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Introduction

For tokamak experiments the stabilization of magnetohydrodynamic (MHD) modes is an im-
portant task. For this purpose, promising concepts like additional helical fields [1,2], wall-
stabilization [3] and active feedback coil stabilization [4] are investigated which require three-
dimensional tools for quantitative numerical equilibrium and stability computations.
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Fig. 1: Overview of the code system

Fig. 1 gives an overview of a code
system which will be applied to
these stabilization concepts. It
contains three-dimensional codes
which originally have been de-
veloped for stellarators. Some
of these codes make use of the
stellarator symmetry, which is
not fulfilled in case of not up-
down symmetric tokamak config-
urations. For this reason, these
codes need to be extended to
asymmetric configurations. This
generalization has already been
done for the DESCUR code [5]
and the fixed and free-boundary
equilibrium VMEC/NEMEC code
[6] (S.P. Hirshman), the global
MHD stability CAS3D code [7]
(C. Nührenberg) and the MFBE
code [8], while work is in progress
for the JMC code [9], which trans-
forms the flux coordinates used in
VMEC/NEMEC into Boozer co-
ordinates. The VACFIELD code,
which computes the magnetic field

of external coils, and the field line and guiding centre tracing GOURDON code do not depend
on the stellarator symmetry. In the following first applications of theses codes to two and
three-dimensional tokamak configurations are described.
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Two-dimensional tokamak equilibria

We consider two ASDEX Upgrade type equilibria, namely an up-down symmetric equilibrium
and the equilibrium of shot 12224 (t=0.72s). Both equilibria are limiter-defined and computed
with the two-dimensional DIVA code [10] by solving the Grad-Shafranov equation. In order
to reproduce these equilibria with the three-dimensional codes, the DIVA results are used
as input. The profiles of pressure and rotational transform or pressure and toroidal current,
as well as the Fourier representation of the plasma boundary (DESCUR) serve as input to the
fixed-boundary VMEC code. The VACFIELD code provides the magnetic field of the external
coils, which is needed by the MFBE code. For these axisymmetric equilibria the toroidal field
is approximated by the simple relation Bt

� �
µ0Jb ��� �

2πR � with Jb being the poloidal current
at the plasma boundary. Then the MFBE 2001 code [11] computes the magnetic field of the
VMEC equilibria in a form suitable for tracing field lines and guiding centres. MFBE 2001
- a modified version of MFBE - uses the ‘virtual casing’ principle [12]. It computes the
magnetic field of equilibria with and without net-toroidal current, and it has been extended to
asymmetric configurations. The magnetic field serves as input to the GOURDON code which
yields the field topology by tracing field lines.

�����
	��������������������� �!�#"$���&%'�&()���&��� *,+�-$-$-�.

Fig. 2: Flux surfaces of the axisymmetric equilibria computed with DIVA (black lines) and
the three-dimensional code system (red and blue dots). The green line indicates the plasma
boundary.

The high numerical accuracy of magnetic fields computed with VMEC+MFBE 2001+
GOURDON is demonstrated in Fig. 2. There the flux surfaces obtained with DIVA are
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compared with the corresponding surfaces of the magnetic field computed with the three-
dimensional codes. The surfaces coincide very well.

Three-dimensional tokamak equilibria

Theory [1] and experiments at DIII-D [2] show that non-resonant helical fields are able to
damp or even stabilize neoclassical tearing modes. Here the influence of such an additional
field on the magnetic field topology of the up-down symmetric equilibrium shown in Fig. 2
(left) is investigated. Furthermore, the toroidal field ripple produced by the 16 toroidal field
coils of ASDEX Upgrade is taken into account. Using a helical coil geometry similar to DIII-
D and a coil current of 20 kA, a three-periodic helical field is added to the 16-periodic toroidal
field. On the plasma boundary the maximum field strength of the helical field ( / 0.008 T) is
comparable to the strength of the ripple field ( / 0.009 T). The resulting vacuum field corre-
sponds to a one-periodic stellarator-symmetric configuration. Computing the equilibrium with
the free-boundary NEMEC code, the magnetic field with the MFBE 2001 code and tracing
field lines with the GOURDON code yield the Poincaré plot shown in Fig. 3.
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Fig. 3: Poincaré plot of the
3D magnetic field at the toroidal
cross-section ϕ 0 0. The green
line indicates the NEMEC plasma
boundary.

Fig. 4: Normalized Fourier coefficients of the mag-
netic field strength Bm 1 n as function of the normal-
ized toroidal flux s. Here, only the most important
helical (n=3) and toroidal ripple components (n=16
and 32) of the equilibrium field are plotted.

A comparison of this plot with the up-down symmetric field given in Fig. 2 shows that the
helical field leads to an ergodization of the edge region (it has been verified that the toroidal
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ripple field does not ergodize the edge region). This ergodization may be the reason for the
experimentally observed, slight confinement deterioration.

The JMC code [9] yields the Fourier coefficentes of the magnetic field strength in Boozer
coordinates. In Fig. 4 these coefficentes are plotted for the helical and the toroidal ripple
components of the equilibrium field. There, the Fourier coefficent B0 2 3 and B0 2 16 correspond
to mirror fields of approximately 0.2% and 0.05%.

Summary and outlook

A link between experimental data, the two-dimensional DIVA code and the three-dimensional
codes has been established. The 3D codes VMEC/NEMEC, MFBE 2001, GOURDON and
JMC have been applied to two and three-dimensional tokamak configurations, and effects of
an additional helical field have been studied for an up-down symmetric equilibrium. While
VMEC/NEMEC and MFBE 2001 are already extended to not up-down symmetric configura-
tions, this work is in progress for JMC and also for PGCC. The Parallel Guiding Centre Code
(PGCC) [13] traces guiding centres by using the guiding centre equations in Boozer coordi-
nate representation and computes particle losses. These three-dimensional codes, extended to
asymmetric configurations, will provide a numerical tool for detailed studies of the influence
of an additional helical field on i.) the magnetic field structure, ii.) the number of reflected
particles and iii.) the particle confinement.

The VMEC/NEMEC code and the JMC code are also needed for providing the equilibrium
input for the CAS3D-WALL code (C. Nührenberg, P. Merkel) which is a generalization of the
3D CAS3D MHD stability code [7] taking into account the effect of a conducting wall around
the plasma. The CAS3D-WALL code allows to study wall stabilization by arbitrarily shaped
conducting structures including holes, poloidal and toroidal gaps.
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