrons [Chen and Blackwell, 1999; Blackwell et al., 2002].

2. The coupling to Trivelpiece-Gould (TG) waves was proposed as another mechanism
responsible for the efficient absorption of rf power in helicon discharges [Shamrai
and Taranov, 1996]. As already shown in Sec. 2.4.1, the dispersion Eq. (2.47)
yields two modes: the weakly damped helicon mode Eq. (2.52) and the strongly
damped slow mode Eq. (2.51). If the plasma, and with it the wave, extend up to
the conducting boundary vessel, both modes can coexist. If there is a vacuum gap
between the plasma and the conducting boundary or if there is an insulating bound-
ary, and this is the case in most helicon experiments, the boundary conditions can
only be satisfied by a superposition of both modes [Shamrai and Taranov, 1996].
Both modes couple at the plasma surface and energy may be transferred from the
weakly damped helicon mode to the strongly damped slow mode wave. A direct
measurement of slow mode waves in conventional helicon sources is extremely dif-
ficult as their perpendicular wavelength is very small at commonly used magnetic
field strengths. For example for B0 = 50 mT, the perpendicular wavelength is ob-
tained from Eq. (2.51) to λ⊥ ≈ 1.5 mm (ωce/2π = 2.8 GHz, ω/2π = 27 MHz,
k‖ = 0.01k⊥ ⇒ λ⊥ ≈ 0.01λ‖; λ‖ ≈ 150 mm cf. Chap. 6). As the slow mode waves
are strongly damped, they only exist in a small region at the surface of the plasma,
too small to be resolved by direct measurements. For much lower magnetic fields,
however, the waves extend much deeper into the plasma. For B0 = 1 mT, e.g., the
perpendicular wavelength is λ⊥ ≈ 0.57λ‖ ≈ 86 mm (ωce = 57 MHz). Due to the
experimental difficulties to study the role of slow mode waves in the plasma heat-
ing scenario, numerical antenna-plasma-coupling simulations were done to gain
insight into the deposition of the wave energy into the plasma. The results, how-
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ever, are ambiguous and are strongly influenced by the underlying model. A cold
plasma antenna-wave coupling code showed that ‘the TG waves do not lead to a
significant increase in antenna coupling’ [Borg and Boswell, 1998]. A different
code that compared the simulation results with analytic expression for the sim-
ple homogeneous case in turn showed that the ‘TG mode dominates the heating at
low magnetic fields and deposits its wave energy near the edge region’ [Mouzouris
and Scharer, 1998]. Recent experimental evidence for the existence of slow mode
waves in a helicon discharge at low magnetic fields was found by comparing mea-
surements of the current profiles using a miniature Rogowski coil with numerical
simulations [Blackwell et al., 2002]. An indirect measurement using Laser Induced
Fluorescence (LIF) was proposed by Kline et al. [2000] and Franck et al. [2000]
and is further discussed in Sec. 4.2.4.

3. Recently, lower hybrid wave coupling has regained attention and is thought of as be-
ing important for explaining the efficient coupling mechanism. Resonant coupling
of lower hybrid waves (Sec. 2.3.1) was used for plasma heating, mainly in fusion ap-
plications [Pinsker, 2001; Brambilla, 1976, 1979; Cho and Swanson, 1988] but has
long been neglected in the helicon community although Boswell’s original paper
reported on the ‘very efficient plasma generation by whistler waves near the lower
hybrid frequency’ [Boswell, 1984b]. Recent experiments with varying magnetic
field showed a maximum plasma density [Zhu and Boswell, 1989; Kwak et al.,
1997; Yun and Chang, 1998; Cho, 2000] and maximum ion temperature [Balkey
et al., 2001] to be established always close to the lower hybrid frequency. These
experiments are supported by a numerical study using a self-consistent code solv-
ing the wave equation together with the balance equations for electron density and
temperature. It was shown that the plasma resistance has a maximum near the lower
hybrid frequency that could be responsible for the efficient ionisation [Cho, 2000].
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Experimental Techniques

4.1 The Plasma Experiment VINETA

side view

helicon source

Figure 4.1: Picture of the linear magnetised plasma experiment VINETA in configuration for rf
plasma production. The insets show the helicon discharge mode in argon seen through an optical
bandpass filter around (442 ± 5) nm.

The conceptual idea of the VINETA1 device is to have a flexible and large linear mag-
netised plasma experiment to study various different aspects of wave dynamics. Fig. 4.1
shows a photograph of the device and a schematic is plotted in Fig. 4.2. In the design,
special emphasis is put on the accessibility with diagnostic tools to facilitate optimal
measurements. To ensure easy handling and maintenance, the device follows a modular
concept and consists of four identical modules. Each module is made up of a stainless

1VINETA is an acronym for ”Versatile Instrument for studies on Nonlinearity, Electromagnetism,
Turbulence, and Applications”.
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Figure 4.2: Schematic of the VINETA experiment in configuration for rf produced plasma. Shown
are the vacuum chambers I-IV, vacuum pumps (1), field coils (2) with their dc power supplies (3),
glass vacuum extension with helical antenna (4), rf power supply (5), and matching unit (6).

steel chamber with 400 mm in diameter and 1128 mm in length. The chamber has thirteen
CF-40, two CF-60, and two rectangular (250×90 mm2) flanges and is placed on a trolley.

Each vessel is immersed in an axial linear magnetic field created by eight water cooled
coils. Each coil has a diameter of 600 mm and is made up of 45 windings of copper with
rectangular profile (5x5 mm2) and central bore. Additional coils at the end segments en-
sure a homogeneous magnetic field over the entire device. The maximum magnetic field
of 100 mT can be established with a spatial magnetic ripple less than 1 %. The coils of
each module are freely positionable along the axial direction and are supplied by a 60 kW
dc power supply. This enables the realisation of a large variety of magnetic field con-
figurations, either by adjusting the positions of the coils along the axis or by operating
the modules at different coil currents. Fig. 4.3 shows three different example magnetic
field configurations. The two graphs (a) and (b) show the magnetic field strength of the
standard homogeneous configuration with maximum coil current of 260 A. The vessel
dimensions are indicated in both graphs by the dotted lines. The colour-coded graph (a)
clearly shows the great homogeneity of the magnetic field over the entire chamber vol-
ume. The magnetic field strength along the axis is plotted for different radial positions in
graph (b). The magnetic ripple on axis (r = 0 mm) is below 0.1 %. With increasing ra-
dius (r = 100 mm and r = 150 mm), the inhomogeneity increases but stays always below
1 %. Fig. 4.3 (c) and (d) show colour-coded the magnetic field strength for two inhomoge-
neous distributions, (c) with a simple axial gradient and (d) for a ‘mirror’ configuration.
Fig. 4.3 (e) shows the central (r = 0 mm) axial magnetic field for all three cases. For
the axial gradient configuration (c), the two left modules are operated at 100 A and the
two right ones at 260 A. The magnetic field on the left and the right are homogeneous in
itself and the transition between both regions happens within ≈ 600 mm. The minimum
gradient length of the magnetic field is limited by the coil diameter and cannot be steeper
for the VINETA device than shown here. In the mirror configuration (d), the two centre
modules are operated at 100 A whereas the two outer modules are run with 260 A, which
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Figure 4.3: Different magnetic configurations at the VINETA experiment. Shown are colour
coded a homogeneous distribution (a), a single gradient (c) and a mirror configuration (d). The
1D plots show the magnetic field strength in the homogeneous configuration along the axis for
different radii (b) and on axis for all three configurations (e). The coil currents are chosen I =
260 A and I = 100 A in the regions of high and low magnetic field, respectively.
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Figure 4.4: Ion saturation current measurement during an rf pulse (input power 2 kW and length
160 ms). After the rf power is switched on at t = 0 ms, a stationary discharge is established after
≈ 20 ms transit time. The typical e−1 decay time after switching the rf power off s ≤ 1 ms.

leads to a mirror ratio of Rm ≈ 100/40 = 2.5. This configuration is called ‘magnetic mir-
ror’ because some particles are reflected from the axial magnetic field gradients and are
confined to the central region of lower magnetic field [Chen, 1984; Goldston and Ruther-
ford, 1995]. This configuration is still used nowadays for plasma confinement in fusion
related experiments [Hwang et al., 1999]. Not shown here, but also of practical use are
configurations where the position of the coils is changed. Each coil is freely positionable
along the axial direction and enable numerous further magnetic configurations like gradi-
ents and mirrors with higher ratio of the magnetic fields or configurations with regions of
zero magnetic field (null-points).

The vacuum is established by a rotary pump and a turbo pump that are installed on one
end of the VINETA device. Both pumps enable a base pressure of 1 · 10−4 Pa without
baking. The plasma source is installed on the opposite end of the machine. It is a standard
helicon source and consists of a Pyrex vacuum extension of 500 mm length and 100 mm
diameter with a right-hand helical copper antenna [Light and Chen, 1995]. An extra set
of three coils and an extra power supply extends the magnetic field to the antenna region.
The antenna is fed by a high-power rf source/amplifier and is matched with a standard
L-matching circuit [Rayner et al., 1996]. The rf source can be operated at frequencies
f = 2–30 MHz and the amplifier yields output powers up to P = 2.5 kW (cw) and
P = 6 kW (pulsed). The rf power is monitored with two Bird c© metres, one for forward
and one for reflected power. The rf antenna current is measured with a calibrated current
monitor. In the homogeneous magnetic field arrangement used in the course of this thesis,
the plasma radius is limited by the antenna radius of 50 mm. Magnetic configurations with
high magnetic field at the source and lower magnetic field within the chamber enable
plasma expansion to a larger diameter (but consequently lower density). Depending on
the applied rf power, the plasma density is in the range of n = 1015–1019 m−3. At higher
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input powers (Prf ≥ 1.5 kW, Irf ≈ 60 Arms) the glass cylinder cannot withstand the
plasma heat load and is liable to melt or break. A hollow antenna with water cooling
enables a cw operation up to higher powers, but the principle problem remains. The
source is therefore typically operated in a pulsed mode with pulse lengths of ≈ 0.2–2 s
and a duty cycle of 10–50 %. Fig. 4.4 shows a plasma density measurement during an
rf pulse of 160 ms length at an rf power of 2 kW (helicon mode). The density increases
during the first 20 ms before it reaches a stationary phase with constant plasma density.
Evidently, in pulsed plasma operation, the measurements must be taken in the stationary
phase to avoid spurious effects. Measurements on timescales well below 
 1 ms can
be made in the plasma afterglow. The plasma in this phase is very quiescent and may
improve on signal-to-noise-ratio of sensitive measurements. On the other hand, signal
averaging must be done in repetitive pulses and thus, longer measurement times have to
be accepted.

Table 4.1 gives an overview of the operational and plasma parameters in VINETA for
the experimental conditions in this work. Helicon plasma sources may operate in three
distinctively different modes, the capacitive, the inductive and the helicon wave sustained
mode (see above). The table compiles the plasma and operation parameters of the three
modes. The discharge mechanisms were reviewed in Chap. 3 and investigated thoroughly
for the VINETA device in Chap. 6. As mentioned above, one of the strengths of the
VINETA device is its accessibility. The numerous ports enable parallel measurements
with multiple diagnostics or subsequent measurements without breaking the vacuum. Two
two-dimensional positioning systems provide spatial measurements with high resolution.
One poloidal positioning system (the plane of the plasma cross section perpendicular
to the ambient magnetic field) can be flanged to one of the large rectangular windows.
Two computer controlled servo motors enable free positioning in a rectangular plane per-
pendicular to the axial magnetic field with ≈ 200 mm in vertical and ≈ 250 mm in the
horizontal dimension (see grey plane in schematic of Fig. 4.20). The probes are fixed on a
carriage and connected to up to eight coaxial cables which are tautened in a lever system
and soldered to vacuum feedthroughs. Two linear motion vacuum feedthroughs move the
carriage independently in vertical and horizontal direction. The positioning accuracy of
the system is better than 1 mm. While the poloidal positioning unit is completely mounted
outside the VINETA device, the second system is installed in the lower section inside the
device. The highest part of the system, the movable carriage, is only 70 mm in height, en-
abling the operation of an undisturbed plasma with 260 mm diameter. This system enables
probe positioning in the horizontal plane parallel to the magnetic field with ≈ 3000 mm
in axial and ≈ 200 mm in radial direction (see grey plane in schematic of Fig. 4.21). Two
servo motors, connected to rotational vacuum feedthroughs, move the carriage via two
tooth belts. Again, the probe leads are connected to coaxial cables at the carriage and the
cables are connected to coaxial vacuum feedthroughs.
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Table 4.1: Summary of the typical operational and plasma parameters in the VINETA device for
the different discharge modes.

Argon Argon Argon Helium

capacitive inductive helicon helicon

base pressure pb (Pa) � 10−4

magnetic field B0 (mT) ≤ 100

gas pressure p (Pa) 10−2–1 0.5–1 > 0.3 2.5
rf power Prf (kW) < 0.5 0.5–1 > 1 > 3

plasma density n (m−3) 1015–1017 1017–1018 1018–1019 1018–1019

ionisation η (%) 0.1–1 1–10 10–100 10–100

electron temperature Te (eV) 1 3 5 5
ion temperature Ti (eV) ≈ 0.025 ≥ 0.025 ≤ 0.2 ≤ 0.2

Debye length λDe(µm) 24–237 13–41 5–17 5–17

electron gyro radius ρe (µm) 25–500 50–900 50–1100 50–1100

ion gyro radius ρi (mm) 1–10 1–10 3–30 1–10

electron plasma frequency fpe (GHz) 0.3–3 3–9 9–28 9–28

ion plasma frequency fpi (MHz) 3–11 11–33 33–100 100–330

electron cyclotron frequency fce (GHz) ≤ 2.8

ion cyclotron frequency fci (kHz) ≤ 38 ≤ 380

upper hybrid frequency fuh (GHz) ≤ 4 ≤ 9.5 ≤ 28.5 ≤ 28.5

lower hybrid frequency flh (MHz) ≤ 15 ≤ 35 ≤ 105 ≤ 330

electron thermal velocity vth,e (105 m/s) 5.9 10.3 13.3 13.3

ion thermal velocity vth,i (m/s) ≈ 345 ≥ 345 ≤ 975 ≤ 3080

ion acoustic velocity cs (m/s) 550 2680 3460 10 950

Alfvén velocity vA (105 m/s) < 100 < 3 < 1 < 3

electron-ion collision freq. νei (MHz) 0.04–4 0.7–6 3–28 28

electron-neutral coll. freq. νen (MHz) 0.02–2 7–40 35 43

ion-neutral collision freq. νin (kHz) 0.4–40 20–40 100 800
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4.2 Diagnostic Instrumentation

Experiments in the VINETA device are done with various diagnostic instruments. A
simple and widespread diagnostic tool to measure the basic plasma parameters is the
Langmuir probe [Chen, 1965; Hershkowitz, 1989; Demidov et al., 2002]. It is described in
Sec. 4.2.1, together with the particularities arising in rf produced and magnetised plasmas.

Magnetic fields are commonly measured with Hall sensors. Standard Hall sensors can
measure magnetic fluctuations up to frequencies f ≈ 20 kHz and may go up to f <

80 kHz if specially designed [Mank et al., 2001; Duran et al., 2002]. Magnetic fluctuation
probes (Ḃ-probes) are used to measure magnetic fluctuations at higher frequencies f ≥
100 kHz. Unfortunately, these probes are susceptible to erroneous electrostatic pickup
if large electrostatic fluctuations are present, which is always the case in rf produced
plasmas. A variety of compensation schemes exist and help to prevent this unwanted,
capacitively coupled pickup. Magnetic fluctuation probes and a detailed comparative
study of pickup rejection schemes are explained in detail in Sec. 4.2.2.

