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Abstract

An equation for the Alfvén eigenmodes (AE) derived in the work Ya.
I. Kolesnichenko, V. V. Lutsenko, H. Wobig, Yu. V. Yakovenko, and O.
P. Fesenyuk, Alfvén eigenmodes in Helias configurations (part I), Report
IPP III/261 (2000) is generalized to include effects of plasma rotation and
relatively large magnitude of coupling parameters associated with strong
plasma shaping. It is shown that the Doppler frequency shift is “shared”
by Fourier harmonics that compose the gap modes. A new gap in the Alfvén
continuum (AC) associated with the shear of the rotation is predicted. It
is demonstrated that keeping all terms with large coupling parameters con-
siderably changes the spectrum of thé AEs residing in the corresponding
gap of AC. Resonances between energetic ions and AEs are analyzed. The
existence of “compound resonances” associated with the compound struc-
ture of gap modes is predicted. An expression for the instability growth
rate taking into account such a resonance is derived. Peculiarities of the
gap modes and the Global Alfvén Eigenmodes (GAE) are discussed. It is
concluded that the GAEs can exist only in the low-frequency part of the
Alfvén spectrum in Wendelstein 7-AS. An explanation of the experimentally
observed temporal evolution of Alfvénic activity in experiments on W7-AS

is suggested.



L INTRODUCTION

In a previous work of the authors' (see also Ref.?) an equation for Alfvén Eigenmodes
(AE) in the optimized stellarators of the Wendelstein line (Helias configurations) was
derived and analyzed. Two codes were developed: first, the code COBRA (COntinuum
BRanches of Alfvén waves) intended for investigating the Alfvén continuum; second, the
code BOA (Branches Of Alfvén modes) for the calculation of discrete eigenmodes. It
was shown that there exist absolute gaps in the Alfvén continuum, where there are no
continuum branches. The existence of specific gaps in the continuum of Helias configura-
tions, where discrete modes may reside, was predicted. In particular, it was shown that
the rotation of the strongly elongated plasma cross section along the large azimuth of
the torus produces the widest gap in the continuum, so-called HAEy, gap (HAE means
“Helicity-induced Alfvén Eigenmodes”; the subscripts 2 and 1 denote the poloidal and
toroidal coupling numbers, respectively); the modulation of the elongation and the mir-
ror Fourier harmonic of the magnetic field strength result in the MAE gap containing
the MAE modes (Mirror-induced Alfvén Eigenmodes). Later a theory of the resonance
destabilization of Alfvén eigenmodes by energetic circulating ions was developed.? It was
found that specific wave-particle resonances do exist in stellarators, which may strongly
enhance the instabilities and change the conditions of the wave destabilization. The pre-
dicted resonances may play an important role when nonaxisymmetric harmonics (e.g., a
helical one) in the Fourier spectrum of the magnetic field strength rather than toroidicity
have a dominant influence on the particle drift motion. In addition to these results based
on the description of the bulk plasma in the framework of the ideal MHD, a study of
non-ideal effects on Alfvén instabilities in the Wendelstein-line stellarators was started in
Ref.%.

Note that the existence of MAE modes and HAE modes in the Wendelstein-line stel-
larators was shown also by using the CAS3D stability code based on the full set of the
ideal MHD equations.®® For other types of helical devices the HAE modes were considered
in Ref.”. On the basis of CAS3D calculations, an Alfvénic activity at the frequency about

50 kHz observed in experiments with Neutral Beam Injection (NBI) on W7-AS (Wendel-



stein 7-AS®) was identified as the instability of TAE modes (Toroidicity-induced Alfvén
Eigenmodes). The presence of energetic ions was not taken into account by the CAS3D
code. Therefore, a new code, CAS3D-K, is now developed to include the response of the
energetic ions.? On the other hand, there was an attempt to interpret experimental results
from W7-AS using the gyrofluid code FAR, which, however, assumed that the energetic
ions have the Maxwellian velocity distribution.’® Although the mentioned works explain
some experimental data, no attempts have been done yet to understand why sometimes
the frequencies of the destabilized Alfvén waves lie in the wide range from 50 kHz to 500
kHz, but in other cases the frequency range is very narrow.!’ Moreover, it is not clear
§vhy sometimes even a small change of the Alfvén velocity strongly affects the character
of the Alfvénic activity in W7-AS.1!

The purposes of this work are to develop further the theory of Refs.™® and to interpret
the mentioned experimental observations on W7-AS. In particular, the work includes
studies of features of the gap modes and the Global Alfvén Eigenmodes GAE), the effect
of the complexity of gap modes on the resonances of the gap modes and energetic ions, the
influence of the plasma rotation and the large magnitude of some coupling parameters
on the gap modes etc. An attempt is made to explain the temporal evolution of the
Alfvén activity in the shot #43368 of W7-AS. The analysis in the work is carried out in
the assumption that the plasma is incompressible. This assumption is justified due to
the fact that finite compressibility influences mainly the low-frequency part of the Alfvén
continuum, and even that part is relatively weakly changed (e.g., the TAE gap is shifted
up by about 12%).12

The structure of the work is as follows. In Sec. II distinctive features of the gap
modes and the GAE modes are discussed; the Alfvén continuum in W7-AS is calculated
and analyzed. In Sec. III the resonances between the gap modes and the energetic ions
are studied. In Sec. IV experimental data on Alfvénic activity obtained on W7-AS are
described, and the developed theory is applied to explain them. Section V deals with
effects of plasma rotation. Here, an equation for AEs in a rotating plasma is derived

and analyzed. In Sec. VI an equation for the gap modes associated with strong plasma



shaping is derived, where all terms with the coupling parameters are kept (in contrast to
a corresponding equation in Refs.12, where all such terms were neglected except for the
term with the second radial derivative of the wave function). It is solved numerically for

the HAE5; modes. Section VII summarizes the obtained results.

II. GAP MODES AND GLOBAL ALFVEN EIGENMODES. COMPOUND

MODES

It is known that the magnetic shear and the plasma inhomogeneity result in the
dependence of the Alfvén frequency wa = |kjlva (k) is the longitudinal wave number,
vy is the Alfvén velocity ) on the radial coordinate, r. Therefore, if the plasma were a
cylinder, wa(r) would describe an Alfvén continuum (AC). Then the only possible AEs
would be the GAE modes. Th_e eigenfrequencies of a GAE lies just below a minimum of
wa(r), and its eigenfunction usually has a maximum near the radius where w,(r) has a

minimum. 314

The situation changes in toroidal systems. First, a monochromatic (i.e.,
consisting of the only Fourier harmonic) GAE becomes non-monochromatic because of
the presence of coupling factors (associated with the break of the poloidal and toroidal
symmetries); nevertheless, there is a dominant &, which is the same as in the cylindrical
geometry. Therefore, one can say that GAEs are approximately monochromatic. Second,
which is very important, there exist gaps in AC of toroidal systems, where other discrete
AEs (TAE, HAE, MAE etc.) can reside.!>"% In contrast to GAEs, the gép modes are
essentially non-monochromatic: They appear only as a result of superposition of one or
more pairs of waves propagating in opposite directions.

