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1 Background Modelling of 3D equilibrium plasma configurations is a challenging task.
The existence of magnetic islands and stochastic magnetic field regions makes a direct
[1, 2] modelling time consuming, not very robust and flexible, and hardly useful for
systematic equilibrium optimization and stability analysis. More tractable conventional
model for 3D MHD equilibrium and stability studies is based on the nested magnetic
surface approximation as in standard 3D equilibrium code VMEC [3]. However the code
convergence is sensitive to the choice of harmonic set for flux surface representation and
significantly deteriorates with increasing resolution.

For equilibrium and stability studies based on the averaging methods a lot of numerical
codes have been developed and good agreement for both equilibrium and stability in
planar-axis stellarators was obtained [4].

The approach to 2D description of MHD equilibrium and stability proposed in [5] is
more general. The key idea is to introduce Riemannian space R

3, in which reference 3D
equilibrium is symmetric. The first step in such interpretation was carried out in [6, 7],
where it was shown that for arbitrary 3D equilibrium (with nested magnetic surfaces at
least) one can construct some formal 2D metric tensor and obtain 2D Grad-Shafranov
type equation. The equation was obtained by averaging exact 3D equation. In fact, it is
the exact zero 2D moment of equilibrium equation, like Kruskal-Kulsrud equation is the
exact zero 1D moment.

2 Scalar equations for 3D MHD equilibria description By assuming the magnetic
surfaces a(r) = const exist the ideal MHD equilibrium problem

j×B−∇p = 0, j = ∇×B, ∇ ·B = 0 (1)

can be reduced to the field equations

∇ ·B = 0, B · ∇a = 0, ∇ · (B×∇a) = 0 (2)

and to the force balance equation

|∇a|−2(B×∇a) · ∇ ×B = dp(a)/da. (3)

The following statement is valid ([6, 8] for example): for any a priori given family of
nested toroidal surfaces a(r) = const the full set of solutions of (2) can be represented
by the linear combinations

B = Φ′∇a×∇θψ +Ψ′∇a×∇ζψ, B = J∇aθF + F∇aζF (4)

while each summand satisfies (2).
Here

(·)′ = d(·)/da, ∇a(·) = n×∇(·)× n, n = ∇a/|∇a|,
and the pairs of the coefficients Φ(a),Ψ(a) and J(a), F (a) are arbitrary and refer to
toroidal and external poloidal (helicoidal) fluxes or currents. The pairs of the basis
vectors ∇a × ∇θψ,∇a × ∇ζψ and ∇aθF ,∇aζF are particular solutions of (2). They are
generated by the cyclic functions θψ,F , ζψ,F ∈ [0, 1) × [0, 1), which can be interpreted as
poloidal (helicoidal) and toroidal angles, satisfying equations

Lψθψ = Lψζψ = 0, Lψ = ∇ · |∇a|2∇a(·), LF θF = LF ζF = 0, LF = ∇ · ∇a(·). (5)
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The relations between the fluxes and currents and basis vectors in (4) can be written
as

J = −α22Ψ
′ + α23Φ

′,
F = −α23Ψ

′ + α33Φ
′,

α22∇aθF + α23∇aζF = −∇a×∇aζψ,
α23∇aθF + α33∇aζF = ∇a×∇aθψ.

(6)

with matrix elements αik(a) = eFi · eψk /
√
gψ defined by covariant vectors for coordinate

variables (5) depending on the shape of magnetic surface only.
Using other combinations of particular solutions of (2) a mixed representation (in

terms of poloidal flux and current) of the magnetic field can be obtained:

B = ∇Ψ× bF
3
+ Fbψ

3
, (7)

where, as before, each component satisfies equations (2). The vectors bψ,F
3

can be written
as linear combinations of (∇aθψ,F ,∇aζψ,F ).

Hence for constructing the specific field B, which provides the plasma MHD equi-
librium configuration, it is sufficient to know the shape of magnetic surfaces and the
distribution of any pair from fluxes and currents over these surfaces. Substitution of
the magnetic field (in any form) into the force-balance equation (3) yields the equation
for function a(r) and together with boundary conditions complements (4)-(6) to a close
system of equations.

Such a method with B in the form (7) generates three-dimensional analog of the two-
dimensional Grad-Shafranov equilibrium equation (see [7]) having one dimensional zero
moment – the Kruskal-Kulsrud equation

p′V ′ = J ′Ψ′ − F ′Φ′.