Probes are always intrusive and have to be build as small as possible to minimise plasma
disturbance. Non-intrusive techniques are therefore preferred but often lack spatial res-
olution. With the Laser Induced Fluorescence (LIF) method ion energy distributions are
measured and if the distribution is a Maxwellian one , the ion temperature can be derived.
If a coherent perturbation causes a disturbance in the distribution, the perturbed ion en-
ergy distribution function may be measured. The LIF-methods used here are explained in
Secs. 4.2.3 and 4.2.4.

The absolute line integrated plasma density is measured non-intrusively with a microwave
interferometer, which is explained in Sec. 4.2.5.

4.2.1 Langmuir Probes

Due to their technical simplicity, Langmuir probes are widely used to determine the basic
stationary plasma parameters such as plasma density n, electron temperature Te, plasma
potential φpl, and floating potential φfl. In the simplest case they consist of a cylindrical
or plane electrode that is connected to an electrical circuit measuring current-voltage-
characteristics (IU -curves); schematically shown in Fig. 4.5 (a) and (c). Langmuir probes
can in principle be used in all sorts of plasmas, their applicability in high density and high
temperature plasmas is only limited by the thermal load they can withstand.

- In unmagnetised plasmas the probe characteristics are relatively straightforward to
analyse and can be divided into three parts [Chen, 1965; Cherry, 2000]: the ion
saturation region, the electron start-off region, and the electron saturation region.
The floating potential φfl is the point of vanishing net current in the IU -curve. Any
floating object immersed into the plasma loads up to this potential. For strongly
negative probe bias (Up 
 φfl) only ions can reach the probe and all electrons



44 Experimental Techniques

isolation
amplifier

R0

RF chokes

tungsten 
probe tip

ceramic tube

bipolar
dc source

floating
electrode

a)

b)

c)

Figure 4.5: Simple Langmuir probe (a), passive rf compensated probe (b), and measuring cir-
cuit (c).

are repelled by the potential barrier. The probe current (ion saturation current) is
determined by the Bohm-criterion [Riemann, 1991; Allen, 1995] and reads

Ii,sat = 0.61neA

√
kBTe

mi

, (4.1)

where A is the effective surface of the probe. As the dependence of the electron
temperature on the ion saturation current is only weak and the temperature fluc-
tuations are usually small, Ii,sat is a good measure for the plasma density and is
sometimes used in this work to determine relative plasma density profiles. Sec-
ondly, in the electron start-off region for probe bias slightly above φfl, electrons
start to contribute significantly to the current flow. In a plasma where the electrons
are in local thermodynamic equilibrium, the electron energy distribution function
is a Maxwellian one. For such a distribution with average velocity v̄e, the electron
probe current reads

Ie = neAv̄e exp

(
−e(Up − φp)

kBTe

)
. (4.2)

From a best fit of this formula to the electron start-off region in a measured IU -
curve, the temperature Te can be derived. For voltages larger than the plasma po-
tential φpl the current to the probe is carried by the electrons only. This electron
saturation current is given by

Ie,sat = neA

√
kBTe

2πme

. (4.3)

The effective surface area A of the probe is only for large plane probes constant. In
particular for cylindrical probes the effective area increases due to sheath expansion
effects with increasing probe bias [Chen, 1965].

- The long known problems with the use of electrostatic probes in magnetised plas-

mas are twofold [Chen, 1965]. First, the charged particle motion is anisotropic.
The particles can move almost freely in direction of the magnetic field whereas
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Figure 4.6: Example IU -characteristic. Shown are measurements with a compensated Langmuir
probe (solid line) and a two-temperature fit using the theoretical framework presented by Demidov
et al. [1999] (dashed line), which provides the plasma densities n1,2 and the electron temperatures
Te1,2 for two superimposed thermalised components.

their motion perpendicular is strongly reduced due to the Lorentz force. Second,
the effective mean free path perpendicular to the magnetic field is now given by the
Larmor radii (ρe, ρi) and the way the charged particles, especially electrons, reach
the probe is strongly affected. A partially kinetic probe theory was developed by
Demidov et al. [1999] for cylindrical probes aligned perpendicular to the magnetic
field where electrons are strongly magnetised (ρe smaller than the probe dimen-
sions). Starting with the Boltzmann kinetic equation it is then possible to relate
the electron energy distribution function f(eV ) to the first derivative of the probe
current

f(eV ) = −3m2R ln (πL/4R)

8πe3ρeV

dje

dV
, (4.4)

where R and L are the radius and the length of the probe. By fitting a one- or
two-temperature Maxwellian function to the measured values the plasma electron
temperature (or temperatures) is obtained.

- In rf produced plasmas, the probe characteristic is strongly distorted due to the
large potential fluctuations in the plasma that lead to fluctuations in the probe sheath
voltage. The exponential dependence of the probe current on the probe bias in the
electron start-off region leads to an overestimation of the electron temperature. The
influence of rf potential fluctuations in the plasma can be compensated by special
probe designs. A probe compensation technique suggested by Allen [1995] and
Sudit and Chen [1994b] is shown in Fig. 4.5 (b). It employs rf chokes at the source
frequency and the second harmonic to block off the rf currents. Moreover, the
voltage across a second large surface close to the probe tip is coupled capacitively
to the probe to adjust the actual probe bias with respect to the plasma potential.
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A typical IU -characteristic measurement for a compensated probe is shown in Fig. 4.6
(solid line). Chokes at the rf frequency and its first harmonic, made of sub-miniature-
device (SMD) capacitors and inductors, were placed close to the probe tip. The measure-
ments are fitted reasonably well by the probe theory predictions outlined above [Demidov
et al., 1999], using a two-temperature Maxwellian distribution (dotted line).

4.2.2 Magnetic Fluctuation Probes

Magnetic fluctuation probes (Ḃ-probes) are widely used to measure oscillating magnetic
fields in plasmas for several years [Hutchinson, 1987]. Magnetic fluctuation probes have
been used in many different plasma experiments, e.g. fusion related devices [Equipe TFR,
1978; Bretz, 1997; Edlington et al., 2001; Takechi et al., 1999], mirror machines [Tanaka
et al., 1999; Bak et al., 2001], inductively coupled plasma experiments [Godyak and Pie-
jak, 1998], plasma flow generators [Black and Mayo, 1996], and helicon plasma sources
[Ellingboe and Boswell, 1996; Light et al., 1995]. In high density and high temper-
ature plasmas, magnetic fluctuation probes are generally located at the outside of the

plasma

U
ind

A

C

B(t)

+Ucap
Cc,p

Figure 4.7: Schematic of a Ḃ-probe with area surface A and contour C in a fluctuating magnetic
field B̃(t). The probe loop and leads are capacitively coupled to the electric fields in the plasma.

Figure 4.8: Typical Ḃ-probe used in the present work. Shown are the probe tip (three orthogonally
aligned loops) on the left and the electric connections on the right. The ruler units are metric.
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plasma, which requires additional considerations for data evaluation. Under less demand-
ing plasma conditions, magnetic fluctuation probes can be introduced directly into the
plasma for a truly local Ḃ-measurement.

Ḃ-probes consist of a pickup coil of N windings of copper wire enclosing an area A with
contour C, as shown schematically in Fig. 4.7. The physical principle of such a probe is
based on Faraday’s law ∮

C

dlE = −
∫

A

dsḂ . (4.5)

For a coil with the surface normal parallel to the magnetic field B(t), which is varying in
time but constant over the area A, a voltage Uind = −NAḂ is induced in the probe. For
a sinusoidal fluctuation B(t) = B sin ωt the induced voltage is Uind = −NBAω cos ωt.
This means that the sensitivity of the probe increases with increasing frequency ω, with
increasing number of windings N , and with increasing enclosed area A. Especially the
possibility to increase the probe sensitivity by increasing A is practically not suitable
as it contradicts the minimal perturbation requirement that is necessary if the probe is
inserted directly into the plasma volume. Moreover, the spatial resolution for measuring
field structures is determined by the coil size. It therefore seems beneficial to increase
the number of windings N while keeping the area A small. However, the maximum
measurable frequency of the coil is of the order of f = R0/L [Lovberg, 1965], where L is
the inductance of the coil and R0 the resistance terminating its output. The inductance of
a coil is proportional to its radius r and to the square of the number of windings L ∝ rN2.
That means that the upper limit of the frequency response decreases quadratically with the
number of windings. Increasing the number of windings is therefore not always practical.
As the above conditions are partially in contradiction to each other, there is an optimum
value for size and number of windings. These values have to be found in accordance
with the individual experimental situations. Magnetic fluctuation probes have been used
to detect signals in an intermediate to high frequency range of 10 kHz up to a few times
100 MHz. For frequencies in the range above ≈ 100 kHz relatively small magnetic loops
can be designed as a compromise between high spatial resolution and reasonably high
induction signal. For the measurements presented in the present thesis, probes of 2.5 mm
diameter with 6 windings are used to detect waves in the higher frequency range f >

10 MHz. For the wave measurements at lower frequencies 10–800 kHz larger probes of
15 mm diameter with 20 windings are used.

Electrostatic pickup rejection

A fundamental problem of Ḃ-probes is their ac-coupling to electrostatic potential fluctu-
ations, the so-called capacitive pickup [Lovberg, 1965]. This is particularly the case in
rf generated plasmas, where large potential fluctuations in the order of 100 V are usually
present. In such a case, precautions have to be taken to reduce the capacitive pickup in
comparison to the actual magnetic fluctuation signal. Many different rejection schemes
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Figure 4.9: Schematic diagrams of nine different connection schemes of the magnetic fluctuation
probes with and without compensation for capacitive pickup. Probes (a)-(d) are uncompensated
and connected to the measuring circuit by parallel wires, twisted pair, a single coaxial cable,
and two coaxial cables, respectively. Compensation methods employ centre-tapped transform-
ers (e, g, i), hybrid combiner (h) or inherent pickup rejection (f).

have already been proposed by Borg and Cross [1987]; Loewenhardt et al. [1991, 1993];
Light and Chen [1995]. Despite their widespread use, the efficiency of these compensa-
tion methods is mostly described only on a qualitative level. Therefore, a detailed study
was done that compares the relative capacitive pickup of the nine most commonly used
magnetic fluctuation probe designs in a well defined test field. In this measurement, the
efficiency of the rejection schemes is tested and an optimum Ḃ-probe design for use in rf
generated plasmas is identified (this work is also published [Franck et al., 2002b]).

A straightforward approach to reduce capacitive pickup is to use a cable with R0 = 50 Ω

impedance at the coil output. The electrostatic voltage coupled into the probe then has to
pass through a voltage divider which consists of the capacitance between the coil and the
plasma Cc,p and the output impedance R0 of the probe [Lovberg, 1965]. Unfortunately,
such coaxial cables are always thicker than simple wires and miniaturising of probes is
therefore limited. A different, most commonly used approach to minimise electrostatic
pickup makes use of the fact that the inductive signal of the Ḃ-probe changes sign if the
probe is rotated by 180◦ whereas the sign of the electrostatic pickup remains unchanged.
Consequently, a subtractor (hybrid combiner) connected to the end of the probe eliminates
the electrostatic pickup and yields two times the inductive signal [Loewenhardt et al.,
1991; Schneider et al., 1999b; Borg and Jahreis, 1994]. Alternatively, the two signals
can be recorded simultaneously and subtracted off-line [Keiter, 1999]. A third approach
makes use of a centre-tapped transformer (also called balun). The probe can be coupled
balanced to the unbalanced coaxial system of the measuring circuit. A mid-connector of
the transformer winding on the probe side is grounded. The capacitive coupling gives
rise to currents in the two probe legs that have equal amplitude but opposite sign with
respect to ground. Thus, currents in the probe leg cancel out in the primary winding of
the transformer and only the induced voltages are passed through to the measurement
circuit.
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Figure 4.10: Schematic of the test-field for capacitive pickup measurement (a) and the Helmholtz
coil arrangement for magnetic sensitivity calibration (b).

Fig. 4.9 shows the nine most commonly used magnetic fluctuation probe designs. The
first four are uncompensated Ḃ-probes with connection to the detector by simple wire (a),
twisted pair cable (b), inner and outer conductor of 50 Ω coaxial cable (c), and the inner
conductors of two coaxial cables with grounded shields (d). Design (e) directly connects
a miniature centre-tapped transformer to the probe and feeds a 50 Ω coaxial cable. The
transformer is electrostatically shielded by grounded copper tape. An inherent pickup
rejection using a counter-wound second probe terminated with a 50 Ω resistor was pro-
posed by Loewenhardt et al. [1993], shown in diagram (f). Probe design (g) and (h) use
the inner conductors of two coaxial cables with grounded shield and subtract the elec-
trostatic component via a centre-tapped transformer or a hybrid combiner, respectively,
which are installed at the end of the probe. Finally, in design (i) the probe is connected to
a centre-tapped transformer by a twisted pair cable.

A quantitative comparison of electrostatic pickup for the different probe designs is done
in a test bed. A schematic of the setup is shown in Fig. 4.10(a). A Faraday cup with
internal insulation is installed centrally into a grounded box. The inner bore of the cup
is 70 mm in length and 20 mm in diameter. As the electric field inside the Faraday cup
is homogeneous, a well-defined electric test-field for capacitive pickup measurements
is provided. One coaxial feedthrough is used to drive the voltage on the cup and the
probe is connected to two other insulated feedthroughs on the grounded box. The voltage
applied to the cup in the present experiments is Ucup = 50 − 100 V at frequencies f =

0.25 − 25 MHz. The electrostatic pickup signal Up at the Ḃ-probe leads is amplified
by +20 dB and recorded simultaneously with Ucup. The frequency dependence of the
ratio Up/Ucup, the so-called relative capacitive pickup, is plotted for the different probe
setups in Fig. 4.11. There is a monotonic increase of the relative capacitive pickup with
increasing frequency up to ≈ 15 MHz. Above this frequency, resonances disturb the
monotonic increase. They are due to probe and transformer inductances as well as the
cable and stray capacities and vary with changing setups such as different cable lengths,
different loop diameter or number of windings. This changes the quantitative values of
the probes’ frequency dependence in relative capacitive pickup and magnetic sensitivity
but not the qualitative relation between different probe designs. Our comparative study
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Figure 4.11: Relative capacitive pickup (Up/Ucup) measurement for the nine different probe de-
signs examined. The labelling corresponds to the labels used in the schematic plot of Fig. 4.9.

consequently remains valuable and it is of advantage to calibrate the probe in situ with
the exact experimental setup used. From the relative capacitive pickup measurements we
come to the following five conclusions:

1. Any of the compensation techniques considered here helps to reduce the relative
capacitive pickup if compared to uncompensated probes. Compare probes (e)-(i)
with (a)-(d). At a typical rf source frequency of 13.56 MHz the reduction can be up
to a factor of twenty.

2. The capacitive pickup is reduced if a 50 Ω-coaxial cable is used as a probe connec-
tor rather than simple parallel or twisted pair cable. This statement holds true for
the uncompensated probes [(a) and (b) compared to (c) and (d)] as well as for the
compensated ones [(g) compared to (i)].

3. The balun directly connected to the probe tip reduces the capacitive pickup signal
less efficiently than if it is installed at the end of the probe shaft [compare (e) to
(g)]. In any case, it is preferable to have the balun outside the plasma as this allows
a smaller probe design.

4. In the inset of Fig. 4.11, the relative capacitive pickup for the probe with two 50 Ω

coaxial cables is shown for the uncompensated probe as well as with compensations
using a hybrid combiner and a centre-tapped transformer. Evidently, the electro-
static pickup rejection using a centre-tapped transformer is better than using a hy-
brid combiner. This is a general outcome and holds true also if the hybrid combiner
is compared to the centre-tapped transformer using twisted pair cables or single
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Figure 4.12: Absolute calibration of the magnetic sensitivity of the probes (d), (e), and (g) (solid
lines) and the signal of probe (h) divided by two (dashed line).

coaxial lines (measurements not shown). Besides the smaller pickup, the compen-
sation with the centre-tapped transformer is not as susceptible to resonances.

5. The probe with inherent pickup rejection at the probe tip (f) gives a slightly better
result than the design with a centre-tapped balun (g). Unfortunately, such a probe
is larger at the probe tip and increases the disturbance of the plasma.