Considerable plasma shaping and the absence of the axial symmetry strongly compli-
cate AC in stellarators.!® Because of this, one often uses a simplified picture of AC in a
particular discharge, e.g., calculates families of w,(r) having minima at certain radii, from
which it follows that GAEs can exist in the considered discharge. However, below we will
show that such an approach may be not justified. We will discuss also general features of
AC and AEs in stellarators and consider a specific example relevant to W7-AS.

We proceed from the following equation describing AC:1%12



L (ho L) + f;ighc\p =0, (1)
where w is the eigenfrequency, ¥ is the scalar potential (the eigenfunction), b, = g''/g",
he = hy/h%, hg = B/B, g'' = |V1|? is a component of the contravariant metric tensor,
g'' = 20B1) is the approximate flux-surface average of g'!, § is the average of §(yp) =
(k+k71)/2, K is the elongation of flux surfaces near the magnetic axis, B is the equilibrium
magnetic field, B is the average magnetic field at the magnetic axis, 74 = B/(4np)*/2, p
is the mass density of the plasma, L = 18/89 + 8/8¢ is the operator of differentiation
along field lines, ¢ is the rotational transform, Ry = L/(2m) is the major radius of the
torus, L is the length of the magnetic axis. When writing the equation, we used the
flux coordinate system (z!,z?% %) = (¥, 9, ¢),'" where ) is the toroidal magnetic flux; ¥
and ¢ are the poloidal and toroidal coordinates, respectively. Equation (1) is completed
with the natural boundary condition of periodicity. It describes local resonance of Alfvén
waves at a “separate” flux surface and includes only differentiation within the flux surface
(by angular variables) with 7 considered as a parameter. Therefore, the eigenvalues of
the equation are functions of 1) and produce branches of the continuum as 9 is varied.

To analyze Eq. (1), we expand the quantities entering Eq. (1) in Fourier series:

U= Y Wy,(r)exp(imd — inp — iwt), (2)
) 1 — v . .
hope=1%75 3 eppel(r)explipd —ivNe), 3)
HV=—00

where r = (1) is defined by v = Br?/2, m and n are the poloidal and toroidal mode

numbers, N is the number of the field periods along the large azimuth of the torus,

(—p—v) _ ()

9.B.c €5, “*” denotes complex conjugate, ") ~ e{*) — 4¢%) when eé’f Y < 1.

Then Eq. (1) is reduced to a matrix eigenvalue problem.? As one would expect, the non-
diagonal elements of these matrices, which allow for the mode coupling, vanish when
all Fourier coefficients in Eq. (3) except for 4 = v = 0 are zero. For this reason, we

(pwv)

will refer to the parameters ez ’, e(g””), and ) as “coupling parameters corresponding

to the coupling numbers x4 and v.” The coupling parameters e%“’) are usually small.
Tn particular, in W7-AS, the dominant harmonics are ¢; = en” and e, = €57, |e
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exceeding |e;| by a factor of ~ 1.5, see Fig. 1. In contrast to this, in Wendelstein 7-X'®
and in the reactor projects HSR5/22!° and HSR4/18% (Helias Stellarator Reactors) the
mirror harmonic, egl), dominates, see, e.g., Ref.3. The largest of the coupling parameters
eg’“’) in all mentioned stellarator configurations is 6221). In many cases it will be convenient
to treat eé‘“’) as small parameters, too, although some of them, especially, 6521), may be
relatively large (for instance, 6@21) = 0.8 in the 4-period Helias reactor HSR4/18 and 0.5
in W7-AS).

In the simplest case of the cylindrical geometry, when the coefficients of Eq. (1) do not
depend on the angular variables, all harmonics ¥,, , are completely decoupled. Then the
continuum consists of the branches w = Fw,(r) = £|kmn|0a, where ky,, = kj(m,n) =
(mt—n)/Ry. Hence, the continuum in the cylindrical geometry occupies the whole range
of w (for m,n = —00...00). Thus, the frequency of a GAE arising at a minimum of a
continuum branch with certain m and n always lies in the continuum. However, there
is no contradiction between this fact and the status of a GAE as a mode of the discrete
spectrum because different Fourier harmonics in the cylindrical geometry are completely
decoupled, the GAE lying outside the range of the corresponding continuum branch. In a
toroidal geometry, the main harmonic of a GAE is coupled to other (satellite) harmonics.
Strictly speaking, a GAE in the presence of such coupling does not belong to the discrete
spectrum. The coupling results in the energy transfer to local Alfvén resonances [the
radii where the GAE frequency crosses satellite continuum branches on the (r,w) plane].?!
There the energy of the wave is dissipated in some way, which results in damping of the
wave (so-called “continuum damping”). Aside from the local Alfvén resonance radii, the
amplitudes of the satellite harmonics are relatively small; therefore, a GAE mode has a
dominant Fourier harmonic.

This property distinguishes GAEs from the modes residing in the gaps of the contin-
uum. The gaps are produced by various factors that break the cylindrical symmetry and
couple Fourier harmonics of the waves with different m and n. The mechanism produc-
ing the gaps is the so-called “avoided-crossing phenomenon”: As soon as two continuum

branches are coupled, the interaction breaks and reconnects them near the points of their




intersection so that the intersection points disappear. Considering only two interacting
harmonics of the mode, (m,n) = (my,n;) and (m,n) = (M2, n2) = (M1 + p,n1 +vN), we

can reduce Eq. (1) to the following simplified eigenvalue problem:

K %6§””)k‘1k2 U} WP 1 %egw) (4} (4)

52
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where k; = (mj. — n;j)/Ry, j = 1,2. Having solved this eigenvalue problem, one can
see that in the vicinity of the radial points (r,) where the continua for eg’“’) =) =0
would intersect, i.e., ki = ko, the solutions for non-zero coupling parameters form
gaps. The practically important case is k; = —ks. Then the width of the gap is Aw =~
[(eé’“’) + €N k1|04/2. In the new continuum branches formed above and below each gap,
the harmonics are strongly mixed, |¥;| = |Ws].

The gap modes, which may reside in the gap have a similar harmonic composition:
They are dominated (at least, in the vicinity of ) by the two harmonics with opposite
values of k.

In spite of the presence of several coupling parameters, the dominant Fourier harmonics
of the gap modes are those which are associated with a particular coupling parameter
responsible for the gap. To demonstrate it, we consider MAE modes. These modes exist
due to the presence of the coupling parameters eg};, which are considerably less than 6§21).
This implies that more than two harmonics must be taken into account to calculate the
MAE modes.? Results of calculations of four dominant MAE harmonics in a homogeneous
plasma of the 5-period Helias reactor HSR5/22 with the code BOA are shown in Fig. 2.
We observe that the harmonics E,, and En, .45 (E = ®/r, ® is the scalar potential
of the eigenmode) coupled by the parameters eg,lg) considerably exceed the corresponding
“satellite” harmonics (Emi2n+s < Emn and En_2y < Epnts, Emionss and Eqp,_o, being
coupled with E,,,, and E,, 5 due to the presence of the large parameter 6_5721)).

