IPP-Report

W. Eckstein

Calculated Sputtering, Reflection and Range Values

IPP 9/132 June 2002

"Dieser IPP-Bericht ist als Manuskript des Autors gedruckt. Die Arbeit entstand im Rahmen der Zusammenarbeit zwischen dem EPP und EURATOM auf dem Gebiet der Plasmaphysik. Alle Rechte vorbehalten."

"This IPP-Report has been printed as author's manuscript elaborated under the collaboration between the EPP and EURATOM on the field of plasma physics. All rights reserved."

Calculated Sputtering, Reflection and Range Values

W. Eckstein

June 24, 2002

Abstract

The Monte Carlo program TRIM.SP was applied to calculate sputtering yields, reflection coefficients and mean ranges. Tables of these values are produced in the energy range from 10 eV to 300 keV and for several angles of incidence. Li. Be. B, C. Mg. Al, Si, P, Ti. Fe. Ni. Cu. Ga. Ge, Nb. Mo, Ag, In, Cs. Sm, Ta, W, Pt, Au, Hg and U are chosen as one-component target materials, BeO, B_4C . B_2O_3 , $B(OH)_3$, SiO_2 , TiC, WO_3 , WO_4 . W_xO_y as more component targets. Some examples for layered structures are also given. //, H, D, T. ³He. ⁴He, C, N. O, Ne, Na, Mg, Al, P. Ar, K, Kr, Xe, Hg. Bi and Rn are selected as projectiles. Selfbombardment and an incident Maxwellian distribution is regarded for some cases, too.

0.1 Introduction

This report gives a collection of sputtering, reflection and range values calculated in the last decade (approximately), ft is also an extension of an earlier report [1]. Whereas [1] only data for Be. C. and W targets are presented, this report gives data for other targets, too. In contrast to [1]. the data in this report are given in exponential form to present more accurate values at low ion energies. Calculated sputtering yields from an earlier report are also included [2].

0.2 The model

The vectorized version of TRIM.SP [3.4] and different versions of it were applied. The basis is a randomized target structure and the binary collision approximation. In most cases the KrC potential [5] is applied as interaction potential, but some examples are calculated with the Moliere [6], ZBL [8] and a special potential for Si [9]. The integration for getting the scattering angle is usually performed with the procedure 'magic' [7]. but in a few cases also with the Gauss-Mehler procedure [10. 2]. For the inelastic energy loss an equipartition of the Lindhard-Scharff (LS) [11] and the Oen-Robinson (OR) [12] models is chosen mostly, but at high energies the Andersen-Ziegler (AZ) tables for H [13] and the Ziegler tables (Z) for He [14] are used. Further details can be found in [2]. As surface binding energy the heat of sublimation is used (see table 6.1 in [2]). For the hydrogen isotopes and nitrogen a binding energy esb -1 eV is chosen for these projectiles which leads to an acceleration of the incoming species and to a decrease in the angle of incidence; it has further an influence on the backscattered species (deceleration and increase in exit angle) in the same way as the surface binding energy effects the sputtered atoms. The statistical errors in the sputtering yields and reflection coefficients are usually smaller than 3% (ler) for values larger than 10^{-5} and may reach 100% at the lowest values.

0.3 Data Representation

The calculated values are given in tables. The tables are arranged in such a way that lines give an angular dependence of sputtering yields at a fixed energy e_0 . and columns give an energy dependence at a fixed angle of incidence, a. In special cases this arrangement is changed. On top of the tables the input values are given:

zl	projectile (ion) atomic number
ml	projectile mass
z2	target atomic number
m2	target mass
c2	target atomic fraction
Eq	projectile energy (eV)
alpha	angle of incidence
nh	number of histories (= number of projectiles)
sbe	surface binding energy (eV) for target atoms
rlio	atomic target density (g/cm ³)
ef	cutoff energy (eV), to stop calculation
esb	projectile binding energy (eV)
ca	correction factor to the screening length in the potential
kkO	number of ring cylinders for weak simultaneous collisions (proj.)
kkOr	number of ring cylinders for weak simultaneous collisions (recoils)
kdeel	inelastic loss model for projectiles (1: LS, 2: OR. 3: (LS+OR)/2,
	4: AZ for H, 5: Z for He)
kdee2	inelastic loss model for target atoms (1: LS, 2: OR, 3: (LS+OR)/2)
ipot	interaction potential for projectiles (1: KrC, 2: Moliere, 3: ZBL,
	4: Si potential)
ipotr	interaction potential for target atoms (1: KrC, 2: Moliere, 3: ZBL,
	4: Si potential)
program	this gives the version used for the calculation
ne	number of projectile energies in the table
na	number of incident angles in the table
dx	depth interval (Ä)

For most projectile - target combinations five tables are produced: sputtering yields, sputtered energies, particle reflection coefficients, energy reflection coefficients, and average depths of implanted atoms. The definitions are: the sputter yield, Y. is the number of sputtered atoms per projectile, the sputtered energy, Ye. is the mean energy taken away by sputtered atoms per projectile energy, the particle reflection coefficient, Rjy. is the fraction of backscattered projectiles (not implanted or transmitted), and the energy reflection coefficient, /?.#, is the fraction of the incident energy carried by the reflected projectiles. In a few cases also transmission has been investigated. Tn and Te are the particle and energy transmission coefficients. YT and YTe are the forward sputtering yield and the forward sputtered energy, respectively.

Input values different from the usually chosen values are indicated by italic style. If the input values are the same, they are not repeated at the same page.

The data are stored at /afs/ipp/u/wge/reports/rep02. The data in the tables of the report are stored in the corresponding subdirectories; their names represent the target species. More data for other projectile-target combinations, but mostly for single energy and angle, can be found in /afs/ipp/m/wge/result/trim.

0.4 Data Use

The calculated values are valid for nearly flat surfaces.

The energy distribution of the sputtered atoms can be described in a first order approximation by a Thompson distribution:

$$f(E)dE = \frac{F}{\sqrt{c}\overline{y}} - \frac{1}{J}dE \qquad (0.1)$$

Applying this distribution an energy E can be determined by a pseudorandom number r due to the formula

$$\frac{E}{Es} = \frac{1}{(1+1/a)} \quad (0.2)$$

where E_s is the surface binding energy and *a* the maximum transferable energy divided by the surface binding energy

$$a = \frac{4m!m_2}{(m_r + m_2)^2} \frac{Eq}{E_s}$$

The mean energy $\langle E \rangle$ of sputtered atoms for a constant incident energy is given by

$$\langle E(E_0,\alpha) \rangle = E_0 \frac{Y_E(E_0,\alpha)}{Y(E_0,\alpha)}$$
 (M)

For an incident Maxwellian distribution the mean energy is provided in the corresponding table.

The angular distribution of sputtered atoms can be approximated by a cosine distribution in a first approximation. An exit angle 6 can again be determined by a random number r

$$0 = \arcsin (0-5)$$

For backscattered atoms the situation is more difficult, because simple formulae for the energy and angular distributions do not exist. As for sputtered atoms the mean energy of reflected atoms can be determined for a constant incident energy by

$$\langle E(E_0,\alpha) \rangle = E_0 \frac{R_E(E_0,\alpha)}{tiN(n_0,a)}$$
(0.6)

For rough surfaces the angular dependence of the sputtering yield and the reflection coefficients is less pronounced as given in the tables.

Bibliography

- [1] W. Eckstein. Calculated Sputtering. Reflection and Range Values. IPP 9/117. 1998
- [2] W. Eckstein, C. Garcia-Rosales, J. Roth, and W.Ottenberger, Sputtering Data, IPP 9/82, 1993
- [3] J. P. Biersack and W. Eckstein, Appl. Phys. 34 (1984) 73
- [4] W. Eckstein, Computer Simulation of Ion-Solid Interaction, (Springer-Verlag, Berlin, Heidelberg, 1991)
- [5] W. D. Wilson, L. G. Haggmark, and J. P. Biersack, Phys. Rev. B 15 (1977) 2458
- [6] G. Molire, Z. Naturforsch. A 2 (1947) 133
- [7] J. P. Biersack, L. G. Haggmark, Nucl. Instrum. Meth. 174 (1980) 257
- [8] J. F. Ziegler, J. P. Biersack, U. Littmark, The Stopping and Range of Tonsin Solids, The Stopping and Range of Ions in Matter, Vol.1, ed.by J. F. Ziegler, Pergamon, New York, 1985
- [9] W. Eckstein, S. Hackel, D. Heinemann, B. Fricke, Z. Phys. D 24 (1992) 171
- [10] M. T. Robinson, Tables of Classical Scattering Integrals, U.S. Atomic Energy Commission, ORNL-4556 (1970)
- [11] J. Lindhard and M. Scharff, Phys. Rev. 124 (1961) 128
- [12] D. Oen and M. T. Robinson, Nucl. Tnstrum. Meth. 132 (1976) 647
- [13] H. H. Andersen, J. F. Ziegler, Hydrogen Stopping Powers and Ranges in All Elements, The Stopping and Range of Ions in Matter, Vol.3, ed.by J. F. Ziegler, Pergamon, New York, 1977
- [14] J. F. Ziegler, Helium Stopping Powers and Ranges in All Elements, The Stopping and Range of Ions in Matter, Vol.4, ed.by J. F. Ziegler, Pergamon, New York, 1977

The numbers in the table are the page numbers at which the corresponding data are presented. The lines of the table give the data for the same projectile (in italic style), the rows for the same target atom.

mono-atomic targets

1.0		-	-	-	-	-		-								
		Li	Be	В	С	A]	Si	Ti	V	Fe	Ni	Cu	Ga	Ge	Zr	Nb
	p										119					
	Ĥ		14		41		82			114	120	138				
	D	7	16	37	44	76	83	104	111	114	121	139	152			165
	Т	10	20		47					115			154			
	³ He		22								121					
	⁴ H e	11	23		50	77	84	105		116	122	141				
	Li	12														
	Be		25		52											
	В			39												
	С				53		85									
	N		30		62											
	0		32	40	65											
	Ne		33		66	78	85	106			124	143				
	Mg						86							160		
	Âl					79	86							160		
	Si						87							161		
	Р						100							161		
	A t		35		68	81	101	108			128	144		162		
	Ti							109								
	V								112							
	Fe									118						
	Ni										132					
	Си											146				
	Ga.												156			
	Kt										134					
	Xe				72		102				136	151	150		164	
	Hg												159			
	I Bi			1	1	1	103	1						163		

	Mo	Pd	Ag	Tn	Cs	Sm	Ta	W	Pt	Au	Hg	U
Р										242		
H	166			196			207	208				257
D	167		190	197				211		243		
T	170			199				214				
4 He	172	188	191					217	239	246		258
С	175							219				
Ν								221				
0	175							224				
Ne	176							224	240	248		258
Na			192							249		
At	177		193					226		250		258
K			194							251		
Kt	180					205					255	259
Mo	181											
In				201								
Xe	185	189	195						241	252		260
Cs					203							
W								229				
Au										253		
Hg	186											
Rn	187											260
U												261

compound targets

	BeO	B ₄ C	B 2 O 3	B(OH) 3	SiO 2	TiC	WO 3	WO ₄	W _x O _y
μ					280				
Н		266				281			
D		268							
4 He		271							
С		274							
0	263	276	278	279			282	287	288
Ne		277					285		
Kr							286		

layered targets

	Li on Cu	Li on LiCu	B2O3 on B	B2O3 on B4C	B(OH) 3 on B	B(OH) 3 on B ₄ C	O on WO 3	WO ₃ on W
D		295	301	303	305	307	310	311
At	291	299	501	505	505	507	510	511

Mono-atomic targets

D -4 Li

E ₀ (eV)	0°	65°
10	3.81e-3	2.10e-2
15	9.88e-3	6.36e-2
20	1.58e-2	1.10e-1
30	2.38e-2	1.76e-l
50	3.30e-2	2.55e-1
70	3.87e-2	2.97e-1
100	4.22e-2	3.28e-1
200	4.45e-2	3.44e-1
300	4.10e-2	
500	3.41e-2	2.91e-1
1000	2.67e-2	2.06e-1
2000	1.81e-2	1.38e-1
5000	1.04e-2	7.08e-2
10000	6.93e-3	3.68e-2

Sputtered energy of Li by D program : testvmcx ne = 13, na = 2

1. A	
0°	65°
2.98e-4	3.21e-3
7.92e-4	9.43e-3
1.21e-3	1.50e-2
1.65e-3	2.11e-2
1.81e-3	2.39e-2
1.88e-3	2.41e-2
1.78e-3	2.21e-2
1.26e-3	1.65e-2
4.66e-4	9.04e-3
2.50e-4	4.77e-3
9.72e-5	1.97e-3
3.33e-5	6.75e-4
1.48e-5	2.31e-4
	0° 2.98e-4 7.92e-4 1.21e-3 1.65e-3 1.81e-3 1.88e-3 1.78e-3 1.26e-3 4.66e-4 2.50e-4 9.72e-5 3.33e-5 1.48e-5

D -> Li

Particle reflection coefficient of D backscattered from Li zl = 1. ml = 2.01. z2 = 3. m2 = 6.94, sbe = 1.67 eV. rho=0.53 g/cm**3 ef=0.98 eV. esb=1.00 eV. ca=1.00. kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program : testvmcc ne=13. na= 2

$E_0(eV)$	0°	65°
10	1.50e-1	5.48e-1
15	1.46e-l	5.31e-1
20	1.39e-1	5.09e-1
30	1.30e-1	4.70e-1
50	1.16e-l	4.24e-1
70	1.06e-l	4.02e-1
100	9.40e-2	3.80e-1
200	6.92e-2	3.36e-1
500	4.18e-2	2.83e-1
1000	2.28e-2	2.34e-1
2000	1.02e-2	1.86e-l
5000	3.28e-3	1.01e-1
10000	1.30e-3	4.92e-2

Energy reflection coefficient of D backscattered from Li program : testvmcx ne=13, na=-2

$E_0(eV)$	0°	65 ^u
10	3.76e-2	3.07e-1
15	3.74e-2	3.03e-1
20	3.58e-2	2.87e-1
30	3.33e-2	2.56e-1
50	2.93e-2	2.23e-1
70	2.65e-2	2.06e-1
100	2.37e-2	1.88e-1
200	1.68e-2	1.61e-1
500	9.56e-3	1.25e-1
1000	4.86e-3	9.16e-2
2000	1.94e-3	6.21e-2
5000	5.52e-4	2.27e-2
10000	1.77e-4	8.20e-3

Average depth (mean range) in \ddot{A} of D implanted in Li program : testvmcx ne=13, na= 2

$E_0(eV)$	0°	65°
10	1.25e+l	9.30e+0
15	1.70e+l	1.28e+1
20	2.13e+1	1.59e- -1
30	2.94e+1	2.17e- -1
50	4.49e-f-l	3.24e+1
70	6.01e + 1	4.34e- -1
100	8.24e-f-l	5.83e-}-1
200	1.58e+2	1.08e+2
500	3.90e+2	2.47e-f-2
1000	7.76e+2	4.61e- -2
2000	1.52e+3	8.21e-f-2
5000	3.44e-J-3	1.66e+3
10000	5.99e + 3	2.68e+3

D -> Li

sbe(eV)	1.60	1.90	2.20	2.50	2.20	2.50
Eo(eV)	0°	0°	0°	0°	65°	65°
30			5.90e-4	1.05e-4		
50	2.18e-2	1.29e-2	7.81e-3	4.50e-3	6.09e-3	3.23e-3
100	4.92e-2	3.57e-2	2.65e-2	2.05e-2		

Sputtered energy of Li by D ne= 3. na= 2, n(sbe) = 4

sbe(eV)	1.60	1.90	2.20	2.50	2.20	2.50
$E_0 (eV)$	0°	0°	0 °	0°	65°	65°
30			6.92e-6	8.83e-7		
50	4.75e-4	2.75e-4	1.58e-4	8.55e-5	1.30e-4	6.51e-5
100	9.74e-4	7.40e-4	5.51e-4	4.45e-4		

$D \longrightarrow Li$

. . . .

D on Li. Maxwellian velocity distribution, sheath potential 0 kT zl= 1. ml= 2.01. z2= 3. m2 = 6.94. sbe = 1.67 eV. rho= 0.53 g/cm**3 ef=0.98 eV, esb = 1.00 eV. ca=1.00. kk0=kk0r=2. kdeel = kdee2=3. ipot=ipotr=1 (KrC) regram: testvmcx ne=1l

kT(eV)	Y	Ye	Esp	RN	R E	E _b	range
2	1.83e-3	6.58e-4	1.44e-f-0	2.04e-1	1.25e-l	2.45e+0	4.50e4-0
5	1.89e-2	4.33e-3	2.29e+0	3.04e-1	1.63e-1	5.36e+0	9.90e4-0
10	5.18e-2	8.25e-3	3.19e+0	3.24e-1	1.59e-l	9.84e+0	1.78eRl
20	9.83e-2	1.09e-2	4.42e+0	3.08e-1	1.44e-l	1.87e + 1	3.22e + 1
50	1.53e-1	9.92e-3	6.47e+0	2.70e-1	1.17e-l	4.33e+1	7.18e + 1
100	1.74e-1	7.82e-3	8.93e-f-0	2.34e-1	9.77e-2	8.30e + 1	1.34e + 2
200	1.71e-1	4.95e-3	1.16e+l	2.00e-1	7.73e-2	1.54e + 2	2.59e+2
500	1.39e-1	2.57e-3	1.84e+1	1.52e-1	5.27e-2	3.44e+2	6.03e+2
1000	1.05e-1	1.22e-3	2.32e + 1	1.15e-l	3.40e-2	5.92e+2	1.12e+3
2000	7.19e-2	5.11e-4	2.83e + 1	8.44e-2	2.12e-2	9.98e+2	1.97eR3
5000	3.93e-2	1.39e-4	3.54e + 1	5.25e-2	1.00e-2	1.91e4-3	3.95e4-3

 $D \mbox{ on } Li$. Maxwellian velocity distribution , sheath potential 3 kT ne= 11

kT(eV)	Y	Ус	E sp	Rat	Rfi	B _b	range
2	7.84e-3	1.02e-3	1.30e4-0	1.92e-1	6.17e-2	3.22e+0	1.17e + 1
5	3.43e-2	3.09e-3	2.25e + 0	1.74e-l	5.41e-2	7.75e4-0	2.37e + 1
10	5.58e-2	3.72e-3	3.34e4-0	1.51e-l	4.62e-2	1.53e+1	4.21e + 1
20	6.96e-2	3.28e-3	4.71e + 0	1.25e-l	3.74e-2	2.99e + 1	7.71e+l
50	7.10e-2	2.18e-3	7.67e+0	9.25e-2	2.66e-2	7.20e4-1	1.81e4-2
100	5.57e-2	1.13e-3	1.01e + 1	6.27e-2	1.64e-2	1.31e + 2	3.55e + 2
200	4.40e-2	5.85e-4	1.33e+1	3.91e-2	9.19e-3	2.35eR2	7.05e + 2
500	2.35e-2	1.70e-4	1.81e + 1	1.52e-2	3.16e-3	5.19e+2	1.67e4-3
1000	1.60e-2	6.89e-5	2.15e + 1	5.85e-3	1.03e-3	8.85e+2	3.06e+3
2000	9.17e-3	2.53e-5	2.76e-f-l	2.19e-3	3.31e-4	1.51e+3	5.29e+3
5000	4.43e-3	7.99e-6	4.51e+1	4.73e-4	7.77e-5	4.10e+3	1.01e+4

$T \mathrel{\ ->\ } Li$

D = (V)	0.8	20.0	40.0	50 ⁴	600	(50	700	750	770	80.8	0.00	050	070
Bq(ev)	0.	201	40	50	00	0.5	70	73	11.	80	02	85	0/
10	2.52e-3					3.67e-2							
14	7.36e-3												
20	1.34e-2					1.50e-1							
30	2.04e-2												
50	3.00e-2					3.35e-1							
100	4.20e-2	5.44e-2	1.50e-1	2.25e-1	3.48e-1	4.30e-1	5.00e-1	5.74e-1		5.45e-1		2.51e-1	1.22e-1
200	4.71e-2					4.51e-1							
300	4.52e-2	6.40e-2	1.37e-1	2.16e-1			5.31e-1		7.33e-1		7.74e-l	5.71e-l	1.99e-l
500	4.40e-2					3.87e-1							
1000	3.66e-2					3.09e-1							
2000	2.67e-2					2.00e-1							
5000	1.64e-2					1.04e-1							
10000	1.10e-2					6.11e-2							

Sputtered energy of Li by T program: newtrim (Laszlo) ne=10, na= 2

E ₀ (eV)	0°	65°
10		6.99e-3
20		2.42e-2
50	1.58e-3	3.54e-2
100	1.53e-3	3.24e-2
200	1.20e-3	2.43e-2
500	6.44e-4	1.38e-2
1000	3.47e-4	8.36e-3
2000	1.51e-4	3.48e-3
5000	6.03e-5	1.31e-3
10000	1.74e-5	4.90e-4

Particle reflection coefficient of T backscattered from Li zl = 1, ml = 3.01, z2= 3, m2= 6.94. Es=1.68 eV. rho=0.53 g/cm**3 ef=0.90, esb = 1.00. ca=1.00, kkO=kkOr=2, kdeel=kdee2=3, ipot=ipotrs=1 (KrC) program: newtrim (Laszlo) ne=10, na= 2

E ₀ (eV)	0°	65°
10		4.75e-1
20		4.49e-1
50	6.62e-2	3.74e-1
100	5.39e-2	3.28e-1
200	3.96e-2	2.92e-1
500	2.29e-2	2.46e-1
1000	1.29e-2	2.04e-1
2000	5.75e-3	1.55e-l
5000	2.15e-3	9.41e-2
10000	7.45e-4	5.12e-2

Energy reflection coefficient of T backscattered from Li $ne{=}10.\ na{=}\ 2$

Bo(eV)	0°	65°
10		2.41e-1
20		2.33e-1
50	1.18e-2	1.80e-1
100	9.65e-3	1.50e-1
200	7.05e-3	1.29e-1
500	3.91e-3	1.03e-1
1000	2.11e-3	7.95e-2
2000	8.73e-4	5.10e-2
5000	2.96e-4	2.24e-2
10000	1.00e-4	8.83e-3

Average depth (mean range) in \ddot{A} of T implanted in Li ne=10. na= 2

$E_0(eV)$	0 °	65 ^u
10		7.69e+0
20		1.35e+1
50	4.17e+1	2.79e+1
100	7.73e + 1	5.08e+1
200	1.50e+2	9.47e+1
500	3.77e+2	2.28e+2
1000	7.77e+2	4.40e+2
2000	1.58e+3	8.34e+2
5000	3.76e+3	1.80e+3
10000	6.75e + 3	3.03e+3

He -> Li

He on Li. Maxwellian velocity distribution, sheath potential 0 kT zl = 2. ml = 4.00. z2 = 3. m2 = 6.94. sbe=1.68 eV. rho = 0.53 g/cm**3 ef=0.30 eV. esb = 0.00 eV. ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=l (KrC) program: newtrim (Laszlo) ne= 11

kT(eV)	Y	Ye	Esp	Rjv	Re	Eh	range
2	2.16e-3	1.07e-3	1.99e+0	5.37e-1	2.58e-1	1.92e+0	3.23e+0
5	2.83e-2	8.70e-3	3.08e+0	4.65e-1	2.16e-1	4.64e + 0	6.54e+0
10	9.00e-2	1.84e-2	4.09e + 0	3.95e-1	1.76e-l	8.90e+0	1.08e+1
20	1.88e-1	2.59e-2	5.50e + 0	3.25e-1	1.38e-1	1.70e + 1	1.77e + 1
50	3.46e-1	2.85e-2	8.24e+0	2.49e-1	9.86e-2	3.96e + 1	3.57e + 1
100	4.37e-1	2.46e-2	1.12e + 1	2.04e-1	7.84e-2	7.68e + 1	6.43e4-1
200	4.88e-1	1.90e-2	1.56e + 1	1.67e-l	6.31e-2	1.51e + 2	1.21e+2
500	4.71e-1	1.17e-2	2.46e-f-l	1.33e-1	4.87e-2	3.64e+2	2.88e+2
1000	4.25e-1	7.48e-3	3.49e + 1	1.12e-1	3.83e-2	6.75e + 2	5.58e+2
2000	3.45e-1	4.19e-3	4.84e+1	8.69e-2	2.62e-2	1.20e + 3	1.08e+3
5000	2.34e-1	1.91e-3	8.15e+1	5.93e-2	1.58e-2	2.65e+3	2.38e+3

He on Li. Maxwellian velocity distribution, sheath potential 2 kT ne= 9 $\,$

kT(eV)	Y	YE	E sn	Rtv	Re	Eb	range
2	7.09e-3	1.78e-3	1.96e+0	2.30e-1	6.26e-2	2.13e+0	5.75e+0
5	5.41e-2	6.77e-3	2.50e+0	1.56e-l	3.60e-2	4.60e + 0	1.12e4-1
10	1.18e-1	1.09e-2	3.68e+0	1.18e-1	2.57e-2	8.69e4-0	1.85e-}-l
20	1.78e-l	1.11e-2	4.95e+0	9.04e-2	2.00e-2	1.77e + 1	3.20e + 1
50	2.31e-1	9.16e-3	7.96e+0	6.56e-2	1.54e-2	4.69e + 1	7.06e- -1
100	2.41e-1	7.29e-3	1.21e-}-l	5.01e-2	1.12e-2	8.89e+1	1.31e+2
200	1.98e-1	3.90e-3	1.58e + 1	3.51e-2	8.50e-3	1.94e + 2	2.62e+2
500	1.54e-l	1.64e-3	2.12e+1	2.03e-2	4.53e-3	4.46e- -2	6.51e+2
1000	1.03e-1	8.49e-4	3.31e + 1	1.03e-2	2.04e-3	7.95e+2	1.29e4-3

He on Li, Maxwellian velocity distribution, sheath potential 3 kT ne=11

kT(eV)	Y	Y F	Esp	R;V	RE	Eb	range
2	9.98e-3	1.76e-3	1.77e + 0	1.89e-1	4.24e-2	2.25e + 0	6.98e4-0
5	5.89e-2	6.17e-3	2.62e-}-0	1.27e-l	2.52e-2	4.96e+0	1.35e+1
10	1.14e-1	8.36e-3	3.68e+0	9.61e-2	1.81e-2	9.43e+0	2.28e+1
20	1.65e-l	8.64e-3	5.24e+0	7.32e-2	1.39e-2	1.90e+1	3.96e + 1
50	1.99e-1	6.63e-3	8.31e+0	5.04e-2	9.71e-3	4.81e + 1	8.79e-H
100	1.96e-l	4.65e-3	1.19e4-1	3.66e-2	6.95e-3	9.49e + 1	1.69e + 2
200	1.62e-1	2.68e-3	1.67e+l	2.43e-2	4.79e-3	1.97e+2	3.34e+2
500	1.19e-l	1.01e-3	2.13e + 1	1.27e-2	2.24e-3	4.41e+2	8.42e+2
1000	8.36e-2	5.96e-4	3.57e + 1	6.25e-3	8.84e-4	7.08e-f-2	1.66e+3
2000	5.46e-2	2.65e-4	4.83e + 1	1.19e-3	1.91e-4	1.60e+3	3.09e- -3
5000	1.78e-2		1.34e+2				6.45e+3