From all these measurements and taking the minimum disturbance requirement into ac-
count, probe design (g) is the best-choice for magnetic field fluctuation measurements in
rf discharge plasmas.

Magnetic sensitivity calibration

The magnetic fluctuation probes are absolutely calibrated for their magnetic sensitivity
using two magnetic coils in Helmholtz arrangement [Phillips and Turner, 1965]. The coils
consist of four turns of cable with a radius of R0 = 35 mm and are separated 35 mm from
each other [see Fig. 4.10 (b)]. An rf voltage of frequency 0.25 − 25 MHz and amplitude
up to 5 V is applied to the coils. A 50 Ω resistor is connected in series with the coils. The
current through the coils is calculated from the voltage drop across the resistor and is used
to calculate the magnetic test field BH = (4/5)3/2µ0nI/R0. The magnetic fluctuation
signal is measured and is amplified by +20 dB. Ideally, the magnetic sensitivity of a Ḃ-
probe should depend only on the loop tip (size and number of windings) and not on the
connecting cables nor the compensation used. As the magnetic loops of all tested probes
are manufactured with identical geometry and size, and all probes are tested in the same
test field setup using the same connector cables, the magnetic sensitivity from all probes
should be exactly the same. Fig. 4.12 shows the measured magnetic sensitivity for the
four example probe designs (d), (e), (g), and (h). The frequency dependence of the probe
sensitivity is in all four cases identical within ±(10–15)%. Note that the hybrid combiner
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Figure 4.13: Example measurement using the ”best-choice” magnetic fluctuation probe of de-
sign (g) in an rf produced plasma (f = 13.56 MHz). Shown are the antenna current Iant (top)
and the magnetic fluctuation signal B̃ in axial direction (bottom, solid line). Additionally, the
magnetic fluctuation signal B̃ is shown when the probe is rotated by 180◦ (bottom, dashed line).

results in an output signal corresponding to two times the magnetic fluctuation signal. The
values of probe (h) are therefore divided by two (dashed line).

Sample Plasma measurement

To demonstrate the operation of the magnetic fluctuation probe, the ”best-choice” probe
design (g) - using the inner conductors of two semi-rigid 50 Ω coaxial cables with groun-
ded shield - is introduced into the bulk of an rf produced helicon plasma in the VINETA
experiment. Fig. 4.13 shows the probe measurements (bottom, solid line) recorded si-
multaneously with the antenna discharge current (top). A simple but crucial test for the
Ḃ-probe is rotating the probe by 180◦. A probe measuring only the inductive component
should simply change the sign in the signal which is indeed the case. The small (� 5 %)
difference in the two signal amplitudes is two times the remaining capacitive pickup sig-
nal amplitude. The excellent capacitive pickup rejection and the small spatial dimensions
(2.5 mm diameter) of the probes enables reliable, absolutely calibrated rf magnetic field
measurements with high spatial resolution.

4.2.3 Laser Induced Fluorescence (LIF)

Laser Induced Fluorescence (LIF) is a non-intrusive method to measure the ion energy
distribution function (IEDF) of the plasma [Stern and Johnsen III, 1975; Hill et al., 1983;
Severn et al., 1998]. A simpler diagnostic tool for measuring the IEDF is the ion energy
analyser [Hutchinson, 1987], but even in a miniaturised version [Conway et al., 1998]
of ≈ 15 mm diameter it disturbs the plasma and is likely to be damaged in the stress-
ing plasma conditions of a helicon discharge. Moreover, it has a poor energy resolution
compared to LIF [DeNeef and Theiss, 1979; Donoso and Martin, 1990; Goeckner et al.,
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Figure 4.14: Transition schemes used for ArII LIF measurements with dye (top) and diode lasers
(bottom). The schemes start from a metastable ion population into an excited state. The fluorescent
decay is into a third state of lower energy than the previous metastable state.

1991]. Most LIF experiments use the resonant laser excitation of a metastable ion to a
short-lived higher state. These excited atoms partially decay to a third state of lower en-
ergy than the previous metastable state, emitting a photon (induced fluorescence). In a
thermalised plasma there are far less metastable ions than ions in the ground state. Exci-
tation of ground state ions would therefore give a stronger LIF-signal, but the excitation
energy is higher and requires UV-lasers [Tachibana, 2002] or the resonant absorption of
two photons [Mazouffre et al., 2001; Amorim et al., 2000]. Two commonly used transi-
tion schemes for singly ionised argon are shown in Fig. 4.14 [Severn et al., 1998]. The
excitation energy requires red lasers at 611.66 nm or 668.61 nm. The fluorescence signals
are in the visible blue region at 461.08 nm and 442.72 nm. The first transition scheme
would have higher oscillator strength, but this frequency is not yet available for laser
diodes and can only be accessed with dye-laser systems.

Ions moving towards the direction of the incident laser beam with a velocity v are excited
by a laser frequency that is shifted by ∆ν with respect to the transition frequency due to
the Doppler effect

∆ν = v/λ . (4.6)

Here, λ is the laser light wavelength. The laser is scanned over the resonance wavelength
and the metastable atoms are excited selectively with respect to their velocity parallel
to the laser beam. The laser line width, and with it the velocity component of excited
metastable ions, is much smaller than the Doppler width of the IEDF (typically diode laser
line width 10 MHz 
 Doppler width 5 GHz). Other broadening mechanisms are usually
small compared to the Doppler broadening, e.g. pressure broadening, Stark broadening
or Stark splitting [Griem, 1997; Goeckner et al., 1991]. Only Zeeman splitting cannot be
neglected. If the laser light is aligned perpendicular to the ambient magnetic field, the
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Figure 4.15: Simplified schematic of the LIF-setup at the VINETA experiment.

transverse Zeeman effect leads to a frequency shift of the σ-components by [Born, 1985]

∆ν = eB/4πme . (4.7)

The π-component remains unshifted.

A schematic of the LIF setup at the VINETA device is shown in Fig. 4.15. The laser light
from the tuneable diode laser is coupled into a 50 µm optical fibre. At the device, the laser
light from the fibre is collimated to the centre of experiment. Due to the anisotropy intro-
duced by the magnetic field, the plasma thermalisation (collision processes and losses to
the vessel boundary) is different for the direction perpendicular and parallel to the mag-
netic field. Consequently, the ion temperatures in perpendicular and parallel direction are
different (usually Ti,⊥ > Ti,‖ [Scime et al., 1998]). Depending on which temperature
component one desires to measure, the laser beam has to be aligned parallel or perpendic-
ular to the magnetic field. The pickup optics are focussed to the centre of the experiment
on the same position as the laser beam, but the line of sight is aligned at a 90◦ angle to the
laser beam. The fluorescent light from the intersecting focus positions is focussed onto
an adjustable aperture to reduce light from other regions of the plasma before it enters
a liquid light guide (fibre optics with large diameter and a high transmission coefficient)
and is guided to a remote detection optic. The fluorescent light is passed through an op-
tical bandpass filter (2 nm optical width) to reduce unwanted light components before its
intensity is measured with a photomultiplier tube. Besides the laser induced excitation,
the ions are excited by inelastic collisions as well and a significant amount of spontaneous
background light is the result. To discriminate between these two sources of fluorescence
signal, the laser power is modulated with a chopper and the laser induced fluorescence
signal is determined via a lock-in technique (see Sec. 4.3). An example measurement
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Figure 4.16: Example measurement of the IEDF perpendicular to the magnetic field (solid) and a
reference measurement with the laser switched off (dotted). The laser light is unpolarised and the
best fit (red) includes Zeeman correction. The ion temperature is determined to Ti,⊥ = 0.2 eV.

of the IEDF in a VINETA helicon plasma with argon gas is shown in Fig. 4.16. It is
taken with unpolarised laser light (the polarisation is lost in the multi-mode fibre) and
is therefore fitted with three Gaussians, one at the centre resonance frequency and two
shifted by the Zeeman splitting determined from Eq. (4.7). The resulting perpendicular
ion temperature is Ti,⊥ = 0.2 eV.

The number of the metastable ions excited by the laser, and thus the amplitude of the LIF
signal, depends on both the metastable ion density and the laser light intensity [Goeck-
ner et al., 1991]. The fraction of excited atoms that decay to the third state depends on
the branching ratios of this particular transition scheme. The branching ratios are fixed
with the choice of a LIF scheme (laser wavelength), the laser power provided by the
used tunable laser (dye or diode), and the metastable density on the plasma parameters.
These parameters are more or less fixed by technical requirements or resources. Other
parameters improving the LIF signal-to-noise-ratio can be chosen freely. First, the col-
lection optics and the laser optics have to be carefully aligned to exactly the same spatial
position. Second, the aperture must be opened wide enough to ensure that all induced
fluorescence light enters the liquid light guide but closed as far as possible to minimise
the spontaneous fluorescence light entering the light guide from other parts of the plasma.
Third, the signal-to-noise-ratio can be improved if the chopper is operated at a frequency
where the fluctuations of the spontaneous emissions are minimal. Under typical discharge
conditions in the VINETA experiment, large optical fluctuations of 1−2 kHz occurred. At
7 kHz in turn, these fluctuations are ≈ 14 dB less and the chopper was therefore operated
at that frequency. And, last but not least, the photomultiplier tube should be operated at
a voltage not too close to saturation to ensure maximum fluctuation of the small induced
signal on top of the large background signal.
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Figure 4.17: Example f1 measurement (solid lines) at the wave excitation frequency fex =
85 kHz. The fits (dashed lines) to the real (blue) and imaginary (red) part resulted in k⊥ = 17 m−1

and k‖ = 45 m−1. The two ion temperature Ti,⊥ = 0.1 eV and Ti,‖ = 0.4 eV have been deter-
mined from independent f0 measurements.

4.2.4 Wave Field Measurement with LIF

The LIF method yields a time-averaged measurement of the IEDF. A wave propagating
through the plasma disturbs this distribution function on the timescale of the wave fre-
quency. With only a slight change in the LIF setup it is also possible to determine the
parameters of such a perturbing wave. Wave vector, wave amplitude and phase, as well as
effective wave damping can be derived from a local measurement of the perturbed IEDF
[Skiff and Anderegg, 1987]. Instead of chopping the laser beam and using this as the
reference frequency for the lock-in amplifier, the perturbing wave frequency is taken as
reference signal (compare Fig. 4.15). The resulting measurement is now the perturbed ion
distribution function caused by the reference wave. The underlying idea of this method
is that the perturbation of the particle distribution function at the point of observation is
linked to all other points in space that lie on the trajectory of the particles. The particles
carry the perturbing wave information along their trajectory to the point of measurement.
This holds ideally true only for collisionless plasmas but can be applied in weakly col-
lisional plasmas. The usefulness of this method was successfully demonstrated for elec-
trostatic waves by Skiff and Anderegg [1987]; Skiff [1992] and Sarfaty et al. [1996] but
can be extended to electromagnetic waves as well [Skiff, 1992; Kline et al., 2000]. The
theoretical derivation of the mathematical expression for the perturbed ion distribution
function is rather lengthy and just briefly summarised in what follows. In the picture
proposed by Vlasov, the plasma is described by a distribution function f(r,v, t) in the
seven-dimensional space spanned by position, velocity, and time [Nicholson, 1983]. For
only small perturbations of the distribution function, it is suitable to write f = f0 + f1.
Within the framework of the experimental measurements presented in this section, the
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perturbed ion distribution function f1 is calculated by integrating the influence of the per-
turbing wave field E1 on the background ion distribution f0 along the unperturbed particle
orbits r′

f1(r,v, t) = − q

M

∫ t

−∞
E1(r

′(t′), t′)∇vf0dt′ . (4.8)

In a magnetised plasma it is appropriate to model f0 by a Maxwellian with two temper-
atures for the directions parallel and perpendicular to the magnetic field. The resulting
perturbed IEDF f1 = f1(v) is a function of all three velocity components. The measure-
ments are done in only one direction, say, perpendicular to the magnetic field in vy. To
meet that situation, f1(v) is integrated over the two other velocity components and the
formula for the perturbed ion velocity distribution function perpendicular to the magnetic
field reads [Sarfaty et al., 1996]

f1(vy) =

∫ ∞

−∞
dvx

∫ ∞

−∞
dvzf1(v) =( −eΦ1

πMvth,‖

)
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2

)
eikπ/2 , (4.9)

with,
a =

√
2k⊥vth,⊥/ωci ,

c =
√

2kyvth,⊥/ωci = a sin θ ,

ζn = (ωeff − nωci − k‖vo)/
√

2k‖vth,‖ .

Z the plasma dispersion function [Fried and Conte, 1961], and θ = tan−1 ky/kx the wave
vector angle in the laboratory (x, y)-plane perpendicular to the ambient magnetic field.
The Bessel functions J and I result from the cylindrical geometry of the problem.

An example measurement of the perturbed ion distribution function, which we made in
the HELIX-experiment [Balkey et al., 2001] during my research stay at West-Virginia-
University, is shown in Fig. 4.17 (solid lines). For this measurement, a second antenna
driven with 200 W at 85 kHz excited a wave in a helicon plasma. The fit of Eq. (4.9) to
the measurement resulted in k‖ = 45 m−1 and k⊥ = 17 m−1. It was proposed to use this
technique to measure the wave field of a helicon wave [Franck et al., 2000]. This is in
principle possible as the measured f1 signal is frequency limited only by the lifetime of the
metastable transition (7 ns =̂ 140 MHz), but naturally the perturbed ion response is weaker
with increasing wave frequency. This method is successfully tested and is proposed to
be used for non-intrusive measurements of low-frequency waves where Ḃ-probes show
significant deficits (cf. Sec. 5.2).
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Figure 4.18: Schematic of the heterodyne microwave interferometer setup installed at the
VINETA experiment. The microwave signal can be operated at fhf = 22–40 GHz. The phase
delay of the signal through the plasma is compared to a reference signal. To improve the phase
measurement, the signal is down-converted to 64 MHz.