Let us discuss what modes can be expected in W7-AS. Figure 3 presents the Alfvén
continuum in the shot #43348, which is calculated with the COBRA code.? The dots mark

the continuum [they show eigenvalues of Eq. (1) obtained for several chosen values of r/a,

where a is the minor radius of the plasma]. The absolute gaps are seen as voids in the




continuum, which are almost horizontal in the plasma core. Such gaps can be considered as
envelopes of numerous local gaps arising at avoided crossings of branches (m,n) = (mq, n1)
and (m,n) = (my + p,n; + vN) for various m; and n; with the same coupling numbers
p and v.2 The upper and lower parts of the continuum are obviously different. The lower
part, w < 200 kHz, resembles the pattern usually observed in tokamaks: Wide bands of the
continuum are separated by narrow gaps. In the upper part, w 2 200 kHz, the situation is
just the opposite: The continuum turns into narrow threads squeezed between wide gaps.
Each thread consists of numerous continuum branches with & of the dominant harmonic
varying in the interval kﬁ”lyl) <k < k{(lmyg), where kﬁ’“’) = |we — vN|/2, (p1,11) and
(pe2,v2) are the coupling numbers of the gaps confining the thread. At the same time,
the frequency is almost constant in each thread (at a fixed radius). In each gap, on the
contrary, kj of the dominant harmonics is exactly the same on both “banks” of the gap,
k= kﬁ” V), where (p,v) are the coupling numbers of the gap, whereas the frequency varies
considerably.

The shown structure of the continuum can be used to make a conclusion on the
existence of GAE modes. In particular, there are reasons to believe that GAEs can
hardly appear in the high-frequency part of the spectrum. Indeed, a GAE results from
a local extremum of the continuum branch dominated by the harmonic with a certain
set of the mode numbers (m,n). If we look at, e.g., the cylindrical continuum branch
(m,n) = (13,3) (shown by bold line in Fig. 3), we find that the branch has a minimum
at 7/a ~ 0.7. Thus, we could conclude that a GAE with the frequency about 240 kHz
may exist below this minimum. However, the real branch (grey circles in Fig. 3) has
nothing to do with the considered cylindrical one. It jumps across the (2,1), (3,1), and
(4,1) gaps. As the continuum bands separating these gaps are, actually, lines, the branch
follows these lines between the jumps. As a result, it has local extrema only at the radii
corresponding to the jumps. Thus, we conclude the GAE modes can hardly exist in
the region w < 200kHz. The situation drastically changes in the low-frequency part of
the W7-AS spectrum. The continuum bands in this region are relatively wide, and the

branches can still have local extrema between the gaps.



The harmonic composition of the waves producing the continuum branches is also
qualitatively different in the low-frequency and high-frequency parts of the W7-AS con-
tinuum. The harmonic spectrum of several typical branches in different parts of the
continuum are presented in Figs. 4 and 5. As was shown in previous publications,?!6 the
solutions of Eq. (1) are invariant of m and n as long as kj of the wave is fixed. For this
reason, the harmonic amplitudes, |V, ,|, are shown versus the corresponding longitudinal
wave numbers, k, ,. For definiteness, we will consider one harmonic of each wave function
as “the main harmonic” (in most cases, it will really be the harmonic of the maximum
amplitude). Then the harmonic with kj = Kjmain + pe — VN, where kjmqin is k) of the
main harmonic, will be referred to as “the (u,v) satellite”.

Figure 4 shows the wave functions corresponding to frequencies in the interval 0 < w <
71kHz and Kjmain in the interval 0.01 < kjpmainflo < 0.38. One can see that most wave
functions are dominated by a single (main) harmonic, the (—1,0) and (—2,0) satellites
being the most significant.”  The amplitude of all satellite harmonics is typically several
times smaller than that of the main harmonic. The exceptions are some eigenfunctions
(for instance, w = 28kHz and w = 71kHz) in which the magnitude of kjmqin is close to
that of the (—1,0) and (—2,0) satellites, respectively, and the sign is opposite (which
means that the corresponding eigenfrequencies are close to the (1,0) and (2, 0) continuum
gaps, respectively). In these cases, the amplitudes of such two harmonics are close. In
general, the wave functions of the continuum branches are, with slight distortions, those of
the cylindrical continuum aside from the gaps and solutions of the two-harmonic equation,
Eq. (4), near a gap.

The situation is quite different in the upper part of the continuum, see Fig. 5,
where some typical continuum wave functions for 215kHz < w < 442kHz and 1.725 <
KjjmainRo < 2.075 [which corresponds to the vicinity of the gaps (1, v) = (2,1), (3, 1), and
(4,1)], are shown. We observe that the wave functions that have kjmqn close a gap, i.e.,
Kjjmain ~ kﬁ“ "), look almost symmetric, each having a pair of dominant harmonics of almost
equal amplitudes with k| = Ejjmain and by = Kjmain— |t —vN | = —Kjjmain and a symmetric

set of satellites. In particular, those close to the (2,1) and (4,1) gaps (w = 442 kHz shown




by squares and w = 231 kHz shown by diamonds, respectively) contain satellites with the
amplitude of about 1/3 of the main harmonic pair). The wave functions of two branches
located near the (3,1) gap (w = 273 kHz shown by stars and squares) contain even larger
satellites: The (2,1) and (1,0) satellites [the latter are, in fact, the (—2,1) satellites of
the (3,1) satellites] are about 80% of the main pair of harmonics. The wave functions
with Ejmqin not corresponding to the boundary of a gap are asymmetric, each having a
satellite exceeding 80% and, at least, two satellites exceeding 25% of the main harmonic.
(Note that the symmetric and asymmetric wave functions located in the same continuum
band have almost the same frequencies because, as mentioned above, continuum branches
with different magnitudes of kjjmain are squeezed by gaps into thin threads in this part of
the spectrum!) In general, the wave functions in this part of the continuum have several
(3 or more) considerable Fourier components. One can expect that this property will be
inherited by the eigenmodes of the discrete spectrum in this frequency range, which will
also be complex compounds of many Fourier harmonics.

Our analysis indicates that the Fourier spectrum of gap modes in stellarators may
consist of many considerable harmonics. We will refer to such gap modes as “compound
modes”. In addition, our analysis shows that there are branches of the continuum with
a complicated compound structure, which have asymmetric Fourier spectra but are adja-
cent to continuum gaps. Therefore, we can suppose that discrete compound modes with
asymmetric spectra of k can exist in gaps of AC in stellarators. Such compound modes,
if they exist, differ from the conventional‘gap modes, which have symmetric spectra of
ky. They perhaps may arise due to the complicated structure of the continuum. Special

analysis is required to see whether such unusual modes really exist.

III. RESONANCES BETWEEN THE MODES AND ENERGETIC IONS

The energetic ions drive instabilities of Alfvén eigenmodes through resonance interac-

tion with the modes. The corresponding resonance condition can be written as follows:?

W = (k” + 2jl€r)’U||, (5)
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where w is the mode frequency, k, = (uqt — v-N)/(2Ry); pr and v, are the “resonance”
coupling numbers, i.e., the numbers of the Fourier harmonic of the magnetic field strength
that couples the mode with the ions, 7 = +1. The magnitude of w for a gap mode (we
take w > 0) depends on the location of a corresponding gap in the Alfvén continuum.
Let us consider a mode localized in the vicinity of a certain radius r, and consisting
of only two harmonics with the mode numbers (m,n) and (m + po,n + vpN), which
are coupled due to the parameters é;‘;”“? Then we obtain kyy, = kpn(tx) = —ki with
k. = (pots — voN)/(2Ry) and ¢, = t(re) = (2n + 1oN)/(2m + po)."? If we approximate
the mode frequency as w = |kmn|va, we can find the following resonance velocity for the

gap modes:?