He on Li, Maxwellian velocity distribution, sheath potential 9 kT ne=11

kT(eV)	Y	Ye	Egp	R/V	Re	Bb	range
2	9.98e-3	1.76e-3	1.77e4-0	1.89e-1	4.24e-2	2.25e-)-0	6.98e+0
5	5.89e-2	6.17e-3	2.62e- -0	1.27e-l	2.52e-2	4.96e- -0	1.35e- -1
10	1.14e-1	8.36e-3	3.68e+0	9.61e-2	1.81e-2	9.43e-f-0	2.28e-f-l
20	1.65e-l	8.64e-3	5.24e-{-0	7.32e-2	1.39e-2	1.90e + 1	3.96e4-1
50	1.99e-l	6.63e-3	8.31e+0	5.04e-2	9.71e-3	4.81e+1	8.79e + 1
100	1.96e-l	4.65e-3	1.19e+1	3.66e-2	6.95e-3	9.49e+1	1.69e-J-2
200	1.62e-1	2.68e-3	1.67e + 1	2.43e-2	4.79e-3	1.97e4-2	3.34e+2
500	1.19e-1	1.Ole-3	2.13e+1	1.27e-2	2.24e-3	4.41e+2	8.42e + 2
1000	8.36e-2	5.96e-4	3.57e+1	6.25e-3	8.84e-4	7.08e+2	1.66e+3
2000	5.46e-2	2.65e-4	4.83e+1	1.19e-3	1.91e-4	1.60e4-3	3.09e-}-3
5000	1.78e-2		1.34e+2				6.45e + 3

 $Sputtering yield of Li by Li \\ zl = 3. ml = 6.94, z2 = 3, m2 = 6.94, sbe = 1.68 eV. rho=0.53 g/cm**3 \\ ef=1.18 eV. esb = 1.68 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) \\ program: newtrim (Laszlo), IPP 9/82 \\ ne= 9, na=10 \\$

										_
$E_0(eV)$	0°	30°	45 ^u	55 °	60°	65°	70°	75°	80°	85°
20	5.42e-3							2.28e-1		
50	4.29e-2							5.96e-1		
100	9.48e-2	2.60e-1	5.19e-1		9.21e-1	1.05e-0	1.13e-0	1.07e-0	7.68e-1	3.21e-1
200	1.50e-1	3.43e-1	6.56e-l		1.18e-0	1.39e-0	1.58e-0	1.62e-0	1.36e-0	5.19e-1
500	1.91e-l							2.29e-0		
1000	2.07e-1	3.75e-1	6.57e-1	1.04e-0	1.33e-0		2.06e-0	2.49e-0	2.82e-0	2.16e-0
2000	1.87e-1							2.SBe-O		
5000	1.44e-1							2.01e-0		
10000	1.19e-1							1.48e-0		

Sputtered energy of Li by Li program: newtrim (Laszlo) ne= 9, na=10

E₀ (eV) 30° 45° 60° 65 70 75° 80° 85 ^u 0° 55° 2.62e-4 1.62e-3 2.72e-3 3.17e-3 20 50 5.67e-2 1.02e-1 7.85e-2 7.17e-2 5.00e-2 5.40e-2 100 1.27e-2 1.23e-2 3.41e-2 9.78e-2 1.15e-1 9.97e-2 1.22e-l 200 3.12e-2 8.94e-2 1.10e-l 1.25e-l 1.16e-l 2.61e-3 2.08e-3 1.29e-3 5.98e-4 500 1000 1.09e-1 1.02e-1 6.53e-2 3.85e-2 2.08e-2 6.76e-3 1.61e-2 3.06e-2 4.15e-2 7.17e-2 8.97e-2 8.26e-2 2000 5000 10000 3.46e-4

Bq(eV)	0°	30°	45°	55°	60°	65°	70°	75°	80°	<u>85°</u>
20	9.31e-4							5.18e-1		
50	3.80e-3							5.96e-1		
100	5.39e-3	2.39e-2	6.99e-2		1.93e-1	2.69e-1	3.72e-1	5.18e-1	7.21e-l	9.05e-1
200	5.10e-3	2.09e-2	5.93e-2		1.64e-l	2.27e-1	3.14e-1	4.33e-1	6.28e-1	8.89e-1
500	3.56e-3							3.52e-1		
1000	2.42e-3	1.11e-2	3.39e-2	7.57e-2	1.12e-1		2.24e-1	3.10e-1	4.50e-1	6.98e-1
2000	1.79e-3							2.89e-1		
5000	6.04e-4							2.45e-1		
10000								2.08e-1		

Energy reflection coefficient ne= 9, na=10 of Li backscattered from Li

B ₀ (eV)	0°	30°	45°	55°	60°	65°	70°	75°	80°	85°
20	5.99e-5							· 2.56e-1		
50	2.25e-4							3.43e-1		
100	3.04e-4	2.92e-3	1.33e-2		6.05e-2	1.02e-1	1.70e-l	2.91e-1	4.98e-1	7.32e-1
200	2.79e-4	2.45e-3	1.07e-2		4.74e-2	7.96e-2	1.32e-1	2.26e-1	4.20e-1	7.49e-1
500	1.91e-4							1.67e-l		
1000	1.27e-4	1.20e-3	6.34e-3	1.77e-2	3.03e-2		8.35e-2	1.41e-1	2.53e-1	5.40e-1
2000	1.18e-4							1.25e-l		
5000	2.66e-5							1.01e-1		
10000								7.16e-2		

Average depth (mean range) in Ä of Li implanted in Li ne = 9, na = 10

$E_0(eV)$	0°	30°	45°	55°	60°	65°	70°	75°	80°	85°
20	1.01e4-1							3.62e- -0		
50	1.94e-}-l							8.87e+0		
100	3.25e-)-1	2.85e-f-l	2.43e+1		1.95e+1	1.79e+l	1.66e + 1	1.53e+1	1.40e + 1	1.25e- -1
200	5.63e-{-1	4.95e4-1	4.17e+1		3.35e-}-l	3.09e+1	2.85e+1	2.62e-f-l	2.43e + 1	2.22e+1
500	1.24e+2							5.60e- -1		
1000	2.39e+2	2.09e+2	1.74e+2	1.50e+2	1.38e-}-2		1.13e+2	1.04e+2	9.58e-f-l	8.93e-{-1
2000	4.79e+2							2.00e+2		
5000	1.23e-}-3							4.69e+2		
10000	2.45e+3							8.63e+2		

Li-4 Li

Li on Li, Maxwellian velocity distribution, sheath potential 0 kT zl = 3, ml = 6.94. z2 = 3. m2 = 6.94. sbe = 1.67 eV, rho= 0.53 g/cm**3 ef=1.62 eV, esb = 1.67 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx, newtrim(Laszlo) ne=14

kT(eV)	Y	YE	Esp	RN	Re	Eb	range
1.1	4.56e-4	3.04e-4	1.47e+0	1.10e-3	1.12e-3	2.24e+0	1.12e+0
1.4	1.24e-3	7.64e-4	1.73e+0	2.85e-3	2.74e-3	2.69e+0	1.36e + 0
2	4.22e-3	2.37e-3	2.24e- -0	9.29e-3	8.13e-3	3.50e+0	1.82e4-0
3	1.41e-2	6.30e-3	2.68e+0	2.40e-2	1.80e-2	4.49e + 0	2.51e4-0
5	4.28e-2	1.44e-2	3.36e+0	5.70e-2	3.80e-2	6.67e4-0	3.94e+0
10	1.26e-l	2.84e-2	4.53e+0	1.09e-l	6.07e-2	1.12e- -1	6.83e-)-0
20	2.58e-1	3.90e-2	6.04e + 0	1.43e-1	7.01e-2	1.96e+l	1.18e + 1
50	4.88e-1	4.31e-2	8.87e+0	1.48e-l	6.39e-2	4.32e + 1	2.43e-}-1
100	6.66e-l	4.10e-2	1.23e + 1	1.34e-1	5.37e-2	8.01e + 1	4.22e+1
200	7.95e-1	3.49e-2	1.74e+1	1.19e-l	4.60e-2	1.53e+2	7.64e + 1
500	8.58e-1	2.39e-2	2.78e + 1	9.74e-2	3.58e-2	3.66e+2	1.80e+2
1000	7.95e-1	1.62e-2	4.08e + 1	7.90e-2	2.92e-2	7.39e- -2	3.52e+2
2000	7.35e-1	1.12e-2	6.09e + 1	7.05e-2	2.35e-2	1.33e-f-3	6.96e+2
5000				5.12e-2	1.82e-2	3.57e+3	1.69e+3

Li on Li, Maxwellian velocity distribution, sheath potential' 3 kT $ne\!=\!14$

kT(eV)	Y	Ye	E sp	RjV	r e	Вь	range
1.1	1.43e-3	3.71e-4	1.43e + 0	1.56e-3	5.76e-4	2.03e4-0	3.34e-f-0
1.4	3.47e-3	7.95e-4	1.61e+0	3.05e-3	1.04e-3	2.37e+0	4.02e + 0
2	1.07e-2	2.00e-3	1.87e-f-0	6.82e-3	2.07e-3	3.03e+0	5.29e-f-0
3	2.71e-2	4.10e-3	2.27e + 0	1.19e-2	3.06e-3	3.86e+0	7.15e + 0
5	6.41e-2	7.17e-3	2.79e-}-0	1.71e-2	3.68e-3	5.39e-J-0	1.05e+l
10	1.36e-l	1.05e-2	3.84e-}-0	2.04e-2	3.51e-3	8.59e4-0	1.74e4-l
20	2.14e-1	1.16e-2	5.41e-f-0	1.92e-2	2.94e-3	1.53e-f-l	2.92e-f-l
50	3.19e-1	1.09e-2	8.58e4-0	1.73e-2	2.65e-3	3.82e-f-l	6.10e-H
100	3.45e-1	8.13e-3	1.21e + 1	1.28e-2	1.88e-3	7.31e + 1	1.12e- -2
200	3.24e-1	5.68e-3	1.76e+l	9.05e-3	1.43e-3	1.58e+2	2.15e+2
500	2.40e-1	2.46e-3	2.57e+1	4.72e-3	6.67e-4	3.53e-f-2	5.38e+2
1000	2.16e-1	1.54e-3	3.57e-f-l	2.99e-3	4.51e-4	7.57e+2	1.10e+3
2000	1.46e-l	8.98e-4	6.14e + 1	7.58e-4	1.36e-4	1.80e-}-3	2.19e-j-3
5000	9.47e-2	3.04e-4	8.04e4-1				5.07e- -3

Li on Li, Maxwellian velocity distribution, sheath potential 9 kT $n\!e\!=\!14$

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	kT(eV)	Y	Ye	Esp	R/V	Re	Еь	range
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.1	5.18e-3	5.87e-4	1.37e+0	2.18e-3	3.64e-4	2.02e4-0	6.58e + 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.4	1.08e-2	1.04e-3	1.49e+0	3.38e-3	5.06e-4	2.31e+0	7.84e-}-0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2.37e-2	1.93e-3	1.79e+0	5.45e-3	7.29e-4	2.94e+0	1.01e + 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	4.80e-2	3.25e-3	2.23e+0	7.61e-3	9.23e-4	4.00e+0	1.36e-t-1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	8.93e-2	4.65e-3	2.86e + 0	9.45e-3	9.90e-4	5.76e+0	1.99e4-1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	i.55e-1	6.03e-3	4.27e + 0	1.01e-2	9.55e-4	1.04e + 1	3.35e + 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50 2.55e-1 4.50e-3 9.72e+0 6.58e-3 6.13e-4 5.12e+1 1.30e-f-2 100 2.49e-1 3.06e-3 1.35e+1 4.13e-3 3.27e-4 8.7le-1 2.52e+2 200 2.10e-1 1.82e-3 1.90e+1 2.23e-3 2.79e-4 8.7le-1 5.03e+2 500 1.43e-1 6.45e-4 2.49e+1 1.55e-3 1.37e-4 4.85e+2 1.29e-l-3 1000 1.20e-1 4.38e-4 4.01e+1 2.61e-4 1.90e-5 8.02e+2 2.57e-f-3 2000 8.47e-2 1.82e-4 4.71e4-1 2.12e-4 8.83e-6 9.16e+2 4.88e+3 5000 4.98e-2 8.04e-5 8.89e+1 8.83e-6 9.16e+2 8.85e-1-3	20	2.15e-1	5.74e-3	5.87e+0	8.97e-3	8.33e-4	2.04e + 1	5.84e + 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 2.49e-1 3.06e-3 1.35e+1 4.13e-3 3.27e-4 8.7le-l-1 2.52e+2 200 2.10e-1 1.82e-3 1.90e+1 2.23e-3 2.79e-4 2.75e-1-2 5.03e+2 500 1.43e-1 6.45e-4 2.49e+1 1.55e-3 1.37e-4 4.85e+2 1.29e-1-3 1000 1.20e-1 4.38e-4 4.01e+1 2.61e-4 1.90e-5 8.02e+2 2.57e-f-3 2000 8.47e-2 1.82e-4 4.71e4-1 2.12e-4 8.83e-6 9.16e+2 4.88e+3 5000 4.98e-2 8.04e-5 8.89e+1 8.56e-1-3 8.56e-1-3	50	2.55e-1	4.50e-3	9.72e+0	6.58e-3	6.13e-4	5.12e + 1	1.30e-f-2
200 2.10e-1 1.82e-3 1.90e+1 2.23e-3 2.79e-4 2.75e-]-2 5.03e- 500 1.43e-1 6.45e-4 2.49e+1 1.55e-3 1.37e-4 4.85e+2 1.29e- 1000 1.20e-1 4.38e-4 4.01e+1 2.61e-4 1.90e-5 8.02e+2 2.57e- 2000 8.47e-2 1.82e-4 4.71e4-1 2.12e-4 8.83e-6 9.16e+2 4.88e-	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100	2.49e-1	3.06e-3	1.35e + 1	4.13e-3	3.27e-4	871e-}-l	2.52e+2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	500 1.43e-1 6.45e-4 2.49e+1 1.55e-3 1.37e-4 4.85e+2 1.29e-1-3 1000 1.20e-1 4.38e-4 4.01e+1 2.61e-4 1.90e-5 8.02e+2 2.57e-f-3 2000 8.47e-2 1.82e-4 4.71e4-1 2.12e-4 8.83e-6 9.16e+2 4.88e+3 5000 4.98e-2 8.04e-5 8.89e+1 8.65e-1-3	200	2.10e-1	1.82e-3	1.90e + 1	2.23e-3	2.79e-4	2.75e-}-2	5.03e+2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1000 1.20e-1 4.38e-4 4.01e+1 2.61e-4 1.90e-5 8.02e+2 2.57e-f-3 2000 8.47e-2 1.82e-4 4.71e4-1 2.12e-4 8.83e-6 9.16e+2 4.88e+3 5000 4.98e-2 8.04e-5 8.89e+1 8.65e-1-3	500	1.43e-1	6.45e-4	2.49e + 1	1.55e-3	1.37e-4	4.85e + 2	1.29e- -3
2000 8 47e-2 1 82e-4 4 71e4-1 2 12e-4 8 83e-6 9 16e+2 4 88e	2000 8.47e-2 1.82e-4 4.71e4-1 2.12e-4 8.83e-6 9.16e+2 4.88e+3 5000 4.98e-2 8.04e-5 8.89e+1 8.65e-1-3	1000	1.20e-1	4.38e-4	4.01e + 1	2.61e-4	1.90e-5	8.02e+2	2.57e-f-3
2000 0.1702 1.020 1 1.77011 2.120 1 0.050 0 9.10012 4.000	5000 4.98e-2 8.04e-5 8.89e + 1 8.65e-1-3	2000	8.47e-2	1.82e-4	4.71e4-l	2.12e-4	8.83e-6	9.16e + 2	4.88e + 3
5000 4.98e-2 8.04e-5 8.89e + 1 8.65e-		5000	4.98e-2	8.04e-5	8.89e + 1				8.65e- -3

Н Ве

Sputtering yield of Be by H zl = 1, ml= 1.01, z2= 4, m2= 9.01, sbe=3.38 eV, rho=1.80 g/cm**3 ef=0.98 eV, esb = 1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program : trvmc ne=17, na=10

E ° (6A)	0°	15°	30°	45°	55°	60 ^u	65 ^u	75 ^u	80°	85°
15	2.39e-5	2.63e-5	2.85e-5	2.14e-5	1.21e-5	8.09e-6	4.43e-6			
17	1.80e-4	1.95e-4	2.08e-4	1.66e-4	1.05e-4	7.32e-5	4.48e-5	9.26e-6	3.26e-6	3.82e-6
20	8.03e-4	8.49e-4	9.25e-4	8.35e-4	6.15e-4	4.64e-4	3.12e-4	8.45e-5	3.29e-5	1.31e-5
22	1.45e-3	1.50e-3	1.68e-3	1.65e-3	1.32e-3		7.44e-4	2.31e-4	9.69e-5	3.89e-5
25	2.57e-3	2.75e-3	3.17e-3	3.36e-3	2.89e-3	2.50e-3	1.92e-3	7.73e-4	3.29e-4	1.38e-4
27	3.50e-3									
30	4.68e-3	4.98e-3	5.82e-3	6.88e-3	6.92e-3	6.37e-3	5.53e-3	2.68e-3	1.26e-3	4.78e-4
40	8.46e-3	9.19e-3	1.13e-2	1.43e-2	1.76e-2	1.87e-2	1.83e-2	1.10e-2	4.97e-3	1.39e-3
50	1.15e-2	1.24e-2	1.55e-2	2.20e-2	2.89e-2	3.24e-2	3.40e-2	2.38e-2	1.05e-2	2.46e-3
70	1.54e-2	1.69e-2	2.19e-2	3.35e-2	4.76e-2	5.61e-2	6.40e-2	5.41e-2	2.57e-2	4.28e-3
100	1.85e-2	2.04e-2	2.70e-2	4.38e-2	6.49e-2	7.81e-2	9.48e-2	9.73e-2	5.15e-2	6.63e-3
140	1.98e-2	2.24e-2	3.07e-2	5.05e-2	7.71e-2		1.18e-1	1.39e-1	8.57e-2	1.02e-2
200	2.02e-2	2.28e-2	3.27e-2	5.57e-2	8.43e-2	1.05e-1	1.33e-1	1.78e-1	1.33e-1	1.70e-2
300	1.93e-2	2.23e-2	3.27e-2	5.64e-2	8.66e-2		1.37e-l	2.07e-1	1.91e-1	3.41e-2
500	1.69e-2	1.98e-2	2.99e-2	5.13e-2	8.02e-2	1.00e-1	1.30e-1	2.15e-1	2.43e-1	8.09e-2
1000	1.26e-2	1.49e-2	2.26e-2	4.00e-2	6.28e-2	8.37e-2	1.04e-1	1.88e-1	2.51e-1	1.93e-1
2000						5.55e-2				

-

Sputtered energy of Be by H ne=17, na=10

										1 A A A A A A A A A A A A A A A A A A A
$E_0 (eV)$	0°	15°	30°	45°	55°	60°	65°	75°	80°	85°
15	5.14e-7	6.20e-7	7.95e-7	6.37e-7	3.73e-7	2.51e-7	1.27e-7			
17	5.30e-6	6.12e-6	7.26e-6	6.29e-6	3-98e-6	2.79e-6	1.68e-6	3.59e-7	1.31e-7	2.07e-7
20	3.14e-5	3.45e-5	4.08e-5	3.99e-5	2.98e-5	2.25e-5	1.54e-5	4.24e-6	1.71e-6	7.12e-7
22	6.21e-5	6.65e-5	8.12e-5	8.74e-5	7.17e-5		4.08e-5	1.29e-5	5.50e-6	2.34e-6
25	1.22e-4	1.36e-4	1.68e-4	1.92e-4	1.73e-4	1.53e-4	1.19e-4	4.716-5	2.15e-5	9.17e-6
27	1.74e-4									
30	2.42e-4	2.67e-4	3.31e-4	4.23e-4	4.46e-4	4.20e-4	3.77e-4	1.94e-4	9.45e-5	3.69e-5
40	4.61e-4	5.09e-4	6.62e-4	9.35e-4	1.17e-3	1.29e-3	1.33e-3	8.94e-4	4.35e-4	1.28e-4
50	6.19e-4	6.74e-4	8.89e-4	1.34e-3	1.87e-3	2.21e-3	2.45e-3	2.01e-3	9.77e-4	2.47e-4
70	7.72e-4	8.60e-4	1.14e-3	1.88e-3	2.88e-3	3.56e-3	4.33e-3	4.44e-3	2.38e-3	4.33e-4
100	8.25e-4	9.19e-4	1.24e-3	2.11e-3	3.33e-3	4.37e-3	5.66e-3	7.00e-3	4.30e-3	6.46e-4
140	7.78e-4	8.76e-4	1.21e-3	2.11e-3	3.44e-3		6.00e-3	8.66e-3	6.13e-3	8.86e-4
200	6.59e-4	7.45e-4	1.08e-3	1.99e-3	3.22e-3	4.34e-3	5.77e-3	8.99e-3	7.80e-3	1.27e-3
300	5.02e-4	5.80e-4	8.63e-4	1.66e-3	2.77e-3		4.77e-3	8.11e-3	8.64e-3	2.00e-3
500	3.13e-4	3.77e-4	5.91e-4	1.11e-3	1.99e-3	2.42e-3	3 33e-3	6.22e-3	7.74e-3	3.29e-3
1000	1.39e-4	1.66e-4	2.92e-4	5.88e-4	1.00e-3	1.27e-3	1.88e-3	3.66e-3	5.11e-3	4.57e-3
2000						6.26e-4				

H -4-Be

Particle reflection coefficient of H backscattered from Be zl = 1. ml = 1.01, z2 = 4, m2 = 9.01. sbe=3.38 eV, rho = 1.80 g/cm**3 ef=0.98 eV, esb = 1.00 eV, ca=1.00, kk0 = kk0r=2, kdeel = kdee2 = 3, ipot=ipotr=l (KrC) program : trvmc ne=18, na=10

E _o (eV)	0 ^u	15°	30 ^u	45°	55°	60°	65 ^u	75°	80 ^u	85°
10	4.27e-1	4.51e-1	5.21e-1	6.43e-1	7.48e-1		8.56e-l	9.38e-1	9.61e-1	9.74e-1
15	3.79e-1	4.01e-1	4.65e-1	5.87e-1	7.02e-1	7.66e-l	8.32e-1	9.38e-1	9.69e-1	9.83e-1
17	3.66e-l	3.86e-1	4.48e-1	5.68e-1	6.85e-1	7.51e-l	8.20e-1	9.37e-1	9.70e-1	9.85e-1
20	3.49e-1	3.68e-1	4.28e-1	5.44e-1	6.61e-l	7.30e-1	8.04e-1	9.34e-1	9.71e-1	9.87e-1
22	3.40e-1	3.59e-1	4.16e-1	5.29e-1	6.46e-1		7.92e-1	9.31e-1	9.71e-1	9.88e-1
25	3.28e-1	3.46e-1	4.02e-1	5.10e-1	6.26e-1	6.97e-1	7.76e-l	9.26e-1	9.71e-1	9.89e-1
27	3.22e-1									
30	3.11e-1	3.28e-1	3.81e-1	4.85e-1	5.97e-1	6.69e-l	7.50e-1	9.17e-1	9.70e-1	9.91e-1
40	3.87e-1	3.03e-1	3.53e-1	4.48e-1	5.52e-1	6.21e-1	7.05e-1	8.97e-1	9.66e-l	9.93e-1
50	2.69e-1	2.85e-1	3.32e-1	4.22e-1	5.20e-1	5.87e-1	6.68e-1	8.75e-1	9.60e-1	9.93e-1
70	2.44e-1	2.58e-1	3.03e-1	3.88e-1	4.76e-1	5.35e-1	6.13e-1	8.33e-1	9.46e-1	9.94e-1
100	2.18e-1	2.32e-1	2.74e-1	3.53e-1	4.36e-1	4.90e-1	5.60e-1	7.77e-l	9.20e-1	9.93e-1
140	1.94e-1	2.08e-1	2.47e-1	3.23e-1	4.02e-1		5.17e-1	7.17e-1	8.82e-1	9.92e-1
200	1.68e-1	1.81e-1	2.19e-1	2.92e-1	3.69e-1	4.22e-1	4.77e-1	6.58e-1	8.28e-1	9.87e-1
300	1.39e-1	1.51e-1	1.87e-1	2.58e-1	3.31e-1		4.35e-1	6.00e-1	7.77e-l	9.74e-1
500	1.03e-1	1.14e-1	1.46e-1	2.13e-1	2.85e-1	3.36e-1	3.86e-1	5.39e-1	6.71e-1	9.37e-1
1000	5.91e-2	6.64e-2	9.28e-1	1.50e-1	2.17e-l	2.68e-1	3.18e-1	4.67e-1	5.80e-1	8.28e-1
2000						1.91e-l				

Energy	reflection	coefficient	of H	backscattered	from	Βe
ne = 18,	na = 10					

E ₀ (eV)	0°	15 ^u	30°	45 ^u	55°	60 ^u	65 ^u	75 ^u	80°	85 ^u
10	1.96e-1	2.15e-1	2.73e-1	3.88e-1	5.01e-1		6.34e-1	7.58e-l	7.99e-1	8.24e-1
15	1.71e-l	1.87e-1	2.38e-1	3.50e-1	4.71e-1	5.45e-1	6.27e-1	7.85e-1	8.40e-1	8.70e-1
17	1.63e-1	1.78e-1	2.27e-1	3.35e-1	4.56e-1	5.33e-1	6.19e-1	7.89e-1	8.49e-1	8.81e-1
20	1.54e-1	1.68e-1	2.14e-1	3.16e-1	4.36e-1	5.14e-1	6.05e-1	7.92e-1	8.59e-1	8.93e-1
22	1.49e-1	1.62e-1	2.06e-1	3.04e-1	4.23e-1		5.95e-1	7.92e-1	8.63e-1	9.00e-1
25	1.42e-1	1.55e-l	1.96e-1	2.90e-1	4.04e-1	4.84e-1	5.79e-1	7.89e-1	8.68e-1	9.08e-1
27	1.39e-1									
30	1.33e-1	1.45e-l	1.83e-1	2.69e-1	3.78e-1	4.56e-1	5.54e-1	7.82e-1	8.73e-1	9.17e-1
40	1.20e-l	1.30e-1	1.65e-l	2.40e-1	3.37e-1	4.10e-1	5.06e-1	7.62e-1	8.74e-1	9.28e-1
50	1.11e-1	1.20e-1	1.52e-1	2.20e-1	3.08e-1	3.76e-1	4.68e-1	7.37e-1	8.70e-1	9.35e-1
70	9.79e-2	1.06e-l	1.34e-1	1.95e-l	2.70e-1	3.27e-1	4.10e-1	6.86e-l	8.54e-1	9.42e-1
100	8.46e-2	9.22e-2	1.17e-l	1.71e-l	2.36e-1	2.86e-1	3.56e-1	6.18e-1	8.21e-1	9.45e-1
140	7.29e-2	8.00e-2	1.02e-1	1.51e-l	2.09e-1		3.13e-1	5.45e-1	7.71e-l	9.45e-1
200	6.08e-2	6.72e-2	8.70e-2	1.31e-1	1.84e-1	2.25e-1	2.75e-1	4.73e-1	6.98e-1	9.40e-1
300	4.81e-2	5.30e-2	7.03e-2	1.09e-1	1.57e-l		2.37e-1	4.09e-1	6.03e-1	9.22e-1
500	3.29e-2	3.72e-2	5.11e-2	8.30e-2	1.24e-1	1.55e-l	1.94e-1	3.34e-1	4.90e-1	8.65e-l
1000	1.68e-2	1.92e-2	2.83e-2	5.06e-2	8.15e-2	1.07e-1	1.39e-1	2.55e-1	3.71e-1	7.02e-1
2000						6.27e-2				