4.2.5 Microwave Interferometer

The microwave interferometer technique is a non-intrusive diagnostic tool to measure
the line integrated plasma density [Hartfußet al., 1997]. Together with relative plasma
density profiles along the line of sight, e.g. using Langmuir probe measurements, or
by tomographic reconstruction of interferometer measurements along many paths, the
absolute plasma density profile can be determined with high accuracy. The basic physical
principle can be understood from the dispersive nature of the plasma. The refractive index
n of an ordinary wave (cf. Sec. 2.3.1) is given by Eq. (2.36)

n = kc/ω = [1 − (fpe/f)2]1/2 = [1 − n/nco]
1/2 . (4.10)

The cut-off density nco for a given frequency f is defined by nco = (2πf/e)2ε0me. The
wave propagates only for frequencies above the plasma frequency. For large frequencies
f 	 fpe the refractive index can be approximated by Taylor series expansion

n = (1 − n/nco)
1/2 ≈ 1 − n/2nco . (4.11)

Suppose a wave propagating through a plasma with density profile n(x). The phase of the
wave is (kx − ωt) and the phase shift between the case with and without plasma can be
expressed as

∆ϕ =

∫
(dϕplas − dϕvac) =

∫
(kplas − kvac)dx

=
2π

λ

∫
(n(x) − 1)dx ≈ π

λnco

∫
n(x)dx . (4.12)



4.2 Diagnostic Instrumentation 59

Thus, the plasma introduces a phase shift ∆ϕ that is proportional to the line integrated
density

∫
n(x)dx along the path of propagation. The choice of wavelength is very im-

portant. If the frequency is too small, the wave is refracted at density gradients or even
reflected at a cut-off. On the contrary, the phase shift is inverse proportional to the wave
frequency. Usually, a frequency 5–10 times larger than the cut-off frequency is chosen.
Fig. 4.18 shows a schematic of the interferometer setup [Vowinkel, 2000] at the VINETA.
The probing hf wave frequency fhf = 22–40 GHz is generated from a tuneable voltage
controlled phase-locked loop oscillator with f = 2.75–5 GHz by multiple frequency dou-
bling and subsequent amplification and filtering. Phase shifts in a high frequency signal
in the GHz-range are difficult to measure. A heterodyne technique is therefore applied,
which up-converts the hf signal with the 32 MHz signal of a local oscillator (lo) by single-
sideband (ssb) modulation. The mixer in the ssb up-converter is phase preserving

sin(ωhft + ϕhf) · sin(ωlot) = 1/2 cos([ωhf − ωlo]t + ϕhf)

+1/2 cos([ωhf + ωlo]t + ϕhf) (4.13)

and the sharp bandpass filter leaves only the upper sideband. A second mixer multiplies
the so-obtained reference signal and the signal that passed through the plasma. A high ac-
curacy phase detector is applied to the resulting low frequency signal and yields a voltage
proportional to the line-integrated density [cf. Eq. (4.12)]. The maximum time resolution
of the phase detection is 2µs. The interferometer can be operated at a single frequency or
swept over the frequency range.
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4.3 Signal Analysis

Wave field experiments require spatio-temporal measurements of the amplitude and the
phase of the wave. The temporal evolution is easily monitored by using fast digitisers
or oscilloscopes. The spatial distribution can either be determined by a simultaneous
measurement of several probes or by subsequent measurements of a positionable single
probe. The first approach involves several digitisers and disturbs the plasma more than a
single probe. For the experiments in this work, a single probe in connection with two two-
dimensional positioning systems is used (see Sec. 4.4). The subsequent measurements
of the single probe have to be related to a time origin, especially with respect to the
relative phase information. A reference signal is therefore recorded from a fixed probe
or from the wave exciting antenna current or voltage. For spatially stationary wave fields
with a good signal-to-noise-ratio, the amplitudes and phases can be derived digitally from
the sampled time series using cross-spectral density estimation [Priestley, 1989; Pécseli,
2000]. Averaging improves the signal-to-noise-ratio. For signals that drift in frequency
over the measuring period or with a signal-to-noise-ratio below 10−3–10−4, the lock-in
technique can be used. This involves either lock-in amplifiers, or very long time-series
with high amplitude resolution have to be recorded and evaluated digitally afterwards.
Both techniques, the cross spectral density and the lock-in detection, are used for the
experiments within this thesis and explained in the following.

4.3.1 Cross Power Spectrum

The cross-power-spectral density [Priestley, 1989; Smith et al., 1974; Beall et al., 1982]
of a measured signal φs(t) and a reference signal φr(t) is defined as the product of the
Fourier transforms Φ̂ of the signals

P×(f) = Φ̂�
r(f)Φ̂s(f) . (4.14)

The relative phase difference Θ and the relative amplitude A of the two signals at fre-
quency f0 can be derived from the cross-power-spectral density as

A = |P× (f0)| , tan Θ =
ImP× (f0)

ReP× (f0)
. (4.15)

This method is only applicable to fluctuations if the phase and frequency are constant
during the time of measurement. The Fourier transform of signals with drifting frequency
has a broadened spectrum and the cross-spectral density is therefore erroneous.

From the cross spectrum, the wavelength of an axially propagating wave can be deter-
mined. The Fourier transform of the wave signal φs(z, t) = S0 exp i(k‖z − ω0t + φs)

and the reference signal φr(t) = R0 exp i(−ω0t + φr) at the wave frequency ω0 are:
Φ̂�

r(ω0) = R0 exp φr and Φ̂�
s(ω0, z) = S0 exp i(k‖z − φs). The phase is determined ac-



4.3 Signal Analysis 61

cording to Eq. (4.15) to Θ = k‖z + φs − φr. From the axial derivative of the phase
information, the parallel wave vector is calculated to be ∂Θ/∂z = k‖.

4.3.2 Lock-In Detection

The lock-in technique [Horowitz and Hill, 1989; SR830] basically involves the multiplica-
tion of a reference signal Ur sin (ωrt + θr) with a measured signal, say Us sin (ωst + θs).
The product U of the two signals is a superposition of signals at the sum and the difference
frequency

U = 1/2UsUr cos ([ωr − ωs]t + θr − θs) (4.16)

−1/2UsUr cos ([ωr + ωs]t + θr + θs) . (4.17)

If the two frequencies match, ωs = ωr, the multiplied signal U contains a dc-component
at the output

Udc = 1/2UrUs cos (θs − θr) . (4.18)

All other frequency components can be removed with a steep low-pass filter. A good
reference signal is therefore essential, i.e. one must have a pure sinusoidal signal with
constant phase at exactly the measured signal frequency. Lock-in amplifiers circumvent
problems that are due to reference signals with drifting frequency by generating an inter-
nal sinusoidal reference signal that is phase-locked to the instantaneous applied external
reference signal frequency. Modern lock-in amplifiers generate two internal phase locked
signals with a phase difference of π/2 between each other. Both are multiplied with the
measured signal, and the two low-pass filtered outputs result in

X = Us sin θs Y = Us cos θs . (4.19)

Without loss of generality, it was assumed that θr = 0 and Ur = 1. The amplitude Us and
phase θs of the measured signal are calculated from

Us =
(
X2 + Y 2

)1/2
θs = tan−1(Y/X) . (4.20)

Again, the parallel wave vector can be determined from the phase information at different
axial positions as was shown in the previous Sec. 4.3.1.

4.3.3 Wavelength Measurements

To obtain the dispersion relation λ(ω) of a wave experimentally, waves are excited with
different frequencies. Their respective wavelength is determined from wave field mea-
surements at different distances to the exciter antenna. A typical measurement of the spa-
tiotemporal evolution of a whistler wave at a frequency of 250 MHz is shown in Fig. 4.19.
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Figure 4.19: Typical spatiotemporal measurement of the propagation of a whistler wave with
250 MHz. The wave amplitude in the colour-coded representation (top left) is normalised to its
standard deviation. Four example time series at z = 0, 300, 600, and 900 mm show the propaga-
tion and the damping of the wave (top right). From the relative phase at each position (bottom),
the wavelength is determined to (470 ± 75) mm.

On the left-hand side, the amplitude of the receiver signal is shown for increasing axial
position. The amplitude is normalised to its standard deviation for better visual presenta-
tion and depicted as a colour-coded plot. The recording of the time series is triggered by
the exciter signal in order to keep the relative phase between the magnetic fluctuations and
the driver signal fixed. The observed Ḃ-signal undergoes a clear and unique phase shift if
followed in axial direction. Such a sloped stripe pattern is typical for propagating waves.
Also shown in Fig. 4.19 (top right) are the non-normalised magnetic fluctuations at four
different axial positions. Besides the phase shift, a damping of the wave is observed. The
relative phase and amplitude for each axial position are determined by the cross-spectral
density or the lock-in technique, as introduced in the previous sections. In the bottom
graph of Fig. 4.19, the relative phase is shown as a function of the axial position (blue
solid line). From the linear best fits (dotted lines) to the entire set of measurements, the
wavelength is determined to be λ‖ = (470 ± 75) mm.
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4.4 Experimental Setup

The experiments on whistler waves presented in this thesis can be distinguished in two
parts. For the investigations of helicon waves excited by the external antenna, the principal
experimental setup is shown in Fig. 4.20. The plasma is generated by a helicon antenna
which is driven by an rf source in the frequency range 3–30 MHz with rf powers up to
6 kW. The rf power is matched to the antenna with two variable capacitors in standard L-
matching configuration [Rayner et al., 1996]. A current monitor measures the rf antenna
currents which is mostly used as a reference signal for the wave analysis. The magnetic
fluctuations from the waves generated by the rf plasma source are measured with three
Ḃ-probes arranged perpendicular to each other (cf. Sec. 4.2.2). The measured signals are
usually quite large and need no further amplification but are bandpass filtered to remove
unwanted higher harmonics. The wave amplitude and phase with respect to the rf current
signal are determined at each spatial position using a lock-in amplifier (cf. Sec. 4.3.2).
The wave propagation and modestructure are not only analysed in the perpendicular plane
but also in the horizontal parallel plane, using both two-dimensional positioning systems.

For investigations of whistler waves, a separate excitation setup is applied, based on a
loop antenna inserted into the plasma. The loop antenna is fed with the amplified signal
from an hf source that is matched with a stub tuner as shown schematically in Fig. 4.21.
As the frequencies (f = 100–800 MHz) are usually too high for conventional current
monitors, the voltage signal applied to the antenna is usually taken directly as the refer-

RF Sourcematching
capacitors

Amplifier
Filter

Lock-In

Signal Reference

current
monitor

Figure 4.20: Schematic of the setup for experiments analysing the poloidal modestructure of the
waves excited by the rf source. A two-dimensional positioning system enables the probe position-
ing in a rectangular plane perpendicular to the axial magnetic field with ≈ 250 mm horizontal and
≈ 200 mm vertical dimension.
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ence signal. The magnetic fluctuations associated with the launched waves are measured
with Ḃ-probes and the fluctuation signal is again bandpass filtered; this time primarily
to remove the rf plasma source signal. As the exciter signal amplitude is kept below
≈ 1 W to minimise the plasma disturbance, and the detected signals are amplified. At
these high frequencies, there are no lock-in amplifiers available and the measured signals
are digitised simultaneously with the reference signal. The wave amplitude and phase are
obtained digitally by the cross-power-spectral density analysis (cf. Sec. 4.3.1).

The actual excitation mechanism of whistler waves by loop antennae is schematically
depicted in Fig. 4.22, following Stenzel et al. [1993]. The rising current I(t) during the
first half of a current cycle induces an azimuthal electric field Ei, which is antiparallel to
the current in the plasma. As the associated timescale is too fast for the ions to follow
(ω 	 ωci, ωpi), only the electrons respond to this electric field by drifting radially inwards
with the E × B-velocity vE×B = Ei/B0. A surplus of negative charge accumulates
inside the loop and a surplus positive charge remains outside. This space charge produces
a radial electric field Esc, which in turn causes the electrons to drift azimuthally and
generate a current Jθ = −neEsc/B0. This current is in opposite direction to the antenna
current and produces the axial magnetic wave field component Bz, which can be measured
with Ḃ-probes. Naturally, the surplus space charge is nonuniform along the magnetic field
B0 as the induced electric field Ei decreases with increasing distance to the loop antenna.
This gives rise to an axial current Jz, which is in opposite direction inside and outside
the loop. As before, the current Jθ induces an electric field but now in opposite direction

Amplifier

HF Source

Tuner

Filter

Amplifier

Signal

Digitiser

Reference

Figure 4.21: Schematic of the setup for experiments analysing the propagation behaviour of
waves excited by a small loop antenna. A two-dimensional positioning system allows one
to do measurements in a rectangular horizontal plane parallel to the axial magnetic field with
≈ 3000 mm axial and ≈ 200 mm radial dimension.



4.4 Experimental Setup 65

+++
++

- -- - -
- - - 
- -

+++
++

J z

J z

Ei

vde

Esc

Bθ

-B z

Jθ

-Jz

loop
antenna

I(t)

B(t)

B0

Figure 4.22: Schematic of the currents, fields and drifts associated with the wave excitation in a
linear magnetised plasma (adapted from Stenzel et al. [1993]).

with respect to the antenna and the drifting space charge (now in the opposite direction)
closes the current path across the magnetic field at the wave front. For the second half
of the current cycle, for decreasing current, all induced fields, currents and space charges
change their sign.
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Basic Wave Experiments

Since their first observation in the late 19th century and their explanation by Barkhausen
[1930] and Eckersley [1935], ionospheric whistler waves have been intensely studied (see
review articles by Al’pert [1980] and Stenzel [1999]). The first laboratory study followed
in the 1960’s with the experiments from Gallet et al. [1960]. Many subsequent labora-
tory experiments investigated various aspects of the wave propagation such as excitation,
dispersion, damping, and ducting, to name only a few. Laboratory plasmas are naturally
always bounded and the wave dispersion is consequently altered. Most commonly, large
laboratory plasma devices are used to minimise finite size effects [Stenzel, 1976; Mat-
too et al., 2001; Stenzel I-IX]. So far, the influence of the plasma boundary on the wave
propagation was treated only theoretically [Klozenberg et al., 1965; Uhm et al., 1988].
In Sec. 5.1 the basic whistler wave dispersion is measured under conditions where the
boundary is expected to play only a minor role and compared to the theory described
in Sec. 2.3.3. In Sec. 5.2 the first laboratory experiments on ion whistler waves are re-
ported. We note that ion whistler wave have been only studied in ionospheric plasmas
so far. In contrast to electron whistler waves, the influence of the plasma boundary on
the ion whistler wave propagation has not yet been addressed, neither theoretically nor
experimentally. Therefore, the infinite plasma dispersion theory derived in Sec. 2.3.4 is
used for comparison in these first reports. Although their large wavelengths indicate that
the boundary would most likely have to be considered in a correct analysis there is still a
good qualitative agreement between simple theory and observation.

5.1 Whistler Waves

Whistler waves are excited by an exciter loop antenna which is positioned centrally into
the VINETA experiment. The antenna is made of two windings of copper wire with
a diameter of 30 mm and is shielded from the plasma with ceramics. The loop ends
are connected to the inner and outer conductor of a semi rigid-cable to ensure a wave
excitation at the loop only and to minimise magnetic fluctuations excited from the sup-
port. The exciter antenna is supplied with sinusoidal currents of frequencies in the range
of fex = 100–800 MHz. The high frequency generator output signal is amplified and
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impedance matched to the antenna by a triple stub tuner. The maximum power of the
driver signal is kept below 1 W to ensure only weak plasma disturbance. The whistler
waves are detected by a set of three orthogonal Ḃ-probes. They are movable in the di-
rection parallel to the magnetic field, carefully compensated for electrostatic pickup, and
absolutely calibrated (see Sec. 4.2.2). From the measured axial wave field, the wavelength
is determined by the cross-power-spectral density analysis (cf. Secs. 4.3.1 and 4.3.3). A
dispersion relation λ‖(ω) is obtained by measuring the wavelength at a number of different
excitation frequencies. Besides determining the wavelength from the phase information,
it is possible to estimate wave damping and polarisation from the amplitude information
in the cross spectrum. A typical axial evolution of the wave amplitude is shown in Fig. 5.1
for the two components perpendicular to the axial magnetic field (Ḃx, Ḃy). The Ḃy signal
has a maximum at those axial positions where Ḃx has a minimum and vice versa. This is a
clear indication of a circular polarised wave and proves that indeed an R-wave is excited.

Fig. 5.2 shows the first set of dispersion measurements performed under two different
sets of plasma conditions, for which the influence of the plasma boundary is only small.
The theoretical analysis of Sec 2.4 showed that the boundary effects are less the smaller
the wavelength to chamber size ratio is. Moreover, the wavelength decreases for increas-
ing frequencies, increasing plasma densities, and decreasing magnetic fields. The waves
are therefore excited in a high density plasma in helicon and inductive mode operation.
The plasma density and electron temperature are derived from Langmuir probe charac-
teristics [Demidov et al., 1999] and the magnetic field is measured with a calibrated Hall
sensor. The first set of measurements was done in a helicon plasma with peak density
n = 3.3 · 1018 m−3 and electron temperature Te = 2–5 eV at an ambient magnetic field
strength B0 = 56 mT (top Fig. 5.2). The measured wavelengths are below 50 mm and
increase with decreasing frequency. The measurements are highly reproducible and the
errorbars are usually smaller than the marker size. For comparison, the whistler wave
dispersion (2.42) for unbounded plasmas is plotted in the diagram (solid line) based on
the independently measured parameters n = 3.3 · 1018 m−3 and B0 = 56 mT without
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Figure 5.1: Relative amplitudes of the two signal components [Ḃx(�), Ḃy(�)] along the axial
direction z.
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Figure 5.2: Whistler wave dispersion measurements in a helicon mode discharge (top, n =
3.3 · 1018 m−3, B0 = 56 mT) and in an inductive mode discharge (bottom, n = 4.5 · 1017 m−3,
B0 = 49 mT). Shown are the measured data points (markers) and the theoretical curve for wave
dispersion in unbounded plasmas (solid lines). On the right-hand side, the relative plasma profiles
of the two discharge modes measured by Langmuir probes are shown.

any free fit parameter. The measurements are in very good agreement with the whistler
wave theory for unbounded plasmas. A second set of measurements was done in the in-
ductive mode plasma with lower plasma density n = 4.5 · 1017 m−3 and B0 = 49 mT
(bottom of Fig. 5.2). The wavelength decreases with increasing excitation frequency and
the wavelengths are below 200 mm. Again, the measurements are highly accurate and re-
producible, except only the measured value at 600 MHz. The wavelengths are larger than
in the previous case of higher plasma density, but again, the dispersion is well described
by whistler wave propagation in unbounded plasma geometry (solid line). The radial pro-
files of the relative plasma density are shown on the right-hand side of Fig. 5.2 with peak
density of n = 3.3 · 1018 m−3 in the helicon mode and n = 4.5 · 1017 m−3 in the inductive
mode. The dotted lines indicate the radial positions of the helicon antenna edge. The
plasma density profiles show the typical centre peaked density maximum in the helicon
mode and an almost flat-top profile inside the entire antenna region in the inductive mode
(cf. Sec. 6.1). The measurements presented in these cases agree reasonably well with the
whistler wave dispersion in unbounded plasmas. The measured parallel wavelengths are
smaller than the perpendicular experimental dimensions (λ‖ ≤ Rc = 0.2 m) and boundary
effects play only a minor role in the wave propagation.