— v N

-1
. Ml
V)| = VAx (1 + 27 m) g0 (Kmn)- (6)

The resonance coupling numbers result from the drift motion of the energetic ions
and, thus, are determined by the Fourier harmonics of the magnetic field strength (but
they do not depend on the metric tensor).> One usually takes u, = 1, v = 0, which is
justified when the toroidicity (65310)) is the main factor that determines the drift velocity
of the energetic ions. However, other factors may be of importance and even dominate
in stellarators. In particular, the helical harmonic 65311) well exceeds ego) in HSR4/18 and
HSR5/22. Therefore, the helicity-produced resonance numbers u, = 1, v, = 1 play an

important role in these systems, increasing the growth rate and changing the conditions

of instabilities.® In general, the “nonaxisymmetric” resonances (v, # 0) determine the

(prvr7#0) (10)
B

instability growth rate, at least, when e > €5 ', and the absolute values of the
resonance velocities for p,,v, # 0 coincide with the ones for y, = 1, v, = 0. One can

(urvr) — _Uﬁ(lo)) for

show that the coincidence takes place (to be more specific, vﬁ
Ho==(j +1r)s vo =L (7)

Equation (7) is obtained in assumption that the mode is localized near r, and consists of
only two harmonics with the mode numbers (m,n) and (m+ po, n+ 1, N). It follows from
Eq. (7) that in a particular case of p, = 1 the coupling numbers are po = 0 and po = 2

for vy = v,; they are po = 0 and po = —2 for vy = —v,.
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In general, more than two Fouriervharmonics of the perturbation may considerably
contribute to gap modes. This implies that there are resonance velocities, which are
not described by Eq. (6). In order to find additional resonance velocities, we consider a
compound mode with the frequency in the (o, vo) gap, which consists of the main couple,
Emn < Emipontvn and the satellite couples Ern,n & Enmip, ntv.Ny EmipontveN <
Entpiotpie mtvoN+vsN - 10 this case we can introduce the following characteristic magnitudes
of the longitudinal wave number: k., k12 = [(m £ us)te — (n £ vsN)]/Ro, and ksg =

[(m + po & ps)ex — (n+1oN £ v,N)]/Ry. Using the equation

2mi. = 2n + vgN — Loty (8)

we can write k2 and k34 as
k1o = —k, £ 2k, (9)
ksa = ko £ 2k, (10)

where ky = (st«—vsN)/(2Rp). 1t follows from Eqgs. (9) and (10) that ky = —ky, ks = —ks,
i.e., there are only two independent longitudinal wave numbers of satellites. We present

Egs. (9) and (10) in the form
k1234 = —Jike + 252k, (11)

where 72 = £1. Then, substituting Eq. (11) into Eq. (5) and writing w = |k.|va. + 6w,

where dw takes into account that the eigenfrequency differs from w, = |k.|va, we obtain:

-1
. et — Up N . st — UsN
! sy Vs) = * 146 % - 2 2 k’* . 12
Ul (s, vs) = vae(1+ w/w)< 2Nt Jzﬂob*_VON) sgn(k.). (12)

It is convenient to write Eq. (12) as

A
(s, Vs) = —vax(l + 0w /w,) (—]1 + 2]17 + 232%—> sgn(ky). (13)

Note that when p, = v, = 0 and dw = 0, Eq. (13) is reduced to Eq. (6). We
will refer to the resonances associated with the satellite coupling numbers (us,vs) as

“compound resonances” to emphasize that they are relevant to compound modes. These
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resonances are especially important in the case when the usual resonance given by Eq. (6)

is not efficient. For instance, Eq. (6) gives |vj| = co and |vj| ~ va/2 for the Ellipticity-
induced Alfvén Eigenmodes (EAE). On the other hand, the compound resonances caused
by toroidicity are |vfj| & v, and |vf| & va/3. Because the instability growth rate strongly
increases with vj), see, e.g., Ref.2, one can expect that the compound resonance |vﬁ] SEN
will mainly contribute to the growth rate when vy > v4, where v is the méximum energy
of the energetic ions, unless the satellite coupling parameters, E%fsg"s), are very small.
The resonance given by Eq. (5) is responsible not only for the destabilization of gap
modes but also for the instabilities of the Energetic Particle Modes (EPM) with the

frequencies lying in- the Alfvén continuum close to the gaps in the continuum. Using

Egs. (5), (9), and (10), we obtain the frequencies of the EPM modes:

W= | — Jiks + 27k + 2j2k's|R0L_1wt

= | = 0.5j1 (ot — voN) + j(ptr — v N) + Ja(hsts — vsN) [ e, (14)

where w; = |v)|¢/ Ry is the transit frequency. For instance, Eq. (14) yields the known result
for a toroidicity-induced EPM, w/w; = 0.5 and w/w; = 1.5,%% provided that p, = 1, v, =0,
s = vs = 0. For the EPM-modes associated with the break of the axial symmetry of the
magnetic configuration, Eq. (14) predicts, as expected, the existence of higher frequencies.
Taking again p, = 1, v, = 0, ps = vs = 0, we obtain w/w; = 0.5N/¢ and [0.5N/. —2| for a
helicity-induced EPM with pg = 2, vy = 1 and w/w; = |0.5N/¢ £ 1| for a mirror-induced
EPM (po =0, 1 = 1). The compound resonances with s = 1, v5 = 0 for an EPM near
the EAE gap are w/w; = 1 and w/w; = 3, i.e., the frequencies of the ellipticity-induced
EPMs exceed those of the toroidicity-induced EPMs by a factor of two.

In order to calculate the instability growth rate with taking into account the compound
resonances, one can use the corresponding general expressions obtained in Ref.2. Here we

restrict ourselves to the case of well-localized modes. Then we can write:

T2 Myv3, y
o= T 2 M [t (o )
]El k )I r 2
x| [of 6oy — o) + Z [0 (1135 V)1 (v = 0] (125 v5) ) | T (15)
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where

0 M)\_ﬁ_ nli

I=M=— -
o0& E O\ + wwgLT Or’

(16)

f» is the distribution function of the energetic ions, £ is the particle energy, A = puB/E,
Ei(k,) is a covariant component of the satellite amplitude of the electric field, j = =+1,
p=1,v=0,1, and the resonance velocity is given by Eq. (13). Equation (15) generalizes
a corresponding equation [Eq. (37)] of the mentioned work by taking into account the

harmonic E(ks).

IV. ESTAFETTE OF RESONANCES DURING NBI EXPERIMENTS ON

WENDELSTEIN 7-AS

In NBI experiments on W7-AS the Alfvénic activity was strongly dependent on
whether v,/va (vp is the beam particle velocity, v4 is the Alfvén velocity) is less or more
than unity, which was not surprising (and followed from the tokamak theory). But till
now it was not clear why in the regime with v, > v4 a small decrease of the Alfvén
velocity strongly changed the character of MHD activity. This was the case in, e.g., the
shot #43348, see Fig. 6. In this shot the ratio vp/v4 varied approximately from 0.5 to 1.8.
When v,/va slightly exceeded unity, an Alfvén instability was observed at w ~ 50kHz.
Later, for a larger magnitude of v,/v4, the unstable waves were characterized by multi-
ple frequencies in the range of 50 — 250kHz. After that all the instabilities disappeared,
and, finally, when v,/v4 reached the maximum magnitude (about 1.8), an instability with
w ~ 230kHz appeared.

