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Introduction

For tokamaks the ��� Monte Carlo technique is a powerful method to study kinetic phenom-

ena in plasmas, e.g. the bootstrap current [1, 2]. The idea of this approach depends on the

determination of the deviation ��� from a Maxwellian. Starting from the drift kinetic equation,

linearization yields a marker equation for the weights of test particles which contains the drift

velocity. ��� methods show a significantly improved performance compared to full- � Monte

Carlo techniques.

In contrast to tokamaks the radial drift of ripple-trapped particles may result in a significantly

enhanced radial transport in stellarators. In the ��� scheme this is reflected by the solution of

the marker equation which lead to oscillating weights in the tokamak case, but to strongly in-

creasing weights of the ripple-trapped particles in stellarators. This ripple-trapped contribution

makes the application of the ��� Monte Carlo technique for stellarators a demanding problem

for estimating the bootstrap current.

The ��� method

Numerical simulation of neoclassical processes has been greatly improved by the introduction

of the ��� Monte Carlo technique, which consists of representing the equilibrium part of the

plasma analytically, and using particle simulation to represent only deviations from the equi-

librium.

Let’s consider the drift kinetic equation. Take the distribution function ���
	�
������������� with ���������� . Then � �� ��� � �� �"! �$#&% ! #(' ��)+* � !-,� � �� �.!/,� � �� � �10 �2� � (1)

where # % and #(' � #�35476 ! #�8(6 are the drift velocities of the guiding center and 0 ��� � is a

collision operator.

Linearization of � yields � � ��9 ! �;: where �+9 represents the Maxwellian as 0th order

distribution function. This leads to an inhomogeneous equation for �<:� �;:� � ! �$# % ! #=' ��)+* �7: !>,� � �;:� � !/,� � �;:� � �@?
� �A9� � ! 0 ���;: � (2)

where �+9 is considered as a steady-state distribution with 0 �2�79 �&BDC .
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The system of characteristic equations for the Hamiltonian part of the above equation contains

now an additional equation the so called marker equationEE;F�G7H&IKJ EE7F�G+LNM
In the case of a mono-energetic distribution G�LPO$QSR�TVU in magnetic (Boozer) co-ordinates the

density WXOYQ�U , the temperature Z[O$Q\U and the potential ]^OYQ�U are considered as constant on flux

surfaces. In the neoclassical ordering , both terms with _a`cb_ed and _f`gb_eh are neglected with respect

to the corresponding 0th order termsOjiXk
lmi(nAU�o+p"q�r s�G;H(l-tu&v G7Hv u J�wxO�G;HcUyIzJ{Oji�|�}~U d � W��W lK� ]��Z l1O�� T��� Z J��� U Z��Z�� G+L�M (3)

Being in this case the weighting function is� I@J���O$i�|�}
U d E7F M
Simulation results

As a first step a Monte-Carlo technique following the ansatz of Boozer, Kuo-Petravic[3] with

the additional marker equation was implemented. The simulation is performed by inserting

test particles, or markers, at random locations on a designated flux surface and measuring

dispersion on flux surfaces with respect to the simulation time which leads to an estimation of

the mono-energetic particle transport coefficient.

To demonstrate the different behavior of the weights two stellarator cases and one tokamak

case are compared. As stellarator examples the LHD (3.75 m standard configuration) and the

Wendelstein 7-X (standard case) are compared. As an example for an elongated tokamak only

the averaged toroidal curvature term in the ����� -Fourier spectrum of the W7-X configuration

was taken into account.

In figure 1 the mono-energetic transport coefficient, normalized to the plateau value of the

equivalent axisymmetric tokamak (with circular cross section), ��� H�H , is plotted as a function of

the collisionality, ���^I����+T�o��P��� , where T is the velocity of the mono-energetic test particles

considered and � is the collision frequency. The flux surface at half of the plasma radius has

been chosen. One can see that in the long-mean-free-path (lmfp) regime for a zero radial electric

field the mono-energetic transport coefficient, �5� H�H , increases proportional to  A��� Especially

the LHD configuration shows an enhanced transport. That means that ripple-trapped particles

rapidly move outwards leading to convection with decreasing collisionality.