5.2 Ion Whistler Waves

With essentially the same experimental setup as described in the previous section, waves
are excited at frequencies around the ion cyclotron frequency. As the wave excitation as
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Figure 5.3: Ion whistler wave dispersion measurements in a helicon mode discharge in helium
(n = 4 · 1018 m−3, B0 = 75 mT). Shown are the measurements (markers) and the theoretical
dispersion for a R-wave (solid line) and a L-wave (dashed line). The dash-dotted lines represent
the two solutions of the simple superposition of the waves (L1, L2 = 2π/(kL ± kR)) and the
dotted curve is the difference wavelength (λR − λL).

well as the detection are proportional to the frequency (Uind ∝ f , cf. Sec. 4.2.2), helium is
chosen as a working gas for the experiments in this section (fc,He = 10fc,Ar). The plasma
parameters of this helium helicon discharge are B0 = 75 mT, p = 2.5 Pa, Prf = 5 kW,
n ≈ 4 · 1018 m−3, and Te ≈ 5 eV. To ensure reliable measurements with magnetic fluc-
tuation probes even at such low frequencies in the range of 150–450 kHz, the exciter loop
antenna is fed with a sinusoidal signal of P = 50 W and the Ḃ-probe loop consists of
25 windings of teflon insulated copper wire with a diameter of 25 mm. For capacitive
pickup rejection, the probe leads are connected to an active differential amplifier instead
of a centre-tapped (high frequency) transformer. The rest of the experimental setup and
the data evaluation technique remain the same. Fig. 5.3 shows the measurements of the
wave dispersion (markers). The increasing errorbars at small frequencies are related to
the above mentioned problems of wave excitation and detection. The vertical dotted line
at fc,He = 284 kHz indicates the ion cyclotron frequency. For increasing exciter fre-
quencies above fc,He, the measured wavelengths decrease. Such a quantitative behaviour
was observed already in the previous set of experiments (Sec. 5.1) and the measurements
agree reasonably well with the conventional R-wave dispersion (solid line), calculated for
the present set of plasma parameters. The situation completely changes for frequencies
below fc,Ar. Here, the measured wavelength decreases with decreasing frequency. This
cannot be explained by the L-wave or the R-wave dispersion, which are plotted dashed
and solid in Fig. 5.3. (Note that the excitation scheme does not prescribe a polarisation
direction.) The exciter antenna is not designed to excite only one wave component, the
excitation mechanism presented (Sec. 4.4) excites both R-wave and L-wave. And so is
the measuring Ḃ-probe; it is sensitive to magnetic fluctuations only and measures both



5.2 Ion Whistler Waves 71

wave modes with different circular polarisation. For this reason, it is suggested that the
measured wavelengths are results from a combination of both waves which could propa-
gate below fci. The observed wavelengths cannot be explained from linear superposition
alone:

sin(kRz) + sin(kLz) = 2 sin

(
kR + kL

2
z

)
cos

(
kR − kL

2
z

)
. (5.1)

The wavelengths from both dispersion curves, L1 = 2π/(kL+kR) and L2 = 2π/(kL−kR)

are plotted dash-dotted in Fig. 5.3. The measurements do not match this behaviour, and
especially, there is no wavelength jump observed at ωc,He. A more reasonable agree-
ment between theory and measurement is seen if compared to the difference wavelength
(λR − λL, dotted line). So far, this well-matching comparison is only heuristic but will
be analysed in detail in future investigations. To our knowledge, this is the first experi-
mental evidence of L-wave propagation in laboratory plasmas [Franck et al., 2002a], but
for a complete treatment, the finite size effects of the plasma and the antenna excitation
as well as wave damping effect will have to be taken into account, especially around the
resonance frequency.





6

Helicon Wave Experiments

In this chapter, the other extreme of boundary condition in R-wave dispersion is con-
sidered. Having studied wave propagation in infinite plasma geometry in the previous
chapter, strongly bounded waves are investigated in this chapter. The rf helicon source
produces a plasma and excites propagating waves at the driving frequency. As reviewed
in Chap. 3, the standard rf helicon source can be operated in three qualitatively different
discharge modes. The equilibrium plasma profiles suggest where the plasma production
and heating takes place and with it, they give insight into the discharge mechanism itself.
They are measured and discussed in Sec. 6.1. Since the spatial distribution of the plasma
parameters depends on the local power deposition, the magnetic modestructure is mea-
sured and compared for the capacitive and the helicon wave sustained mode in Sec. 6.2.
The transition between the discharge modes is not gradual but occurs in sudden jumps.
The detailed mechanism of the transition physics to the helicon mode is currently subject
of intense scientific research (e.g. on the APS Mini-Conference on Applications of He-
licon Plasma Sources [2001] or [Chen, 1991; Shamrai and Taranov, 1995; Balkey et al.,
2001]). In Sec. 6.3, experiments on the transition behaviour between the three discharge
modes in the VINETA experiment are shown. These measurements stand in contrast to
some existing models that are based on the plasma density as the critical parameter (this
work is also published in [Franck et al., 2003]).

6.1 Discharge Characterisation

The equilibrium plasma parameter profiles reflect the fundamental discharge mechanisms
of the three different discharge modes. Langmuir probe measurements yield detailed
information on the spatial structure of plasma density, plasma potential, and electron tem-
perature. They are recorded in the poloidal plane perpendicular to the axial magnetic
field. The measurements are done ≈ 0.5 m downstream from the plasma source. Each
poloidal profile consists of at least 400 measurements with a high spatial resolution up to
∆ ≈ 5 mm within the antenna region and lower resolution of ≈ 10–20 mm outside the
antenna region, which is filled by cross field diffusion only [Perry et al., 2002]. The actual
heating mechanism takes place only inside the antenna region and the resulting plasma is
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Figure 6.1: Equilibrium plasma parameter profiles taken in the poloidal xy-plane perpendicular to
the ambient magnetic field. Shown are the plasma density (top row), electron temperature (middle
row), and plasma potential (bottom row) for all three discharge modes. The white circles indicate
the position of the antenna edge.

mapped downstream to the measuring position. Fig. 6.1 shows the colour coded plots of
the poloidal profiles of plasma density n, electron temperature Te, and plasma potential
φpl in capacitive, inductive and helicon wave sustained mode, respectively. The poloidal
position of the rf source antenna is indicated by a white circle. The first obvious difference
between the discharge modes are the well separated plasma parameter regimes. The peak
plasma density varies by more than an order magnitude and the centre plasma tempera-
tures vary from 1–8 eV. The second obvious finding is the varying degree of deviation
from cylindrical symmetry in these measurements. These may well be due to parameter
drifts while the measurements took place (typically 100 min). A systematic deviation can
be seen particularly in the electron temperature and the plasma potential profiles in the
region on the right-hand side outside the antenna (horizontal position x > 50 mm but ver-
tical position −50 < y < 50). At these positions, the probe measures characteristics in
very thin plasma densities with the probe shaft extending maximally through the plasma
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(cf. Fig. 4.20). The probe characteristics at these spatial positions are found to be distorted
due to rf pickup effects at the probe leads. This distortion is largest in the strongly nonlin-
ear electron start-off region and around the plasma potential (cf. Sec. 4.2.1). The almost
linear saturation regions are less sensitive and consequently, the plasma density profiles
have almost perfect cylindrical symmetry. However, major differences of the three dis-
charge modes can be seen in the profile topologies and will be analysed subsequently.

The profiles of the capacitive mode are measured for a neutral gas pressure of p = 0.08 Pa,
an rf power of Prf = 400 W, and an ambient magnetic field of B0 = 56 mT. The plasma
density has a hollow profile with a density hole in the centre and a fairly pronounced
maximum extending from the sheath edge of the antenna. The maximum plasma density
is n = 2 · 1017 m−3, which is about the maximum density that can be reached in the
capacitive mode in the VINETA experiment. Typical plasma densities in the capacitive
mode are 1016–1017 m−3. The electron temperature profile is hollow as well. Electron
temperature peak values are found at the antenna sheath edge, matching fairly well the
density profile. The temperature varies between 2.5 eV at the sheath edge of the antenna
and 1.5 eV in the other regions. The plasma potential is always positive and has a flat
profile with φpl = 4–7 V in the bulk of the plasma. The plasma potential is determined
by the potential drop of the sheath at the plasma boundary (grounded vessel walls) and is
usually ∼ 2Te above the wall potential [Riemann, 1991]. Close to the antenna position,
the plasma potential rises rapidly up to 9 V. It is important to note that the sheath thickness
in such a ‘magnetically enhanced capacitive rf discharge’ [Lieberman and Lichtenberg,
1994] is for our set of parameters predicted to be in the sub-millimetre range [Park and
Kang, 1997], which is barely resolvable by our measurements. It is thus reasonable to
interpret the rise of the plasma potential at roughly 5–10 mm distance from the antenna
as the magnetic pre-sheath [Kim et al., 1995]. Its width is given by the simple expression
δm = cs/ωci and calculates for typical capacitive mode conditions in the VINETA device
(cf. Tab. 4.1) to δm ≈ 2–10 mm. To summarise, the profiles confirm the characteristic
feature of a (magnetically enhanced) capacitive coupled plasma (Sec. 3.1). The plasma
production by ohmic and stochastic heating is restricted to the antenna sheath edge, where
the power density is highest. The centre (bulk) plasma column is mainly filled by cross
field diffusion [Perry et al., 2002]. Downstream the source, the region outside the antenna
cross section is also filled by cross field diffusion.

The plasma equilibrium profiles of the inductive mode are measured for p = 0.6 Pa,
Prf = 600 W, and B0 = 56 mT. The plasma density has an almost flat-top profile with
strong gradients at the inner antenna region, which means a full-width-at-half-maximum
(fwhm) diameter of dfwhm ≈ Rant = 100 mm. The peak plasma density is found to be
n = 4 · 1017 m−3. This density is typical for the inductive discharge mode operation
in the VINETA experiment. The electron temperature follows the flat-top profile of the
density and has a peak value of ≈ 4 eV. The plasma potential is fairly constant as well
over the entire antenna cross section and shows, particularly in contrast to the capacitive
discharge mode, no sheath structure close to the antenna. The observed poloidal profiles
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are consistent with the commonly accepted models for inductive discharges (Sec. 3.2),
where the induced current in the skin layer heats the plasma. The collisionless skin depth
in the present operation are on the order of the antenna radius, which means that the skin
layer expands from the antenna to the centre, thereby leading to flat-top profiles of the
plasma parameters.

For the measurements in the helicon wave sustained mode, the device is operated at
p = 0.5 Pa, Prf = 3.5 kW, and B0 = 75 mT. The plasma production now seems to
be completely detached from the antenna edge region. Plasma density, electron tem-
perature and plasma potential are strongly peaked in the centre of the discharge. The
fwhm-diameter of the plasma column is dfwhm ≈ 60 mm, which means a clear reduction
of the plasma diameter compared to the capacitive and the inductive mode operation. The
peak density is n = 3 · 1018 m−3 and with it an order of magnitude larger compared to
the previous discharge modes. This value is again typical for helicon mode discharges in
the VINETA. The peak electron temperature value is Te = 8 eV and the plasma potential
rises from 0 V at the antenna edge to 15 V in the centre.
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Figure 6.2: Plasma density measurements in the three discharge modes (capacitive, inductive, and
helicon from left to right) shown for a poloidal plane perpendicular to the magnetic field (a) and
for radial cuts (b). The dotted lines mark the source glass tube diameter and the density in the
capacitive and inductive modes is enlarged. Published in [Franck et al., 2003].
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In summary, the observed poloidal equilibrium plasma profiles in the capacitive and in the
inductive mode of operation can be explained by standard discharge models as reviewed
in Secs. 3.1 and 3.2. The plasma production in the capacitive mode mainly occurs in the
antenna sheath region, where the electric fields are largest. In the inductive mode, the rf
antenna currents become large enough to induce electric fields, resp. and induced current,
that heat the plasma. The heating takes places within the skin depth layer. The physical
mechanism of the helicon mode discharge is still a scientific case and only little insight
into the formation mechanism of plasma profiles is currently available. The plasma profile
measurements suggest, however, that the power deposition is located in the plasma centre.

The above reasoning is supported by an additional set of measurements. Fig. 6.2 (a) shows
density measurements in the three discharge modes (from left to right: capacitive, induc-
tive, and helicon) taken in a poloidal plane perpendicular to the magnetic field at a distance
of 1 m from the antenna centre. Radial cuts for the three different discharge modes (� ca-
pacitive, � inductive, and � helicon wave sustained) are shown in Fig. 6.2 (b). The dotted
lines indicate the source glass tube diameter. The profiles are taken for B0 = 85 mT at
an argon gas pressure of 0.3 Pa. The matching circuit capacitors are adjusted to minimise
the reflected power in each mode. The density profiles are determined from ion saturation
measurements, which are much faster than full probe characteristics. This enables profile
measurements with considerably higher spatial resolution. Up to 1000-2000 points are
taken in the poloidal plane and the parameter drift is also much less in this shorter time
span. Absolute values are found from comparison with full characteristics at some spatial
positions. The measurements shown in Fig. 6.2 fully support the above mentioned expla-
nations. In particular, they confirm the antenna sheath heating in the capacitive mode, the
bulk heating from induced currents in the inductive mode and the centre peaked heating
in the helicon wave sustained mode.