Average	depth	(mean	range)	in	Ä	of	Н	implanted	in	Be
ne = 18,	na = 10									

$E_0 (eV)$	0°	15°	30 ^u	45°	55 ^u	60 ^u	65 ^u	75°	80°	85°
10	5.11e+0	5.06e+0	4.96e-f-0	4.79e+0	4.65e-f-0		4.49e4-0	4.32e-}-0	4.24e- -0	4.18e- -0
15	6.88e+0	6.81e+0	6.64e+0	6.39e4-0	6.20e-}-0	6.09e+0	5.98e+0	5.74e+0	5.58e- -0	5.58e-f-0
17	7.55e-f-0	7.47e+0	7.27e + 0	6.99e+0	6.77e+0	6.65e+0	6.54e + 0	6.29e4-0	6.17e+0	6.05e+0
20	8.52e-f-0	8.43e- -0	8.20e+0	7.86e+0	7.61e+0	7.47e-}-0	7.34e- -0	7.07e+0	6.93e+0	6.80e+0
22	9.15e- -0	9.05e- -0	8.80e-}-0	8.43e+0	8.15e-f-0		7.86e+0	7.57e-J-0	7.41e+0	7.27e+0
25	1.01e + 1	1.00e+1	9.69e+0	. 9.25e+0	8.95e+0	8.79e- -0	8.63e+0	8.30e+0	8.14e+0	7.98e+0
27	1.07e+1									
30	1.16e4-l	1.15e-H	1.11e+1	1.06e-f-l	1.02e-{-1	1.01e+1	9.86e+0	9.49e+0	9.30e4-0	9.13e+0
40	1.45e + 1	1.44e-J-l	1.39e+1	1.32e4-1	1.27e-}-l	1.25e+1	1.22e+1	1.18e4-1	1.16e- -l	1.13e+1
50	1.74e+1	1.71e+l	1.65e + 1	1.57e-}-l	1.51e+l	1.47e+l	1.45e- -1	1.39e + 1	1.37e+1	1.34e+1
70	2.28e- -1	2.25e+1	2.17e + 1	2.05e-f-l	1.95e+l	1.91e+1	1.87e + 1	1.80e + 1	1.77e + 1	1.74e+l
100	3.07e-{-1	3.03e- -1	2.91e + 1	2.73e+1	2.60e + 1	2.54e+1	2.48e- -1	2.38e + 1	2.34e- -1	2.31e4-1
140	4.09e+1	4.03e+1	3.85e+1	3.60e4-1	3.42e + 1		3.24e-J-1	3.10e+1	3.05e+1	3.00e+1
200	5.58e + 1	5.48e+1	5.23e+1	4.86e+1	4.58e-}-1	4.44e+1	4.33e + 1	4.11e + 1	4.05e-}-1	4.06e+1
300	8.00e- -1	7.84e+1	7.44e + 1	6.86e+l	6.41e + 1		6.03e- -1	5.67e+1	5.57e-pl	5.54e- -1
500	1.26e-f-2	1.23e+2	1.17e+2	1.06e+2	9.82e + 1	9.45e+1	9.10e + 1	8.50e- -1	8.28e4-1	8.25e+1
1000	2.37e-f-2	2.31e+2	2.15e + 1	1.91e+1	1.74e-}-2	1.65e+2	1.57e+2	1.43e+2	1.38e+2	1.36e+2
2000						2.80e-}-2				· ·

$\mathrm{D}\to\mathrm{Be}$

Sputtering yield of Be by D zl= 1. ml = 2.01. z2= 4. m2= 9.01. sbe = 3.38 eV. rho = 1.80 g/cm**3 ef=0.98 eV. esb = 1.00 eV. ea=1.00, kk0=kk0r=2. kdeel = kdee2 = 3, ipot=ipotr=1 (KrC) program : trvmcne=21. na=12

Eq(eV)	0°	15°		45 ^u	55°	60 ^u	65°	70°	75 ^u	80°	85°	87°
10	4.13e-6	4.30e-6	4.56e-6									
11	2.61e-5	3.05e-5	3.15e-5	2.69e-5	1.86e-5		1.00e-5		3.67e-6	8.00e-7	5.00e-7	
12	9.29e-5	1.07e-4	1.25e-4	1.14e-4	8.71e-5	6.81e-5	5.37e-5		2.31e-5	1.39e-5	9.62e-6	
13	2.32e-4	2.67e-4	3.47e-4	3.16e-4	2.61e-4	2.10e-4	1.62e-4		7.67e-5	4.78e-5	3.18e-5	
14	4.65e-4	5.50e-4	6.90e-4	6.91e-4	5.92e-4		3.92e-4		1.91e-4	1.20e-4	7.85e-5	
15	8.10e-4	9.42e-4	1.21e-3	1.29e-3	1.12e-3	9.82e-4	7.97e-4		4.11e-4	2.57e-4	1.65e-4	
17	1.73e-3	2.02e-3	2.60e-3	3.03e-3	2.92e-3		2.29e-3		1.25e-3	7.67e-4	4.62e4	
20	3.64e-3	4.19e-3	5.46e-3	7.03e-3	7.46e-3	7.12e-3	6.59e-3		3.76e-3	2.14e-3	1.16e-3	14 C 1 C 1
25	7.30e-3	8.25e-3	1.11e-2	1.57e-2	1.87e-2	1.94e-2	1.85e-2		1.08e-2	5.51e-3	2.51e-3	
30	1.08e-2	1.22e-2	1.69e-2	2.54e-2	3.25e-2	3.58e-2	3.46e-2		2.07e-2	1.02e-2	3.82e-3	
40	1.68e-2	1.90e-2	2.64e-2	4.34e-2	6.08e-2		7. 17e-2		4.54e-2	2.12e-2	5.91e-3	
50	2.09e-2	2.40e-2	3.45e-2	5.78e-2	8.53e-2	9.88e-2	1.07e-l		7.40e-2	3.23e-2	7.37e-3	
70	2.63e-2	3.04e-2	4.43e-2	7.94e-2	1.19e-l		1.60e-l		1.28e-1	5.90e-2	9.51e-3	
100	3.10e-2	3.59e-2	5.42e-2	9.78e-2	1.49e-1	1.80e-1	2.13e-1		2.00e-1	1.01e-1	1.27e-2	
140	3.32e-2	3.94e-2	6.11e-2	1.08e-1	1.68e-1		2.48e-1		2.71e-1	1.60e-l	1.82e-2	
200	3.51e-2	4.03e-2	6.32e-2	1.14e-1	1.77e-l	2.20e-1	2.68e-1		3.42e-1	2.43e-1	2.93e-2	
300	3.44e-2	4.20e-2	6.34e-2	1.12e-1	1.75e-l	2.12e-1	2.72e-1		3.91e-1	3.42e-1	5.71e-2	
500	3.24e-2	3.85e-2	5.82e-2	1.04e-1	1.50e-1	1.98e-1	2.57e-1		4.08e-1	4.39e-1	1.38e-1	
1000	2.53e-2	2.96e-2	4.37e-2	7.80e-2	1.25e-1	1.54e-1	2.06e-1		3.65e-1	4.59e-1	3.34e-1	
2000	1.76e-2											
3000	1.25e-2		2.02e-2	3.43e-2		7.29e-2		1.29e-1		2.89e-1	4.59e-1	3.18e-1

Sputtered energy of Be by D ne=19. na=10

$E_0 (eV)$	0°	15°	30°	45°	55°	60°	65°	75°	80°	85°
10	1.72e-7									
11	1.21e-6	1.56e-6	1.98e-6	1.99e-6	1.51e-6		9.34e-7	4.11e-7	1.24e-7	2.70e-8
12	4.88e-6	6.11e-6	8.54e-6	8.82e-6	7.18e-6	5.83e-6	5.05e-6	2.39e-6	1.49e-6	1.10e-6
13	1.30e-5	1.66e-5	2.54e-5	2.61e-5	2.35e-5	1.94e-5	1.55e-5	8.02e-6	5.16e-6	3.52e-6
14	2.79e-5	3.57e-5	5.17e-5	5.93e-5	5.50e-5		3.98e-5	2.08e-5	1.33e-5	8.92e-6
15	5.04e-5	6.24e-5	9.50e-5	1.14e-4	1.09e-4	9.93e-5	8.38e-5	4.72e-5	2.99e-5	1.98e-5
17	1.13e-4	1.43e-4	2.13e-4	2.87e-4	3.05e-4		2.57e-4	1.49e-4	9.47e-5	5.87e-5
20	2.51e-4	3.10e-4	4.62e-4	6.96e-4	8.14e-4	8.32e-4	7.90e-4	4.86e-4	2.91e-4	1.63e-4
25	5.28e-4	6.36e-4	9.66e-4	1.56e-3	2.09e-3	2.26e-3	2.32e-3	1.53e-3	8.29e-4	3.96e-4
30	7.87e-4	9.35e-4	1.44e-3	2.49e-3	3.56e-3	4.15e-3	4.36e-3	3.04e-3	1.59e-3	6.39e-4
40	1.20e-3	1.42e-3	2.12e-3	3.97e-3	6.30e-3		8.66e-3	6.66e-3	3.39e-3	1.01e-3
50	1.43e-3	1.68e-3	2.60e-3	4.94e-3	8.18e-3	1.02e-2	1.21e-2	1.04e-2	5.02e-3	1.26e-3
70	1.60e-3	1.88e-3	2.95e-3	5.87e-3	1.00e-2		1.59e-2	1.58e-2	8.45e-3	1.53e-3
100	1.63e-3	1.95e-3	3.04e-3	6.18e-3	1.07e-2	1.36e-2	1.78e-2	2.07e-2	1.22e-2	1.84e-3
140	1.48e-3	1.82e-3	2.94e-3	5.89e-3	1.02e-2		1.72e-2	2.30e-2	1.58e-2	2.26e-3
200	1.30e-3	1.48e-3	2.57e-3	5.21e-3	8.88e-3	1.21e-2	1.52e-2	2.31e-2	1.92e-2	3.03e-3
300	1.01e-3	1.24e-3	2.07e-3	4.14e-3	7.29e-3		1.22e-2	2.06e-2	2.03e-2	4.56e-3
500	6.64e-4	8.04e-4	1.42e-3	3.03e-3	4.99e-3	6.57e-3	8.91e-3	1.58e-2	1.85e-2	7.33e-3
1000	3.22e-4	3.90e-4	7.24e-4	1.47e-3	2.71e-3	3.50e-3	4.93e-3	9.33e-3	1.25e-2	1.04e-2

2

Particle reflection coefficient of D backscattered from Be zl = 1. ml = 2.01. z2 = 4. m2 = 9.01. sbc=3.38 eV. rho = 1.80 g/cm**3 ef=0.98 eV. esb = 1.00 eV. ca=1.00, kk0=kk0r=2. kdeel = kdee2=3. ipot=ipotr = 1 (KrC) program : trvmc ne=19. na=10

E _e (eV)	0.0	15 ^u	30°	45 ^u	55 ^u	60 ^u	65°	75 ^u	80 ^u	850
10	2.05 - 1	15	50	+5	55	00	05	15	00	05
10	5.05e-1	2.22.1	4 00 1		674.1		0.10.1	0.01.1	0.52 1	0 (0 1
11	2.97e-1	3.23e-1	4.00e-1	5.45e-1	6./4e-1		8.12e-1	9.21e-1	9.52e-1	9.686-1
12	2.89e-1	3.14e-1	3.90e-1	5.34e-1	6.66e-l	7.37e-1	8.08e-1	9.23e-1	9.55e-1	9.72e-1
13	2.82e-1	3.06e-1	3.81e-1	5.23e-1	6.57e-1	7.30e-1	8.04e-1	9.24e-1	9.58e-1	9.74e-1
14	2.76e-1	2.99e-1	3.72e-1	5.13e-1	6.48e-1		7.99e-1	9.24e-1	9.60e-1	9.77e-1
15	2.70e-1	2.92e-1	3.63e-1	5.03e-1	6.39e-1	7.15e-1	7.94e-1	9.24e-1	9.61e-1	9.78e-1
17	2.58e-1	2.80e-1	3.48e-1	4.84e-1	6.21e-1		7.83e-1	9.23e-1	9.63e-1	9.81e-1
20	2.45e-1	2.66e-1	3.29e-1	4.60e-1	5.95e-1	6.76e-1	7.64e-1	9.20e-1	9.65e-l	9.84e-1
2.5	2.27e-1	2.46e-1	3.05e-1	4.26e-1	5.58e-1	6.41e-1	7.34e-1	9.12e-1	9.66e-1	9.87e-1
30	2.14e-1	2.32e-1	2.88e-1	4.01e-1	5.27e-1	6.11e-1	7.06e-1	9.02e-1	9.64e-1	9.89e-1
40	2.95e-1	2.10e-1	2.61e-1	3.64e-1	4.81e-1		6.56e-1	8.80e-1	9.60e-1	9.91e-1
50	1.81e-1	1.96e-l	2.44e-1	3.41e-1	4.49e-1	5.22e-1	6.17e-l	8.56e-l	9.53e-1	9.92e-1
70	1.63e-1	1.76e-1	2.19e-1	3.07e-1	4.05e-1		5.58e-1	8.09e-1	9.38e-1	9.93e-1
100	1.43e-1	1.58e-1	2.00e-1	2.77e-1	3.65e-1	4.24e-1	5.03e-1	7.48e-1	9.10e-1	9.93e-1
140	1.29e-1	1.41e-1	1.85e-1	2.53e-1	3.35e-1		4.61e-1	6.85e-1	8.68e-1	9.91e-1
200	1.12e-1	1.22e-1	1.59e-1	2.30e-1	3.09e-1	3.58e-1	4.24e-1	6.22e-1	8.10e-1	9.86e-1
300	9.35e-2	1.04e-1	1.37e-1	2.05e-1	2.81e-1		3.90e-1	5.64e-1	7.35e-1	9.72e-1
500	7.20e-2	8.05e-2	1.10e-1	1.72e-1	2.46e-1	2.87e-1	3.47e-1	5.09e-1	6.49e-1	9.32e-1
1000	4.38e-2	5.04e-2	7.37e-2	1.27e-1	1.92e-1	2.39e-1	2.94e-1	4.45e-1	5.66e-1	8.23e-1
		•	•	•	•		•			

Energy reflection coefficient of D backscattered from Be ne=19, na=10

E ₀ (eV)	0°	15 ^u	30 ^u	45°	55 ^u	60°	65°	75°	80 ^u	85°
10	9.79e-2									
11	9.60e-2	l.lle-1	1.62e-1	2.73e-1	3.92e-1		5.42e-1	6.93e-1	7.47e-1	7.79e-l
12	9.40e-2	1.09e-l	1.58e-l	2.69e-1	3.89e-1	4.63e-1	5.45e-1	7.04e-1	7.61e-1	7.95e-l
13	9.19e-2	1.06e-l	1.54e-l	2.63e-1	3.86e-1	4.61e-1	5.46e-l	7.13e-1	7.73e-1	8.08e-1
14	9.00e-2	1.04e-1	1.50e-l	2.58e-1	3.81e-1		5.46e-1	7.20e-1	7.84e-1	8.20e-1
15	8.80e-2	1.01e-1	1.47e-1	2.53e-1	3.76e-1	4.55e-1	5.45e-1	7.26e-1	7.92e-1	8.30e-1
17	8.43e-2	9.67e-2	1.40e-1	2.42e-1	3.65e-1		5.40e-1	7.34e-1	8.07e-1	8.47e-1
20	7.96e-2	9.11e-2	1.31e-1	2.27e-1	3.48e-1	4.30e-1	5.29e-1	7.41e-1	8.22e-1	8.66e-l
25	7.33e-2	8.34e-2	1.19e-1	2.06e-1	3.21e-1	4.04e-1	5.07e-1	7.44e-1	8.38e-1	8.88e-1
30	6.84e-2	7.79e-2	1.11e-1	1.90e-1	2.97e-1	3.79e-1	4.83e-1	7.40e-1	8.46e-l	9.03e-1
40	6.14e-2	6.94e-2	9.80e-2	1.67e-l	2.62e-1		4.39e-1	7.22e-1	8.52e-1	9.20e-1
50	5.66e-2	6.39e-2	8.97e-2	1.52e-1	2.38e-1	3.04e-1	4.02e-1	6.98e-1	8.51e-1	9.30e-1
70	5.01e-2	5.65e-2	7.90e-2	· 1.33e-1	2.06e-1		3.48e-1	6.47e-1	8.37e-1	9.41e-1
100	4.35e-2	4.94e-2	7.06e-2	1.16e-l	1.78e-1	2.27e-1	2.98e-1	5.78e-1	8.04e-1	9.47e-1
140	3.86e-2	4.35e-2	6.14e-2	1.04e-1	1.58e-1		2.62e-1	5.07e-1	7.52e-1	9.48e-1
200	3.27e-2	3.73e-2	5.42e-2	9.20e-1	1.41e-1	1.77e-l	2.31e-1	436e-1	6.78e-1	9.43e-1
300	2.66e-2	3.06e-2	4.47e-2	7.88e-1	1.24e-1		2.04e-1	3.73e-1	5.84e-1	9.24e-1
500	1.96e-2	2.28e-2	3.43e-2	6.32e-1	1.02e-1	1.31e-1	1.71e-l	3.15e-1	4.76e-1	8.67e-1
1000	1.10e-2	1.30e-2	2.10e-2	4.24e-2	7.19e-2	9.78e-2	1.31e-1	2.49e-1	3.716-1	7.08e-1

Average depth (mean range) in \ddot{A} of D implanted in Be $ne{=}19._~na{=}10$

$E_0(eV)$	0°	15°	30°	45°	55°	60°	65°	75°	80°	85°
10	4.20e+0									
11	4.53e- -0	4.47e+0	4.31e+0	4.06e + 0	3.87e+0		3.63e4-0	3.37e- -0	3.24e-j-0	3.12e-}-0
12	4.85e-}-0	4.78e+0	4.61e+0	4.35e + 0	4.14e-f-0	4.01e+0	3.89e+0	3.62e+0	3.48e + 0	3.38e+0
13	5.16e- -0	5.08e+0	4.90e-[-0	4.62e+0	4.40e + 0	4.26e+0	4.14e+0	3.86e+0	3.72e+0	3.60e+0
14	5.47e+0	5.39e4-0	5.19e+0	4.88e-f-0	4.66e-f-0		4.39e+0	4.09e-f-0	3.95e-t-0	3.82e-}-0
15	5.77e+0	5.68e4-0	5.47e- -0	5.15e+0	4.90e+0	4.75e4-0	4.62e-f-0	4.32e-f-0	4.17e+0	4.04e+0
17	6.36e+0	6.26e- -0	6.02e- -0	5.66e-j-0	5.39e+0		5.08e- -0	4.76e-}-0	4.59e+0	4.44e-}-0
20	7.21e+0	7.10e- -0	6.82e-]-0	6.39e-}-0	6.08e- -0	5.91e+0	5.74e- -0	5.39e+0	5.21e+0	5.02e- -0
25	8.61e+0	8.48e+0	8.11e-}-0	7.59e- -0	7.20e- -0	6.99e+0	6.79e- -0	6.37e+0	6.17e+0	5.96e- -0
30	9.95e + 0	9.79e+0	9.36e+0	8.74e+0	8.29e- -0	8.11e+0	7.81e+0	7.36e4-0	7.09e+0	6.84e+0
40	1.26e-{-1	1.24e+1	1.18e+1	1.10e+1	1.04e4-1		9.78e+0	9.19e-f-0	8.86e + 0	8.59e-f-0
50	1.52e- -1	1.49e- -1	1.42e-H	1.31e + 1	1.24e4-1	1.20e4-1	1.17e + 1	1.10e + 1	1.06e- -1	1.02e+1
70	2.02e+1	1.98e+1	1.89e-H	1.74e-f-l	1.63e-}-l		1.54e-J-1	1.45e+1	1.41e-j-l	1.34e+1
100	2.76e+1	2.71e-f-l	2.57e-f-l	2.37e+1	2.21e-f-l	2.15e+1	2.07e + 1	1.94e + 1	1.88e+1	1.85e+1
140	3.75e + 1	3.69e+1	3.47e+1	3.18e-f-l	2.97e+1		2.77e-}-l	2.60e-f-l	2.52e+1	2.42e-f-l
200	5.22e + 1	5.12e-f-l	4.82e + 1	4.41e + 1	4.08e- -1	3.91e-}-l	3.79e- -1	3.52e+1	3.43e4-1	3.33e+1
300	7.68e4-1	7.51e+1	7.07e + 1	6.40e4-1	5.88e+1		5.44e- -1	5.03e + 1	4.90e- -1	4.85e+1
500	1.26e+2	1.24e- -2	1.15e+2	1.03e+2	9.47e-H	9.06e+1	8.66e + 1	7.94e + 1	7.69e + 1	7.60e+1
1000	2.51e+2	2.45e4-2	2.26e+2	1.99e + 2	1.81e + 2	1.69e + 2	1.61e+2	1.45e+2	1.39e-}-2	1.37e+2
	•		•	•	•	•	•		•	

$D \to\! Be$

D on Be. Maxwellian velocity distribution, sheath potential 3 kT zl= 1. ml = 2.01. z2= 4. m2= 9.01. sbe = 3.38 eV. rho = 1.80 g/cm**3 ef=0.98 eV. esb = 1.00 eV. ca=1.00. kk0=kk0r=2. kdeel = kdee2=3. ipot=ipotr=1 (KrC) program : testvmcx ne=12

kT(eV)	Y	y _e	Esp	R _N	Rgj	Eb	range
2	2.64e-4	4.14e-5	1.57e+0	3.82e-1	1.52e-1	3.98e + 0	3.98e+0
2.5	1.00e-3	1.40e-4	1.75e + 0	3.61e-1	1.44e-l	4.98e4-0	4.75e+0
3	2.19e-3	2.74e-4	1.87e+0	3.42e-1	1.35e-l	5.94e-f-0	5.48e+0
4	6.45e-3	7.50e-4	2.32e + 0	3.11e-1	1.21e-l	7.80e4-0	6.87e+0
5	1.15e-2	1.22e-3	2.64e+0	2.87e-1	1.10e-1	9.60e-}-0	8.17e4-0
7	2.10e-2	1.92e-3	3.21e+0	2.57e-1	9.63e-2	1.31e4-1	1.07e+1
10	3.19e-2	2.47e-3	3.86e+0	2.32e-1	8.55e-2	1.84e + 1	1.43e+1
20	4.78e-2	2.80e-3	5.86e+0	1.85e-l	6.44e-2	3.49e + 1	2.60e + 1
50	5.65e-2	1.96e-3	8.69e + 0	1.35e-1	4.48e-2	8.29e+1	6.05e + 1
100	5.14e-2	1.22e-3	1.19e + 1	1.01e-1	3.11e-2	1.55e+2	1.18e+2
200	3.96e-2	6.26e-4	1.58e + 1	6.67e-2	1.90e-2	2.85e+2	2.31e+2
500	2.35e-2	1.87e-4	1.98e4-1	3.00e-2	6.91e-3	5.75e+2	5.48e4-2
1000	1.45e-2	7.95e-5	2.74e + 1	1.29e-2	2.69e-3	1.04e+3	1.03e+3
2000	8.34e-3	3.34e-5	4.00e + 1	4.38e-3	8.29e-4	1.89e4-3'	1.82e+3

$D \rightarrow Be$

D on Be. Maxwellian, energy distribution, sheath potential 0 kT, $a=0^{\circ}$ zl = 1. ml = 2.01. z2 = 4, m2= 9.01. sbe=3.38 eV. rho = 1.80 g/cm**3 ef=0.98 eV. esb = 1.00 eV. ca=1.00. kk0 = kk0r=2. kdeel = kdee2 = 3, ipot=ipotr=1 (KrC) program : testvmcx

n	e	=	1	1	

kT(eV)	Y	YE	Esp	R _N	R _s	Rb	range
5	4.73e-4	1.10e-4	1.74e-J-0	2.29e-1	8.30e-2	2.72e + 0	2.86e + 0
7	1.36e-3	2.67e-4	2.06e+0	2.43e-1	8.13e-2	3.52e+0	3.93e + 0
10	3.08e-3	5.18e-4	2.52e4-0	2.45e-1	7.61e-2	4.66e+0	5.42e4-0
20	9.32e-3	1.08e-3	3.45e4-0	2.27e-1	6.28e-2	8.26e+0	9.86e + 0
30	1.41e-2	1.29e-3	4.12e+0	2.07e-1	5.45e-2	1.19e + 1	1.40e + 1
40	1.81e-2	1.33e-3	4.41e+0	1.91e-1	4.85e-2	1.52e+1	1.80e + 1
50	2.05e-2	1.34e-3	4.91e + 0	1.81e-l	4.43e-2	1.84e+1	2.20e+1
100	2.73e-2	1.22e-3	6.69e+0	1.47e-l	3.31e-2	3.38e-H	4.12e+1
200	3.12e-2	8.30e-4	8.03e + 0	1.15e-l	2.30e-2	6.04e+1	8.02e+1
500	2.75e-2	3.96e-4	1.08e + 1	7.25e-2	1.21e-2	1.26e+2	1.94e+2
1000	2.37e-2	1.92e-4	1.22e4-1	4.82e-2	6.35e-3	1.98e+2	3.75e4-2

D on	Be,	Maxw ^r ellian	energy	distribution,	sheath	potential	0 kT,	$a = 60^{\circ}$
ne=10)							

kT(eV)	Y	Y _s	Rsp	R?7	R-b	Rfe	range
5	1.22e-3	5.06e-4	3.12e-J-0	5.78e-1	4.08e-1	5.29e+0	1.71e+0
7	4.08e-3	1.41e-3	3.62e+0	6.17e-1	4.11e-1	6.99e-{-0	2.67e4-0
10	1.08e-2	2.94e-3	4.07e+0	6.31e-1	3.93e-1	9.32e+0	4.12e + 0
20	4.07e-2	7.48e-3	5.50e + 0	6.11e-1	3.34e-1	1.63e4-1	8.45e4-0
30	6.91e-2	1.00e-2	6.54e + 0	5.66e-l	2.86e-1	2.28e + 1	1.22e+1
50	1.13e-1	1.16e-2	7.74e+0	5.14e-1	2.39e-1	3.49e + 1	1.86e4-1
100	1.61e-l	1.03e-2	9.62e4-0	4.36e-1	1.84e-1	6.35e-f-l	3.33e+1
200	1.89e-1	7.79e-3	1.23e + 1	3.69e-1	1.47e-l	1.19e-f-2	5.98e4-1
500	1.77e-l	3.94e-3	1.68e+l	2.94e-1	9.81e-2	2.52e + 2	1.35e4-2
1000	1.45e-l	2.23e-3	2.32e4-1	2.36e-1	6.47e-2	4.14e+2	2.46e4-2

D on Be, Maxwellian energy distribution, sheath potential 3 kT, $a=0^{\circ}$ zl= 1, ml= 2.01. z2= 4, m2 = 9.01, sbe=3.38 eV, rho=1.80 g/cm**3 ef=0.98 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program : testvmcx ne=10

kT(eV)	Y	Уf	®sp	Rat	Rb	Еь	range
5	5.49e-3	4.59e-4	1.88e+0	2.39e-1	7.59e-2	7.14e+0	7.92e4-0
7	1.14e-2	9.23e-4	2.54e+0	2.14e-1	6.67e-2	9.82e+0	1.04e+1
10	1.85e-2	1.37e-3	3.34e + 0	1.89e-l	5.86e-2	1.39e+1	1.39e-H
20	2.96e-2	1.60e-3	4.85e + 0	1.52e-1	4.52e-2	2.67e+1	2.53e+1
30	3.21e-2	1.47e-3	6.19e-{-0	1.32e-1	3.87e-2	3.95e4-1	3.64e + 1
50	3.53e-2	1.18e-3	7.49e+0	1.09e-l	3.09e-2	6.38e+1	5.88e + 1
100	3.31e-2	6.96e-4	9.46e+0	7.95e-2	2.13e-2	1.20e+2	1.14e+2
200	2.78e-2	3.69e-4	1.19e- -1	4.87e-2	1.18e-2	2.18e+2	2.26e+2
500	1.70e-2	1.18e-4	1.57e+l	1.96e-2	4.12e-3	4.74e+2	5.52e+2
1000	1.14e-2	4.52e-5	1.79e+l	8.58e-3	1.65e-3	8.66e+2	1.04e+3