We will show that this picture can be understood if we take into account the structure
of the Alfvén continuum and that the fast ion drive strongly grows with the particle energy
[see Eq. (15)].

The Alfvén continuum calculated with the code COBRA for the WT7-AS shot #43348
is shown in Fig. 3. We observe that there are several gaps in Alfvén continuum in the
frequency range of 50 — 500kHz. Discrete eigenmodes which can reside in them or cor-

responding EPM can be destabilized by injected ions. A necessary condition for the

14



destabilization is that these ions should satisfy the resonance condition given by Eq. (13).
A sufficient condition is that the instability drive should exceed the wave damping. Un-
fortunately, experimental data provide no information on the radial localization and the
mode structure of the instabilities. Therefore, a detailed comparison of the theoretical
and experimental results is not possible. On the other hand, due to small magnetic shear
and rather flat radial profile of the Alfvén velocity, the dependence of the resonance veloc-
ities on the mode localization is rather weak if the mode is localized not very close to the
plasma edge, which is, in general, hardly possible (the periphery region is characterized by
strong continuum damping). In addition, the concept of the absolute gap'? enables us to
make conclusions concerning the possible magnitudes of the destabilized modes without
specifying the poloidal and toroidal mode numbers. In order to avoid the specification of
the damping mechanisms, we will introduce an adjustable parameter vy,;,, which is the
minimum magnitude of the beam velocity required for the fulfillment of the condition
Yo > Ydamp- Lhis implies that we assume that tﬁe instability is possible only when the

resonance velocity lies in the interval
Umin S ’Uﬁ S Vo, (17)

where vy is the maximum velocity of the injected particles.

The obtained picture is shown in Fig. 7. It agrees with the experimentally observed
evolution of the MHD activity described above. In the calculations we took r./a = 0.3
and Ui = 0.9v9. The latter assumption seems reasonable because in W7-AS the drive
of particles with v = 0.9v is less than the drive produced by the particles with vy = v
by a factor of 2. [This estimate follows from 7, o< v} fy(v,) and the fact that in W7-AS
the dependence f, on v is rather weak in the range of 26 — 50keV.] The main resonance
velocities were used for all the modes except for the EAE modes, for which the compound
resonance with pug = 1, vs = 0 was used. The resonance numbers p, = 1 and v, = 0 were
chosen because the harmonic ego) produced by toroidicity is the largest in W7-AS, see
Fig. 1 (in contrast to W7-X and the Helias reactors).

We conclude that the experimentally observed temporal evolution of the MHD activity

can be explained by an “estafette” of resonances occurring during the variation of the
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Alfvén velocity. When 1.05 < vp/ua < 1.16 and 1.587 < wvp/va < 1.75, Eq. (17) is
satisfied only for the frequency close to w, in the TAE and MAE gaps, respectively. When
1.3 < vo/va < 1.45, Eq. (17) allows for the multiple frequency activity (EAE, HAE,;,
etc.). Finally, there are no resonance particles satisfying Eq. (17) for 1.16 < vp/v4 < 1.25,

which explains the disappearance of the instabilities.

V. ALFVEN EIGENMODES IN ROTATING PLASMAS
A. Plasma rotation in W7-AS

Experiments with NBI on W7-AS show that the plasma may strongly rotate. The
velocity of the toroidal rotation during NBI is maximum near the magnetic axis, where it
seems to reach the magnitude about 20 km-s~1.23 The available information concerning the
poloidal rotation is that impurity ions (C®*) rotate with the velocity v}, ~ 10—30km-s™*
in the region r = 9 — 15¢cm (r/a = 0.56 — 0.94); the velocity is maximum at r =
15cm and very small near the magnetic axis and the plasma edge.?* If a plasma were
rotating poloidally with the same velocity as the impurity ions, the rotation would have
a very strong influence on Alfvén eigenmodes. A simple estimate shows that the Doppler
frequency shift (Awgep = mupe/T) for the mode with m = 4 localized around r = 10cm
would be more than 64 kHz. But in W7-AS the frequency of TAE modes is about 35 kHz
[wrap = vate/(2Ry)], which is considerably less than 64 kHz! However, one can think
that the plasma rotates much slower than the impurities with Z; > 1. To see it, we use
a simple model consisting of the fluid equations of motion for the bulk plasma ions and

the impurities, which yields:
uly = uly + up, (18)

where u%, = c(Be;n;) 'dp;/dr is the ion diamagnetic velocity. All the values in this
equation were measured experimentally. However, u! 4 and u?, have different signs, and,
in addition, their difference is within the experimental error bar, which is rather large.
Therefore, we can conclude that v, < u},, but we cannot evaluate the magnitude of

u’ y. The total poloidal velocity is uy = u iy + uBy/B. Here the second term is small
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because By/B < 1 unless v is very large. Thus, u} & v’y < uj). But, on the other hand,
according to our estimate above, Awg,, would exceed the frequencies of the eigenmodes
in the low-frequency part of the spectrum by a factor of 2 if the plasma rotated with the
speed of the impurities.

Therefore, it seems probable that Awg,,/wrag is less than unity but considerable in
the experiments on W7-AS. If so, taking into account the Doppler frequency shift may be
of importance for a comparison of experimental observations and theoretical predictions.
Note that because of the large aspect ratio of the Wendelstein-line stellarators, the toroidal
rotation play a minor role unless u, > uy.

The estimates above were made in the assumption that Awg,p, is monochromatié.
However, any gap mode is characterized by, at least, two pairs of the mode numbers,
(m,n) and (m + po,n + 1yN). Thus, a question arises, what is the Doppler shift for the
gap modes? Note that when calculating the Doppler frequency shift in tokamak plasmas,
one usually considers only the toroidal rotation. In this case, as all harmonics of a gap
mode in an axisymmetric plasma has the same toroidal mode number, Awg,,, is the same
as if the mode were monochromatic. It seems that the Doppler shift for the gap modes in
either stellarators or tokamaks with poloidally rotating plasmas has not been considered
in the literature yet. This will be done in this work on the basis of the equations that will

be derived below.

B. Derivation of an equation for Alfvén eigenmodes

At first sight, the simplest way to describe the Alfvén eigenmodes in rotating plasmas
is to use the plasma frame, but this is a false impression. First of all, it is not clear what is
the plasma frame in the presence of the velocity shear. In addition, even in the case when
the velocity shear is absent, the situation is not simple because in the plasma frame the
equilibrium magnetic field depends on time. For these reasons, we will use the laboratory
frame.

As in Ref.2, in order to derive an equation for Alfvén eigenmodes, we proceed from

the Ampere law
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VxB=—j, (19)
from which it follows that
V-(@b)+V-jL=0 (20)
and (see Ref.?)
47”3“ = %Ov - (BoKA — BV A), (21)

where b = B/ By, A is the longitudinal component of the vector potential, IC is the
magnetic field line curvature. To obtain Eq. (21), we took A, = 0and B = Vx(Ab)
and neglected effects of the plasma pressuré. This is justified because the Alfvén waves
are characterized by EII =~ 0.