6.2 Modestructure

The measurements of the equilibrium plasma profiles in the previous section showed that
the plasma production in the helicon mode is completely decoupled from the antenna edge
region and restricted to the centre volume. In contrast to that is the plasma production
in the capacitive and inductive mode, where the plasma production takes place in the
antenna sheath and by induced currents in the skin layer of the plasma, respectively. It
was suggested from previous radial wave profile measurements by Light and Chen [1995]
and low resolution measurements in the poloidal plane by Ellingboe and Boswell [1996]
that the detachment from the antenna edge is associated to the power deposition from
a propagating wave, the helicon wave. Therefore, we focus on measuring the waves’
magnetic fields in the discharge. In particular, the difference between the capacitive and
the helicon mode with respect to their magnetic eigenmode structure is highlighted. The
experimental setup is shown in Fig. 4.20 and explained in Sec. 4.4.
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Figure 6.3: Poloidal profiles of the wave magnetic structure in a capacitive mode discharge.
Shown are the poloidal measurements of the amplitude (left) and the phase (right) of the par-
allel (Ḃz , top) and perpendicular (Ḃy, bottom) components. The white circles indicate the antenna
edge positions and a horizontal cut is made through the centre (dashed lines) to compare the mea-
surements (markers) to the theoretical profiles (solid lines) of an m = 0 mode wave in a bounded
plasma (1d plots).
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Figure 6.4: Poloidal profiles of the wave magnetic structure in a helicon wave sustained discharge
mode. Shown are the poloidal measurements of the amplitude (left) and the phase (right) of the
parallel (Ḃz , top) and perpendicular (Ḃy, bottom) components. The white circles indicate the
antenna edge positions and a horizontal cut is made through the centre (dashed lines) to compare
the measurements (markers) to the theoretical profiles (solid lines) of an m = 1 mode wave in a
bounded plasma (1d plots).
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Figure 6.5: Measurements of the magnetic fluctuations in the axial direction parallel to the am-
bient magnetic field Ḃz in a helicon mode discharge. Shown are the amplitude (top) and phase
(bottom) in the horizontal plane parallel to the magnetic field. The 1D plots are made along the
cuts indicated by the white dashed lines. The solid white lines in the phase plot underline the
clearly visible phase fronts.
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Figure 6.6: Measurements of the magnetic fluctuations in the direction perpendicular to the am-
bient magnetic field Ḃx in a helicon mode discharge. Shown are the amplitude (top) and phase
(bottom) in the horizontal plane parallel to the magnetic field. The 1D plots are made along the
cuts indicated by the white dashed lines. The solid white lines in the phase plot underline the
clearly visible phase fronts.
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Fig. 6.3 shows measurements of the poloidal structure of the wave magnetic fields in the
capacitive discharge mode with p = 0.7 Pa, P = 500 W, and B0 = 56 mT. The plots
show the amplitude and the phase of the wave magnetic field components parallel Ḃz and
perpendicular Ḃy to the ambient magnetic field in colour-coded representation. Again, the
poloidal location of the antenna edge is indicated by a white circle. A radial cut through
the centre (dashed white line) is made for better visual inspection (lower half diagrams).
Moreover, the measurements (markers) are compared with the theoretical wave field pro-
files (solid lines), cf. Sec. 2.4.3. The amplitude profile of the axial component Ḃz shows
a maximum in the centre and drops off towards the edges whereas the phase is constant
over almost the entire poloidal cross section. This is in very well agreement with the theo-
retical prediction (cf. Fig. 2.15, right). The radial section of the wave amplitude is plotted
together with the theoretically predicted profile of a m = 0 mode wave Eq. (2.79) with
radial wave number k⊥ = 3.83/0.1 m−1. Phase shift measurements in the parallel direc-
tion yield a parallel wave number k‖ ≈ 2π/4 m−1. The measurements of the amplitude
and the phase of the perpendicular component Ḃy fully support this picture. The wave
field amplitude shows two maxima and a minimum in the centre. The phase changes sign
in the centre, showing that the two maxima are in fact maximum and minimum in wave
field amplitude. The radial cut shows a good agreement with the theoretically expected
profile of an m = 0 mode wave Eq. (2.78) with radial wave number k⊥ = 3.83/0.1 m−1.

In contrast to the capacitive discharge, a different mode structure is obtained in the helicon
discharge, although the helicon wave excitation setup remains the same. Fig. 6.4 shows
plots of the poloidal structure of the wave magnetic fields in the helicon wave sustained
discharge mode with p = 0.7 Pa, P = 2.4 kW, B0 = 56 mT. The measurements are done
in pulsed mode operation to prevent the sensitive probes from being damaged under the
stressing plasma conditions. Again, the amplitude and the phase of the parallel Ḃz and
perpendicular Ḃy components of the wave magnetic fluctuations are shown. Two main
differences to the capacitive mode can be seen right away. First of all, the wave amplitude
is constrained to a much smaller poloidal region (within radius � 35 mm) inside of the
antenna cross section. The measurements in this centre region are made with maximum
spatial resolution of 5 mm, which is about the probe size plus ceramic shielding. The
radial cut shows a clear minimum of the wave amplitude for the parallel magnetic fluc-
tuation Ḃz in the centre and two maxima at r ≈ 25 mm, accordingly. The corresponding
phase changes sign in the centre. Again, the poloidal plot is in well agreement with the
theoretical prediction (cf. Fig. 2.15, left). The amplitude of the perpendicular fluctuations
Ḃy in turn shows a maximum in the centre and decreases with increasing radius r. The
phase shows a gradual change from left to right. Plotted with solid lines in the radial cuts
are the theoretical amplitude profiles of an m = 1 mode Eqs. (2.78) and (2.79) with per-
pendicular wave number k⊥ = 3.83/0.05 m−1. This wave number corresponds exactly
to the antenna radius. The measurements agree reasonably well with theory. The only
noticeable deviation is that the phase for Ḃy should be constant. Another difference with
regard to the measurements in the capacitive mode is the quite strong scatter in the phase
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dashed line indicates the resonance cone angle
θres = 89.5◦.

measurements. These irregularities can be attributed to parameter drifts in the discharge
during the measurements which last for up to 2 hours.

For the helicon wave sustained discharge, Figs. 6.5 and 6.6 show horizontal profiles of
the parallel Ḃz and perpendicular Ḃx magnetic wave fluctuation amplitude and phase in
a plane parallel to the ambient magnetic field. Again, the measurements are averaged at
each position to improve the signal-to-noise-ratio. The radial resolution is ∆r = 7.5 mm
and the axial resolution is ∆z = 20 mm. This sums up to a total of more than 1300 av-
eraged data points to cover the plane. Axial and radial cuts along the white dashed lines
are also shown. The experimental conditions are B0 = 56 mT, f = 10 MHz, p = 0.5 Pa,
and Prf = 2 kW. In the top graph of Fig. 6.5, the radial amplitude profile of the parallel
Ḃz fluctuations shows again the structure of an m = 1 mode wave with a minimum in
the centre of the discharge and two maxima at r ≈ ±25 mm. The axial amplitude profile,
obtained here by the cut slightly off-centre (≈ 35 mm), shows an amplitude modulated
structure with λ‖ ≈ 150 mm wave length. The amplitude is damped away almost com-
pletely over the measuring distance of 2 m. In the bottom graph of Fig. 6.5, the diagram
of the axial evolution of the relative phase shows a 2π phase shift every ≈ 150 mm. This
parallel wavelength is exactly half the antenna length and is considerably smaller than
in the capacitive mode. The radial cut shows that the phase changes sign in the cen-
tre. Besides this main structure in the phase, a fine structure of crossed phase fronts is
observed as well and will be treated in more detail below. The perpendicular Ḃx fluc-
tuations, shown in Fig. 6.6, correspondingly show all features expected for an m = 1

mode wave. The radial profile of the wave amplitude has a maximum in the centre and
the amplitude decreases away from the centre. The axial distribution does not display an
axial modulation like the Ḃz fluctuations but is gradually damped over the measured 2 m
as well. The general structure of the phase shows almost almost constant values in radial
direction, again with some fine structure features in the centre. The parallel wavelength
determined from the axial 2π phase shifts is again λ‖ ≈ 150 mm, which is consistent with
the Ḃz measurements.

Inspecting the phase diagrams Figs. 6.5 and 6.6 more carefully, a rather complex sub-
structure of the phase planes becomes evident which suggest interference effects to be
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Figure 6.8: Axial measurement of the amplitude of Ḃz for two different ambient magnetic field
strengths: B0 = 93 mT (top, red) and B0 = 38 mT (middle, blue). The axial plasma density for
the two configurations is shown in the bottom graph with the corresponding colours.

of importance. The propagation of bounded plasma waves can also be discussed from
the point of view of geometrical optics, in particular if the eiconal assumption is justi-
fied [Landau and Lifschitz, 1977]. The waves propagate oblique to the magnetic field
and are reflected at the boundary, similar to the physics of an fibre optical light guide
[Jackson, 1999]. The present measurements partially support this picture. In the two
phase plots of Figs. 6.5 and 6.6, phase fronts of reflected waves are clearly visible and are
emphasised by solid white lines. The angle of the normals of these fronts with respect
to the ambient magnetic field can be calculated to be cot−1(40/385) ≈ 84◦ in Fig. 6.5
and cot−1(40/185) ≈ 78◦ in Fig. 6.6 (note the different scales on the r- and z-axis).
Fig. 6.7 shows the polar plots of the wave vector for the present experimental situation
(f = 10 MHz and B0 = 56 mT) at two different plasma densities: a) n = 5 ·1018 m−3 and
b) n = 1.5 · 1019 m−3. The two different plasma densities are the typical density range
within the measuring plane. The dotted lines indicate the two experimentally determined
phase front angles θ = 84◦ and θ = 78◦. Since the phase front angle can only be deter-
mined from the measurements to be within a certain range, only a range of wave vectors
can consequently be evaluated: k‖ = 11–27 and k⊥ = 75–200. These wave vectors are on
the right order of magnitude if compared to theoretically derived values or the previously
measured ones. The accuracy and the limits of this will be discussed in detail in Chap. 8.

So far, the axial and parallel wave numbers have been determined in the helicon mode
for one set of parameters. The measurements have shown that k‖ = 2π/0.2 m−1 and
k⊥ = 3.83/0.05 m−1 are determined by the antenna geometry. It is now revealing to
analyse their dependence on the plasma and discharge parameters, especially the ambient
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magnetic field B0. Fig. 6.8 shows the axial profiles of the parallel magnetic fluctua-
tions Ḃz measured slightly off centre (≈ 30 mm), where the fluctuation amplitude has a
maximum. The measurements are made for two different magnetic field strengths: the
red curve (top) shows the measurements at B0 = 93 mT and the blue curve (middle) at
B0 = 38 mT. The wavelength determined from the phase shifts of both measurements
yield the same value of λ‖ = 150 mm within the small errorbars (≤ 10 %). The par-
allel wave number is thus independent from the ambient magnetic field. Measurements
of the perpendicular wave number (not shown here) yield the same result, the perpen-
dicular wave number is independent from the ambient magnetic field. With respect to
the simplified helicon dispersion relation (2.53) this implies that for fixed wave numbers
and fixed driving frequency, the plasma density is proportional to the magnetic field. The
normalised axial density distributions (solid lines) are shown together with linear best fits
(dashed lines) for the two measurements in the bottom graph of Fig. 6.8. And, indeed, the
measurements agree qualitatively well with the scaling given by the simple helicon dis-
persion (2.53), i.e. the density increases with increasing magnetic field. The quantitative
agreement is not as good: the ratio of the magnetic field strengths (93/38 ≈ 2.42) and the
ratio of the densities close to the antenna (1.05/0.6 ≈ 1.73) only agree within ≈ 30 %.

6.3 Transitions between Discharge Modes

The transition between the three different discharge modes is not continuous but occurs
via sudden jumps at certain rf power levels [Perry et al., 1991; Chen, 1992; Shoji et al.,
1993] or magnetic field strengths [Boswell, 1984b]. So far, measurements with varying
rf power or magnetic fields have only been made step-by-step under fully established
conditions. This procedure allows the measurement of discontinuous plasma parameter
evolutions but cannot resolve dynamical or hysteresis phenomena. High resolution den-
sity measurements are made in the VINETA device during an rf power ramp [Franck
et al., 2003]. The source was operated continuous wave (cw) and the rf power was varied
in 2.5 s from 200–2000 W. During this ramp all other discharge parameters were kept
constant: argon gas pressure 0.6 Pa, magnetic field 38 mT, and constant matching capac-
itor settings (for minimum reflected power in the inductive mode). The relative plasma
density is recorded slightly off centre (≈ 35 mm) inside the helicon source tube by the ion
saturation current of a Langmuir probe. The rf power and the plasma density are recorded
simultaneously with 100 kSamples/s. Fig. 6.9 shows the results of density measurements
during such a power ramp. The measurements show a qualitative difference during the
power-up and power-down ramp. During the power up ramp, the discharge remains in
the capacitive mode with relatively low densities n ≈ 4 · 1016 m−3 up to rf powers of
1.2 kW. For further increased rf power up to 1.8 kW the capacitive mode is maintained.
Between 1.5 kW and 1.8 kW the density at the probe position even decreases. At 1.8 kW
rf power level, a sudden density jump by more than a factor of twenty to n ≈ 9 · 1017

occurs within a power interval of 10 W, which can be identified as a transition between



86 Helicon Wave Experiments

the capacitive mode (low density) and the helicon mode (high density). The latter can be
easily identified via the ‘blue core’, a luminous bright zone in the discharge centre [Black-
well and Chen, 1997] and via the poloidal discharge profiles and modestructure, shown
in the previous Secs. 6.1 and 6.2. Further increase of the rf power leads to a small in-
crease of the plasma density only. The inset of Fig. 6.9 shows the temporal evolution
of the density in the time interval around the transition from the capacitive mode to the
helicon mode. The density measurement shows a short (≤ 0.8 ms) step at an intermediate
density level which might suggest a transient appearance of the inductive mode. A fairly
different scenario is observed if the rf power is ramped down, starting at a power level
with an established helicon mode. At exactly the same power level at which previously
the jump from capacitive to helicon mode occurred, a sudden drop of plasma density is
observed, but remains at an intermediate level of n ≈ 7 ·1017 m−3. This intermediate state
is identified as the inductive discharge mode. The plasma density then decreases gradu-
ally with decreasing rf power. At 1.2 kW, another sudden density drop is observed, the
transition from the inductive mode to the capacitive mode. This difference in transition
behaviour for increasing and decreasing rf power ramp, and in particular, the direct transi-
tion from the capacitive mode to the helicon mode is of great importance as it contradicts
transition models based on the plasma density as the critical parameter for the transition
to the helicon mode [Kaeppelin et al., 2001]. The measurements rather suggest that the
rf power density is the important parameter as the transition from the capacitive to the
helicon mode as well as the transition from the helicon mode to the inductive mode occur
at exactly the same forward rf power level and will be discussed in Chap. 8.
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Figure 6.9: Density vs rf power during a 2.5 s power ramp. The density is normalised to the
maximum density. For increasing rf power, the discharge transits from the capacitive mode into
the helicon wave sustained mode directly (arrow up). For decreasing rf power, the discharge goes
through an intermediate density mode, the inductive mode (arrows down). The inset shows the
non-averaged density evolution during the power-up ramp at the transition from the capacitive
mode to the helicon mode. Published in [Franck et al., 2003].