3 2D Grad-Shafranov type equation for 3D plasma equilibrium as the exact
zero two-dimensional moment for magnetohydrostatics The following statement
was formulated in [6, 7]: for any 3D plasma equilibrium (with nested flux surfaces at
least) there exist coordinate system (x1, x2, ζ) and corresponding Riemannian space R

3

in which the following conditions are satisfied: i. metric tensor ĝik(r) is two-dimensional:
∂

∂ζ
ĝik = 0; ii. poloidal (helicoidal) flux function Ψ is two-dimensional Ψ = Ψ(x1, x2) and

it is the solution of 2D Grad-Shafranov type equation

∇̂ ·
(

∇̂Ψ

ĝ33

)

+
F

ĝ33

dF

dΨ
− F ∇̂ ·

(

ê3 × ê3

ĝ33

)

= −α dp

dΨ
; (8)

iii. magnetic field takes the form B = (∇Ψ×e3+B3e3)/g33, with e3 = ∂r/∂ζ, < B3 >ζ=
F (Ψ).

Here R
3 is generated by the metric tensor

ĝik =
√

ĝ <
gik√
ĝ
>ζ , ĝ = det ĝik = det−2 <

gik√
g
>ζ , ĝik = Ĝik/ĝ, (9)

and
α = α(x1, x2) =<

√
g >ζ /

√

ĝ,

∇̂ is an ∇-operator in R
3. In these formulas < f >ζ=

1

ζmax

∫ ζmax

0
f(x1, x1, ζ)dζ.

Equation (8) can be obtained by averaging the exact 3D equilibrium equation in
any reference coordinate system connected to the natural coordinates (5) by a two-
dimensional transformation x1,2 = x1,2(a, θψ), ζ = ζψ − λ(a, θψ).

The numerical codes were developed for generation of the Riemannian space metric
based on VMEC 3D equilibrium format and for solution of the 2D equation on grid
adaptive to magnetic surfaces [9].
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4 Consistency check for equilibria with nested flux surfaces The solution of
the 2D elliptic equation in the Riemannian space (8) should reproduce the original 3D
equilibrium with nested flux surfaces. In particular, it means that in the coordinate
system x1 = a cos θψ, x2 = a sin θψ the level lines of the solution Ψ(x1, x2) are concentric
circles. A deviation from that solution can be estimated by comparing the rotational
transform ι = −Ψ′/Φ′ profile for the 3D configuration and the solution of the averaged
equation. Such a consistency check provides more extensive test than the 1D Kruskal-
Kulsrud equation balancing the shape of magnetic surfaces against the plasma profiles.

The method was applied to several series of equilibria in conventional stellarators and
in the systems with spatial magnetic axes.

The first series was related to the reference LHD configuration [4]. The pressure profile
was prescribed in terms of normalized toroidal flux Φ and zero toroidal net current was
assumed: p = p0(1−Φ2)2, J = 0. In Fig.1 the rotational transform profiles are compared
for a series of equilibria with increasing β. The profiles from the averaged equation match
the original profiles with accuracy better than 0.01 for β . 3% for VMEC resolution with
97 radial nodes equidistributed in toroidal flux and 179 harmonics.
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Fig.1 Rotational transform from VMEC solution (dots) and corresponding averaged

equation (solid lines) versus square root of normalized toroidal flux. The region of

maximal discrepancy for β = 4.3% is zoomed.

However for the equilibrium with β = 4.3% a significant discrepancy (∼ 0.05) ap-
peared near the rational surface ι = 0.5 approaching location of the pressure gradient
maximum. The discrepancy stays with increased resolution both in VMEC, Riemannian
metric generation module to solve elliptic equations (5) and the adaptive grid code to
solve the 2D equation.

To check whether it is an indication of magnetic island appearance the pressure profile
with another location of the gradient maximum was chosen: p = p0(1−Φ2)10. The same
effect was reproduced for lower value of β = 1% (Fig.2).
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Fig.2 Rotational transform comparison for β = 1% more peaked pressure profile.

Another series is related to the analytic force-free equilibria with j = λB, λ = const
[10]. Starting from the axisymmetric configuration and applying 3D perturbation gener-
ates the series of equilibria including cases with nested flux surfaces, spatial magnetic axis,
magnetic islands and stochastic fields. The shape of boundary flux surface was obtained
by magnetic field line tracing. The plasma profiles are described by p = 0, J = λΦ. The
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problem with accuracy in VMEC was encountered: the discrepancy in rotational trans-
form of several percent order was discovered even with radial resolution ∼ 200 (Fig.3).
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Fig.3 Analytic force-free equilibrium surfaces in different toroidal cross sections

(VMEC magnetic axis shown by cross) and rotational transform comparison.

A possible reason for that is a problem with magnetic axis determination. Note that
for a configuration with islands the VMEC code also converges to some nested flux surface
solution which is not an equilibrium because of uniqueness of the considered force-free
configuration. However the same kind of discrepancy in rotational transform profiles was
encountered.

5 Discussion A possible use of the averaged description of 3D equilibria is robust and
fast computation of approximate equilibria with different β and profiles starting from
background 3D vacuum configuration, for example. However the question on the ap-
proach applicability range needs to be answered.

An immediate use of the averaged equilibrium description is the consistency check
for 3D nested flux surface configurations giving information on numerical equilibrium
accuracy and possibly existence of the regular equilibrium problem solution.
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