D on Be, Maxwellian energy distribution, sheath potential 3 kT, $a{=}60^\circ$ $ne{=}11$

kT(eV)	Y	Yb	Esp	r b	Rb	• Rb	range
5	9.48e-3	1.07e-3	2.53e-f-0	3.11e-1	1.24e-1	9.01e + 0	7.38e- -0
7	1.84e-2	1.86e-3	3.17e+0	2.77e-1	1.08e-1	1.23e-H	9.67e + 0
10	3.10e-2	2.61e-3	3.78e-f-0	2.47e-1	9.39e-2	1.71e + 1	1.29e+1
15	4.26e-2	3.03e-3	4.80e+0	2.19e-1	8.08e-2	2.49e+1	1.82e4-1
20	4.96e-2	3.09e-3	5.59e + 0	2.01e-1	7.34e-2	3.28e-f-l	2.33e + 1
30	6.06e-2	3.01e-3	6.73e + 0	1.78e-1	6.33e-2	4.82e + 1	3.33e-}-l
50	6.00e-2	2.29e-3	8.60e + 0	1.49e-1	5.15e-2	7.79e-}-l	5.34e+1
100	5.74e-2	1.60e-3	1.26e + 1	1.14e-1	3.70e-2	1.47e+2	1.03e + 2
200	4.54e-2	7.30e-4	1.45e+1	7.68e-2	2.23e-2	2.62e+2	2.02e4-2
500	2.74e-2	2.44e-4	2.01e+1	3.79e-2	9.15e-3	5.44e+2	4.86e- -2
1000	1.66e-2	1.08e-4	2.92e + 1	1.61e-2	3.47e-3	9.71e+2	9.08e + 2

T -> Be

Sputtering yield of Be by T zl = 1, ml= 3.02, z2= 4, m2= 9.01, sbe=3.38 eV, rho = 1.80 g/cm**3 ef=0.98 eV, esb = 1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr = 1 (KrC) program : trvmc ne=15, na=10

E ₀ (eV)	0°	15 ^u	30 ^u	45°	55 ^u	60°	65°	75°	80°	85°
10	1.78e-5	2.56e-5	3.89e-5	4.74e-5	4.98e-5	4.92e-5	4.55e-5	3.43e-5	2.76e-5	2.12e-5
11	7.08e-5	1.00e-4	1.49e-4	1.81e-4	1.96e-4		1.82e-4	1.32e-4	1.05e-4	7.89e-5
12	1.77e-4	2.44e-4	3.77e-4	4.92e-4	5.30e-4	5.47e-4	5.05e-4	3.65e-4	2.66e-4	2.00e-4
13	3.49e-4	4.72e-4	7.42e-4	1.02e-3	1.15e-3		1.09e-3	7.68e-4	5.68e-4	4.10e-4
15	9.03e-4	1.20e-3	1.98e-3	2.92e-3	3.46e-3	3.58e-3	3.43e-3	2.37e-3	1.61e-3	1.07e-3
17	1.74e-3	2.28e-3	3.71e-3	6.05e-3	7.30e-3		7.59e-3	4.98e-3	3.16e-3	1.95e-3
20	3.43e-3	4.39e-3	7.28e-3	1.24e-2	1.60e-2	1.72e-2	1.70e-2	1.06e-2	6.07e-3	3.28e-3
25	6.83e-3	8.60e-3	1.42e-2	2.54e-2	3.52e-2	3.84e-2	3.87e-2	2.31e-2	1.19e-2	5.34e-3
30	1.03e-2	1.29e-2	2.12e-2	3.96e-2	5.62e-2		6.36e-2	3.85e-2	1.88e-2	7.22e-3
50	2.11e-2	2.56e-2	4.26e-2	8.41e-2	1.28e-1		1.61e-1	1.10e-1	4.78e-2	1.09e-2
100	3.27e-2	4.02e-2	6.88e-2	1.33e-1	2.10e-1		2.98e-1	2.73e-1	1.36e-1	1.72e-2
200	4.00e-2	4.94e-2	8.17e-2	1.55e-1	2.44e-1	3.25e-1	3.73e-1	4.63e-1	3.24e-1	3.82e-2
300	4.14e-2	5.06e-2	8.22e-2	1.55e-1	2.38e-1		3.78e-1	5.30e-1	4.67e-1	7.57e-2
500	4.05e-2	4.85e-2	7.70e-2	1.41e-1	2.22e-1	2.66e-1	3.56e-1	5.61e-1	5.99e-1	1.83e-1
1000	3.38e-2	3.94e-2	6.09e-2	1.12e-1	1.73e-1	2.13e-1	2.88e-1	5.01e-1	6.42e-1	4.52e-1

Sputtered energy of Be by T ne=15, na=10

. .

E ₀ (eV)	0°	15°	30°	45 ^u	55 ^u	60°	65°	75°	80 ^u	85 ^u
10	1.09e-6	1.86e-6	3.57e-6	5.18e-6	5.82e-6	6.06e-6	5.83e-6	4.72e-6	3.89e-6	3.07e-6
11	4.65e-6	7.58e-6	1.40e-5	2.04e-5	2.40e-5		2.44e-5	1.90e-5	1.52e-5	1.17e-5
12	1.22e-5	1.92e-5	3.63e-5	5.67e-5	6.75e-5	7.26e-5	7.05e-5	5.40e-5	4.03e-5	3.08e-5
13	2.51e-5	3.82e-5	7.37e-5	1.19e-4	1.53e-4		1.58e-4	1.17e-4	8.86e-5	6.52e-5
15	6.76e-5	1.Ole-4	2.02e-4	3.59e-4	4.73e-4	5.17e-4	5.21e-4 -	3.86e-4	2.74e-4	1.82e-4
17	1.33e-4	1.93e-4	3.85e-4	7.52e-4	1.03e-3		1.19e-3	8.54e-4	5.66e-4	3.58e-4
20	2.64e-4	3.73e-4	7.46e-4	1.56e-3	2.29e-3	2.62e-3	2.75e-3	1.93e-3	1.16e-3	6.54e-4
25	5.19e-4	7.19e-4	1.40e-3	3.09e-3	4.93e-3	5.86e-3	6.30e-3	4.40e-3	2.45e-3	1.14e-3
30	7.78e-4	1.04e-3	2.03e-3	4.60e-3	7.58e-3		1.02e-2	7.44e-3	3.92e-3	1.58e-3
50	1.42e-3	1.84e-3	3.38e-3	8.04e-3	1.45e-2		2.20e-2	1.89e-2	9.22e-3	2.30e-3
100	1.69e-3	2.13e-3	4.07e-3	9.35e-3	1.69e-2		2.86e-2	3.29e-2	1.94e-2	2.88e-3
200	1.42e-3	1.83e-3	3.48e-3	7.97e-3	1.39e-2		2.42e-2	3.61e-2	2.93e-2	4.46e-3
300	1.16e-3	1.50e-3	2.84e-3	6.41e-3	1.10e-2		1.95e-2	3.19e-2	3.19e-2	6.81e-3
500	8.22e-4	1.04e-3	2.02e-3	4.49e-3	7.99e-3		1.41e-2	2.48e-2	2.93e-2	1.11e-2
1000	4.28e-4	5.57e-4	1.08e-3	2.42e-3	4.34e-3		8.14e-3	1.53e-2	2.05e-2	1.59e-2

$T \ -> \ Be$

Particle reflection coefficient of T backscattered from Be zl = 1. ml = 3.02. z2 = 4. m2 = 9.01) sbe=3.38 eV. rho = 1.80 g/cm**3 ef=0.98 eV. esb = 1.00 eV. ca=1.00 s kk0=kk0r=2. kdeel = kdee2=3, ipot=ipotr=1 (KrC) program : trunc zc = 10 c

ne = 15.	na = 10
----------	---------

$B_0(eV)$	0°	15 ^u	30 ^u	45 ^u	55°	60°	65 ^u	75 ^u	80°	85 ^u
10	2.06e-1	2.33e-1	3.15e-1	4.70e-1	6.12e-1	6.89e-1	7.66e-l	8.90e-1	9.28e-1	9.48e-1
11	2.04e-1	2.30e-1	3.10e-1	4.65e-1	6.09e-1		7.67e-1	8.97e-1	9.36e-1	9.56e-1
12	2.01e-1	2.26e-1	3.04e-1	4.58e-1	6.04e-1	6.85e-1	7.67e-1	9.02e-1	9.42e-1	9.62e-1
13	1.98e-1	2.22e-1	2.98e-1	4.51e-1	5.98e-1		7.65e-1	9.05e-1	9.46e-1	9.66e-l
15	1.90e-1	2.12e-1	2.85e-1	4.34e-1	5.83e-1	6.68e-1	7.58e-1	9.08e-1	9.52e-1	9.73e-1
17	1.82e-1	2.04e-1	2.73e-1	4.17e-1	5.66e-1		7.47e-1	9.09e-1	9.56e-1	9.77e-1
20	1.72e-l	1.92e-1	2.57e-1	3.94e-1	5.42e-1	6.33e-1	7.31e-1	9.08e-1	9.59e-1	9.81e-1
25	1.59e-1	1.77e-l	2.37e-1	3.63e-1	5.05e-1	5.96e-1	7.01e-1	9.00e-1	9.60e-1	9.86e-1
30	1.49e-l	1.65e-l	2.20e-1	3.38e-1	4.74e-1		6.71e-1	8.90e-1	9.59e-1	9.88e-1
50	1.23e-1	1.37e-l	1.83e-1	2.79e-1	3.93e-1		5.76e-1	8.41e-1	9.49e-1	9.92e-1
100	9.57e-2	1.07e-l	1.44e-1	2.24e-1	3.12e-1		4.59e-1	7.26e-l	9.01e-1	9.92e-1
200	7.27e-2	8.20e-2	1.14e-1	1.83e-1	2.59e-1		3.78e-1	5.91e-l	7.96e-1	9.85e-1
300	6.04e-2	6.85e-2	9.85e-2	1.61e-l	2.35e-1		3.46e-1	5.32e-1	7.16e-l	9.71e-1
500	4.62e-2	5.27e-2	7.92e-2	1.36e-1	2.05e-1		3.09e-1	4.78e-1	6.27e-1	9.29e-1
1000	2.86e-2	3.39e-2	5.47e-2	1.03e-1	1.65e-l		2.63e-1	4.22e-1	5.45e-1	8.14e-1

Energy reflection coefficient of T backscattered from Be $ne{=}15.\ na{=}10$

$B_0(eV)$	0 ^u	15°	30°	45 ^u	55 ^u	60°	65°	75 ^u	80 ^u	85°
10	4.43e-2	5.68e-2	9.98e-2	1.99e-1	3.11e-1	3.80e-1	4.56e-l	6.08e-1	6.64e-l	6.98e-1
11	4.48e-2	5.69e-2	9.91e-2	1.99e-1	3.13e-1		4.65e-1	6.26e-1	6.87e-l	7.23e-1
12	4.49e-2	5.66e-2	9.77e-2	1.97e-1	3.13e-1	3.88e-1	4.71e-1	6.41e-1	7.06e-l	7.44e-1
13	4.47e-2	5.59e-2	9.58e-2	1.94e-1	3.12e-1		4.75e-1	6.54e-1	7.21e-l	7.62e-1
15	4.38e-2	5.41e-2	9.19e-2	1.87e-1	3.06e-1	3.86e-1	4.78e-1	6.72e-1	7.47e-l	7.90e-1
17	4.25e-2	5.22e-2	8.77e-2	1.80e-1	2.98e-1		4.76e-1	6.84e-1	7.65e-l	8.12e-1
20	4.05e-2	4.93e-2	8.21e-2	1.68e-1	2.85e-1	3.68e-1	4.69e-1	6.96e-1	7.86e-1	8.37e-1
25	3.75e-2	4.53e-2	7.45e-2	1.52e-1	2.62e-1	3.44e-1	4.50e-1	7.02e-1	7.07e-1	8.66e-l
30	3.51e-2	4.23e-2	6.86e-2	1.39e-1	2.42e-1		4.29e-1	7.01e-1	8.19e-1	8.85e-1
50	2.87e-2	3.43e-2	5.49e-2	1.08e-1	1.88e-1		3.52e-1	6.63e-1	8.30e-1	9.21e-1
100	2.21e-2	2.62e-2	4.15e-2	8.14e-2	1.37e-l		2.55e-1	5.44e-1	7.84e-1	9.43e-1
200	1.65e-2	1.98e-2	3.24e-2	6.42e-2	1.07e-l		1.93e-1	4.02e-1	6.57e-1	9.41e-1
300	1.37e-2	1.63e-2	2.75e-2	5.53e-2	9.51e-2		1.70e-1	3.42e-1	5.61e-l	9.23e-1
500	1.Ole-2	1.23e-2	2.15e-2	4.52e-2	8.00e-2		1.45e-1	2.89e-1	4.55e-1	8.63e-1
1000	5.95e-3	7.51e-3	1.39e-2	3.18e-2	5.96e-2		1.14e-1	2.35e-1	3.58e-1	7.04e-1

Average depth (mean range) in \tilde{A} of T implanted in Be $ne\!=\!15,\ na\!=\!10$

E ₀ (eV)	0°	15°	30°	45°	55°	60°	65°	75°	80°	85°
10	3.73e-}-0	3.66e-f-0	3.47e+0	3.18e- -0	2.94e-f-0	2.77e+0	2.64e4-0	2.29e-}-0	2.12e + 0	1.99e- -0
11	4.04e- -0	3.96e+0	3.77e+0	3.46e+0	3.21e+0		2.90e- -0	2.54e-}-0	2.36e+0	2.22e-f-0
12	4.34e4-0	4.26e+0	4.05e- -0	3.72e- -0	3.46e4-0	3.29e+0	3.14e- -0	2.77e+0	2.59e- -0	2.44e-f-0
13	4.63e-}-0	4.54e+0	4.32e+0	3.97e-]-0	3.70e+0		3.37e+0	3.00e+0	2.81e+0	2.65e+0
15	5.19e+0	5.10e + 0	4.84e+0	4.46e-j-0	4.16e+0	3.98e+0	3.81e+0	3.42e- -0	3.21e+0	3.04e+0
17	5.74e+0	5.63e+0	5.34e- -0	4.92e-}-0	4.60e+0		4.24e+0	3.82e-}-0	3.59e+0	3.40e+0
20	6.53e-}-0	6.41e-f-0	6.08e-f-0	5.59e-}-0	5.22e- -0	5.01e- -0	4.81e+0	4.38e+0	4.16e + 0	3.93e+0
25	7.82e-}-0	7.66e+0	7.24e+0	6.65e-}-0	6.20e+0	5.98e- -0	5.74e4-0	5.24e+0	4.97e+0	4.73e + 0
30	9.07e + 0	8.88e+0	8.39e-f-0	7.68e+0	7.16e- -0		6.63e-f-0	6.07e-f-0	5.75e+0	5.47e+0
50	1.39e + 1	1.36e+1	1.28e-f-l	1.16e-H	1.08e+1		1.00e-f-l	9.15e-}-0	8.75e+0	8.26e+0
100	2.55e+1	2.50e+1	2.34e + 1	2.11e + 1	1.94e+1		1.78e+1	1.64e- -1	1.57e+1	1.47e-H
200	4.88e-J-l	4.76e+1	4.44e + 1	3.97e + 1	3.63e- -1		3.31e+1	3.03e-}-1	2.93e+1	2.83e-f-l
300	7.25e+1	7.07e-f-l	6.58e- -1	5.86e4-1	5.32e + 1		4.82e4-1	4.40e4-1	4.23e+1	4.09e+1
500	1.22e+2	1.18e-f-2	1.10e+2	9.68e+1	8.74e- -1		7.85e-f-l	7.10e + 1	6.81e+1	6.59e- -1
1000	2.49e4-2	2.42e+2	2.22e+2	1.94e- -2	1.73e+2		1.53e+2	1.36e+2	1.29e+2	1.25e+2

Sputtering yield of Be by ³ He zl = 2, ml = 3.02, z2 = 4, m2 = 9.01. sbe=3.38 eV, rho = 1.80 g/cm**3 ef=0.50 eV, esb = 0.00 eV. ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program : trvmc ne= 7, na = 1

E ₀ (eV)	0 ^u
20	3.29e-3
30	1.61e-2
50	4.07e-2
100	7.04e-2
200	9.38e-2
500	9.87e-2
1000	9.56e-2

Sputtered energy of Be by ³He ne= 7, na= 1

E ₀ (eV)	0°
20	2.49e-4
30	1.19e-3
50	2.72e-3
100	3.71e-3
200	3.40e-3
500	2.07e-3
1000	1.29e-3

Particle reflection coefficient of ³He backscattered from Be 21 = 2. ml = 3.02, z2 = 4, m2 = 9.01, sbe=3.38 eV, rho=1.80 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program : trvmc ne=7, na=1

Eq(eV)	0°
20	2.74e-1
30	2.20e-1
50	1.72e-l
100	1.26e-l
200	9.36e-2
500	6.55e-2
1000	4.21e-2

Energy reflection coefficient of $^3\,\text{He}$ backscattered from Be ne= 7, na= 1

E ₀ (eV)	0°
20	6.57e-2
30	5.25e-2
50	4.00e-2
100	2.82e-2
200	2.02e-2
500	1.40e-2
1000	8.52e-3

Average depth (mean range) in \tilde{A} of $^3\,\text{He}$ implanted $\dot{}$ in Be ne= 7, na= 1

$E_0(eV)$	0°
20	4.25e+0
30	5.76e+0
50	8.52e+0
100	1.49e + 1
200	2.70e4-1
500	6.20e+1
1000	1.21e+2

⁴He Ве

Sputtering yield of Be by ⁴ He zl = 2. ml= 4.00. z2= 4. m2= 9.01. sbe=3.38 eV. rho=1.80 g/cm**3 ef=0.50 eV, esb=0.00 eV. ca=1.00. kk0=kk0r=2. kdeel = kdee2=3. ipot=ipotr=1 (KrC) program : trvmc ne=23, na= 9

Eo(eV)	0°	15°	30 ^u	45°	55°	65°	75°	80°	85°
10	3.34e-6	8.39e-6	1.97e-5	2.03e-5	1.82e-5	1.92e-5	8.86e-6	2.04e-6	
11	1.59e-5	3.46e-5	6.56e-5	7.58e-5	8.52e-5	9.01e-5	3.65e-5	7.69e-6	
12	4.18e-5	7.72e-5	1.42e-4	1.95e-4	2.57e-4	2.88e-4	1.09e-4	2.18e-5	
13	8.92e-5	1.51e-4	2.81e-4	4.58e-4	6.51e-4	6.89e-4	2.39e-4	4.23e-5	1.00e-6
15	3.08e-4	4.80e-4	8.95e-4	1.70e-3	2.48e-3	2.44e-3	7.39e-4	1.27e-4	
17	8.21e-4	1.21e-3	2.32e-3	4.43e-3	6.16e-3	5.82e-3	1.64e-3	2.58e-4	2.33e-6
20	2.27e-3	3.25e-3	6.23e-3	1.20e-2	1.59e-2	1.40e-2	3.68e-3	5.39e-4	4.80e-6
25	6.28e-3	8.90e-3	1.68e-2	3.19e-2	4.16e-2	3.50e-2	8.72e-3	1.28e-3	8.40e-6
30	1.16e-2	1.57e-2	3.02e-2	5.75e-2	7.30e-2	6.24e-2	1.72e-2	2.35e-3	2.00e-5
40	2.35e-2	3.11e-2	5.76e-2	1.10e-1	1.41e-1	1.27e-l	3.68e-2	5.16e-3	3.31e-5
50	3.42e-2	4.47e-2	8.12e-2	1.56e-1	2.05e-1	1.94e-l	6.22e-2	9.25e-3	5.43e-5
70	5.03e-2	6.53e-2	1.17e-l	2.24e-1	3.04e-1	3.16e-1	1.25e-l	2.12e-2	1.05e-4
100	6.76e-2	8.77e-2	1.54e-1	2.90e-1	4.05e-1	4.66e-1	2.35e-1	4.84e-2	2.49e-4
140	8.31e-2	1.04e-1	1.82e-1	3.39e-1	4.85e-1	5.98e-1	3.88e-1	1.04e-1	5.83e-4
200	9.60e-2	1.20e-l	2.01e-1	3.71e-1	5.48e-1	7.23e-1	5.99e-1	2.11e-1	1.69e-3
300	1.06e-l	1.30e-1	2.14e-1	3.89e-1	5.83e-1	8.21e-1	8.40e-1	4.34e-1	6.74e-3
400	1.09e-1	1.34e-1	2.13e-1	3.93e-1	5.90e-1	8.56e-l	9.94e-1	6.39e-1	1.68e-2
500	1.10e-1	1.36e-1	2.12e-1	3.88e-1	5.86e-l	8.64e-1	1.09e-0	8.12e-1	3.60e-2
700	1.09e-1	1.30e-1	2.06e-1	3.66e-1	5.61e-l	8.49e-1	1.18e-0	1.06e-0	1.06e-l
1000	1.04e-1	1.25e-l	1.89e-1	3.37e-1	5.21e-1	8.18e-1	1.21e-0	1.24e-0	2.77e-1
2000	8.70e-2	1.00e-1	1.48e-1	2.62e-1	4.03e-1	6.67e-1	1.10e-0	1.36e-0	9.00e-1
5000	5.93e-2	6.60e-2	9.39e-2	1.58e-1	2.38e-1	4.08e-1	7.66e-l	1.09e-0	1.37e-0
10000	4.08e-2	4.52e-2	6.05e-2	9.41e-2	1.42e-1	2.38e-1	4.87e-1	7.53e-1	1.23e-0

Sputtered energy of Be by 4 He ne=23, na= 9

$B_0(eV)$	0°	15°	30°	45°	55°'	65°	75°	80°	85°
10	1.61e-7	4.95e-7	1.63e-6	2.12e-6	2.20e-6	2.72e-6	1.40e-6	3.30e-7	
11	8.90e-7	2.37e-6	5.87e-6	8.26e-6	1.09e-5	1.29e-5	5.78e-6	1.24e-6	
12	2.60e-6	5.76e-6	1.35e-5	2.27e-5	3.45e-5	4.23e-5	1.80e-5	3.81e-6	
13	5.89e-6	1.19e-5	2.78e-5	5.59e-5	9.05e-5	1.07e-4	4.26e-5	7.71e-6	1.57e-7
15	2.21e-5	4.04e-5	9.59e-5	2.24e-4	3.67e-4	4.05e-4	1.38e-4	2.48e-5	
17	6.21e-5	1.06e-4	2.57e-4	6.06e-4	9.63e-4	1.03e-3	3.28e-4	5.44e-5	4.45e-7
20	1.75e-4	2.92e-4	7.08e-4	1.69e-3	2.60e-3	2.62e-3	7.86e-4	1.21e-4	1.09e-6
25	4.72e-4	7.73e-4	1.87e-3	.4.49e-3	6.94e-3	6.81e-3	1.98e-3	3.04e-4	1.70e-6
30	8.45e-4	1.31e-3	3.21e-3	7.87e-3	1.19e-2	1.22e-2	3.75e-3	5.73e-4	
40	1.60e-3	2.38e-3	5.46e-3	1.36e-2	2.14e-2	2.36e-2	8.37e-3	1.25e-3	6.64e-6
50	2.17e-3	3.11e-3	7.01e-3	1.75e-2	2.83e-2	3.34e-2	1.35e-2	2.12e-3	9.91e-6
70	2.82e-3	3.98e-3	8.65e-3	2.15e-2	3.57e-2	4.66e-2	2.38e-2	4.48e-3	1.91e-5
100	3.22e-3	4.52e-3	9.56e-3	2.30e-2	3.89e-2	5.54e-2	3.69e-2	8.80e-3	3.89e-5
140	3.39e-3	4.55e-3	9.58e-3	2.28e-2	3.84e-2	5.70e-2	4.90e-2	1.58e-2	8.24e-5
200	3.19e-3	4.41e-3	8.88e-3	2.07e-2	3.55e-2	5.53e-2	5.89e-2	2.53e-2	2.22e-4
300	2.83e-3	3.79e-3	7.67e-3	1.76e-2	3.03e-2	4.95e-2	6.25e-2	3.85e-2	7.26e-4
400	2.46e-3	3.43e-3	6.71e-3	1.55e-2	2.67e-2	4.40e-2	6.01e-2	4.58e-2	1.55e-3
500	2.27e-3	3.09e-3	5.95e-3	1.36e-2	2.35e-2	3.98e-2	5.82e-2	4.99e-2	2.90e-3
700	1.80e-3	2.41e-3	4.90e-3	1.10e-2	1.91e-2	3.25e-2	5.14e-2	5.13e-2	6.64e-3
1000	1.39e-3	1.94e-3	3.72e-3	8.61e-3	1.50e-2	2.67e-2	4.35e-2	4.75e-2	1.35e-2
2000	7.58e-4	1.02e-3	2.03e-3	4.74e-3	8.54e-3	1.61e-2	2.84e-2	3.53e-2	2.48e-2
5000	2.80e-4	3.74e-4	7.54e-4	1.79e-3	3.26e-3	6.47e-3	1.30e-2	1.88e-2	2.08e-2
10000	1.18e-4	1.59e-4	3.28e-4	7.12e-4	1.32e-3	2.53e-3	6.01e-3	9.39e-3	1.28e-2

⁴He -> Be

Particle reflection coefficient of ⁴He backscattered from Be zl = 2, ml = 4.00. z2 = 4, m2 = 9.01, sbe=3.38 eV, rho = 1.80 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00. kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr = 1 (KrC) program : trvmc ne=23, na= 9

E ₀ (eV)	0°	15°	30°	45°	55°	65 ^u	75°	80°	85°
10	3.15E-1	3.55E-1	4.62E-1	6.44E-1	7.88E-1	9.20E-1	9.90E-1	9.99E-1	1.00E-J-0
11	3.05E-1	3.44E-1	4.49E-1	6.32E-1	7.79E-1	9.16E-1	9.90E-1	9.99E-1	1.00E4-0
12	2.94E-1	3.32E-1	4.36E-1	6.20E-1	7.70E-1	9.12E-1	9.89E-1	9.99E-1	1.00E+0
13	2.84E-1	3.20E-1	4.24E-1	6.08E-1	7.61E-1	9.08E-1	9.89E-1	9.99E-1	1.00E4-0
15	2.64E-1	2.98E-1	3.99E-1	5.85E-1	7.42E-1	8.99E-1	9.88E-1	9.99E-1	1.00E+0
17	2.47E-1	2.79E-1	3.76E-1	5.61E-1	7.23E-1	890E-1	9.87E-1	9.99E-1	1.00E+0
20	2.25B-1	2.54E-1	3.47E-1	5.29E-1	6.96E-1	8.74E-1	9.85E-1	9.99E-1	1.00E4-0
25	1.97E-1	2.23E-1	3.08E-1	4.82E-1	6.52E-1	8.47E-1	9.81E-1	9.98E-1	1.00E+0
30	1.77E-1	2.00E-1	2.77E-1	4.41E-1	6.12E-1	8.21E-1	9.76E-1	9.98E-1	1.00E+0
40	1.50E-1	1.69E-1	2.36E-1	3.81E-1	5.48E-1	7.69E-1	9.65E-1	9.97E-1	1.00E+0
50	1.32E-1	1.50E-1	2.08E-1	3.40E-1	4.98E-1	7.21E-1	9.52E-1	9.96E-1	1.00E-J-0
70	1.10E-1	1.25E-1	1.75E-1	2.85E-1	4.25E-1	6.42E-1	9.21E-1	9.92E-1	1.00E+0
100	9.22E-2	1.05E-1	1.48E-1	2.44E-1	3.59E-1	5.58E-1	8.68 E-1	9.82E-1	1.00E+0
140	7.91E-2	8.69E-2	1.26E-1	2.10E-1	3.08E-1	4.87E-1	8.00E-1	9.64E-1	1.00E+0
200	6.61E-2	7.43E-2	1.09E-1	1.82E-1	2.74E-1	4.19E-1	7.13E-1	9.27E-1	1.00E+0
300	5.40E-2	6.34E-2	9.14E-2	1.58E-1	2.37E-1	3.68E-1	6.21E-1	8.57E-1	9.99E-1
400	4.63E-2	5.55E-2	8.12E-2	1.42E-1	2.18E-1	3.37E-1	5.62E-1	7.93E-1	9.97E-1
500	4.17E-2	4.99E-2	7.43E-2	1.34E-1	2.05E-1	3.20E-1	5.26E-1	7.41E-1	9.93E-1
700	3.43E-2	4.10E-2	6.39E-2	1.17E-1	1.85E-1	2.95B-1	4.81E-1	6.63E-1	9.79E-1
1000	2.79E-2	3.31E-2	5.39E-2	1.03B-1	1.68E-1	2.71E-1	4.43E-1	6.00E-1	9.42E-1
2000	1.67E-2	2.05E-2	3.54E-2	7.54E-2	1.31E-1	2.26E-1	3.86E-1	5.15E-1	8.05E-1
5000	6.59E-3	8.27E-3	1.62E-2	4.10E-2	8.21E-2	1.66E-1	3.20E-1	4.40E-1	6.43E-1
10000	2.86E-3	3.54E-3	6.96E-3	2.06E-2	4.80E-2	1.14E-1	2.63E-1	3.85E-1	5.69E-1