7

Whistler Wave Dispersion from Unbounded to
Bounded Plasma

The two extreme approximations for R-waves, unbounded whistler waves and strongly
bounded helicon waves, were studied separately in the previous two chapters to some
detail. Within this chapter, the transition between both cases, the transition from an un-
bounded to a bounded plasma whistler wave dispersion is investigated (partly published in
[Franck et al., 2002c]). As shown in Sec. 2.3.3, the parallel wavelength of an R-wave is a
function of the excitation frequency, the ambient magnetic field strength, and the plasma
density. All three parameters are controllable within the VINETA experiment and the
plasma density can even be varied by four orders of magnitude. Particularly easy to vary
is the excitation frequency. To study the transition from unbounded to bounded plasma
wave propagation, the wavelength to vessel radius ratio λ‖/Rc is gradually increased from
values < 1 to values 	 1 by setting the appropriate plasma parameters and exciting waves
at different frequencies. Fig. 7.1 shows wave dispersion measurements (markers) in the
capacitive discharge mode at low plasma density n ≈ 2 · 1016 m−3 (average value) at two
different magnetic fields: B0 = 20 mT (top graph) and B0 = 38 mT (bottom graph). The
measurements are mostly very accurate with errorbars sometimes smaller than the marker
size; only the measurements at 300 MHz are quite erroneous. Included in the two plots
are the whistler wave dispersion curves (2.42) for unbounded plasmas (solid lines) and the
simple analytic approximation for bounded plasma geometry Eq. (2.64) with Rc = 0.2 m
(dashed lines). Within these plots, two regimes are clearly distinguished: First, at higher
frequencies (f > 300 MHz), corresponding to small wavelengths (λ‖/Rc � 1), the wave
dispersion behaviour is well described by unbounded plasma whistler wave dispersion.
Second, at lower frequencies, corresponding to wavelengths that are in the range of the
experimental dimensions λ‖/Rc � 1, the parallel wavelengths are always larger than ex-
pected for unbounded plasma whistler waves. This is an indication that in this region the
waves no longer remain unaffected by the plasma boundary and a more appropriate theory
has to be used. The theoretical dispersion relation (2.63) for bounded plasmas quantita-
tively reproduces the larger measured wavelengths for lower frequencies. Nevertheless,
it does not resolve the exact shape of the measured dispersion over the entire frequency
range. This is reasonable as Eq. (2.64) is derived under two approximations which are
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Figure 7.1: Whistler wave dispersion measurements in the low density capacitive discharge mode
for n ≈ 2·1016 m−3 at two different magnetic fields, B0 = 20 mT (top) and B0 = 38 mT (bottom).
Shown are the measurements (markers), the theoretical curve for the R-wave dispersion (2.40)
in unbounded plasmas (solid lines), and curve from Eq. (2.64) for whistler waves bounded in a
homogeneous plasma cylinder with radius Rc = 0.2 m (dashed lines). On the right-hand side, the
radial plasma density is shown.

not completely satisfied in the present experimental conditions. First, the low frequencies
approximation (ω 
 ωpe) prohibits a correct description for all used wavelengths. The
excitation frequencies used in this set of measurements are only a factor 4–10 smaller
than the plasma frequency fpe ≈ 2 GHz. Second, a completely filled waveguide with ho-
mogeneous plasma density is assumed in theory. The density profile of the plasma in the
capacitive mode used for these measurements is shown on the right-hand side of Fig. 7.1.
It clearly deviates from a homogeneous situation. The measured profile is indeed inhomo-
geneous with density maxima at the antenna edge (Rant = 50 mm). Moreover, the plasma
density decreases towards the boundary and a ‘vacuum gap’ with very low plasma den-
sity is established between the plasma and the conducting vessel wall. However, the used
theoretical description already explains the increase in wavelength in the regime where
the boundary influences the wave propagation.

In a next step, experiments with a more homogeneous density distribution are done. In
the discharge, a parameter regime is chosen to minimise the hollow profile structure of
the plasma. Unfortunately, the well suited inductive mode, which has an almost flat-top
profile, cannot be established in the VINETA at densities below 1017 m−3. At those den-
sities, wavelengths are too small (λ‖/Rc < 1) to see a significant effect of the plasma
boundary (cf. Fig. 5.2). Dispersion measurements are done in the capacitive discharge
mode with B0 = 56 mT and p = 0.2 Pa for three different rf powers. The resulting radial
plasma profiles are shown on the right-hand side of Fig. 7.2 with n = 1.75 · 1016 m−3
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Figure 7.2: Whistler wave dispersion measurements in the capacitive mode with B0 = 56 mT
and three different plasma densities. Shown are the measurements (markers), the theoretical
curve for the R-wave dispersion (2.40) in unbounded plasmas (solid lines), and the curve from
Eq. (2.64)(dashed lines) for whistler waves bounded in a homogeneous plasma cylinder with ra-
dius Rc = 0.3 m (top), Rc = 0.15 m (middle), and Rc = 0.1 m (bottom). On the right-hand side,
the three radial plasma density profiles are shown.

(top), n = 4 · 1016 m−3 (middle), and n = 7 · 1016 m−3 (bottom). On the left hand sides,
the dispersion measurements in the three discharges are shown (markers). Again, the
measurements are mostly very accurate with small errorbars and only the measurement at
300 MHz drops out. The frequency range of the measurements is covering the range of
100–800 MHz. Also plotted in Fig. 7.2 are the dispersion curves for unbounded whistler
waves (solid lines) and for bounded waves using Eq. (2.64) with Rc = 0.3 m (top),
Rc = 0.15 m (middle), and Rc = 0.1 m (bottom). Once again, two regimes can be dis-
tinguished: For higher frequencies above 200 MHz, the measurements are well described
by the whistler wave dispersion curve for unbounded plasmas. For smaller frequencies,
the unbounded dispersion curve is always below the measured values. The transition be-
tween both regions is very steep, covering the small frequency range of ≈ 100–200 MHz.
In this set of experiments, again, the bounded wave expression (2.64) can only describe
the increase in wavelength but not resolve the exact shape. However, from these mea-
surements in the more homogeneous plasma, two new unexpected but interesting points
emerge: First, inspecting carefully the unbounded whistler wave dispersion (2.40) at high
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Figure 7.3: Whistler wave dispersion for B0 = 56 mT and n = 4 · 1016 m−3. Shown are the
results from a numerical simulation (dashed line) and the curve for unbounded R-waves (2.40)
(solid line).

frequencies shows wavelength measurements that are systematically below the theoretical
prediction. This becomes evident as the density is now more exactly determined. For the
previous hollow profiles, the density range was too large to assert this and only an average
density value was taken. Second, the radius Rc is used as a fit parameter to get a quan-
titative agreement between the measurements at low frequencies and the bounded wave
theory. It turns out that the radius has to be chosen differently for each dispersion measure-
ment. Physically, the radius Rc in Eq. (2.64) can be seen as the inverse of a perpendicular
wave number k⊥ (Sec. 2.4.1) that is determined by the boundary conditions at the con-
ducting vessel walls. A change in Rc from experiment to experiment with values between
0.1–0.2 m raises the question if the vessel walls really present the important boundary.
To clarify these two points, the dispersion is numerically calculated by solving the ordi-
nary differential Eqs. (2.54) and (2.55) given in Sec. 2.4.2. As mentioned above, this is
very demanding and a previously evaluated code [Kleiber, 1996] is adapted to the present
mathematical problem. Fig. 7.3 shows the whistler wave dispersion for n = 4 · 1016 m−3

and B0 = 56 mT for the approximation Eq. (2.40) for R-waves in unbounded plasmas
(solid line) and the numerically solved dispersion (dashed line). For the numerical calcu-
lation, a conducting cylindrical boundary with Rc = 0.2 m and a homogeneous step-like
plasma density distribution with n = 4 · 1016 m−3 at r ≤ Rp = 0.05 m are assumed. For
Rp < r ≤ Rc a vacuum gap is postulated. Although the plasma profile is quite unrealis-
tic, the results are qualitatively correct and meaningful. In principle density distribution
without discontinuous density jumps can be treated with the code as well, but the simple
step-like profile is used for consistency with Uhm et al. [1988]. For frequencies below
≈ 500 MHz, the numerically calculated dispersion relation yields wavelengths that are
significantly larger than those from the unbounded whistler wave dispersion. This is con-
sistent with the experimental observations discussed above. The influence of the boundary
leads to an increase in the parallel wavelength. For frequencies above ≈ 500 MHz, the nu-
merically derived dispersion yields wavelengths that are slightly smaller than those from
the unbounded whistler wave. This is as well consistent with the experimental obser-
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Figure 7.4: Normalised wave vector in a polar plot for three different normalised frequencies: a)
ω = 0.01, b) ω = 0.04, and c) ω = 0.06. Here, ωpe = 2ωce = 1.

vations and can be understood physically from the polar plots of the wave vector (k⊥ vs
k‖) in Fig. 7.4. Here, the normalised plasma and cyclotron frequencies are chosen to be
ωpe = 2ωce = 1. Shown are the polar plot diagrams at three different normalised frequen-
cies: a) ω = 0.01, b) ω = 0.04, and c) ω = 0.06. On the x-axis (k⊥ = 0) are the values
for k‖ that correspond to the case of the unbounded whistler waves (vertical dashed lines).
We assume a boundary that introduces a constant perpendicular wave vector k⊥ = 2 (hor-
izontal dashed line). At small frequencies, situation a), the parallel wave vector derived
from this plot is smaller than expected for unbounded waves. This means, the parallel
wavelength is larger than expected for unbounded wave propagation, consistent with the
measurements and the approximate dispersion relations shown in Fig. 7.2. For high fre-
quencies, situation c), the parallel wave vector derived for a bounded wave propagation
is larger than for the unbounded wave. Thus, the wavelengths are smaller if a boundary
is introduced. This is consistent with the results from the experiments and the numerical
calculation. At one particular frequency, situation b), both parallel wavelengths, derived
for bounded and unbounded waves, are identical. A perpendicular boundary thus not only
leads to an increase in wavelength at low frequencies but also to a decrease in wavelength
at higher frequencies. Having clarified this unexpected behaviour, the question of the
exact value of the perpendicular wave vector is addressed. As mentioned above, a dif-
ferent perpendicular wave vector had to be postulated for each set of measurements to
match the measured values at low frequencies quantitatively. The values are in a range
between the conducting vessel radius Rc = 0.2 m and the plasma radius Rp = 0.05 m.
The radial profile of the amplitude of the magnetic fluctuations is therefore derived nu-
merically for four different plasma radii and plotted in Fig. 7.5. The vessel radius is kept
constant at Rc = 0.2 m and the plasma profile is again step-like with n = 4 · 1016 m−3

and radius Rp = 0.2 m (solid line), Rp = 0.15 m (dashed line), Rp = 0.1 m (dash-dotted
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Figure 7.5: Numerically derived radial profile of the magnetic fluctuation amplitude Bz for dif-
ferent plasma radii: Rp = 0.2 m (solid line), Rp = 0.15 m (dashed line), Rp = 0.1 m (dash-dotted
line), and Rp = 0.05 m (dotted line). The vessel radius is kept constant at Rc = 0.2 m.

0 500 1000 1500
0

0.5

1

frequency (MHz)

pa
r.

 w
av

el
en

gt
h 

(m
)

0.05 0.1 0.15 0.2
0

0.5

1

radial pos. (m)

am
pl

itu
de

 B
z(r

)

Figure 7.6: Numerically derived dispersion (top) and the respective radial profiles of the magnetic
fluctuations (bottom) at the frequencies indicated by the coloured lines. The plasma parameters
are: B0 = 56 mT, n = 4 · 1016 m−3, Rc = 0.2 m, and Rp = 0.1 m.
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Figure 7.7: Whistler wave dispersion measurement for n = 4 · 1016 m−3 and B0 = 56 mT.
Shown are the parallel wavelengths (a) and the radial fluctuation amplitude for two example cases
(100 MHz red, 125 MHz green) with significantly different parallel wavelengths (c). The radial
plasma density profiles are shown in (b).

line), and Rp = 0.05 m (dotted line). The parallel wave number is always kept constant at
k‖ = 175 m−1. It is clearly visible that it is the plasma radius rather than the vessel bound-
ary that determines the radial wave number. Fig. 7.6 (top) shows the numerically derived
dispersion relation with Rc = 0.2 m, Rp = 0.1 m, n = 4 ·1016 m−3, and B0 = 56 mT. The
radial magnetic profiles at three different frequencies (indicated by the coloured vertical
lines) are shown below. The radial profile is mainly determined again by the plasma ra-
dius rather than the vessel radius. But, the radial profiles are different for each frequency:
The profile is wider for low frequencies than for high frequencies. This implies that
the perpendicular wave number is not a constant for all frequencies along the dispersion
curve and is smaller at smaller frequencies. Therefore, any theoretical approximation for
bounded waves using constant k⊥, like in Eq. (2.64), does not give a correct description.
The effect of increasing parallel wavelength for decreasing frequency is even amplified by
this. A k⊥ smaller (a value below the dashed line in Fig. 7.4) for low frequencies (a) leads
to a smaller k‖. For high frequencies (c) an increasing k⊥ leads to a larger k‖, respectively.
The slope of the dispersion curve is therefore steeper than calculated, just as observed for
the parallel wavelengths in Fig. 7.2. This finding, so far only shown numerically, should
be validated experimentally. Fig. 7.7 (a) shows a third set of dispersion measurements at
B0 = 56 mT and n ≈ 4 · 1016 m−3. In addition to the parallel wavelengths, the radial
modestructure is measured for each frequency at several axial positions. Two example
measurements of the radial magnetic fluctuation profiles are shown in Fig. 7.7 (c) for two
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different frequencies: f = 100 MHz (red) and f = 125 MHz (green), corresponding to a
large (red) and a small (green) parallel wavelength. It is evident that at low frequencies
the radial profile extends further to the plasma edge (red curve). In particular, it extends
into the region outside of the antenna whereas it is restricted to the plasma region inside
the antenna for the case of small parallel wavelength (green curve). The experimental
and numerical results agree: The radial modestructure is not constant for all points on the
dispersion curve and not solely determined by the conducting vessel boundary but varies
and has to be determined for each frequency on the dispersion curve.
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Discussion

Basic Wave Experiments

Whistler waves are excited in a magnetised plasma column and their dispersion is mea-
sured in two different discharge modes with high plasma density. The waves are identified
by their right-hand polarisation (R-wave) and their dispersion behaviour. In this first set
of measurements, a plasma parameter regime is chosen where the influence of the bound-
ary is expected to be small. The measurements agree very well with the approximated
theoretical dispersion of whistler waves in unbounded plasma geometry that is commonly
used in ionospheric research (cf. Fig. 5.2). It is demonstrated that the approximation for
wave dispersion in unbounded plasma geometry can be used in laboratory experiments if
the perpendicular vessel dimension is much larger than the measured parallel wavelength
(λ‖/Rc 
 1). This is in agreement with previous observations in other large volume
plasma sources [Stenzel, 1976; Mattoo et al., 2001].

With almost the same experimental setup, waves are excited at frequencies around the
ion cyclotron frequency fc,He in a helium plasma. For frequencies above fc,He, the dis-
persion behaviour is in agreement with the expected R-wave. A gradually increasing
deviation from the R-wave dispersion is observed for frequencies below fc,He. This may
be explained by taking the ion motion into account as well. Below fc,He, there is also an
L-wave propagation and the observed deviation is most likely due to a superposition or
an interaction of the R-wave and the L-wave mode. First of all, the antenna excites both
wave modes as the excitation scheme of the antenna is not selective to either polarisation.
Moreover, both wave modes are linear polarised at a certain frequency in multi-species
plasmas (cf. Sec. 2.3.4 for crossover frequency) and mode conversion can occur [Yeh and
Liu, 1972; Ruud, 2000]. It is shown, however, that linear superposition of the waves alone
cannot explain our measurements. Nonlinear effects might be of importance due to the
high power used for wave excitation (≈ 50 W). In addition, the measurements with Ḃ-
probes at such low frequencies are very demanding and large size probes are used which
possibly disturbed the wave propagation. To gain detailed information, the process must
be analysed on a more basic level. Observations of the ion response give of course a much
deeper insight into the mechanisms than collective behaviour as reflected in the magnetic
fluctuation profiles. This suggests the use of LIF technique to measure the perturbed ion
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distribution function (cf. Sec. 4.2.4 and [Sarfaty et al., 1996; Franck et al., 2000]). In ad-
dition, a more appropriate theoretical analysis will have to include the plasma boundary
and the finite size effects of the antenna excitation scheme, as the measured wavelengths
are rather long (λ‖ = 1–3 m). Nonetheless, these measurements are a first step towards a
complete wave description including the ion motion. To our knowledge, this is the first
experimental evidence of L-wave propagation in laboratory plasmas.