Using the equations cE+ux B =0 and E = iwbﬁ/ ¢ — V®, we obtain the following

equation connecting A and ®:
eV ® = (iw + IC - ug) A — (ug - V1 )A. (22)

Note that because of the plasma rotation the component of E along the equilibrium

magnetic field is not vanishing:
_ 1 -1 .
E” = —Z’C . ll()A + E(uo - VJ_)A (23)

The perturbed perpendicular current can be found from the equation of the plasma

motion, cpdu/dt = jxB, as

i = %@09 {[bx(ﬁ - V)ug] — [bx (iw —ug - V)] + %[bX(uO : V)uo]} +jou§0—. (24)

Let us expand each perturbed quantity, X, in a Fourier series as follows:

X =3 X, (25)
where X,nn = Xomn exp(imd — iny — iwt). Then

Jimn = ;ﬂ {~i(w — k- 1) [bX tma] + DX (G - V)uo] + €™~ [bx (U0 - V) U]
0

+ é’i’i[bx(uo : V)uo]} + jOHan (26)

Po By’
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where k-ug = mug —nud. All the terms inside the curly brackets in Eq. (26) are expressed

through w,,, except for the last one proportional to p.,,. The latter can be expressed

through u,,, if we assume that the plasma motion is incompressible, dp/dt = 0:
i(w—k-1)pmn = (Umn - V)po- (27)

In turn, W,,, can be presented in terms of the potentials ®,,, and A,,, due to the equations

A~

U, = Ufmnb — -B%[v@mn X b] + u Bé’;”, (28)
B = —b X V1A, — K X bAp,, (29)

and the incompressibility condition,
V - (GLmn + Ujmnb) = 0. (30)

The set of Equations (20), (21), and (26)—(30) describes the Alfvén eigenmodes in
rotating plasmas.

For the sake of simplicity, we neglect all the terms associated with the rotation except
for a term proportional to k - u (which describes the Doppler effect) in Eq. (26). T hisb is

justified when
w>>Qj, k'll>>Qj, . (31)

where j = 19, ¢, Q is the rotation frequency, which implies that the mode numbers are
large. For small mode numbers the influence of the plasma rotation on Alfvén eigenmodes

is negligible when w > ;. Due to Eq. (31) we have from Eqs. (22), (28), and (29):

[b X Gypn] = — V1 (“’—:—k———-ﬁ“(’> A (32)

Substituting Eq. (32) into Eq. (26) and using the latter equation and Egs. (20) and (21),

we obtain the following equation for Alfvén eigenmodes in a rotating plasma:

v [(w —lz-uo)vL(w -k- uo)Amn}
mn Va k”

1 ~ ~ A7 ~ 1
+ BOV” [*B—gv : (B()’CA — BOVJ_A)] + ?TFB . VJ_'%(')[ = O (33)
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C. Effects of rotation: Doppler shift for the gap modes and a rotation-induced gap

If coupling parameters (659’:;)) were vanishing, Eq. (33) would have a singular point at

w=k-u+jkjua, ' (34)

where j = %1, which determines the Alfvén continuum in a plasma cylinder. As we have

already mentioned, finite parameters e%ﬁ? result in gaps in the Alfvén continuum in the

vicinity of the local Alfvén frequency w,, at which two cylindrical branches with the mode

2 —nud+j1(me—n)va/Ro,

numbers (m,n) and (m+ u,n+vN) intersect. Writing wy = mu
wy = (m~+ p)u? — (n+vN)u® + jo[(m + )t — (n + vN)ua/ Ry and taking wy = ws, we

find:

Wy = mu? — nu® —+

(MUE B VN’LL‘:’) +j2(/“* - VN)UA*/RU’ (35)

L =712

(S92

where the radial coordinate (labeled by “x”) at which the intersection occurs is determined

by

_ Jija(n+vN) — ji(pui — vNu2)R/va, —
Jija(m+p) —m ’

(36)

*

Note that Eq. (36) does not determine ¢, explicitly because w. = u(r.). The case of

interest is j1j2 = —1. Then Eqgs. (35) and (36) yield:

where

_ 2n4vN + ji(pul — vNu) Ry /va.
B 2m +

(38)

by

with sgn(j1) = sgn(vN — ut,). When obtaining these equations, we have assumed that
we(u = 0) > 0. It follows from Eq. (37) that the Doppler shift for the gap modes is
characterized by the mode numbers m + /2, n + v/2, i.e., the difference in the Doppler
shift for w; and wy (pu?, vN u?’) is “shared” by w; and ws. Such sharing is caused by the

coupling of the considered cylindrical Alfvén branches. Note that because of the rotation,

k‘mn(’/‘*) 7é “km+p,n+l/N<r*):
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1 Ry
kmn*:_ - * ] 2 3
nl R { (s + vN) + ji(pu® — vNu )UA*

E (39)

1 )
Emtpnton|e = m [W* +vN +31(uu2 — uNu3)

o, (40

VA«
The rotation shear affects the radial dependence of the cylindrical Alfvén branches w;

and wsy. It can be especially important for the mode with
m = 0.5, n=—0.5vN. (41)

In this case, w; = wy for any r in the absence of the plasma rotation [Eq. (38) yields
t« = 0/0]. The presence of the sheared rotation removes this “degeneracy” and leads to a

branch crossing at ¢, determined by the following equation:
uu? = vNu, (42)

which implies that k-u = 0 and, thus, w, = |k*’(7.)|v 4+, as in the case of u = 0, but with r,

determined by Eq. (42). Equation (42) is essentially a condition of resonance between the

poloidal and toroidal rotations. This becomes clear if we take into account that u? = Qy

and u® = Q,, are thé frequencies of the poloidal and toroidal rotation, respéctively. In the
(wv)

presence of the corresponding coupling parameters, €54, & gap caused by the rotation

may arise in the Alfvén continuum provided that the magnetic shear is sufficiently small.

VI. EFFECT OF LARGE COUPLING PARAMETERS ON GAP MODES

As we already mentioned, in advanced stellarators strong plasma shaping results in
large coupling parameters (for instance, egl ~ 0.8 in HSR4/18). On the other hand,
the magnetic shear in Wendelstein-line stellarators is low, § ~ 0.1. In this case one can
expect that coupling terms not containing second radial derivatives will be of importance.

In fact, an attention to this fact was drawn in Refs.25:26

, where AEs in tokamaks were
analyzed. According to Ref.?’, small shear leads to appearance of multiple TAEs. In
Ref.?6 it was shown that EAE modes at small shear also become multiple but, in contrast

to TAE, exist only in the upper part of the gap. These facts indicate that the equations

for AEs in stellarators derived in Ref.»? (where the well-known approach?! consisting in
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taking into account only those coupling terms that contain the second radial derivative
of the wave function was used) should be aménded. This should be done, at least, for
the eigenmodes residing in wide gaps produced by the plasma elongation. Below we will
derivé and analyze an equation for sﬁch AEFEs.