Energy	reflection	coefficient	of [*] He	backscattered	from	Вe	
ne=23.	na = 9						

E ₀ (eV)	0°	15°	30°	45°	55°	65°	75°	80°	85°
10	4.87E-2	6.66E-2	1.24E-1	2.50E-1	3.91E-1	5.85E-1	7.99E-1	8.86E-1	9.48E-1
11	4.76E-2	6.47E-2	1.21E-1	2.47E-1	3.88E-1	5.86E-1	8.03E-1	8.90E-1	9.52E-1
12	4.64E-2	6.27E-2	1.17E-1	2.43E-1	3.85E-1	5.86E-1	8.06B-1	8.94E-1	9.55E-1
13	4.51E-2	6.08E-2	1.14E-1	2.39 E-1	3.82E-1	5.85E-1	8.09E-1	8.98E-1	9.58E-1
15	4.26E-2	5.70E-2	1.08E-1	2.30E-1	3.74E-1	5.81E-1	8.13E-1	9.03E-1	9.62E-1
17	4.02B-2	5.34E-2	1.01E-1	2.21E-1	3.66E-1	5.76E-1	8.15E-1	9.07E-1	9.65E-1
20	3.70E-2	4.88E-2	9.29E-2	2.07E-1	3.51E-1	5.66E-1	8.17E-1	9.11E-1	9.68E-1
25	3.28E-2	4.28E-2	8.12E-2	1.86E-1	3.27E-1	5.48E-1	8.16E-1	9.16E-1	9.72 E-1
30	2.97E-2	3.85E-2	7.21E-2	1.68E-1	3.04E-1	5.28E-1	8.12E-1	9.18E-1	9.78 E-1
40	2.53E-2	3.21E-2	5.98E-2	1.40E-1	2.64E-1	4.88E-1	7.99E-1	9.20E-1	9.77E-1
50	2.21E-2	2.83E-2	5.18E-2	1.21E-1	2.33E-1	4.49E-1	7.83E-1	9.18E-1	9.78E-1
70	1.85E-2	2.33E-2	4.23E-2	9.73E-2	1.90E-1	3.85E-1	7.46E-1	9.11E-1	9.79E-1
100	1.55E-2	1.94E-2	3.47E-2	7.91E-2	1.51E-1	3.16E-1	6.85E-1	8.94E-1	9.79 E-1
140	1.30E-2	1.60E-2	2.92E-2	6.62E-2	1.24E-1	2.60E-1	6.10E-1	8.64E-1	9.79E-1
200	1.10B-2	1.38E-2	2.50E-2	5.56E-2	1.05E-1	2.11E-1	5.16E-1	8.13B-1	9.77E-1
300	9.04E-3	1.16E-2	2.05E-2	4.75E-2	8.75E-2	1.75E-1	4.20E-1	7.22E-1	9.73E-1
400	7.68E-3	1.00E-2	1.85E-2	4.15E-2	7.82E-2	1.55E-1	3.62E-1	6.43E-1	9.67E-1
500	6.94E-3	9.10E-3	1.67E-2	3.86E-2	7.29E-2	1.43E-1	3.24E-1	5.79E-1	9.59E-1
700	5.67E-3	7.40E-3	1.43E-2	3.35E-2	6.45E-2	1.29E-1	2.81E-1	4.88E-1	9.34E-1
1000	4.58E-3	5.91E-3	1.17E-2	2.93E-2	5.70E-2	1.14B-1	2.48E-1	4.16E-1	8.78E-1
2000	2.62E-3	3.49E-3	7.42E-3	1.99E-2	4.14E-2	8.85E-2	2.00B-1	3.21E-1	6.84E-1
5000	9.27E-4	1.28E-3	2.96E-3	9.22E-3	2.20E-2	5.48E-2	. 1.41B-1	2.36E-1	4.60E-1
10000 .	3.74E-4	4.89E-4	1.13E-3	3.92E-3	1.03E-2	3.01E-2	9.46E-2	1.74E-1	3.50E-1

Average depth (mean range) in $\ddot{\text{A}}$ of $^4\,\text{He}$ in Be ne=23, na= 9

Bo(^e V)	0°	15°	30°	45°	55°	65°	75°	80°	85°
10	2.40E + 0	2.30E+0	2.20E-J-0	2.10E4-0	1.90E+0	1.70E4-0	1.30E+0	1.10B+0	6.00E-1
11	2.60B+0	2.50B+0	2.40E + 0	2.20E+0	2.00E4-0	1.80E4-0	1.50B+0	1.20E + 0	7.00E-1
12	2.80B-J-0	2.70E+0	2.60E+0	2.40E4-0	2.20E+0	1.90E+0	1.60E+0	1.30E+0	8.00E-1
13	2.90E+0	2.90E+0	2.70B + 0	2.50E+0	2.30E-J-0	2.10E4-0	1.70E+0	1.40E+0	9.00E-1
15	3.30E+0	3.20E+0	3.10E + 0	2.80E4-0	2.60E+0	2.30E + 0	1.90E+0	1.60E + 0	1.10E+0
17	3.60E+0	3.50E+0	3.40E4-0	3.10E4-0	2.90E4-0	2.50E-J-0	2.10E+0	1.80E4-0	1.30B + 0
20	4.10E+0	4.00E-J-0	3.80E+0	3.50E+0	3.20E+0	2.90E + 0	2.40E-J-0	2.10E4-0	1.60E-J-0
25	4.80E+0	4.70E4-0	4.40E + 0	4.10E4-0	3.80E + 0	3.40E + 0	2.90E+0	2.60E+0	2.10E4-0
30	5.50E + 0	5.40E+0	5.10E4-0	4.60E4-0	4.30E+0	3.90E + 0	3.40E+0	3.00E + 0	2.50E-I-0
40	6.80E-J-0	6.70E+0	6.30E4-0	5.70E4-0	5.30E-J-0	4.80E + 0	4.20E+0	3.80E+0	3.20B + 0
50	8.10E4-0	7.90E4-0	7.50E + 0	6.70E+0	6.20E+0	5.70E + 0	5.00E4-0	4.50E4-0	3.90E4-0
70	1.06E + 1	1.04E+1	9.70E4-0	8.70E4-0	8.00E + 0	7.30E + 0	6.50E+0	6.00E+0	4.60E4-0
100	1.42E + 1	1.39E4-1	1.29E+1	1.16E+1	1.06E-J-1	9.60E + 0	8.70E+0	8.00E + 0	6.50E4-0
140	1.89E + 1	1.84E+1	1.71E+1	1.53E+1	1.39E+1	1.26E+1	1.13E + 1	1.06E + 1	9.00E4-0
200	2.58E + 1	2.51E+1	2.33E+1	2.07E+1	1.88E+1	1.69E4-1	1.52E+1	1.43E+1	1.18E + 1
300	3.72E+1	3.61E+1	3.35E + 1	2.95E+1	2.67E4-1	2.39E-J-1	2.15E+1	2.04E-J-1	1.82E4-1
400	4.84E + 1	4.71B-J-1	4.38E + 1	3.84E+1	3.46E+1	3.09E+1	2.77E + 1	2.64E-J-1	2.39E + 1
500	6.00E + 1	5.82E+1	5.38E+1	4.71E+1	4.25E+1	3.77E-J-1	3.37E + 1	3.23E + 1	2.97E+1
700	8.29E + 1	8.07E+1	7.41E4-1	6.49E+1	5.81E+1	5.12E4-1	4.56E+1	4.33E4-1	4.19E+1
1000	1.18E+2	1.15E+2	1.05E+2	9.16E+1	8.12E4-1	7.14E + 1	6.33E + 1	6.02E+1	5.84E+1
2000	2.38E + 2	2.30E+2	2.10E-J-2	1.80E+2	1.58E+2	1.37E+2	1.19E4-2	1.12B+2	1.08E+2
5000	5.97E+2	5.77E+2	5.22E+2	4.38E+2	3.75E + 2	3.15E4-2	2.63E4-2	2.43E+2	2.30E+2
10000	1.15E+3	1.11E+3	1.00E4-3	8.29E4-2	6.95E+2	5.62E+2	5.00E+2	4.08E+2	3.78E+2

Sputtering yield of Be by Be $z1 = 4$, $m1 = 9.01$, $z2 = 4$, $m2 = 9.01$, $sbe = 3.38$ eV. $rho = 1.80$ g/cm**3	
ef=3.33 eV, esb=3.38 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1	(KrC)
program : trvmc ne=24, na=15	

-

E _o (eV)	0°	15 ^u	30°	45 ^u	55 ^u	65°	75 ^u	80°	85 ^u
5				3.05e-6	7.10e-6	9.83e-6	1.05e-5	1.02e-5	1.03e-5
6			3.17e-6	2.32e-5	3.87e-5	4.62e-5	4.62e-5	4.64e-5	4.61e-5
7			1.36e-5	6.54e-5	9.76e-5	1.18e-4	1.30e-4	1.34e-4	1.38e-4
8		3.35e-6	3.53e-5	1.35e-4	1.96e-4	2.71e-4	3.47e-4	3.80e-4	4.Ole-4
9		9.66e-6	7.48e-5	2.48e-4	3.92e-4	6.31e-4	8.84e-4	9.58e-4	1.01e-3
10		2.12e-5	1.33e-4	4.22e-4	7.84e-4	1.37e-3	1.89e-3	2.04e-3	2.17e-3
11	6.78e-6	4.03e-5	2.21e-4	7.39e-4	1.51e-3	2.62e-3	3.47e-3	3.77e-3	3.74e-3
12	1.26e-5	6.63e-5	3.47e-4	1.22e-3	2.74e-3	4.67e-3	5.88e-3	6.00e-3	6.04e-3
13	2.14e-5	1.01e-4	5.39e-4	2.07e-3	4.48e-3	7.29e-3	8.69e-3	8.73e-3	8.84e-3
15	5.23e-5	2.17e-4	1.22e-3	4.95e-3	9.90e-3	1.48e-2	1.61e-2	1.57e-2	1.51e-2
17	1.15e-4	4.40e-4	2.39e-3	9.79e-3	1.79e-2	2.48e-2	2.50e-2	2.35e-2	2.22e-2
20	3.05e-4	1.09e-3	5.63e-3	2.08e-2	3.47e-2	4.38e-2	4.04e-2	3.65e-2	3.33e-2
25	1.09e-3	3.32e-3	1.54e-2	4.77e-2	7.14e-2	8.21e-2	6.87e-2	5.85e-2	5.09e-2
30	2.68e-3	7.27e-3	2.95e-2	8.18e-2	1.16e-l	1.25e-l	9.74e-2	7.92e-2	6.58e-2
40	8.41e-3	1.93e-2	6.54e-2	1.58e-1	2.12e-1	2.15e-1	1.50e-1	1.12e-1	8.65e-2
50	1.68e-2	3.45e-2	1.03e-1	2.33e-1	3.06e-1	3.04e-1	1.99e-1	1.37e-1	9.65e-2
70	3.77e-2	6.72e-2	1.73e-1	3.59e-1	4.70e-1	4.71e-1	2.87e-1	1.73e-1	1.03e-1
100	7.00e-2	1.11e-1	2.49e-1	4.93e-1	6.63e-1	6.94e-1	4.21e-1	2.29e-1	1.06e-l
200	1.43e-1	1.98e-1	3.77e-1	7.18e-1	1.02e-0	1.21e-0	8.77e-1	4.38e-1	1.16e-l
300.	1.86e-l	2.46e-1	4.37e-1	8.19e-1	1.19e-0	1.52e-0	1.30e-0	6.90e-1	1.37e-l
500	2.33e-1	2.93e-1	4.94e-1	9.03e-1	1.34e-0	1.85e-0	1.92e-0	1.23e-0	2.08e-1
700	2.57e-1	3.16e-1	5.11e-l	9.30e-1	1.40e-0	2.00e-0	2.31e-0	1.72e-0	3.09e-1
1000	2.74e-1	3.31e-1	5.19e-l	9.31e-1	1.41e-0	2.09e-0	2.65e-0	2.27e-0	5.10e-l
2000	2.53e-1								
3000	2.63e-1						2.99e-0	3.38e-0	2.20e-0
5000	2.27e-1								
3000	2.2/0-1								

Eo(eV)	0°	20°	40°	50°	60°	70°	75°	77.5°	80°	85°
1000	2.65e-1	3.64e-1	7.25e-1	1.11e-0	1.67e-0	2.41e-0	2.63e-0		2.27e-0	5.02e-1
3000	2.63e-1	3.25e-1	6.02e-1	9.12e-1	1.46e-0	2.35e-0	2.99e-0	3.20e-0	3.38e-0	2.20e-0

Sputtered energy of Be by Be ne=24, na=15

										-
Bq(eV)	0°	15°	30°	45°	55°	65°	75°	80°	85°	1
5				3.14e-7	8.46e-7	1.38e-6	1.62e-6	1.63e-6	1.71e-6	1
6			_{fe} 2-59e-7	2.61e-6	5.18e-6	7.07e-6	7.93e-6	8.26e-6	8.46e-6	
7			1.17e-6	7.76e-6	1.39e-5	1.96e-5	2.41e-5	2.56e-5	2.71e-5	
8		2.15e-7	3.18e-6	1.64e-5	2.93e-5	4.74e-5	6.86e-5	7.69e-5	8.28e-5	1.1
9		6.65e-7	6.91e-6	3.11e-5	6.10e-5	1.16e-4	1.82e-4	2.02e-4	2.18e-4	1.1.1
10		1.56e-6	1.25e-5	5.47e-5	1.28e-4	2.62e-4	4.Ole-4	4.50e-4	4.87e-4	1.1
11	3.57e-7	2.98e-6	2.14e-5	1.Ole-4	2.58e-4	5.22e-4	7.69e-4	8.63e-4	8.62e-4	
12	6.92e-7	4.94e-6	3.46e-5	1.73e-4	4.79e-4	9.61e-4	1.34e-3	1.42e-3	1.45e-3	
13	1.18e-6	7.66e-6	5.51e-5	3.05e-4	8.07e-4	1.54e-3	2.03e-3	2.10e-3	2.18e-3	
15	2.97e-6	1.66e-5	1.33e-4	7.60e-4	1.85e-3	3.22e-3	3.91e-3	3.94e-3	3.87e-3	
17	6.75e-6	3.49e-5	2.70e-4	1.56e-3	3.44e-3	5.56e-3	6.23e-3	6.08e-3	5.87e-3	1.1
20	1.84e-5	8.91e-5	6.56e-4	3.39e-3	6.76e-3	1.Ole-2	1.04e-2	9.68e-3	9.00e-3	1.1
25	6.59e-5	2.69e-4	1.77e-3	7.72e-3	1.40e-2	1.90e-2	1.79e-2	1.57e-2	1.39e-2	
30	1.53e-4	5.54e-4	3.25e-3	1.29e-2	2.23e-2	2.87e-2	2.53e-2	2.12e-2	1.79e-2	
40	4.26e-4	1.30e-3	6.53e-3	2.31e-2	3.80e-2	4.69e-2	3.79e-2	2.93e-2	2.27e-2	
50	7.62e-4	2.09e-3	9.24e-3	3.09e-2	5.09e-2	6.20e-2	4.77e-2	3.43e-2	2.43e-2	
70	1.47e-3	3.45e-3	1.33e-2	4.03e-2	6.67e-2	8.36e-2	6.18e-2	3.97e-2	2.37e-2	
100	2.37e-3	4.85e-3	1.61e-2	4.58e-2	7.73e-2	1.01e-1	7.68e-2	4.54e-2	2.12e-2	
200	3.69e-3	6.38e-3	1.73e-2	4.58e-2	7.90e-2	1.15e-1	1.07e-1	6.12e-2	1.66e-2	
300	4.03e-3	6.49e-3	1.64e-2	4.21e-2	7.23e-2	1.12e-1	1.22e-1	7.56e-2	1.61e-2	
500	3.96e-3	6.07e-3	1.44e-2	3.56e-2	6.24e-2	1.01e-1	1.28e-1	9.56e-2	1.84e-2	
700	3.68e-3	5.51e-3	1.27e-2	3.11e-2	5.55e-2	9.18e-2	1.24e-1	1.07e-1	2.31e-2	
1000	3.25e-3	4.82e-3	1.08e-2	2.64e-2	4.81e-2	8.10e-2	1.17e-l	1.12e-1	3.07e-2	
3000	1.87e-3						7.86e-2	9.04e-2	5.93e-2	1.1
										-
E ₀ (eV)	0°	20°	40°	50°	60°	70°	75°	77.5°	80°	85°
1000	3.13e-3	5.83e-3	1.88e-2	3.42e-2	6.07e-2	9.75e-2	1.16e-l		1.12e-1	3.08e-2
3000	1.87e-3	3.02e-3	9.30e-3	1.90e-2	3.44e-2	6.14e-2	7.86e-2	8.59e-2	9.04e-2	5.93e-2

Particle reflection coefficient of Be backscattered from Be zl = 4, ml = 9,01, z2 = 4, m2 = 9.01. sbe=3.38 eV, rho = 1.80 g/cm**3 ef=3.33 eV, esb=3.38 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=l (KrC) program : trvmc ne = 24, na=16

E ₀ (eV)	0°	15°	30°	45°	55 ^u	65°	75°	80°	85°
5							2.61e-8	1.04e-7	1.79e-7
6				1.86e-8	1.75e-7	5.41e-6	2.48e-5	4.10e-5	5.53e-5
7				3.86e-7	1.37e-5	1.13e-4	4.21e-4	6.15e-4	7.63e-4
8				7.09e-6	1.20e-4	7.28e-4	2.15e-3	2.93e-3	3.51e-3
9			4.43e-7	6.14e-5	5.57e-4	2.63e-3	6.71e-3	8.81e-3	1.04e-2
10			6.21e-6	2.91e-4	1.80e-3	6.80e-3	1.55e-2	1.97e-2	2.28e-2
11		1.23e-7	3.32e-5	8.97e-4	4.43e-3	1.40e-2	2.89e-2	3.59e-2	4.06e-2
12		8.83e-7	1.03e-4	2.15e-3	8.66e-3	2.46e-2	4.72e-2	5.72e-2	6.40e-2
13	3.54e-8	4.31e-6	2.64e-4	4.10e-3	1.49e-2	3.81e-2	6.91e-2	8.23e-2	9.10e-2
15	9.31e-7	3.54e-5	1.00e-3	1.07e-2	3.25e-2	7.24e-2	1.21e-l	1.41e-1	1.55e-l
17	7.28e-6	1.30e-4	2.37e-3	2.00e-2	5.47e-2	1.13e-1	1.81e-1	2.08e-1	2.26e-1
20	4.31e-5	4.34e-4	5.59e-3	3.70e-2	9.22e-2	1.77e-l	2.73e-1	3.11e-1	3.35e-1
25	1.90e-4	1.28e-3	1.19e-2	6.57e-2	1.52e-1	2.78e-1	4.17e-1	4.71e-1	5.05e-1
30	4.20e-4	2.31e-3	1.77e-2	8.98e-2	1.99e-1	3.58e-1	5.33e-1	6.01e-l	6.40e-1
40	1.02e-3	4.22e-3	2.65e-2	1.18e-1	2.54e-1	4.56e-1	6.79e-1	7.60e-l	8.07e-1
50	1.63e-3	5.73e-3	3.17e-2	1.28e-l	2.72e-1	4.95e-1	7.46e-l	8.35e-1	8.84e-1
70	2.72e-3	7.80e-3	3.48e-2	1.28e-l	2.70e-1	5.03e-1	7.82e-1	8.88e-1	9.41e-1
100	3.91e-3	9.09e-3	3.47e-2	1.17e-l	2.44e-1	4.68e-1	7.78e-1	9.03e-1	9.65e-1
200	5.32e-3	9.73e-3	2.92e-2	8.92e-2	1.81e-1	3.64e-1	6.94e-1	8.82e-1	9.79e-1
300	5.18e-3	8.94e-3	2.57e-2	7.52e-2	1.54e-1	3.05e-1	6.16e-l	8.41e-1	9.80e-1
500	4.65e-3	7.66e-3	2.12e-2	6.12e-2	1.26e-1	2.51e-1	5.09e-1	7.55e-l	9.74e-1
700	4.04e-3	6.53e-3	1.83e-2	5.38e-2	1.11e-1	2.23e-1	4.56e-1	6.84e-1	9.62e-1
1000	3.42e-3	5.54e-3	1.53e-2	4.69e-2	9.92e-2	2.00e-1	4.05e-1	6.12e-1	9.39e-1

E ₀ (eV)	0°	20°	40°	50°	60°	70°	75°	77.5°	80°	82.5°	85°
1000	3.62e-3	6.70e-3	3.33e-2	6.57e-2	1.44e-1	2.79e-1	4.03e-1		6.07e-1		9.40e-1
3000	1.30e-3	3.30e-3	1.98e-2	4.40e-2	1.09e-l	2.13e-1	3.15e-1	3.75e-1	4.54e-1_	5.66e-1	7.71e-1

Bo(eV)	0°	15°	30°	45°	55°	65°	75°	80°	85°	
5							3.22e-9	1.42e-8	2.48e-8	1
6				2.21e-9	2.12e-8	7.74e-7	3.92e-6	6.78e-6	9.38e-6	
7				4.45e-8	2.09e-6	2.03e-5	8.56e-5	1.31e-4	1.67e-4	
8				9.31e-7	2.10e-5	1.50e-4	5.03e-4	7.16e-4	8.79e-4	1
9			4.36e-8	8.72e-6	1.03e-4	5.90e-4	1.70e-3	2.33e-3	2.82e-3	
10			6.66e-7	4.45e-5	3.51e-4	1.61e-3	4.19e-3	5.60e-3	6.62e-3	1.1
11		9.90e-9	4.06e-6	1.47e-4	9.07e-4	3.48e-3	8.34e-3	1.08e-2	1.26e-2	×
12		7.44e-8	1.34e-5	3.73e-4	1.85e-3	6.43e-3	1.44e-2	1.83e-2	2.11e-2	
13	2.07e-9	3.70e-7	3.49e-5	7.50e-4	3.35e-3	1.04e-2	2.21e-2	2.77e-2	3.15e-2	
15	6.56e-8	3.40e-6	1.41e-4	2.11e-3	7.88e-3	2.14e-2	4.19e-2	5.17e-2	5.84e-2	
17	5.27e-7	1.35e-5	3.50e-4	4.15e-3	1.41e-2	3.56e-2	6.66e-2	8.09e-2	9.08e-2	
20	3.24e-6	4.71e-5	8.71e-4	8.23e-3	2.54e-2	5.96e-2	8.23e-2	1.30e-1	1.45e-1	
25	1.44e-5	1.40e-4	1.90e-3	1.55e-2	4.51e-2	1.01e-1	1.81e-1	2.16e-1	2.40e-1	
30	3.07e-5	2.49e-4	2.86e-3	2.18e-2	6.16e-2	1.39e-1	2.46e-1	2.96e-1	3.28e-1	
40	7.07e-5	4.30e-4	4.24e-3	2.92e-2	8.29e-2	1.90e-1	3.47e-1	4.18e-1	4.65e-1	1
50	1.08e-4	5.54e-4	4.88e-3	3.15e-2	9.08e-2	2.16e-1	4.09e-1	5.00e-1	5.59e-1	
70	1.67e-4	6.85e-4	5.10e-3	3.07e-2	9.04e-2	2.29e-1	4.68e-1	5.91e-1	6.70e-1	
100	2.20e-4	7.46e-4	4.68e-3	2.67e-2	7.93e-2	2.15e-1	4.92e-1	6.48e-1	7.53e-1	
200	2.83e-4	7.30e-4	3.60e-3	1.81e-2	5.23e-2	1.55e-1	4.46e-1	6.76e-1	8.49e-1	
300	2.68e-4	6.46e-4	3.03e-3	1.43e-2	4.19e-2	1.21e-1	3.81e-1	6.45e-1	8.76e-1	-
500	2.50e-4	5.51e-4	2.43e-3	1.13e-2	3.20e-2	9.16e-2	2.94e-1	5.61e-1	8.85e-1	
700	2.21e-4	4.76e-4	2.10e-3	9.68e-3	2.76e-2	7.79e-2	2.49e-1	4.88e-1	8.75e-1	
1000	1.89e-4	4.12e-4	1.78e-3	8.41e-3	2.44e-2	6.79e-2	2.09e-1	4.15e-1	8.48e-1	
										-
E ₀ (eV)	0°	20 ^u	40°	50°	60°	70°	75°	77.5°	80°	82
1000	1.86e-4	5.43e-4	5.39e-3	1.40e-2	4.05e-2	1.14e-1	2.05e-1		4.10e-1	
3000	7.79e-5	3.43e-4	3.09e-3	9.18e-3	3.03e-2	8.05e-2	1.41e-1	1.91e-l	2.61e-1	3.79

85^u 8.49e-1 6.30e-1

Energy reflection coefficient of Be backscattered from Be $ne{=}24,\ na{=}16$

÷ . .

.