Whistler Wave Dispersion from Unbounded to Bounded Plasma

In a second experimental campaign, whistler waves are excited and their dispersion be-
haviour is investigated in a plasma with lower density. In contrast to the previous mea-
surements, the plasma parameter regime is chosen to show a gradually increasing influ-
ence of the plasma boundary. The measurements are supported by numerical calculations
to solve the nonlinear eigenvalue problem describing the wave propagation in a plasma
filled waveguide. In the measured dispersion basically two different regimes could be dis-
tinguished. First, for high excitation frequencies, corresponding to parallel wavelengths
smaller than the radial experimental dimensions (λ‖/Rc � 1), the waves can be described
reasonably well by unbounded wave theory, similar to the measurements in a high den-
sity plasma. In slight contrast to that, owing to the high accuracy of the wave measure-
ments, it is observed that the wavelengths are systematically below the values predicted
for unbounded plasma waves. This new and unexpected finding is consistent with the
corresponding numerical calculations. A physical picture to explain this from bounded
wave theory is the following: The polar plot of the wave vector (Fig. 7.4) shows that a
large perpendicular wave number (corresponding to relatively small plasma extend in the
radial direction) leads to an increase of the parallel wave number at higher frequencies.
The parallel wavelength is therefore smaller than expected for unbounded plasma waves.
This deviation decreases for increasing perpendicular plasma dimensions and approaches
the unbounded limit for large experimental dimensions. This physical picture explains the
measurements and supports the numerical simulations. In the second regime of the dis-
persion, at low excitation frequencies, the measured wavelengths are always larger than
expected for unbounded plasma waves. Helicon wave theory as well as the more basic
theoretical approach to describe waves propagating in a plasma-filled conducting vessel
both predict the increase in wavelength for decreasing vessel radius. The approximation
for low frequency waves in a completely filled waveguide with homogeneous plasma den-
sity distribution is able to reproduce the measured wavelengths quantitatively but cannot
reproduce the exact shape of the entire dispersion curve. The perpendicular boundary
must be introduced as a fit parameter for the quantitative explanation. It turns out that
the perpendicular wave number is the key to the understanding of the wave propagation.
Quantitative agreement was achieved for values of the perpendicular wave numbers that
are in the range between the small plasma radius and the larger vessel radius. But the
values are of course not constant for the different k‖ measurements. Therefore, numer-
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ical simulations were carried out to study the influence of the experimental conditions
and of the plasma parameters on the radial mode structure. The numerical results reveal
that it is rather the plasma dimensions (plasma radius) than the device dimension (vessel
radius) that determines the radial modestructure. Moreover, the radial structure depends
on the parallel wavelength and thereby on the excitation frequency as well. The numerics
show that the radial modestructure extends further outside for large parallel wavelengths.
While the radial profile for a small parallel wavelength is restricted to the plasma region,
it extends further outside for long parallel wavelength, as shown in radial measurements
of the magnetic fluctuations. These findings stand in contrast to any model or approxima-
tion that uses a fixed perpendicular wavenumber [Uhm et al., 1988; Chen, 1991]. These
models are therefore not suitable to explain the full wave dispersion behaviour and can
only be used for the limiting cases of unbounded whistler waves (k⊥ → 0, shown above)
or strongly bounded whistler waves (k⊥ ≈ 3.83/Rc, shown below). Within these limiting
cases however, both approximations are satisfactory. In summary, the investigations pre-
sented here give a complete picture of the wave propagation in bounded plasma geometry
and delimit the regions in which common approximations are valid.

Helicon Wave Experiments

As a third aspect of whistler waves, strongly bounded helicon waves are investigated.
Here, the boundary is essential for the dynamics of waves as they are, mathematically
speaking, eigenfunctions of the plasma-boundary system. Helicon sources are widely
used in laboratory experiments but the discharge mechanism of the high density mode
is still a scientific case. This part of the work aims to contribute by investigating the
equilibrium plasma parameters and the magnetic fluctuation profiles with high spatial
resolution. Langmuir probe characteristics are recorded in the plane perpendicular to the
magnetic field. Plasma parameter profiles reflect to some extend the fundamental dis-
charge mechanisms (Fig. 6.1). The plasma production in the capacitive discharge mode
occurs mainly in the antenna sheath region, where the power deposition due to ohmic and
stochastic heating is largest. This is in full agreement with the simple model of magneti-
cally enhanced capacitive discharges [Lieberman and Lichtenberg, 1994]. The discharge
mechanism in the inductive mode was shown to be due to the electric fields induced by
the large antenna currents within the skin depth layer of the plasma, again in agreement
with simple discharge models [Lieberman and Lichtenberg, 1994]. In contrast to that, the
plasma production in the helicon mode is completely detached from the antenna, which
can be seen e.g. in the plasma density profile. This finding supports the assumption that
the power deposition in the centre is mainly due to a propagating wave, the helicon wave
[Light and Chen, 1995; Ellingboe and Boswell, 1996].

Detailed measurements of the poloidal mode structure of the wave magnetic fluctuations
were made to gain insight in the difference of the heating mechanism between the ca-
pacitive and the helicon mode operation. In the capacitive mode, an m = 0 mode wave
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was measured with a radial wave number k⊥ = 3.83/0.1 m−1 and a parallel wave num-
ber of k‖ = 2π/4 m−1. The perpendicular wave number is smaller than expected from
the source tube diameter. This fact supports the physical picture that a helicon wave is
driven and propagates in the plasma but has no significant impact on the plasma produc-
tion. It is rather such that plasma is produced in the antenna sheaths and spreads out in
the volume via cross field diffusion [Perry et al., 2002]. The helicon wave is excited by
the rf fields of the antenna and propagates in the plasma with a modenumber determined
self consistently from the plasma and device dimensions. The large axial wavelength is
due to the low plasma density and is much larger than the antenna length l = 0.3 m. It
is therefore not surprising that an m = 0 mode is excited, because the wave is, literally
speaking, too large to be sensitive to the axial m = 1 structure of the antenna. Instead,
only the ring ends of the antenna are seen by the wave, resembling a loop antenna with
azimuthally symmetric m = 0 mode structure [Shamrai and Shinohara, 2001; Mouzouris
and Scharer, 1998].

Magnetic fluctuations measurements were also made in a horizontal plane parallel to the
ambient magnetic field in the helicon wave sustained discharge mode. Again, a clear
m = 1 mode wave structure was identified with perpendicular wave number k⊥ =

3.83/0.05 m−1 and parallel wave number k‖ = 2π/0.15 m−1. In addition to that, curved
and broken phase fronts were observed in the plot. This finding is in agreement with the
picture of geometrical optics of a wave propagating oblique to the magnetic field until it
is totally reflected at the reflection layer, similar to the propagation of light in an optical
fibre. The angle between the phase front normals and the magnetic field is estimated to
be in the range of θ = 78◦–84◦. From these angles, a range of parallel and perpendicular
wave vectors can be derived: k‖ = 11–27 m−1 and k⊥ = 75–200 m−1. These values are
on the correct order of magnitude if compared to theoretically predicted values or to the
previously measured. A truly satisfying agreement cannot be achieved for multiple rea-
sons. First of all, the angle of the phase fronts changes if traced radially outwards with
a propagation almost parallel to the magnetic field at r > 40 mm (cf. Fig. 6.6). This is,
of course, due to the plasma density gradient, i.e. the density decreases with increasing
radial position. The parallel propagation of the phase fronts at radial positions with low
plasma density can probably be explained by wave propagation in a vacuum wave guide.
The axial and radial plasma density gradients must be fully taken into account and make
it necessary to derive the parallel and perpendicular wave vectors locally at each position
instead of assuming an average density. Therefore, only a range of wave vectors instead
of an exact value was derived. A third interesting point is the exact location of the point
of reflection. From Figs. 6.5 and 6.6 these points seem to be within r = 20–40 mm and
indicate a reflection layer instead of a sharp point. This wide range cannot be explained
from inhomogeneities in the magnetic field strength or plasma density alone. But if one
compares the gradient length ≈ 20 mm with the the wavelengths λ‖ = 150 mm this is
not surprising at all. In contrast to all other electromagnetic waves in plasmas, whistler
waves do not exhibit a lower cut-off frequency and can consequently not be reflected
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at a certain critical boundary layer. Thus, for a correct theoretical description, ray trac-
ing calculation have to be made [Lundin and Krafft, 2002]. This possibility of directly
measuring the phase distribution is a waveguide system is rather fascinating and in par-
ticularly promising to contribute to the understanding of the wave damping mechanism,
which is dramatically altered due to this multiple reflections and interferences if compared
to parallel wave propagation. To summarise this subsection, the observation of complex
structured phase fronts strongly support the picture of a wave with oblique propagation
being reflected at the plasma boundary layer.

Magnetic fluctuation profile measurements in the helicon mode were done in the planes
parallel and perpendicular to the ambient magnetic field. As stated above, a clear m = 1

mode wave structure was identified and the wave numbers have been determined to be
k⊥ = 3.83/0.05 m−1 and k‖ = 2π/0.15 m−1. In the theoretical treatment of helicon dis-
charges it is usually assumed that the wave vectors are fully determined by the geometry
of the source antenna [Light et al., 1995]. The measured values are in good agreement
with the antenna radius and half the antenna length, fully supporting this assumption.
From simple helicon wave theory one can see that the parallel and perpendicular wave
numbers play a crucial role [Boswell and Chen, 1997; Chen and Boswell, 1997; Light
and Chen, 1995]. The plasma density is self-consistently determined by Eq. (2.53), if the
parallel and perpendicular wave numbers (k‖ and k⊥), the axial magnetic field strength
B0, and the rf frequency ω are given. In other words, the discharge geometry directly
influences the plasma density. It was verified in the present work that this picture holds
true: for a fixed antenna geometry and fixed rf frequency, the plasma density increase is
proportional to the magnetic field strength (cf. Fig. 6.8). Consequently, the plasma den-
sity can in principle be changed by varying rf frequency and the antenna geometry. First
experiments exploiting this principle were already successful [Gilland and Hershkowitz,
2001].

A particularly interesting behaviour of helicon sources is that the transition between the
three discharge modes is discontinuous. It is well known for inductive discharges that
the collisionless skin depth δp = c/ωpe, and therefore the plasma density, is the crucial
parameter for the transition from the capacitive mode to the inductive mode [Lieberman
and Lichtenberg, 1994; Hopwood, 1992]. It was also shown that the inductive power
coupling in unmagnetised discharges is most efficient when the skin depth δp equals the
device radius R [Lieberman and Lichtenberg, 1994]. An axial magnetic field reduces the
perpendicular conductivity and it was reported that the transition occurs at δp ≈ R/2

[Degeling et al., 1996]. The present measurements fully confirm the latter finding as the
transition occurs at a plasma density of n = 4 · 1016 m−3. At this density, the skin depth
δp = 25 mm = Rant/2 is exactly half the source antenna radius. The measurements of
the transition to helicon discharge mode contradict other existing models. It was previ-
ously suggested by Kaeppelin et al. [2001] that similarly to the transition from capacitive
to inductive mode discharge, the plasma density is the control parameter determining the
transition point from the inductive to the helicon wave sustained discharge. A ‘critical
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density’ [Kaeppelin et al., 2001] was derived from the helicon wave dispersion [Boswell,
1984b; Chen, 1991] at which the transition is expected to occur. In contrast to the mea-
surements reported in [Kaeppelin et al., 2001], the present experiments show a discharge
mode transition with a density increase by more than a factor of twenty. The ‘critical
density’ calculates to be n = 6.8 · 1018 m−3 in the experiments reported here, which is in
good agreement with the centre-density in the helicon mode, but is orders of magnitude
larger than the density in the capacitive mode. Moreover, the measurements show a tran-
sition from the capacitive mode directly to the helicon mode but remain at an intermediate
density mode (inductive) in the downward direction. This as well contradicts models that
assume the plasma density to be the control parameter for discharge mode transitions. A
direct transition from the capacitive to the helicon wave sustained mode was previously
reported at very low magnetic fields (B < 3 mT) [Degeling et al., 1996; Perry et al.,
2002]. At such low magnetic fields, the plasma density calculated for the appropriate
axial wavelength from the helicon wave dispersion is lower than the minimum density re-
quired for efficient inductive coupling. The transition therefore always goes directly from
the capacitive mode to the helicon wave sustained mode and no inductive mode is estab-
lished. In the present experiments, the magnetic field is considerably larger and the axial
wavelength of the helicon wave is in agreement with helicon wave dispersion only in the
high-density helicon regime. Therefore, the experiments clearly rule out the plasma den-
sity but suggest that the rf power density is the control parameter for the transition from
the capacitive to the helicon mode as well as for the transition from the helicon mode to
the inductive mode, which both occur at exactly the same forward rf power level.
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Summary and Conclusions

Within the scope of this work, a large linear magnetised plasma device was designed
to study whistler waves in bounded and unbounded plasma geometry. Besides the large
geometric dimensions and the high plasma density at moderate magnetic fields, the ma-
chine concept put emphasis on easy accessibility and maintenance of the device, enabling
a versatile use even beyond the extent of this work. The functionality and performance
of the VINETA device fully met the conceptual expectations. The plasma is established
by a standard rf helicon source with a right-helical antenna and can be operated in three
different discharge modes. With it, the plasma density range extends over four orders of
magnitude. Standard diagnostic tools like Langmuir probes, laser induced fluorescence
measurements, and microwave interferometer measurements together with the computer
controlled probe positioning systems were implemented successfully and yield all neces-
sary background plasma parameters. For the wave measurements, magnetic fluctuations
probes are used. An optimum probe design was identified and absolutely calibrated in
external test fields.

Different aspects of whistler wave dispersion have been examined. First, whistler waves
are excited in a high density plasma, where the boundary of the plasma is expected to have
only little influence on the plasma. The waves are identified by their polarisation and their
dispersion. It is explicitly demonstrated that the approximation for unbounded whistler
waves can be used in laboratory experiments if the ratio of the parallel wavelength to the
perpendicular experimental dimension is small (λ‖/Rc 
 1). This confirms earlier wave
experiments in large volume plasma devices.

Second, an important aspect of whistler waves concerns helicon waves, whistler waves
in strongly bounded plasma geometry (λ‖/Rc ≈ 1). These waves are used to produce a
plasma with very high efficiency in so-called helicon sources. Although they are widely
used in laboratory experiments, the detailed discharge mechanism is still far from being
understood. The present work examines the equilibrium plasma parameters of all three
discharge modes of helicon sources. The discharge mechanism in the capacitive and in-
ductive modes were identified and are in agreement with the commonly accepted models.
The helicon mode operation show clear signs of wave heating, completely detached from
the antenna sheaths. This picture is confirmed by magnetic fluctuation profile measure-
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ments in planes parallel and perpendicular to the ambient magnetic field with high spa-
tial resolution. The phase measurements in planes parallel to the ambient magnetic field
showed that the wave propagation in the helicon mode can be understood in terms geo-
metrical optics as well. The waveguide situation resembles that of an optical fibre. The
commonly used assumption that the parallel and perpendicular wave vectors in helicon
discharges are mainly set by the antenna geometry was confirmed. Moreover, the plasma
parameters are found to be determined self-consistently by the rf source parameters and
the wave dispersion.

Not confirmed, in turn, is that the plasma density is the control parameter determining the
transition from low density capacitive mode to high density helicon mode. In fact, high
resolution measurements clearly rule out the plasma density as the critical parameter and
indicate that the rf power density plays the pivotal role instead. The plasma density is just
self-consistently established by the particular discharge mode.

As the third aspect of whistler waves, the transition regime between the two approxi-
mated dispersion behaviours, waves in unbounded and strongly bounded plasma geome-
try, is studied both experimentally and numerically. It is shown that the dispersion is not
uniquely determined by measuring just the parallel wavelength. For a correct description,
the perpendicular profile has to be taken into account. It is shown that in this intermediate
wavelength region the perpendicular wave number is determined by the plasma dimen-
sions and not, as usually assumed, by the conducting vessel boundary. Moreover, the
perpendicular wave number is not at all constant for all frequencies, again in contrast to
commonly used approximations. In so far, these experimental and numerical challenge
some commonly accepted models for bounded whistler wave propagation.

A first step towards the more complete understanding of whistler wave propagation taking
into account the ion motion is done. At frequencies below the ion cyclotron frequency
ωc,He, right- and left-hand polarised waves were successfully excited. Whereas the dis-
persion above ωc,He agrees with the R-wave dispersion, both wave modes interact below
ωc,He and the dispersion behaviour is strongly distorted. The experiments at such low
frequencies turned out to be very difficult with magnetic fluctuation probes and refined
diagnostics with the non-intrusive laser-induced fluorescence technique was tested and
proposed for a more systematic study. Nonetheless, to our best knowledge, this is the first
experimental evidence for L-wave propagation in a laboratory plasma.
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