Different Fourier harmonics in an Alfvén eigenmode are coupled due to the dependence
of the magnetic field strength and the mefrics on the angular variables, ¥ and ¢. The
angular variation of B and g¢'!' is the most important, accounting for the appearance
of the continuum gaps and the properties of the continuum in general. However, the
angﬁlar dependence of two other components, ¢g'? and g*, also contributes to the harmonic
coupling (the contribution of the components g"3, g%, and ¢ to the Alfvén wave equation

is negligible in large-aspect-ratio devices). Expanding g'? and g** in Fourier series,

12l & v ) .
=575 Y ) explind - ivNe) (43)
py=—00
1 & v . .
g9? =7 {1+—2~ S el exp(ipd — ivNo) |, (44)
M V=—00

where §22 = §B/(2¢) is the approximate flux-surface average of g*, g = 6B, we obtain

two additional sets of coupling parameters, e&’é") and eéé"), satisfying the relationships

gt = (lur 5™ = el)* In our previous works™? the terms containing el
and eg‘z“') were disregarded. This approximation is usually satisfactory when the coupling
parameters are less than the magnetic shear.

We neglect the plasma pressure and the equilibrium current and take ug = 0. Then

Eq. (33) can be written as follows:
PV (%v&) + BY| {i?v : [BZ’VL (iv“@)H ~0, (45)
vy B B
which is the same as Eq. (9) of Ref.2 or Eq. (1) of Ref.?. In the flux coordinates (z, z%, z°)
Eq. (45) takes the form

1

N . . 1.
WV 72\[9—911” Vi | + =LV [Ggikvk (—L‘p)} =0, (46)
. UAhQ G

G
where g is the determinant of the metric tensor, G(r) = /g|B|* = Bz + B3 is a weak

function of 7, g} = ¢'* — B/ B*/|B|%.
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Considering an eigenmode residing in the (u, ) gap, we assume that only two Fourier
harmonics with the mode numbers (m,n) = (mq,n1) and (m,n) = (mg,nz) = (my +

i, n1 + vN) are significant in the Fourier expansion of ®:
¢ = @y exp(tm1¥ — in1p) + Py exp(imad — ingp). (47)

Here we restrict ourself to the case of (u,v) = (2,0), (2,1), ans (2,2). The corresponding
harmonics of the magnetic field in advanced stellarators of the Wendelstein-line are negli-
gible, and those of the metric tensor weakly depend on the radius and are well described
by the paraxial approximation. Using paraxial expressions for the metric tensor'?, we

Obta.]..n
2v - (2u 2v 20
5( ) — 'LE( )7 E( ) —_ E( ) (48)

for v =0,1,2. On substituting Eq. (47) to Eq. (46) and using Eq. (48), the (my,n;) and

(m2, ng) harmonics of the resulting equation yield:

1d w? d®, m? [w?
e — k2 R Ak
rdr {r (vi 1) dr } r2 \73 !

(2v) 2 AP 2
L 4 {r (“’ k1k2> 2] + T2 ) <°;—2 - klk;2> ®,

or dr U4

Y my+mod®y  mo, _ A +me ., d
et | T G e | T
k d®, k
—%(TmlL,)lq)l _ 6521’) l: (mlyN — 'TLLLL)d—: + %(TmQL/)/(D2} =0, (4:9)

1d w? o L\ d®] md (W,
7[(“0 dr}_??— AN R

(2v) 2 A
+€g 4 {7‘ (w k1k‘2> 1} e 6(2”) < k1k2> 31
74 74

2r dr A dr r?
e, 2 my +m2 d®y N _(__2) Oy | 4 et m2 4 (k@)
2wy dr o4 I 2r  dr
dd; k
_%(TTTIQLI)I(DQ + 652'/) {L'(mU/N —nipt) C;rl - TQ(TmlL )'® w =0, (50)

where k; = (mjt — n;)/ Ry, and we have neglected the radial variations of the coupling
parameters and the terms ~ r%/R2, as well as the terms involving eg and (9.
Note that the validity of the two-harmonic approximation is, generally speaking, yet

to be proven for very large coupling parameters reaching as high magnitudes as 0.8.
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Tn order to solve the derived equations a new code BOA-E (BOA extended) was
developed, which extends the code BOA'? applicable to reduced equations of Refs.12.

Results of the calculations with the BOA-E code for the HAE,, modes in HSR4 /18
are shown in Figs. 8-11. Figure 8 shows two continuum branches for the mode numbers
(m,n) = (9,7) and (11,11) confining a (1, v = (2,1) gap and the Alfvén spectrum in a
homogeneous plasma. We observe multiple discrete eigenmodes below the upper contin-
wum curve. This picture considerably differs from the spectrum obtained with the use
of truncated equations.? The main difference is that the eigenfrequencies in the lower
half of the gap disappear. Figure 9 shows the structure of several eigenmodes. All the
eigemodes are localized around the point r /a = 0.4, where the two cylindrical branches
of AC intersect (see Fig. 8). An exception is the eigenfunction that corresponds to the
lowest eigenfrequency, which is localized in‘ the periphery region. In order to compare
the results of ideal MHD with results allowing for non-ideal effects, the spectrum of the
considered HAE9; modes Waé calculated in the resistive MHD approximation, see Fig. 10.
The resistive MHD equations derived in Ref. were used. One of the discrete modes with
the normalized frequency of +1.5574 is clearly seen. This eigenfrequency exactly coin-
cides with the lowest eigenfrequency in Fig. 8. The other eigenfrequencies of Fig. 8 are
not well resolved in the resistive calculations. Thus, we infer that resistivity does not
affect the real part of the frequency and results only in Im(w) # 0. In addition to calcula-
tions of HAEs in a homogeneous plasma, modes in inhomogeneous plaémas of HSR4/18
were investigated. It was found that inhomogeneity may strongly affect HAE9; modes, in
agreement with results of Refs.2, tending to kill the modes. Nevertheless, we found that
there are modes that survive even in realistically inhomogeneous plasmas. An example of

such modes is given in Fig. 11.

VII. SUMMARY AND CONCLUSIONS

This work contributes to the theory of Alfvén eigenmodes and of their destabilization
by energetic ions in stellarators and, in addition, suggests an interpretation of Alfvénic

activity observed in experiments with neutral beam injection on W7-AS. In fact, it extends
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a theory developed by the authors (which is published, in particular, in Refs.'™3) to
include effects of the compound structure of the gap modes and associated changes of
the resonance velocities of the energetic ions, peculiarities of the Alfvén continuum in
Wendelstein-line stellarators, plasma rotation, and the large magnitude of the coupling
parameters associated with strong plasma shaping. A new code, BOA-E (BOA extended)
is developed with the aim to calculate the AEs on the basis of the amended equations for
AEs given by Egs. (49) and (50).

The main conclusions drawn from the work are as follows.

It is shown that a gap mode residing in a (1o, 1p) gap and localized at a certain radius
can be considered mainly as a pair of Alfvén waves propagating in opposite directions with
equal phase velocities even when 655:;”0) is less than some other coupling parameter, 655;”5),
which provides the presence of satellite pairs of waves. Nevertheless, the amplitudes of the
satellite waves may be not negligible. We refer to such modes as the “compound modes”.