Average depth (mean range) in \ddot{A} of Be implanted in Be zl = 4. ml = 9.01. z2 = 4. m2 = 9.01. sbe=3.38 eV. rho = 1.80 g/cm**3 ef=3.33 eV. esb = 3.38 eV. kk0=kk0r=2. kdeel=kdee2 = 3. ipot=ipotr=1 (KrC), ca=1.00 program : trvmc ne = 24, na=10

Bo(eV)	0 ^u	15 ^u	30 ^u	45°	55 ^u	65 ^u	75°	80°	85°
5	6.00E-1	5.00E-1	5.00E-1	4.00E-1	4.00E-1	3.00E-1	3.00E-1	3.00E-1	3.00E-1
6	8.00E-1	7.00E-1	6.00E-1	5.00E-1	4.00E-1	4.00E-1	3.00E-1	3.00E-1	3.00E-1
7	9.00E-1	9.00E-1	8.00E-1	6.00E-1	5.00E-1	4.00E-1	3.00E-1	3.00E-1	3.00E-1
8	1.10E+0	1.00E+0	9.00E-1	7.00E-1	5.00E-1	4.00E-1	3.00E-1	3.00E-1	3.00E-1
9	1.20E+0	1.10E+0	1.00E+0	7.00E-1	6.00E-1	4.00E-1	3.00E-1	3.00E-1	3.00E-1
10	1.30E4-0	1.20E+0	1.00E + 0	8.00E-1	6.00E-1	5.00E-1	3.00E-1	3.00E-1	3.00E-1
11	1.40E+0	1.30E4-0	1.10E + 0	9.00E-1	7.00E-1	5.00E-1	4.00E-1	3.00E-1	3.00E-1
12	1.50E+0	1.40E4-0	1.20E + 0	9.00E-1	7.00E-1	5.00E-1	4.00E-1	3.00E-1	3.00E-1
13	1.70E4-0	1.60E+0	1.30E4-0	1.00E4-0	8.00E-1	5.00E-1	4.00E-1	3.00E-1	3.00E-1
15	1.90E+0	1.80E-J-0	1.50E4-0	1.10E+0	8.00E-1	6.00E-1	4.00E-1	3.00E-1	3.00E-1
17	2.10E+0	2.00E+0	1.70E + 0	1.30E+0	9.00E-1	7.00E-1	4.00E-1	4.00E-1	3.00E-1
20	2.40E + 0	2.30E+0	2.00E + 0	1.50E+0	1.10E + 0	8.00E-1	5.00E-1	4.00E-1	4.00E-1
25	2.90E + 0	2.80E4-0	2.40E + 0	1.80E4-0	1.40E4-0	1.00E + 0	6.00E-1	5.00E-1	4.00E-1
30	3.40E + 0	3.20E+0	2.80E4-0	2.20E-J-0	1.70E4-0	1.20E + 0	8.00E-1	6.00E-1	5.00E-1
40	4.20E + 0	4.10E+0	3.60E4-0	2.90E4-0	2.30E+0	1.80E + 0	1.20E+0	9.00E-1	8.00E-1
50	5.00E+0	4.80E4-0	4.30E4-0	3.50E+0	3.00E4-0	2.40E + 0	1.70E+0	1.30E + 0	1.10E4-0
70	6.60E+0	6.40E+0	5.70E4-0-	4.80E+0	4.00E+0	3.30E + 0	2.60E+0	2.10E + 0	1.80E + 0
100	8.70E+0	8.40E + 0	7.50E4-0	6.40E4-0	5.50E4-0	4.70E+0	3.70E4-0	3.20E+0	2.70E + 0
200	1.48E + 1	1.43E4-1	1.29E+1	1.10E + 1	9.50E4-0	8.10E + 0	6.70E4-0	6.00E+0	5.00E + 0
300	2.06E + 1	1.99E+1	1.80E4-1	1.52E+1	1.31E4-1	1.12E+1	9.40E4-0	8.50E+0	7.40E + 0
500	3.15E + 1	3.05E+1	2.76E+1	2.33E+1	2.01E+1	1.70E+1	1.44E + 1	1.32E + 1	1.17E + 1
700	4.23E4-1	4.10E4-1	3.70E+1	3.12E+1	2.69E+1	2.27E+1	1.91E + 1	1.76E + 1	1.58E+1
1000	5.84E4-1	5.65E+1	5.11E4-1	4.30E4-1	3.68E+1	3.08E+1	2.59E + 1	2.38E + 1	2.18E4-1

E ₀ (eV)	20°	35 ^u	45 ^u	60°	75°
20					8.10e-2
50			5.25e-1		2.46e-1
100			9.49e-1		5.30e-1
20.0	5.38e-1	9.38e-1	1.32e-0		1.20e-0
500	6.28e-1	1.06e-0	1.50e-0		1.85e-0
1000	5.95e-l	9.84e-1	1.40e-0		3.94e-0
2000	5.69e-1		1.23e-0	2.30e-0	
5000			9.30e-1	1.85e-0	3.89e-0

Sputtered energy of Be by Be ne= 8, na= 5

E ₀ (eV)	20°	35°	45°	60°	75°
20					1.90e-2
50			5.62e-2		4.66e-2
100			6.65e-2		7.48e-2
200	1.23e-2	3.24e-2	5.71e-2		1.12e-1
500	9.13e-3	2.32e-2	3.97e-2		1.38e-1
1000	6.40e-3	1.58e-2	2.69e-2		1.19e-l
2000	4.15e-3		1.71e-2	4.31e-2	
5000			1.05e-2	2.64e-2	6.26e-2

Particle reflection coefficient of Be backscattered from Be zl = 4, ml = 9.01, z2 = 4, m2 = 9.01, $sbe=2.00 \ eV$, $rho = 1.85 \ g/cm^{**}3$ ef=1.98 eV, $esb=2.00 \ eV$, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program : trspvlcn ne=10, na= 6

Eq(eV)	20°	35°	45°	60°	70°	75°
15				5.67e-2		1.38e-1
20			3.98e-2	1.43e-1		6.58e-1
30				2.90e-1		
50			1.70e-1	3.91e-1		8.70e-1
100			1.36e-1	3.56e-1		8.46e-1
200	1.22e-2	4.50e-2	9.23e-2	2.56e-1	5.16e-l	7.43e-1
500	9.40e-3	2.93e-2	5.46e-2	1.68e-l	3.53e-1	5.29e-1
1000	8.13e-3	2.20e-2	4.52e-2	1.34e-1	2.74e-1	4.03e-1
2000	5.10e-3	1.56e-2	3.10e-2	1.10e-1		
5000			2.29e-2	8.38e-2		2.83e-1

Energy reflection coefficient of Be backscattered from Be $ne\!=\!10,\ na\!=\!6$

Eq(eV)	20°	35°	45°	60°	70°	75°
15				1.47e-2		4.68e-2
20			8.19e-3	4.25e-2		3.05e-1
30				9.84e-2		
50			4.25e-2	1.49e-l		5.44e-1
100			3.27e-2	1.39e-1		5.69e-1
200	9.81e-4	6.34e-3	2.05e-2	9.31e-2	2.75e-1	4.93e-1
500	7.60e-4	4.28e-3	1.05e-2	5.20e-2	1.64e-1	3.12e-1
1000	6.91e-4	2.98e-3	8.41e-3	3.88e-2	1.13e-1	2.11e-1
2000	4.40e-4	2.26e-2	5.72e-3	3.15e-2		
5000			4.26e-3	2.27e-2		1.24e-1

Average depth (mean range) in \ddot{A} of Be implanted in Be $ne\!=\!10,\ na\!=\!8$

$E_0(eV)$	20°	35°	45°	60°	70°	75°	80°	85°
15				5.70e-1		3.40e-1	2.90e-1	
20			1.12e+0	7.30e-1		4.05e-1	3.40e-1	3.10e-1
30				1.16e + 0		6.40e-1	5.10e-1	4.30e-1
50			2.89e+0	2.14e + 0		1.42e + 0	1.08e+0	8.80e-1
100			5.32e4-0	4.16e + 0		3.02e+0	2.53e+0	2.09e+0
200	1.23e+1	1.07e+l	9.55e+0	7.51e+0	6.33e+0	5.67e+0	5.12e+0	4.39e+0
500	2.72e-f-l	2.38e+1	2.12e + 1	1.66e+l	1.39e+1	1.27e+l	1.17e + 1	9.81e+0
1000	5.11e+1	4.49e4-1	4.00e + 1	3.08e+1	2.60e + 1	2.37e+1	2.18e+1	1.92e + 1
2000	1.01e+2	8.81e+1	7.78e+1	6.0.9e+1		4.51e+1	4.15e+1	3.77e+1
5000			1.95e+2	1.49e + 2	1.08e+2	1.09e + 2	9.89e + 1	9.00e+1

Be on Be, Maxwellian velocity distribution, sheath potential 0 kT zl = 4, ml = 9.01, z2 = 4, m2 = 9.01, sbe=3.38 eV, rho=1.80 g/cm**3 ef=3.33 eV, esb=3.38 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program : testvmcx $rac{1}{2}$ testvmcx

ne=	1	4
-----	---	---

kT(eV)	Y	^У Е	E sp	RN	B _s	E.b	range
2.4	4.40e-4	2.86e-4	3.12e + 0	1.69e-3	1.69e-3	4.81e + 0	2.40e-1
3	1.13e-3	6.80e-4	3.62e+0	4.20e-3	4.02e-3	5.73e+0	3.36e-1
4	3.24e-3	1.74e-3	4.30e-j-0	1.11e-2	9.65e-3	6.95e-{-0	4.89e-1
5	6.74e-3	3.25e-3	4.82e+0	2.11e-2	1.69e-2	8.04e- -0	6.41e-1
7	1.79e-2	7.16e-3	5.61e+0	4.36e-2	3.23e-2	1.04e-H	9.20e-1
10	4.10e-2	1.39e-2	6.80e + 0	7.92e-2	5.42e-2	1.38e+1	1.34e-f-0
20	1.33e-1	2.97e-2	8.94e + 0	1.53e-1	9.01e-2	2.35e4-1	2.69e+0
50	3.60e-1	4.57e-2	1.27e+1	1.99e-l	9.82e-2	4.94e- -1	6.30e + 0
100	5.82e-1	4.76e-2	1.64e + 1	1.96e-l	8.89e-2	9.11e-H	1.13e+1
200	7.89e-1	4.38e-2	2.21e+1	1.70e-1	7.34e-2	1.72e+2	2.00e + 1
500	1.00e-0	3.43e-2	3.41e4-1	1.27e-l	4.82e-2	3.79e-)-2	4.40e- -1
1000	1.05e-0	2.60e-2	4.98e+1	1.07e-l	4.12e-2	7.69e-j-2	8.57e+l
2000	9.84e-1	1.76e-2	7.06e + 1	8.87e-2	3.19e-2	1.42e+3	1.66e+2
5000	7.67e-1	8.68e-3	1.14e4-2	6.66e-2	2.27e-2	3.43e+3	4.14e+2

Be on Be, Maxwellian velocity distribution, sheath potential 3 kT $ne\!=\!12$

kT(eV)	Y	Y _E	Esp	^R 7V	Rfi	Eb	range
1.4	1.43e-4	3.82e-5	1.87e+0	1.63e-4	7.18e-5	3.08e-j-0	6.63e-1
2	7.05e-4	1.82e-4	2.58e + 0	1.10e-3	4.52e-4	4.12e-f-0	1.03e+0
3	4.10e-3	9.43e-4	3.45e + 0	4.89e-3	1.75e-3	5.38e- -0	1.54e-}-0
5	2.13e-2	3.83e-3	4.50e + 0	1,.51e-2	4.57e-3	7.59e+0	2.47e + 0
10	9.07e-2	1.02e-2	5.64e + 0	2.69e-2	6.22e-3	1.16e- -l	4.43e+0
20	2.02e-1	1.45e-2	7.18e-f-0	2.76e-2	5.13e-3	1.86e4-1	7.65e+0
50	3.39e-1	1.45e-2	1.07e + 1	2.23e-2	3.43e-3	3.84e4-1	1.59e- -1
100	4.05e-1	1.22e-2	1.50e + 1	1.72e-2	2.54e-3	7.37e + 1	2.83e+1
200	4.38e-1	9.26e-3	2.12e-f-l	1.32e-2	1.94e-3	1.47e + 2	5.27e-J-1
500	4.10e-1	5.46e-3	3.33e + 1	8.17e-3	1.19e-3	3.65e+2	1.26e + 2
1000	3.29e-1	3.12e-3	4.74e + 1	4.71e-3	7.19e-4	7.64e+2	2.52e+2
2000	2.52e-1	1.59e-3	6.32e + 1	2.67e-3	4.12e-4	1.54e-f-3	5.14e-}-2

Be on Be, Maxwellian velocity distribution, sheath potential 9 kT ne=14

kT(eV)	Y	YE	Esp	R _N	ΒE	Еь	range
1.4	8.07e-4	1.11e-4	2.12e+0	6.22e-4	1.28e-4	3.18e+0	1.77e+0
1.5	1.15e-3	1.59e-4	2.27e + 0	8.40e-4	1.72e-4	3.38e-f-0	1.88e+0
2	4.13e-3	5.16e-4	2.75e- -0	2.47e-3	4.67e-4	4.16e + 0	2.42e + 0
3	1.67e-2	1.64e-3	3.25e-f-0	5.86e-3	9.56e-4	5.39e+0	3.41e+0
5	5.34e-2	3.86e-3	3.97e+0	1.01e-2	1,33e-3	7.27e+0	5.14e+0
10	1.36e-1	6.49e-3	5.24e- -0	1.22e-2	1.31e-3	1.19e + 1	8.83e+0
20	2.24e-1	7.71e-3	7.58e4-0	1.23e-2	1.16e-3	2.07e+1	1.52e+1
50	3.18e-1	6.61e-3	1.14e+l	8.60e-3	7.35e-4	4.70e + 1	3.26e + 1
100	3.39e-1	5.06e-3	1.64e4-1	6.57e-3	5.88e-4	9.84e+1	6.09e+l
200	3.28e-1	3.50e-3	2.35e + 1	4.11e-3	3.91e-4	2.09e+2	1.18e+2
500	2.63e-1	1.78e-3	3.72e-f-l	2.01e-3	2.18e-4	5.97e + 2	2.99e+2
1000	2.00e-1	9.36e-4	5.15e+1	6.76e-4	6.79e-5	1.11e-}-3	6.06e+2
2000	1.47e-1	4.98e-4	7.48e + 1	6.57e-4	6.40e-5	2.14e- -3	1.21e+3
5000	9.14e-2	1.67e-4	1.00e+2				2.80e-f-3

N -> Be

Sputtering yield of Be by N zl=7, ml = 14.01, z2=4, m2=9.01, sbe=3.38 eV, rho = 1.80 g/cm**3 ef=0.95 eV, esb = 1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program : trvmc ne=16, na=9

$[E_{0}(eV)]$	0°	15°	30°	45°	55°	65°	75°	80°	85°
10			6.00E-6	4.36E-5	6.72E-5	1.22E-4	1.72E-4	1.65E-4	1.43E-4
12		8.67E-7	3.97E-5	1.75E-4	4.81E-4	9.51E-4	1.04E-3	8.36E-4	6.57E-4
15	1.13E-6	1.16E-5	1.72E-4	1.26E-3	3.59E-3	5.69E-3	4.37E-3	3.01E-3	2.07E-3
20	1.30E-5	1.26E-4	1.42E-3	9.69E-3	2.04E-2	2.37E-2	1.36E-2	8.05E-3	4.73E-3
25	1.32E-4	6.48E-4	5.96E-3	2.95E-2	5.03E-2	5.10E-2	2.53E-2	1.33E-2	6.72E-3
27	2.23E-4	1.08E-3	9.07E-3	4.01E-2	6.49E-2	6.37E-2	3.04E-2	1.55E-2	7.40E-3
30	4.97E-4	2.10E-3	1.51E-2	5.89E-2	8.96E-2	8.43E-2	3.88E-2	1.84E-2	8.20E-3
40	2.72E-3	8.91E-3	4.55E-2	1.36E-1	1.84E-1	1.63E-1	6.78E-2	2.81E-2	9.70E-3
50	7.94E-3	2.07E-2	8.48E-2	2.20E-1	2.86E-1	2.48E-1	9.91E-2	3.73E-2	1.03E-2
70	2.53E-2	5.31E-2	1.66E-1	3.79E-1	4.82E-1	4.24E-1	1.67E-1	5.58E-2	1.06E-2
100	6.02E-2	1.05E-1	2.71E-1	5.69E-1	7.39E-1	6.80E-1	2.82E-1	8.75E-2	1.14E-2
140	1.08E-1	1.69E-1	3.79E-1	7.53E-1	1.00E + 0	9.94E-1	4.54E-1	1.38E-1	1.23E-2
200	1.72E-1	2.45E-1	4.86E-1	9.37E-1	1.29E+0	1.40E+0	7.38E-1	2.33E-1	1.53E-2
300	2.47E-1	3.29E-1	5.97E-1	1.12E+0	1.59E4-0	1.89E4-0	1.23E+0	4.34E-1	2.22E-2
500	3.38E-1	4.27E-1	7.15E-1	1.31E4-0	1.90E4-0	2.49E+0	2.12E+0	9.55E-1	4.64E-2
1000	4.48E-1	5.36E-1	8.32E-1	1.46E4-0	2.18E+0	3.11E4-0	3.51E4-0	2.38E+0	1.83E-1

Sputtered energy of Be by N ne=16, na=9

B _o (eV)	0°	15°	30°	45°	55°	65°	75°	80°	85°
10			6.00E-6	4.36E-5	6.72E-5	1.22E-4	1.72E-4	1.65E-4	1.43E-4
12		8.67E-7	3.97E-5	1.75E-4	4.81E-4	9.51E-4	1.04E-3	8.36E-4	6.57E-4
15	1.13E-6	1.16E-5	1.72E-4	1.26E-3	3.59E-3	5.69E-3	4.37E-3	3.01E-3	2.07E-3
20	1.30E-5	1.26E-4	1.42E-3	9.69E-3	2.04E-2	2.37E-2	1.36E-2	8.05E-3	4.73E-3
25	1.32E-4	6.48E-4	5.96E-3	2.95E-2	5.03E-2	5.10E-2	2.53E-2	1.33E-2	6.72E-3
27	2.23E-4	1.08E-3	9.07E-3	4.01E-2	6.49E-2	6.37E-2	3.04E-2	1.55E-2	7.40E-3
30	4.97E-4	2.10E-3	1.51E-2	5.89E-2	8.96E-2	8.43E-2	3.88E-2	1.84E-2	8.20E-3
40	2.72E-3	8.91E-3	4.55E-2	1.36E-1	1.84E-1	1.63E-1	6.78E-2	2.81E-2	9.70E-3
50	7.94E-3	2.07E-2	8.48E-2	2.20E-1	2.86E-1	2.48E-1	9.91E-2	3.73E-2	1.03E-2
70	2.53E-2	5.31E-2	1.66E-1	3.79E-1	4.82E-1	4.24E-1	1.67E-1	5.58E-2	1.06E-2
100	6.02E-2	1.05E-1	2.71E-1	5.69E-1	7.39E-1	6.80E-1	2.82E-1	8.75E-2	1.14E-2
140	1.08E-1	1.69E-1	3.79E-1	7.53E-1	1.00E4-0	9.94E-1	4.54E-1	1.38E-1	1.23E-2
200	1.72E-1	2 45E-1	4.86E-1	9.37E-1	1.29E+0	1.40E+0	7.38E-1	2.33E-1	1.53E-2
300	2.47E-1	3.29E-1	5.97E-1	1.12E+0	1.59E + 0	1.89E+0	1.23E+0	4.34E-1	2.22E-2
500	3.38E-1	4.27E-1	7.15E-1	1.31E+0	1.90E+0	2.49E4-0	2.12E+0	9.55E-1	4.64E-2
1000	4.48E-1	5.36E-1	8.32E-1	1.46E4-0	2.18E4-0	3.11E4-0	3.51E+0	2.38E+0	1.83E-1

$N \rightarrow Be$

•	0		
ne=	16,	na =	9

E ₀ (eV)	0 °	15 ^u	30°	45°	55°	65°	75°	80°	85 °
10		2.50E-7	1.77E-4	9.43E-3	5.26E-2	1.64E-1	3.19E-1	3.83E-1	4.23E-1
12		3.87E-6	1.01E-3	2.36E-2	9.69 E-2	2.58E-1	4.60E-1	5.38E-1	5.84E-1
15		4.59E-5	3.58E-3	5.11E-2	1.69E-1	3.84E-1	6.26E-1	7.13E-1	7.59E-1
20	8.00E-6	3.66E-4	9.76E-3	9.50E-2	2.63E-1	5.26E-1	7.87E-1	8.67E-1	9.07E-1
25	4.03E-5	8.48E-4	1.56E-2	1.25E-1	3.20E-1	6.00E-1	8.57E-1	9.30E-1	9.62E-1
27	5.88E-5	1.04E-3	1.73E-2	1.33E-1	3.33E-1	6.17E-1	8.74E-1	9.42E-1	9.72E-1
30	9.43E-5	1.28E-3	1.93E-2	1.42E-1	3.48E-1	6.35E-1	8.89E-1	9.55E-1	9.81E-1
40	1.76E-4	1.83E-3	2.28E-2	1.52E-1	3.64E-1	6.57E-1	9.12E-1	9.73E-1	9.93E-1
50	2.22E-4	2.05E-3	2.32E-2	1.48E-1	3.56E-1	6.53E-1	9.18E-1	9.78E-1	9.96E-1
70	2.92E-4	2.13E-3	2.10E-2	1.31E-1	3.24E-1	6.23E-1	9.15E-1	9.82E-1	9.98E-1
100	2.98E-4	2.00E-3	1.81E-2	1.07E-1	2.75E-1	5.67E-1	8.98E-1	9.81E-1	9.99E-1
140	3.75E-4	1.82E-3	1.50E-2	8.61E-2	2.26E-1	4.99E-1	8.67E-1	9.77E-1	9.99E-1
200	3.33E-4	1.52E-3	1.25E-2	6.77E-2	1.80E-1	4.20E-1	8.16E-1	9.66E-1	9.99E-1
300	4.12E-4	1.51E-3	9.97E-3	5.23E-2	1.39E-1	3.37E-1	7.32E-1	9.40E-1	9.99E-1
500	3.35E-4	1.29E-3	7.62E-3	3.89E-2	1.04E-1	2.54E-1	6.01E-1	8.72E-1	9.98E-1
1000	4.00E-4	9.30E-4	5.28E-3	2.71E-2	7.38E-2	1.85E-1	4.43E-1	7.11E-1	9.90E-1

Energy reflection coefficient of N backscattered from Be ne=16, na=9

Eo(eV)	0 °	15°	30°	45°	55°	65°	75°	80°	85°
10		1.99E-8	1.71E-5	1.47E-3	1.15E-2	4.78 E-2	1.16E-1	1.52E-1	1.76E-1
12		2.77E-7	1.07E-4	3.83E-3	2.17E-2	7.87E-2	1.79Ė-1	2.29E-1	2.62E-1
15		3.22E-6	4.04E-4	8.78E-3	3.95E-2	1.24E-1	2.65E-1	3.34E-1	3.78E-1
20	2.63E-7	2.63E-5	1.10E-3	1.71E-2	6.54E-2	1.83E-1	3.73E-1	4.62E-1	5.19E-1
25	1.77E-6	6.02E-5	1.74E-3	2.29E-2	8.27E-2	2.21E-1	4.42E-1	5.45E-1	6.11E-1
27	2.53E-6	7.19E-5	1.93E-3	2.45E-2	8.74E-2	2.32E-1	4.62E-1	5.70E-1	6.39E-1
30	4.05E-6	8.60E-5	2.11E-3	2.61E-2	9.27E-2	2.44E-1	4.87E-1	6.01E-1	6.74E-1
40	6.55E-6	1.11E-4	2.38E-3	2.79E-2	9.95E-2	2.65E-1	5.37E-1	6.68E-1	7.52E-1
50	7.43E-6	1.12E-4	2.27E-3	2.66E-2	9.79E-2	2.70E-1	5.62E-1	7.07E-1	7.99E-1
70	7.99E-6	1.00E-4	1.86E-3	2.25E-2	8.80E-2	2.61E-1	5.81E-1	7.48E-1	8.52E-1
100	6.73E-6	7.96E-5	1.42E-3	1.72E-2	7.19E-2	2.36E-1	5.79E-1	7.71E-1	8.91E-1
140	7.97E-6	6.54E-5	1.08E-3	1.27E-2	5.58E-2	2.02E-1	5.58E-1	7.78E-1	9.15E-1
200	5.84E-6	4.99E-5	8.10E-4	9.22E-3	4.13E-2	1.62E-1	5.16E-1	7.70E-1	9.32E-1
300	8.36E-6	5.08E-5	6.00E-4	6.55E-3	2.91E-2	1.19E-1	4.47E-1	7.40E-1	9.42E-1
500	5.38E-6	4.18E-5	4.50E-4	4.47E-3	1.97E-2	8.04E-2	3.40E-1	6.62E-1	9.44E-1
1000	9.43E-6	3.43E-5	3.20E-4	3.03E-3	1.27E-2	5.16 E-2	2.18E-1	4.93E-1	9.25E-1

Average depth (mean range) in \ddot{A} of N implanted in Be ne=16, na= 9 \$.