Figure 2 shows the deviation from the Gaussian distribution in the lmfp regime. In the case of

high collisionality the distribution of particles fits well to a Gaussian, but with low collisional-

ity the particle distribution has a non Gaussian tail. This tail which represents the convective
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losses is the reason for the failure of the standard ¡�¢ method determining the bootstrap current.
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Figure 1: “Mono-energetic” transport co-

efficients normalized to an equivalent ax-

isymmetric configuration (with circular

cross section) versus the “collisionality”,£+¤ , for zero “radial electric field” at half

of the plasma radius.
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Figure 2: Particle distribution on the flux surfaces ¥ for two

different collisionalities £�¤S¦¨§�©«ª¬§ (a) and £+¤S¦®­f©Xª°¯
(b) in Wendelstein- 7x. The blue lines show the center of the

distribution

The code was benchmarked with various methods like the numerical solution of the ripple-

averaged or the drift kinetic equation[4].

Extended ¡�¢ approach

The results of the ¡�¢ simulation for the bootstrap current from R. B. White[5] showed that this

approach did not work for stellarators in the lmfp regime due to this strong convective losses. If

we assume a zero radial electric field then the mono-energetic transport coefficients in the lmfp

increase proportional to ±A²7³ whereas the coefficient for the bootstrap current is approximately

constant. In this case especially ripple-trapped particles are strongly weighted, though they do

not directly contribute to the bootstrap current.

A more sophisticated approach to estimate the transport coefficients in the lmfp regime will be

presented in the following. According to eq.(2) we separate the distribution function in one

part with the radial drive and in another part with the parallel drive. Now we can write the

linearized form of eq.(2) as´¶µ ¢;·(¸m¹�·�º�»�¼ µ ¢7·
¸m¹�·cº«½@» µj¾�¿�À ºgÁ�Â ¢+ÃÂ�Ä ¸ ÅÆNÇ�ÈÊÉ�Ë[Ì�Í ¢AÃ�Î (4)

where
´

represents the linearized Vlasov operator with ÏÄ and ÏÉ terms omitted. We split the
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problem into two equations Ð°Ñ2Ò;Ó�ÔXÕmÖxÑ�Ò7Ó�Ô-× Õ{ÑjØ�Ù�Ú~ÔgÛXÜ Ò+ÝÜ;Þ
(5)Ð¶Ñ$ß�Ó�Ô�Õ�Ö¶Ñjß�ÓcÔ-× àáSâxãÊä�å[ægç ÒAÝ

and get two marker equations è�é × ê�Ñ$Ø�Ù(Ú
ÔgÛ Ü7ë
(6)è\ìí× ê ã Ü7ë�î

due to the two thermodynamic driving forces on the right hand side of the system (5).

The mono-energetic particle transport as well as the parallel conductivity coefficients are given

by ïñð/òÞ Ò;Ó Ü ã�ó and ïñð ã ß�Ó Ü ãôó , respectively. These flux-surface-averaged coefficients can be

calculated by applying the õ Ò Monte Carlo technique directly to eqs. (5) and (6).

In the lmfp regime the distribution

Ò�Ó
(

ß�Ó
) is mainly determined by it’s symmetric (asymmetric)

part due to the symmetric (asymmetric) driving force on the right hand side of eq. (5). The

coupling to the asymmetric (symmetric) part of

Ò<Ó
(

ß�Ó
) is proportional to ö�÷ and becomes

extremely weak in the very lmfp regime. Consequently the “off-diagonal” coefficients, the

bootstrap current (Ware pinch) coefficient given by ïcð ã Ò;Ó Ü ãôó ( ïñð òÞ ß�Ó Ü ã�ó ) are difficult to

obtain by a straightforward õ Ò Monte Carlo application to eqs. (5) and (6).

The “advanced” õ Ò method for calculating the “off-diagonals” is based on good analytical es-

timation of the dominating parts of

Ò�Ó
and

ß�Ó
. Within the øAù7ö -regime,

Ò�Ó
can be estimated

by bounce-averaging eq. (5) for the trapped particles and integrating the collision term with

respect to the magnetic moment (the passing particle distribution can be neglected). The disad-

vantage of this approach is related to the complex dependence of the trapped particle

Ò�Ó
on the

magnetic field topology. Solving the problem in 2nd order for

ß�Ó
is more promising. The asym-

metric component of

ß<Ó
is only defined by the passing particles in the very lmfp limit which

is easier to obtain. The Ware pinch coefficient can be calculated by the õ Ò Monte Carlo by

using the asymmetric estimate of

ß<Ó
, and the bootstrap coefficient is obtained from the Onsager

symmetry.
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