The existence of the so-called “compound” resonances, which determine the interac-
tion between energetic ions and compound gap/EPM modes in the case when the usual
resonances are not efficient, is predicted.

The role of the “nonaxisymmetric” sideband resonances (v, # 0)3 is analyzed. It is
found that they dominate the interaction between energetic ions and AEs, at least, when
0 5 00 and po = £(j + ) with j = +1, vy = £,

Instabilities of the Energetic Particle Modes (EPM) are discussed. It is shown that the
presence of “nonaxisymmetric” resonances and additional gaps in the Alfvén continuum
of stellarators result in a variety of new characteristic frequencies of the EPM modes,
wepym (in contrast to tokamaks, where there exist only wrpy Swi/2 and weppy S 3wi/2,
where w; is the transit time frequency, in the vicinity of TAE gap?).

Attention is drawn to the fact that the upper part of Alfvén continuum in W7-AS
significantly differs from the lower part. The latter is formed mainly under the influence
of toroidicity and elongation and resembles the continuum in tokamaks. In contrast to

this, the upper part is strongly affected by nonaxisymmetric components of the magnetic

field strength and complicated plasma shaping. As a result, gaps in the Alfvén continuum
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occupy the most of space on the plane (r,w) above 200 kHz. Furthermore, each single
continuum branch has no local minima except for the radial points where the branch
jumps across a gap due to coupling with another branch. This fact prevents the existence
of the GAE modes, Whigh implies that gap modes or EPMs with the frequencies close to
the gaps rather than GAEs can be responsible for the high-frequency Alfvénic activity
observed in experiments on W7-AS.

An explanation of varying MHD (Alfvénic) activity observed in the Neutral Beam
Injection (NBI) experiments on W7-AS! is suggested. Namely, the temporal evolution
of the Alfvén velocity leads to an “estafette” of resonances: Depending on the Alfvén
velocity, various gap modes (TAE, EAE, HAE,, MAE) or EPM with frequencies in the
vicinity of these gaps can be destabilized. At certain magnitudes of v4, no modes can be
in resonance with the ions having the energy about the energy of the injected particles
(50 keV), in which case the MHD activity disappears.

Equations for the Alfvéﬁ eigenmodes in a rotating plasma are derived. In a practi-
cally important case when the frequency of the rotation (poloidal or toroidal) is small in
comparison with the mode frequency, the effect of the rotation is important for the modes
with high mode numbers. This offect then consists in the Doppler frequency shift, which
is “shared” between the harmonics that compose the gap mode. Tt is found that the shear
of the rotation may play an important role, producing a new gap in the continuum. This
oceurs when there is a resonance between the poloidal and toroidal rotations, pldy = v,
for the modes for which two cylindrical Alfvén branches coincide in the absence of the
rotation, m = 0.5¢ and n = —0.5UN. |

Tt is shown that when coupling parameters are relatively large, keeping all the terms
with these parameters in the equation for AEs is of importance. In particular, it sig-
nificantly affects the HAEy eigenmodes. A general conclusion of Refs.1? that plasma
inhomogeneity tends to kill Alfvén eigenmodes with the global structure is confirmed.
But, at the same time, the modes that survive in realistically inhomogeneous plasmas are

found.
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FIG. 1. Main Fourier harmonics, 6%“/), of the magnetic field strength in the shot #43348 of

W7-AS. The magnetic field was taken in the form B = B[l + % D€

6(_“7_’/) — 6(”)”)_
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FIG. 2. A compound MAE mode consisting of two main Fourier harmonics (solid lines) and

two satellite harmonics (dashed lines) in the Helias reactor HSR5/22. The calculations were

carried out with the code BOA.

31

1.00




SE+5
AE+5 —
N 3E+5 =
T -
§ .

é f [] 0 . s S
E03 e
2E+5 — | | ’ :

; = |

. ! % *

- )
1E+5 — ; ; :

- i i H

3 (2,0)

= N R N R
OE+O0 T T | T I I I R B

o
o

0.1 0.2 03 04 05 0.6

FIG. 3. Calculated Alfvén continuum in the shot #43348 of W7-AS. The gaps are labeled
by the coupling numbers (u, v) responsible for the formation of each gap. Dots, the calculated
frequencies of the continuum spectra for several radii; thin lines, the calculated “banks” of some
absolute gaps; grey circles, the continuum branch (m,n) = (13,3); bold line, the same branch

in the cylindrical geometry, i.e., w = (13¢ — 3)T4/Rp.
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FIG. 4. Fourier spectra of wave functions of the Alfvén continuum in the shot #43348 of
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WT-AS for w < 71kHz and r/a = 0.4. The harmonics with the amplitude less than 5% of the

main one are omitted. The functions are normalized so that the sum of all squared harmonics

is unity.
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FIG. 5. The same as in Fig. 4 but for 215kHz < w < 442 kHz.
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FIG. 6. NBI heated plasma with §(0) reaching up to =

0.24
Time (s)

0.20

2.4% (WT-AS shot #43348,

(B) < 1.3%) at 1.2 T, t(a) = 0.31, n, < 1.1 x 10°m=3, Ref.!'. Left: plasma energy and

injected NBI power (shaded), mean Alfvén speed relative to the maximum fast ion velocity,

magnetic pickup signal (envelope signal) and H,, signal. Right: wavelet frequency diagram of

Mirnov signal corresponding to the two indicated time intervals. The MHD activity appears

when the Alfvén speed drops below the beam velocity.
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shown in Fig. 6.
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FIG. 8. The HAEs; eigenmode spectrum (crosses at r/a = 1) and the HAE; gap (solid
lines) for the coupled m =9, n = 7 and m = 11, n = 11 harmonics in a homogeneous plasma
of the Helias reactor HSR4/18. Dashed lines show the cylindrical continua (ws = |k)|V4) with
the considered mode numbers. There are discrete eigenmodes only in the upper part of the
gap; Amin = 1.5574, Apaz = 1.7145, where A = wR/V4 is the normalized eigenfrequency. The

calculations were carried out with the code BOA-E.
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FIG. 9. The radial structure of several HAEy; discrete modes. The parameters used are

the same as in the Fig. 8. All the modes are localized around r/a = 0.4, where two cylindrical

branches intersect. The exception is the mode with the lowest eigenfrequency (A = 1.5574),

which is localized at r/a = 0.9.
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FIG. 10. Resistive MHD spectra (in color) and the ideal MHD spectrum (in black) for
HAE9; mode with m = 9,n = 7 in HSR4/18 with the same parameters as in Figs. 8 and 9. The
eigensolution surrounded by the ellipse is a discrete mode with Re w coinciding with the lowest
eigenfrequency in ideal MHD. The resistive spectra are showﬁ for different values of resistivity

n (red colour corresponds to n = 107%; blue, n = 5 - 10™%; green, n = 1073).
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FIG. 11. The radial structure of the HAE9; mode with the normalized eigenfrequency
)\ = 1.6957 for the coupled m = 7, n = 5 and m = 9, n = 9 harmonics in an inhomoge-
neous plasma (solid lines) and in a homogeneous plasma (dashed lines) of HSR4/18. The radial
profile of plasma density was taken in the form p(r) = p(0)[1 + r/(zna)] ™" with z, = 0.7. The

calculations were carried out with the c_ode BOA-E.
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