30 $E_0 (eV)$ 0 15 45 55 65 75 80° 85 7.00E-1 9.00E-1 10 9.00E-1 9.00E-1 5.00E-1 4.00E-1 2.00E-1.00E-1 1.00E-1 1.00E-1 1.00E+0 12 1.10E + 06.00E-1 4.00E-1 3.00E-1 1 00E-1 1 00E-1 1 00E-1 9.00E-1 1.10E + 0 1.50E + 0 1.80E + 0 2.00E4-0 15 20 1.40E + 0 1.90E+0 1.30E+0 1.80E+0 6.00E-1 8.00E-1 8.00E-1 3.00E-1 2.00E-1 1.00E-1 1.00E-1 1.10E+0 5.00E-1 3.00E-1 2.00E-1 1.00E-1 25 27 2.30E+0 2.40E+0 2.20E+0 2.30E4-0 1.10E+0 1.20E+0 2.00E-1 2.00E-1 1.40E+07.00E-1 4.00E-1 3.00E-1 1.50E+0 8.00E-1 5.00E-1 3.00E-1 2.70E+0 2.20E + 03.00E-1 4.00E-1 30 2.50E + 01.60E+0 1.30E+0 9.00E-1 6.00E-1 4.00E-1 40 3.40E + 03.20E-I-0 2.80E-J-0 2.20E-J-0 1.80E+0 1.30E4-0 9.00E-1 6.00E-1 2.80E-J-0 3.40E + 0 4.40E4-0 5.80E4-0 7.50E-J-0 9.70E + 0 4.10E+0 5.30E+0 6.90E4-0 1.70E-J-0 2.40E-J-0 3.20E4-0 50 70 2.70E+0 3.50E+0 2.20E4-0 3.00E+0 1.20E4-0 1.70E+0 9.00E-1 1.30E+0 6.00E-1 9.00E-1 3.90E+0 5.00E-J-0 9.00E-1 1.30E-J-0 1.90E + 0 2.80E+0 4.20E4-0 100 4.70E+0 2.40E4-0 3.30E+0 1.90E+0 2.70E4-0 6.60E+0 4.00E-J-0 140 8.40E+0 1.14E4-1 9.00E+0 6.10E-J-0 5.20E+0 4.20E+0 3.70E+0 5.30E+0 8.10E+0 1.40E+1 8.00E4-0 6.70E4-0 5.60E-J-0 7.60E + 0 200 1.09E+14.40E-I-0 4.40E-1-0 6.10E+0 9.10E+0 1.54E4-1 1.53E4-1 2.25E + 1 1.47E4-1 2.16E+1 1.31E4-1 1.94E-J-1 300 1.08E+19.10E + 0500 1.60E4-1 $\begin{array}{r} 1\,.\,3\,5\,E\,{+}\,1\\ 2\,.\,3\,3\,E\,{+}\,1 \end{array}$ 1.11E + 16.50E4-0 1000 3.89E+1 3.75E+13.36E4-1 2.77E + 11.91E4-1 1.17E+1

$O \rightarrow Be$

Sputtering yield of Be by O z1 = 8, ml = 16.00, z2 = 4, m2 = 9.01, sbe=3.38 eV, rho=1.80 g/cm**3 ef=0.95 eV, esb = 1.00 eV, ca=1.00, kkO=kkOr=2, kdeel = kdee2=3, ipot=ipotr = 1 (KrC) program : trvmc only low fluence! ne=19, na= 1

Eq(eV)	0°
18	4.89e-6
20	1.36e-5
22	3.03e-5
25	9.18e-5
30	3.71e-4
40	2.16e-3
45	4.03e-3
50	6.41e-3
60	1.34e-2
70	2.22e-2
100	6.06e-2
140	1.02e-1
200	1.65e-1
300	2.35e-1
500	3.50e-1
1000	4.97e-1
2000	5.81e-1
5000	6.10e-1
10000	5.24e-1

Sputtered energy of Be by O ne=10, na= 1

$E_0(eV)$	0°	
18	1.71e-7	
20	4.99e-7	
22	1.19e-6	
25	3.72e-6	
30	1.54e-5	
40	8.78e-5	
45	1.60e-4	
50	2.46e-4	
60	4.80e-4	
70	7.55e-4	

Particle reflection coefficient of O backscattered from Be zl=8, ml=16.00, z2=4, m2=9.01, sbe=3.38 eV, rho=1.80 g/cm**3 ef=0.95 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program : trvme only low fluence! ne=10, na= 1

E ₀ (eV)	0°
18	4.20e-8
20	2.24e-7
22	1.12e-6
25	3.40e-6
30	1.05e-5
40	2.57e-5
45	3.85e-5
50	5.60e-5
60	5.80e-5
70	3.00e-5

Energy reflection coefficient of O backscattered from Be $ne\!=\!10, \ na\!=\!1$

E ₀ (eV)	0°
18	1.70e-9
20	8.69e-9
22	4.52e-8
25	1.34e-7
30	3.68e-7
40	9.16e-7
45	1.18e-6
50	1.64e-6
60	1.30e-6
70	1.41e-6

Average depth (mean range) in \ddot{A} of O implanted in Be $ne=10,\ na=-1$

$E_0(eV)$	0°
18	1.62e+0
20	1.80e+0
22	1.97e+0
25	2.22ed-0
30	2.60e+0
40	3.32e+0
45	3.65e-{-0
50	3.96e+0
60	4.57e+0
70	5.13e4-0
Ne -> Be

Sputtering yield of Be by Ne zl = 10, ml= 20.18, z2= 4. m2= 9.01. sbe=3.38 eV. rho=1.80 g/cm**3 ef=0.20 eV. esb=0.00 eV. ca=1.00. kk0=kk0r=2, kdeel = kdee2=3. ipot=ipotr=1 (KrC) program : trvmc ne=26, na= 9

E ₀ (eV)	0°	15 ^u	30°	45 ^u	55°	65 ^u	75°	80 ^u	85°
10			4.40e-7			9.78e-6	6.67e-6	2.08e-6	
11			3.38e-6	3.66e-5	4.64e-5	4.27e-5	2.45e-5	7.14e-6	1.33e-7
12		5.59e-8	1.18e-5	8.78e-5	1.10e-4	1.26e-4	7.28e-5	2.15e-5	9.00e-7
13	7.45e-9	3.13e-7	2.83e-5	1.62e-4	2.33e-4	3.24e-4	1.81e-4	4.81e-5	4.00e-7
14	3.91e-8	1.07e-6	5.68e-5	2.68e-4	4.62e-4	7.00e-4	3.57e-4	9.21e-5	2.50e-6
15	1.20e-7	2.14e-6	9.76e-5	4.38e-4	8.77e-4	1.36e-3	6.33e-4	1.56e-4	3.52e-6
17	8.18e-7	1.14e-5	2.38e-4	1.07e-3	2.61e-3 '	3.69e-3	1.47e-3	3.45e-4	9.40e-6
20	5.80e-6	4.91e-5	6.31e-4	3.59e-3	8.54e-3	1.04e-2	3.59e-3	8.33e-4	2.13e-5
22	1.54e-5	1.07e-4	1.14e-3	6.69e-3	1.49e-2	1.67e-2	5.51e-3	1.20e-3	3.43e-5
25	4.73e-5	2.66e-4	2.53e-3	1.41e-2	2.79e-2	2.88e-2	8.96e-3	1.99e-3	5.78e-5
30	1.99e-4	8.77e-4	7.12e-3	3.32e-2	5.81e-2	5.47e-2	1.63e-2	3.52e-3	1.03e-4
35	5.66e-4	2.16e-3	1.47e-2	6.01e-2	9.45e-2	8.59e-2	2.59e-2	5.42e-3	1.61e-4
40	1.28e-3	4.28e-3	2.55e-2	9.16e-2	1.38e-1	1.23e-1	3.64e-2	7.64e-3	2.23e-4
45	2.44e-3	7.47e-3	3.91e-2	1.28e-1	1.81e-1	1.62e-1	4.91e-2	1.00e-2	2.82e-4
50	4.08e-3	1.16e-2	5.44e-2	1.64e-l	2.32e-1	2.03e-1	6.09e-2	1.27e-2	3.49e-4
60	9.11e-3	2.24e-1	8.93e-2	2.44e-1	3.34e-1	2.90e-1	9.01e-2	1.85e-2	4.86e-4
70	1.63e-2	3.61e-2	1.26e-1	3.18e-1	4.35e-1	3.82e-1	1.23e-1	2.53e-2	6.19e-4
80	2.75e-2								
100	4.51e-2	8.23e-2	2.26e-1	5.12e-1	7.02e-1	6.51e-l	2.25e-1	4.84e-2	1.09e-3
150	9.80e-2	1.55e-l	3.57e-1	7.56e-1	1.06e-0	1.07e-0	4.41e-1	1.03e-1	2.13e-3
200	1.50e-1	2.20e-1	4.58e-1	9.36e-1	1.33e-0	1.43e-0	6.80e-1	1.716-1	3. 33e-3
300	2.40e-1	3.27e-1	6.10e-1	1.18e-0	1.71e-0	2.03e-0	1.19e-0	3.50e-1	7.10e-3
500	3.72e-1	4.72e-1	7.98e-1	1.47e-0	2.17e-0	2.83e-0	2.18e-0	8.37e-1	2.11e-2
700	4.58e-1	5.67e-1	9.13e-1	1.64e-0	2.44e-0	3.33e-0	3.04e-0	1.43e-0	4.59e-2
1000	5.44e-1	6.56e-l	1.02e-0	1.80e-0	2.68e-0	3.81e-0	4.00e-0	2.33e-0	1.12e-1
3000	7.00e-1								

Sputtered	energy	of	Be	by	Ne
ne=24, n	a= 9				

Eo(eV)	0°	15 ^u	30°	45°	55°	65 ^u	75 ^u	80°	85°
10	-		1.19e-8			1.10e-6	1.01e-6	3.08e-7	
11			1.27e-7	2.37e-6	4.08e-6	5.07e-6	3.67e-6	1.12e-6	1.96e-8
12		1.52e-9	4.90e-7	6.11e-6	1.05e-5	1.58e-5	1.11e-5	3.49e-6	1.49e-7
13	1.4e-10	8.29e-9	1.26e-6	1.21e-5	2.39e-5	4.26e-5	2.82e-5	7.95e-6	5.45e-8
14	9.3e-10	2.71e-8	2.73e-6	2.11e-5	4.96e-5	9.50e-5	5.78e-5	1.56e-5	4.46e-7
15	2.47e-9	7.18e-8	4.86e-6	3.64e-5	9.81e-5	1.91e-4	1.05e-4	2.73e-5	5.54e-7
17	2.32e-8	3.97e-7	1.30e-5	9.73e-5	3.19e-4	5.61e-4	2.64e-4	6.26e-5	1.46e-6
20	1.78e-7	1.89e-6	3.83e-5	3.67e-4	1.14e-3	1.73e-3	6.77e-4	1.58e-4	3.26e-6
22	4.86e-7	4.33e-6	7.41e-5	7.17e-4	2.08e-3	2.87e-3	1.08e-3	2.35e-4	5.25e-6
25	1.54e-6	1.17e-5	1.75e-4	1.59e-3	4.05e-3	5.11e-3	1.80e-3	3.99e-4	8.90e-6
30	7.04e-6	4.04e-5	5.35e-4	3.91e-3	8.69e-3	1.0le-2	3.37e-3	6.97e-4	1.52e-5
35	2.01e-5	1.04e-4	1.13e-3	7.13e-3	1.43e-2	1.60e-2	5.35e-3	1.06e-3	2.26e-5
40	4.63e-5	2.08e-4	1.96e-3	1.09e-2	2.09e-2	2.28e-2	7.57e-3	1.48e-3	2.96e-5
, 45	8.74e-5	3.61e-4	2.98e-3	1.51e-2	2.73e-2	3.00e-2	9.96e-3	1.87e-3	3.63e-5
50	1.44e-4	5.52e-4	4.08e-3	1.88e-2	3.43e-2	3.72e-2	1.22e-2	2.35e-3	4.27e-5
60	3.10e-4	1.03e-3	6.37e-3	2.69e-2	4.74e-2	5.10e-2	1.75e-2	3.30e-3	5.48e-5
70	5.29e-4	1.58e-3	8.64e-3	3.35e-2	5.88e-2	6.47e-2	2.30e-2	4.29e-3	6.36e-5
100	1.32e-3	3.17e-3	1.35e-2	4.65e-2	8.23e-2	9.57e-2	3.81e-2	7.22e-3	9.03e-5
150	2.53e-3	5.16e-3	1.78e-2	5.56e-2	9.96e-2	1.28e-1	6.43e-2	1.35e-2	1.34e-4
200	3.47e-3	6.48e-3	1.97e-2	5.86e-2	1.04e-1	1.44e-1	8.68e-2	2.04e-2	1.86e-4
300	4.67e-3	7.95e-3	2.15e-2	5.88e-2	1.05e-l	1.58e-1	1.23e-1	3.66e-2	3.37e-4
500	5.69e-3	8.89e-3	2.18e-2	5.56e-2	9.89e-2	1.60e-1	1.63e-1	7.05e-2	9.18e-4
700	5.96e-3	9.06e-3	2.11e-2	5.23e-2	9.31e-2	1.53e-1	1.82e-1	9.99e-2	1.96e-3
1000	5.97e-3	8.85e-3	2.00e-2	4.86e-2	8.65e-2	1.45e-l	1.90e-1	1.33e-1	4.85e-3

33

Ne -> Be

Particle	reflection	coefficient	of Ne b	backscattered	from	Be		
z1 = 10,	m1= 20.18	$3, z_2 = 4, n$	$n^2 = 9.01$	l. sbe=3.38	eV. rho	b = 1.80 g/cm	**3	
ef = 0.20	eV. esb=0	.00 eV, ca	=1.00.	kk0 = kk0r=2	kdeel	= k dee 2 = 3.	ipot=ipotr=l	(KrC)
program	: trvmc							
ne=24.	na= 9							

$E_0(eV)$	0°	15°	30°	45 ^u	55°	65°	75°	80°	85°
10	2.81E-3	1.01E-2	5.76E-2	2.62E-1	5.23E-1	8.09E-1	9.74E-1	9.97E-1	1.00E + 0
11	2.16E-3	8.46E-3	5.28E-2	2.55E-1	5.18E-1	8.08E-1	9.74E-1	9.97E-1	1.00E+0
12	1.64E-3	7.08E-3	4.88E-2	2.48E-1	5.12E-1	8.07E-1	9.74E-1	9.97E-1	1.00E4-0
13	1.28E-3	5.97E-3	4.54E-2	2.41E-1	5.08E-1	8.05E-1	9.75E-1	9.97E-1	1.00E4-0
14	1.00E-3	5.11E-3	4.25E-2	2.36E-1	5.03E-1	8.04E-1	9.75E-1	9.97E-1	1.00E4-0
15	7.95E-4	4.38E-3	4.01E-2	2.31E-1	4.99E-1	8.02E-1	9.75E-1	9.97E-1	1.00E + 0
17	5.15E-4	3.38E-3	3.62E-2	2.22E-1	4.91E-1	7.99E-1	9.75E-1	9.97E-1	1.00E4-0
20	2.90E-4	2.48E-3	3.20E-2	2.11E-1	4.80E-1	7.94E-1	9.76E-1	9.97E-1	1.00E + 0
22	2.09E-4	2.08E-3	2.99E-2	2.05E-1	4.74E-1	7.91E-1	9.75E-1	9.98E-1	1.00E + 0
25	1.37E-4	1.69E-3	2.71E-2	1.96E-1	4.64E-1	7.85E-1	9.75E-1	9.98E-1	1.00E+0
30	8.62E-5	1.34E-3	2.37E-2	1.84E-1	4.48E-1	7.75E-1	9.75E-1	9.98E-1	1.00E4-0
35	7.06E-5	1.14E-3	2.10E-2	1.71E-1	4.32E-1	7.64E-1	9.73E-1	9.98E-1	1.00E+0
40	6.03E-5	1.03E-3	1.90E-2	1.62E-1	4.15E-1	7.52E-1	9.72E-1	9.98E-1	1.00E + 0
45	5.62E-5	8.75E-4	1.71E-2	1.50E-1	4.03E-1	7.41E-1	9.70E-1	9.98E-1	1.00E4-0
50	5.09E-5	8.22E-4	1.57E-2	1.41E-1	3.87E-1	7.29E-1	9.69E-1	9.97E-1	1.00E+0
60	4.43E-5	6.54E-4	1.32E-2	1.25E-1	3.59E-1	7.05E-1	9.64E-1	9.97E-1	1.00E4-0
70	3.79E-5	5.71E-4	1.13E-2	1.11E-1	3.33E-1	6.81E-1	9.59E-1	9.97E-1	1.00E+0
100	2.43E-5	3.80E-4	7.60E-3	8.29E-2	2.71E-1	6.11E-1	9.42E-1	9.96E-1	1.00E4-0
150	2.08E-5	2.71E-4	5.22E-3	5.69E-2	2.02E-1	5.17E-1	9.07E-1	9.92E-1	1.00E+0
200	1.58E-5	2.22E-4	3.79E-3	4.35E-2	1.60E-1	4.45E-1	8.68E-1	9.86E-1	1.00E+0
300	1.46E-5	1.76E-4	2.97E-3	3.13E-2	1.14E-1	3.45E-1	7.86E-1	9.69E-1	1.00E+0
500	1.75E-5	1.47E-4	2.17E-3	2.19E-2	7.81E-2	2.43E-1	6.53E-1	9.18E-1	1.00E4-0
700	1.95E-5	1.34E-4	1.81E-3	1.74E-2	6.32E-2	2.00E-1	5.55E-1	8.59E-1	9.99E-1
1000	1.33E-5	1.29E-4	1.52E-3	1.38E-2	5.13E-2	1.61E-1	_4.64E-1	7.69E-1	9.97E-1

Energy	reflection	coefficient	of Ne backscattered	from	Be
ne = 24.	na = 9				

$E_0(eV)$	0°	15°	30°	45°	55°	65°	75°	80°	85°
10	1.04E-7	1.43E-5	8.08E-4	1.46E-2	6.57E-2	2.11E-1	4.82E-1	6.48E-1	7.99E-1
11	1.17E-7	1.60E-5	8.64E-4	1.53E-2	6.81E-2	2.16E-1	4.91E-1	6.57E-1	8.09E-1
12	1.33E-7	1.78E-5	9.09E-4	1.59E-2	7.10E-2	2.21E-1	5.00E-1	6.65E-1	8.17E-1
13	1.62E-7	1.93E-5	9.46E-4	1.65E-2	7.19E-2	2.25E-1	5.07E-1	6.73E-1	8.25E-1
14	2.18E-7	2.09E-5	9.76E-4	1.69E-2	7.35E-2	2.29E-1	5.14E-1	6.80E-1	8.31E-1
15	2.96E-7	2.25E-5	1.00E-3	1.73E-2	7.48E-2	2.32E-1	5.20E-1	6.86E-1	8.37E-1
17	4.76E-7	2.57E-5	1.04E-3	1.78E-2	7.71E-2	2.38E-1	5.31E-1	6.98E-1	8.48E-1
20	6.38E-7	2.86E-5	1.07E-3	1.83E-2	7.93E-2	2.45E-1	5.45E-1	7.13E-1	8.61E-1
22	7.13E-7	2.90E-5	1.08E-3	1.84E-2	8.01E-2	2.48E-1	5.52E-1	7.21E-1	8.68E-1
25	6.66E-7	2.83E-5	1.07E-3	1.84E-2	8.11E-2	2.52E-1	5.61E-1	7.31E-1	8.77E-1
30	7.03E-7	2.62E-5	1.01E-3	1.81E-2	8.11E-2	2.55E-1	5.73E-1	7.46E-1	8.89E-1
35	7.21E-7	2.38E-5	9.43E-4	1.74E-2	7.99E-2	2.57E-1	5.81E-1	7.56E-1	8.97E-1
40	6.93E-7	2.18E-5	8.68E-4	1.66E-2	7.82E-2	2.55E-1	5.87E-1	7.65E-1	9.04E-1
45	6.30E-7	1.84E-5	7.71E-4	1.57E-2	7.67E-2	2.54E-1	5.91E-1	7.72E-1	9.10E-1
50	5.49E-7	1.69E-5	7.06E-4	1.49E-2	7.43E-2	2.52E-1	5.94E-1	7.77E-1	9.15E-1
60	4.51E-7	1.25E-5	5.78E-4	1.31E-2	6.92E-2	2.46E-1	5.97E-1	7.85E-1	9.23 E-1
70	3.56E-7	1.03E-5	4.82E-4	1.16E-2	6.41E-2	2.38E-1	5.95E-1	7.90E-1	9.29E-1
100	2.39E-7	6.24E-6	2.94E-4	8.20E-3	5.14E-2	2.12E-1	5.87E-1	7.99E-1	9.39E-1
150	1.60E-7	4.06E-6	1.70E-4	5.11E-3	3.51E-2	1.75E-1	5.57E-1	7.96E-1	9.48E-1
200	9.92E-8	2.85E-6	1.17E-4	3.53E-3	2.66E-2	1.45E-1	5.23E-1	7.87E-1	9.52E-1
300	8.47E-8	2.27E-6	8.25E-5	2.27E-3	1.70E-2	1.04E-1	4.55E-1	7.58E-1	9.55 E-1
500	1.10E-7	1.96E-6	5.83E-5	1.44E-3	1.01E-2	6.35E-2	3.50E-1	6.89E-1	9.53E-1
700	1.29E-7	1.91E-6	4.95E-5	1.10E-3	7.62E-3	4.85E-2	2.78E-1	6.19E-1	9.49E-1
1000	1.29E-7	2.03E-6	4.40 E-5	8.63E-4	5.85E-3	3.62E-2	2.16E-1	5.28E-1	9.39E-1

Average depth (mean range) in \ddot{A} of Ne implanted in Be $ne{=}24,\ na{=}9$

$E_{0}(eV)$	0°	15°	30°	45°	55°	65°	75°	80°	85°
10	9.62E-1	8.78E-1	7.76E-1	7.00E-1	6.00E-1	5.00E-1	4.00 E-1	3.00E-1	2.00E-1
11	1.03E+0	9.55E-1	8.42E-1	7.00E-1	6.00E-1	5.00E-1	4.00E-1	3.00E-1	1.00E-1
12	1.11E+0	1.03E+0	9.08E-1	8.00E-1	7.00E-1	6.00E-1	4.00E-1	3.00E-1	1.00E-1
13	1.19E+0	1.11E+0	9.76E-1	8.00 E-1	7.00E-1	6.00E-1	4.00E-1	3.00E-1	2.00E-1
14	1.27E+0	1.19E+0	1.05E+0	9.00E-1	8.00E-1	6.00E-1	5.00E-1	3.00E-1	2.00E-1
15	1.36E+0	1.28E+0	1.12E + 0	9.00E-1	8.00E-1	7.00 E-1	5.00E-1	4.00E-1	2.00E-1
17	1.54E+0	1.46E+0	1.26E+0	1.00E4-0	9.00E-1	7.00 E-1	5.00 E-1	4.00E-1	2.00E-1
20	1.82E+0	1.72E+0	1.48E + 0	1.20E+0	1.00E+0	8.00E-1	6.00E-1	4.00E-1	2.00E-1
22	1.99E4-0	1.88E+0	1.62E+0	1.30E4-0	1.10E + 0	9.00E-1	6.00E-1	5.00E-1	2.00E-1
25	2.23E4-0	2.12E+0	1.82E+0	1.40E+0	1.20E+0	1.00E4-0	7.00E-1	5.00E-1	3.00E-1
30	2.62E+0	2.49E+0	2.14E + 0	1.70E+0	1.40E4-0	1.10E + 0	8.00E-1	6.00E-1	4.00E-1
35	3.00E+0	2.85E + 0	2.45E+0	1.90E+0	1.60E+0	1.30E4-0	9.00E-1	7.00E-1	4.00E-1
40	3.34E+0	3.18E+0	2.74E + 0	2.20E+0	1.80E+0	1.40E+0	1.00E+0	8.00E-1	6.00E-1
45	3.68E+0	3.50E+0	3.02E4-0	2.40E+0	2.00E+0	1.60E + 0	1.10E+0	9.00E-1	5.00E-1
50	3.99E4-0	3.81E+0	3.29E4-0	2.60E+0	2.10E4-0	1.70E+0	1.30E+0	1.00E4-0	5.00E-1
60	4.59E + 0	4.38E+0	3.80E + 0	3.00E+0	2.50E4-0	2.00E + 0	1.50E+0	1.20E+0	8.00 E-1
70	5.15E + 0	4.92E4-0	4.28E4-0	3.40E+0	2.80E+0	2.20E + 0	1.70E+0	1.30E4-0	9.00E-1
100	6.65E+0	6.37E+0	5.57E + 0	4.40E+0	3.60E+0	2.90E4-0	2.30E+0	1.80E+0	1.30E+0
150	8.81E+0	8.46E+0	7.43E + 0	5.90E4-0	4.90E+0	4.00E4-0	3.10E+0	2.60E+0	1.80E+0
200	1.07E + 1	1.03E+1	9.08E + 0	7.30E+0	6.00E4-0	4.90E + 0	3.90E4-0	3.20E+0	2.30E+0
300	1.41E + 1	1.36E+1	1.20E+1	9.70E+0	8.00E+0	6.40E+0	5.10E4-0	4.40E+0	3.50E4-0
500	2.01E4-1	1.94E4-1	1.72E+1	1.40E+1	1.15E+1	9.30E-J-0	7.40E+0	6.60E4-0	5.10E+0
700	2.55E+1	2.46E+1	2.19E+1	1.78E-H	1.47E+1	1.18E4-1	9.30E+0	8.30E4-0	7.00E4-0
1000	3.31E + 1	3.20E+1	2.85E+1	2.32E+1	1.92E+1	1.53E4-1	1.21E+1	_1.09E+1	9.00E+0

Ar -> Be

Sputtering yield of Be by Ar zl = 18, ml= 39.95. z2= 4. m2= 9.01. sbe=3.38 eV. rho=1.80 g/cm**3 ef=0.20 eV, esb = 0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr = 1 (KrC) program : trvmc ne=25, na= 9

Eo(eV)	0°	15 ^u	30°	45 ^u	55 ^u	65°	75°	80 ^u	85°
13				2.60e-7	8.90e-7	8.35e-7	1.07e-6	4.80e-7	
14				2.39e-6	4.69e-6	4.33e-6	5.37e-6	1.91e-6	
15			7.83e-7	2.25e-5	3.14e-5	2.60e-5	1.66e-5	4.82e-6	
16			3.14e-6	4.89e-5	6.85e-5	6.80e-5	4.39e-5	1.23e-5	
17			8.57e-6	8.55e-5	1.25e-4	1.48e-4	9.74e-5	2.85e-5	
18			1.71e-5	1.36e-4	2.12e-4	2.87e-4	1.93e-4	5.23e-5	1.80e-6
20		1.14e-6	4.85e-5	2.93e-4	5.25e-4	8.85e-4	5.55e-4	1.40e-4	3.98e-6
22		4.14e-6	1.15e-4	5.51e-4	1.23e-3	2.25e-3	1.21e-3	3.03e-4	8.70e-6
25	9.80e-7	1.64e-5	2.73e-4	1.40e-3	3.45e-3	6.31e-3	3.02e-3	6.97e-4	2.05e-5
30	1.18e-5	7.63e-5	8.35e-4	5.09e-3	1.25e-2	1.91e-2	8.09e-3	1.84e-3	5.23e-5
35	5.22e-5	2.46e-4	2.24e-3	1.26e-2	2.91e-2	3.99e-2	1.59e-2	3.50e-3	1.05e-4
40	1.48e-4	6.29e-4	4.94e-3	2.48e-2	5.33e-2	6.71e-2	2.63e-2	5.89e-3	1.76e-4
45	3.43e-4	1.30e-3	8.96e-3	4.12e-2	8.22e-2	1.01e-1	3.83e-2	8.57e-3	2.66e-4
50	6.98e-4	2.36e-3	1.44e-2	6.12e-2	1.18e-1	1.38e-1	5.28e-2	1.18e-2	3.50e-4
60	2.02e-3	5.80e-3	2.99e-2	1.10e-1	1.95e-1	2.25e-1	8.65e-2	1.90e-2	5.71e-4
70	4.36e-3	1.13e-2	4.99e-2	1.64e-1	2.82e-1	3.22e-1	1.24e-1	2.82e-2	8.30e-4
100	1.83e-2	3.79e-2	1.24e-1	3.29e-1	5.44e-1	6.30e-1	2.59e-1	5.83e-2	1.72e-3
150	5.72e-2	9.76e-2	2.45e-1	5.65e-l	9.13e-1	1.12e-0	5.23e-1	1.28e-1	3.62e-3
200	1.01e-1	1.59e-1	3.51e-1	7.56e-1	1.20e-0	1.54e-0	8.81e-1	2.15e-1	6.01e-3
300	1.91e-1	2.69e-1	5.28e-1	1.05e-0	1.64e-0	2.22e-0	1.40e-0	4.23e-1	1.23e-2
500	3.49e-1	4.49e-1	7.86e-1	1.46e-0	2.24e-0	3.21e-0	2.58e-0	9.51e-1	3.31e-2
700	4.71e-1	5.87e-1	9.68e-1	1.74e-0	2.65e-0	3.93e-0	3.65e-0	1.60e-0	6.52e-2
1000	6.07e-1	7.36e-1	1.16e-0	2.03e-0	3.07e-0	4.65e-0	5.01e-0	2.64e-0	1.36e-1
3000	9.00e-1								
5000	1.06e-0								

Sputtered energy of Be by Ar ne=23, na=9

$E_0(eV)$	0°	15°	30°	45°	55°	65°	75°	80°	85°
13				9.75e-9	4.49e-8	6.19e-8	9.51e-8	4.58e-8	
14				8.70e-8	2.38e-7	3.27e-7	4.68e-7	1.76e-7	
15			1.72e-8	9.43e-7	1.76e-6	2.05e-6	1.67e-6	5.09e-7	
16			8.72e-8	2.17e-6	4.05e-6	5.52e-6	4.45e-6	1.34e-6	
17			2.28e-7	3.98e-6	7.77e-6	1.24e-5	1.00e-5	3.19e-6	
18			4.90e-7	6.61e-6	1.41e-5	2.48e-5	2.03e-5	5.75e-6	1.56e-7
20		2.53e-8	1.55e-6	1.54e-5	3.70e-5	8.09e-5	6.12e-5	1.61e-5	3.80e-7
22		9.68e-8	3.93e-6	3.07e-5	9.34e-5	2.17e-4	1.39e-4	3.60e-5	8.76e-7
25	1.89e-8	4.14e-7	1.03e-5	8.67e-5	3.03e-4	6.52e-4	3.69e-4	8.62e-5	2.10e-6
30	2.75e-7	2.11e-6	3.58e-5	3.56e-4	1.14e-3	2.12e-3	1.06e-3	2.38e-4	5.40e-6
35	1.23e-6	7.52e-6	1.05e-4	9.40e-4	2.76e-3	4.66e-3	2.13e-3	4.62e-4	1.07e-5
40	3.64e-6	2.02e-5	2.45e-4	1.93e-3	5.18e-3	8.02e-3	3.60e-3	7.69e-4	1.76e-5
45	8.67e-6	4.36e-5	4.61e-4	3.23e-3	8.07e-3	1.22e-2	5.21e-3	1.12e-3	2.58e-5
•50	1.78e-5	7.94e-5	7.52e-4	4.83e-3	1.15e-2	1.67e-2	7.21e-3	1.51e-3	3.31e-5
60	5.17e-5	1.99e-4	1.56e-3	8.63e-3	1.90e-2	2.71e-2	1.17e-2	2.42e-3	5.04e-5
70	1.11e-4	3.83e-4	2.55e-3	1.25e-2	2.69e-2	3.81e-2	1.65e-2	3.47e-3	6.78e-5
100	4.26e-4	1.17e-3	5.80e-3	2.29e-2	4.74e-2	6.89e-2	3.24e-2	6.58e-3	1.15e-4
150	1.19e-3	2.68e-3	1.00e-2	3.38e-2	6.83e-2	1.05e-l	5.84e-2	1.27e-2	1.88e-4
200	1.92e-3	3.91e-3	1.28e-2	3.96e-2	7.79e-2	1.27e-l	8.12e-2	1.96e-2	2.62e-4
300	3.09e-3	5.49e-3	1.59e-2	4.48e-2	8.48e-2	1.46e-1	1.18e-1	3.42e-2	4.24e-4
500	4.48e-3	7.27e-3	1.82e-2	4.71e-2	8.64e-2	1.54e-1	1.67e-1	6.55e-2	9.72e-4
700	5.21e-3	7.94e-3	1.90e-2	4.71e-2	8.50e-2	1.53e-1	1.92e-1	9.60e-2	1.80e-3
1000	5.58e-3	8.31e-3	1.91e-2	4.61e-2	8.24e-2	1.48e-1	2.09e-1	1.31e-1	3.89e-3

$Ar \rightarrow Be$

Particle reflection coefficient of Ar backscattered from Be z1 = 18. ml = 39.95. z2= 4, m2 = 9.01. sbe=3.38 eV. rho = 1.80 g/cm**3 ef=0.20 eV. esb=0.00 eV. ca=1.00. kk0=kk0r=2. kdeel=kdee2=3, ipot=ipotr=1 (KrC) program : trvmc ne=24. na= 8

Eq(eV)	15 ^u	30°	45 ^d	55°	65 ^u	75 ^u	80°	85°
10	4.00e-7	1.00e-3	4.73e-2	2.55e-1	6.78e-1	9.67e-1	9.97e-1	1.00e-0
13			4.86e-2	2.69e-1	6.98e-1	9.72e-1	9.98e-1	
14			4.77e-2	2.68e-1	6.99e-1	9.72e-1	9.98e-1	
15		5.69e-4	4.21e-2	2.53e-1	6.85e-1	9.70e-1	9.98e-1	1.00e-0
16		5.24e-4	4.15e-2	2.52e-1	6.86e-1	9.71e-l	9.98e-1	1.00e-0
17		5.Ole-4	4.10e-2	2.51e-1	6.87e-1	9.71e-l	9.98e-1	1.00e-0
18		4.81e-4	4.06e-2	2.51e-1	6.87e-1	9.72e-1	9.98e-1	1.00e-0
20	4.00e-8	4.58e-4	3.99e-2	2.49e-1	6.87e-1	9.72e-1	9.98e-1	1.00e-0
22	2.20e-7	4.57e-4	3.91e-2	2.48e-1	6.86e-l	9.73e-1	9.98e-1	1.00e-0
25	4.00e-7	4.45e-4	3.81e-2	2.44e-1	6.83e-1	9.73e-1	9.98e-1	1.00e-0
30	5.00e-7	4.34e-4	3.62e-2	2.38e-1	6.77e-1	9.73e-1	9.98e-1	1.00e-0
35	4.50e-7	3.98e-4	3.39e-2	2.29e-1	6.68e-1	9.72e-1	9.98e-1	1.00e-0
40	4.67e-7	3.66e-4	3.19e-2	2.20e-1	6.59e-1	9.71e-l	9.98e-1	1.00e-0
45	1.00e-7	3.57e-4	2.99e-2	2.12e-1	6.48e-1	9.70e-1	9.98e-1	1.00e-0
50	3.50e-7	3.11e-4	2.78e-2	2.02e-1	6.37e-1	9.68e-1	9.98e-1	1.00e-0
60	1.00e-6	2.54e-4	2.37e-2	1.85e-1	6.14e-1	9.64e-1	9.98e-1	1.00e-0
70	3.33e-7	2.08e-4	2.05e-2	1.68e-1	5.93e-1	9.61e-l	9.98e-1	1.00e-0
100	1.00e-7	1.32e-4	1.36e-2	1.29e-l	5.27e-1	9.46e-l	9.97e-1	1.00e-0
150		8.09e-5	8.10e-3	8.63e-2	4.30e-1	9.16e-l	9.94e-1	1.00e-0
200		5.63e-5	5.64e-3	6.25e-2	3.58e-1	8.81e-l	9.90e-1	1.00e-0
300		4.07e-5	3.56e-3	3.99e-2	2.61e-1	8.11e-l	9.80e-1	1.00e-0
500		2.90e-5	2.39e-3	2.39e-2	1.67e-l	6.73e-1	9.45e-1	1.00e-0
700		2.05e-5	1.88e-3	1.83e-2	1.24e-1	5.71e-1	8.98e-1	1.00e-0
1000		2.20e-5	1.48e-3	1.40e-2	9.57e-2	4.65e-1	8.23e-1	9.99e-1

Energy reflection coefficient of Ar backscattered from Be $ne{=}24,\ na{=}\ 8$

$B_{o}(eV)$	15°	30°	45°	55°	65°	75°	80°	85°
10		2.36e-6	9.15e-4	1.44e-2	1.03e-1	3.73e-1	5.64e-1	7.65e-1
13			1.Ole-3	1.58e-2	1.11e-1	3.93e-1	5.88e-1	
14			1.05e-3	1.62e-2	1.14e-1	3.99e-1	5.94e-1	
15		4.53e-6	1.18e-3	1.71e-2	1.17e-l	4.04e-1	6.01e-1	7.96e-1
16		4.75e-6	1.21e-3	1.74e-2	1.18e-1	4.09e-1	6.06e-1	8.00e-1
17		5.10e-6	1.24e-3	1.77e-2	1.20e-1	4.14e-1	6.12e-1	8.05e-1
18		5.34e-6	1.26e-3	1.80e-2	1.22e-1	4.18e-1	6.16e-l	8.09e-1
20		5.68e-6	1.30e-3	1.84e-2	1.24e-1	4.25e-1	6.25e-1	8.16e-1
22	1.93e-9	6.03e-6	1.31e-3	1.87e-2	1.26e-1	4.32e-1	6.33e-1	8.22e-1
25	2.96e-9	6.22e-6	1.33e-3	1.90e-2	1.29e-1	4.41e-1	6.44e-1	8.30e-1
30	3.21e-9	6.22e-6	1.30e-3	1.90e-2	1.31e-1	4.52e-1	6.58e-1	8.41e-1
35	2.57e-9	5.74e-6	1.25e-3	1.88e-2	1.33e-1	4.61e-1	6.69e-1	8.51e-1
40	3.75e-9	5.30e-6	1.19e-3	1.83e-2	1.33e-1	4.67e-1	6.78e-1	8.59e-1
45	1.12e-9	5.04e-6	1.13e-3	1.77e-2	1.33e-1	4.72e-1	6.86e-l	8.66e-1
50	1.66e-9	4.12e-6	1.04e-3	1.72e-2	1.31e-1	4.76e-1	6.93e-1	8.72e-1
60	7.99e-9	3.38e-6	8.71e-4	1.57e-2	1.28e-1	4.81e-1	7.03e-1	8.82e-1
70	1.90e-9	2.59e-6	7.43e-4	1.44e-2	1.25e-l	4.84e-1	7.10e-1	8.89e-1
100		1.29e-6	4.59e-4	1.09e-2	1.12e-1	4.81e-1	7.24e-1	9.04e-1
150		6.60e-7	2.31e-4	6.83e-3	8.95e-2	4.65e-1	7.30e-1	9.18e-1
200		4.45e-7	1.38e-4	4.53e-3	7.18e-2	4.40e-1	7.26e-1	9.25e-1
300		2.72e-7	6.98e-5	2.38e-3	4.84e-2	3.93e-1	7.10e-1	9.31e-1
500		1.92e-7	3.88e-5	1.10e-3	2.59e-2	3.02e-1	6.59e-1	9.34e-1
700		8.85e-8	2.92e-5	7.54e-4	1.64e-2	2.41e-1	6.02e-1	9.32e-1
1000		7.30e-8	2.16e-5	5.30e-4	1.14e-2	1.80e-1	5.25e-1	9.25e-1

Average depth (mean range) in \tilde{A} of Ar implanted in Be ne=22, na= 9

$B_0(eV)$	0°	15°	30°	45°	55°	65°	75°	80°	85°
10	1.30E + 0	1.30E+0	1.20E-J-0	1.00E+0	8.00E-1	6.00E-1	5.00E-1	4.00E-1	2.00E-1
15	2.10E+0	2.00E+0	1.80E + 0	1.30E+0	1.10E+0	8.00E-1	6.00E-1	5.00E-1	4.00E-1
16	2.30E4-0	1.90E4-0	1.80E4-0	1.40E+0	1.10E+0	9.00E-1	7.00 E-1	5.00E-1	2.00E-1
17	2.40E+0	2.00E4-0	2.00E+0	1.50E+0	1.20E-J-0	9.00E-1	7.00E-1	5.00E-1	2.00 E-1
18	2.50E+0	2.40E+0	2.10E + 0	1.60E+0	1.20E+0	9.00E-1	7.00E-1	6.00 E-1	3.00 E-1
20	2.70E+0	2.60E+0	2.20E + 0	1.70E+0	1.30E+0	1.00E+0	8.00E-1	6.00E-1	4.00E-1
22	2.90E + 0	2.80E+0	2.40E + 0	1.80E+0	1.40E+0	1.10E+0	8.00E-1	6.00E-1	4.00E-1
25	3.30E + 0	3.10E+0	2.70E + 0	2.00E-+-0	1.50E-I-0	1.20E + 0	9.00E-1	7.00E-1	6.00E-1
30	3.70E+0	3.60E+0	3.10E + 0	2.30E4-0	1.80E+0	1.30E + 0	1.00E4-0	8.00E-1	6.00E-1
35	4.20E+0	4.00E4-0	3.50E + 0	2.60E4-0	2.00E+0	1.50E + 0	1.10E4-0	1.00E+0	6.00E-1
40	4.60E+0	4.40E+0	3.80E + 0	2.80E+0	2.20E+0	1.60E4-0	1.20E+0	1.10E+0	8.00E-1
45	5.00E + 0	4.80E+0	4.10E+0	3.10E4-0	2.40E+0	1.80E + 0	1.30E+0	1.10E+0	7.00E-1
50	5.30E-J-0	5.10E+0	4.40E4-0	3.30E-J-0	2.50E+0	1.90E + 0	1.50E4-0	1.20E+0	1.10E+0
60	6.00E+0	5.70E+0	5.00E + 0	3.70E+0	2.90E+0	2.20E + 0	1.70E4-0	1.40E+0	1.00E+0
70	6.60E + 0	6.30E+0	5.50E + 0	4.20E+0	3.20E4-0	2.40E + 0	1.80E+0	1.60E+0	1.10E+0
100	8.20E+0	7.90E+0	6.90E+0	5.30E4-0	4.00E4-0	3.10E4-0	2.30E+0	1.90E4-0	1.40E-I-0
150	1.04E + 1	1.00E+1	8.80E+0	6.80E4-0	5.30E4-0	4.00E + 0	3.00E+0	2.60E+0	1.40E+0
200	1.23E + 1	1.19E+1	1.04E+1	8.10E+0	6.30E + 0	4.70E + 0	3.60E+0	3.10E4-0	2.80E4-0
300	1.56E4-1	1.50E+1	1.33E+1	1.05E+1	8.20E-J-0	6.10E-f-0	4.70E4-0	4.00E+0	4.20E+0
500	2.11E+1	2.03E+1	1.80E+1	1.43E+1	1.13E+1	8.40E4-0	6.40E+0	5.60E+0	4.40B+0
700	2.57E-H	2.48E-J-1	2.20E+1	1.76E+1	1.40E+1	1.04E+1	7.70E+0	6.80E + 0	6.00E+0
1000	3.19E + 1	3.07E + 1	2.74E+1	2.20E-H	1.76E + 1	1.31E-H	_9.70E+0	8.50E4-0	_7.10E+0

D -> B

Sputtering yield of B by D zl = 1, ml = 2.01. z2= 5, m2 = 10.81, sbe=5.73 eV. rho=2.35 g/cm**3 ef=0.95 eV. esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr=1 (KrC) program : testvmcx, trspvlcn, TPP 9/82 ne=10. na=14

~~Eo(eV)	0°	10°	20 ^u	30°	40°	50 ^u	60°	65 ^u	70°	75°	80°	82 ^b	85°	88°
30	1.17e-3	1.25e-3	1.47e-3	1.81e-3	2.23e-3	2.29e-3	1.97e-3	1.62e-3	1.15e-3	7.05e-4	3.21e-4			
50	6.66e-3	6.78e-3	7.80e-3	1.00e-2	1.32e-2	1.78e-2	2.22e-2	2.23e-2	2.03e-2	1.40e-2	5.85e-3		1.17e-3	
100	1.46e-2	1.57e-2	1.78e-2	2.24e-2	3.23e-2	5.10e-2	7.69e-2	8.90e-2	9.82e-2	8.32e-2	3.79e-2		3.69e-3	
200	1.95e-2													
400	2.05e-2		2.60e-2	3.67e-2	5.24e-2	7.93e-2	1.29e-1		2.08e-1	2.53e-1	2.41e-1		3.82e-2	
500	1.87e-2	2.16e-2	2.57e-2	3.52e-2	5.18e-2	7.86e-2	1.28e-1		2.06e-1	2.55e-1	2.68e-1	2.20e-1	6.09e-2	
1000	1.66e-2													
5000	6.97e-3													
8000	5.43e-3		6.36e-3		1.19e-2	1.77e-2	2.88e-2		5.79e-2	8.04e-2	1.30e-1		2.41e-1	1.73e-1
100000											1.34e-2		3.90e-2	8.93e-2

Sputtered energy of B by D program : testvmcx, trspvlcn ne=10, na=14

$E_0 (eV)$	0°	10°	20°	30°	40°	50°	60°	65°	70°	75°	80°	82°	85°	88°
30	6.71e-5	7.42e-5	8.99e-5	1.28e-4	1.68e-4	1.90e-4	1.78e-4	1.54e-4	1.09e-4	7.02e-5	3.26e-5			
50	4.48e-4	4.76e-4	5.76e-4	7.99e-4	1.11e-3	1.62e-3	2.29e-3	2.41e-3	2.35e-3	1.75e-3	8.24e-4		1.72e-4	
100	9.26e-4	9.78e-4	1.13e-3	1.50e-3	2.22e-3	3.88e-3	6.45e-3	8.21e-3	1.02e-2	9.74e-3	5.10e-3		5.83e-4	
200	9.17e-4													
400	6.45e-4		8.92e-4	1.33e-3	1.96e-3	3.29e-3	5.80e-3		1.06e-2	1.38e-2	1.51e-2		3.22e-3	
500	4.95e-4	6.28e-4	7.28e-4	1.08e-3	1.66e-3	2.90e-3	5.37e-3		9.45e-3	1.22e-2	1.43e-2	1.26e-2	4.39e-3	
1000	3.05e-4													
5000	3.68e-5													
8000	1.91e-5		2.87e-5		8.94e-5	1.40e-4	2.56e-4		6.29e-4	8.34e-4	1.50e-3		2.52e-3	1.61e-3
100000										4.95e-5		1.59e-4	2.72e-4	

											0.0.0	0.00	0.50	0.00
Eo(eV)	0°	10°	20°	30°	40°	50°	60°	65°	70°	75°	80°	820	85°	88°
30	2.68e-1	2.76e-1	3.02e-1	3.48e-1	4.17e-1	5.25e-l	6.75e-1	7.63e-1	8.54e-1	9.29e-1	9.76e-1			
50	2.27e-1	2.35e-1	2.58e-1	2.96e-1	3.54e-1	4.47e-1	5.84e-1	6.79e-1	7.87e-1	8.96e-1	9.69e-l		9.95e-1	
100	1.86e-l	1.90e-1	2.09e-1	2.42e-1	2.91e-1	3.67e-1	4.79e-1	5.59e-l	6.63e-1	8.04e-1	9.39e-1		9.96e-1	
200	1.48e-1													
400	1.11e-1		1.29e-l	1.54e-1	1.96e-1	2.59e-1	3.43e-1		4.76e-1	5.73e-1	7.33e-1		9.74e-1	
500	9.68e-2	1.05e-l	1.13e-1	1.39e-1	1.86e-l	2.43e-1	3.30e-1		4.56e-1	5.46e-1	6.95e-l	7.93e-1	9.59e-1	
1000	6.40e-2													
5000	1.14e-2													
8000	5.96e-3		8.01e-3		2.04e-2	4.26e-2	9.04e-2		1.96e-1	2.85e-1	4.03e-1		5.83e-1	8.74e-1
100000											7.82e-2		2.71e-1	5.28e-1

coefficient of D backscattered from B ----E₀ (eV) 0° 10° 20° 30° 40° • 50° 60° 65° 70°

30	9.67e-2	1.02e-1	1.18e-1	1.48e-1	2.00e-1	2.93e-1	4.46e-1	5.48e-1	6.67e-1	7.82e-1	8.71e-1			
50	7.97e-2	8.37e-2	9.74e-2	1.20e-1	1.61e-1	2.34e-1	3.66e-1	4.70e-1	6.02e-1	7.53e-1	8.79e-1		9.40e-1	
100	6.30e-2	6.50e-2	7.53e-2	9.33e-2	1.25e-l	1.77e-l	2.73e-1	3.54e-1	4.70e-1	6.49e-1	8.48e-1		9.56e-1	
200	4.83e-2													
400	3.43e-2		4.21e-2	5.37e-2	7.54e-2	1.11e-1	1.69e-l		2.81e-1	3.83e-1	5.83e-1		9.29e-1	
500	2.95e-2	3.19e-2	3.58e-2	4.75e-2	6.95e-2	1.02e-1	1.59e-1		2.61e-1	3.55e-1	5.35e-1	6.66e-l	9.07e-1	
1000	1.78e-2													
5000	2.57e-3													
8000	1.29e-3		1.78e-3		4.20e-3	9.06e-3	2.11e-2		5.59e-2	9.68e-2	1.72e-l		3.41e-1	7.63e-1
100000											6.80e-3		3.98e-2	1.78e-1
	-			-			-	-	-		-			

85°

'75°

80°

82°

88°

Average depth (mean range) of D implanted in B ne=10, na=14

_Eo(eV)	0°	10°	20°	30°	40°	50°	60°	65°	70 ^u	75°	80 ^u	82°	85°	88°
30	8.57e4-0	8.52e + 0	8.37e+0	8.13e+0	7.85e+0	7.51e4-0	7.18e-{-0	7.03e4-0	6.79e+0	6.62e-}-0	6.41e+0			
50	1.29e+l	1.28e- -1	1.26e+1	1.22e+1	1.17e+l	1.11e + 1	1.06e- -1	1.03e+1	1.00e+1	9.79e+0	9.43e+0		9.11e+0	
100	2.31e+1	2.29e+1	2.25e-f-l	2.17e+l	2.07e+1	1.96e + 1	1.85e+l	1.80e+1	1.74e + 1	1.71e+1	1.67e+l		1.64e4-1	
200	4.28e-)-1													
400	S.17e+1		7.87e+1	7.55e+1	7.11e + 1	6.64e + 1	6.18e+1		5.73e + 1	5.58e+1	5.44e+1		5.27e + 1	
500	1.01e+2	1.00e + 2	9.76e+1	9.33e4-1	8.75e+1	8.16e + 1	7.54e+1		7.00e-(-1	6.73e + 1	6.60e + 1	6.51e+l	6.57e + 1	
1000	1.98e+2													
5000	9.16e+2													
8000	1.38e+3		1.30e+3		1.07e + 3	9.25e+2	7.68e+2		6.27e+2	5.65e + 2	5.17e+2		4.86e+2	4.80e+2
100000											1.49e- -3		1.07e + 3	9.25e+2

D -+B

D on B. Maxwellian velocity distribution, sheath potential 3 kT zl= 1, ml= 2.00, z2= 5. m2 = 10.81. sbe=5.73 eV. rho=2.35 g/cm**3 ef=0.98 eV. esb=1.00 eV, ca=1.00. kk0=kk0r=2. kdeel = kdee2=3. ipot=ipotr= 1 (KrC) program : testvmcx ne=12

.

kT(eV)	Y	Ye	Esp	RN	Re	Eb	range
3	6.34e-5	8.86e-6	2.10e + 0	4.15e-1	1.82e-1	6.58e + 0	4.85e + 0
4	3.81e-4	4.76e-5	2.50e4-0	3.78e-1	1.64e-l	8.64e + 0	6.02e+0
5	1.21e-3	1.36e-4	2.81e + 0	3.51e-1	1.49e-l	1.06e + 1	7.14e+0
10	9.12e-3	8.30e-4	4.55e + 0	2.82e-1	1.13e-1	2.01e + 1	1.23e4-1
20	2.14e-2	1.47e-3	6.86e4-0	2.27e-l	8.70e-2	3.83e + 1	2.19e + 1
30	2.64e-2	1.58e-3	8.98e4-0	2.05e-1	7.69e-2	5.64e + 1	3.14e + 1
50	3.10e-2	1.44e-3	1.16e + 1	1.74e-1	6.30e-2	9.04eH-1	4.95e + 1
100	3.12e-2	9.72e-4	1.56e + 1	1.34e-1	4.52e-2	1.69e + 2	9.48e + 1
200	2.63e-2	5.84e-4	2.22e + 1	9.36e-2	2.88e-2	3.08e + 2	1.83e+2
500	1.64e-2	1.69e-4	2.57e+1	4.44e-2	1.15e-2	6.50e + 2	4.36e + 2
1000	1.10e-2	7.26e-5	3.31e + 1	2.09e-2	4.67e-3	1.12e+3	8.19e + 2
2000	6.35e-3	3.02e-5	4.75e4-1	7.85e-3	1.61e-3	2.05e+3	1.47e+3

Sputtering yield of B by B zl = 5. ml = 10.81. z2= 5, m2 = 10.81. sbe=5.73 eV. rho=2.35 g/cm**3 ef=5.68, esb=5.73, ca=1.00. kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=l (KrC) program: testvmcx, trspvmc. TPP 9/82 ne= 9. na=13

									1				-
, Eo(eV) ,	0 "	15 ^u	20 ^u	30 ^u	40 ^u	45°	50 ^u	60 ^u	65°	70°	75°	80°	85°
50	2.56e-3												
70	7.84e-3												
100	2.10e-2												
200	7.44e-2												
500	1.52e-1												
1000	2.12e-1	2.80e-1		4.56e-1		8.27e-1		1.50e-0	1.79e-0	2.04e-0	2.09e-0	1.55e-0	3.41e-1
2000	2.50e-1		3.44e-1		6.75e-1		1.02e-0	1.54e-0		2.29e-0		2.51e-0	8.19e-1
5000	2.13e-1												
10000	2.10e-1												

Sputtered energy of B by B program: testvmcx. trspvmc ne= 9. na=13

E ₀ (eV)	0°	15°	20°	30°	40°	45°	50°	60°	65°	70°	75°	80°	85°
50	1.29e-4												
70	3.74e-4												
100	8.40e-4												
200	2.40e-3												
500	3.39e-3												
1000	3.51e-3	5.56e-3		1.28e-2		3.14e-2		7.18e-2	9.02e-2	1.11e-1	1.26e-l	1.09e-1	2.95e-2
2000	2.82e-3		5.23e-3		1.70e-2		3.04e-2	5.34e-2		8.90e-2		1.11e-1	4.47e-2
5000	1.53e-3												
10000	9.83e-4												
				•									

Particle reflection coefficient of B backscattered from B zl=5, ml=10.81, z2=5, m2=10.81. sbe=5.73 eV. rho=2.35 g/cm**3 ef=5.68, esb=5.73, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx, trspvmc ne=9, na=13

				-						-			
$E_0 (eV)$	0°	15°	20°	30°	40°	45°	50°	60°	65°	70°	75°	80°	85°
50	4.45e-4												
70	8.65e-4												
100	1.88e-3												
200	3.90e-3												
500	5.17e-3												
1000	4.45e-3	7.30e-3		2.41e-2		5.72e-2		1.59e-1	2.20e-1	3.17e-1	4.54e-1	6.82e-1	9.51e-1
2000	2.85e-3		6.20e-3		3.03e-2		6.48e-2	1.29e-1		2.64e-1		5.57e-1	8.93e-1
5000	2.00e-3												
10000	7.00e-4												

Energy reflection coefficient of B backscattered from B ne=9, na=13

		_		-		-			_				
$E_0 (eV)$	0°	15 ^u	20 ^u	30 ^u	40 ^u	45 ^u	50 ^u	60 ^u	65 ^u	70°	75 ^u	80 ^u	85°
50	3.05e-5												
70	5.38e-5												
100	1.23e-4												
200	1.98e-4												
500	2.55e-4												
1000	2.60e-4	5.38e-4		2.61e-3		1.04e-2		4.49e-2	7.82e-2	1.34e-1	2.43e-1	4.82e-1	8.52e-1
2000	1.57e-4		5.40e-4		4.16e-3		1.29e-2	3.52e-2		1.06e-l		3.56e-1	7.85e-1
5000	1.07e-4												
10000	5.68e-5												

Average depth (mean range) in \ddot{A} of B implanted in B $ne=\ 9,\ na=13$

				-					-		100 C		
E ₀ (eV)	0°	15°	20°	30°	40°	45°	50°	60°	65°	70°	75°	80°	85°
50	3.67e+0												
70	4.77e + 0											1 1	
100	6.25e+0											1 1	
200	1.05e+1											1 1	
500	2.33e + 1											1 1	
1000	4.13e + 1	3.76e + 1		3.38e+1		2.88e-f-l		2,29e + 1	2.09e+1	1.92e-}-l	1.76e+l	1.62e + 1	1.44e + 1
2000	7.26e-}-l		6.84e+1		5.69e+1		4.97e + 1	4.21e-}-l		3.54e + 1		2.87e + 1	2.76e + 1
5000	1.76e+2											1 1	
10000	3.56e+2											I!	

В В

B on B. Maxwellian velocity distribution, sheath potential 0 kT zl = 5, ml= 10.81, z2= 5, m2= 10.81, sbe=5.73 eV, rbo=2.35 g/cm**3 ef=5.68 eV, esb=5.73 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2 = 3, ipot=ipotr=1 (KrC) program: testvmcx ne=12

kT(eV)	Y	YiS	E sp	R _A r	Re	E fe	range
4	4.51e-4	2.92e-4	5.18e+0	1.58e-3	1.61e-3	8.15e + 0	3.29e-1
5	1.12e-3	6.88e-4	6.11e + 0	3.89e-3	3.67e-3	9.41e4-0	4.34e-1
7	4.07e-3	2.16e-3	7.31e+0	1.19e-2	1.04e-2	1.22e+1	6.35e-1
10	1.18e-2	5.21e-3	8.87e4-0	2.93e-2	2.30e-2	1.57e+l	9.17e-1
20	5.67e-2	1.74e-2	1.23e + 1	9.08e-2	5.91e-2	2.60e + 1	1.80e-0
50	2.12e-1	3.70e-2	1.74e+l	1.70e-1	9.17e-2	5.38e + 1	4.27e+0
100	3.90e-1	4.50e-2	2.31e-H	1.87e-1	8.90e-2	9.57e+1	7.76e+0
200	6.02e-1	4.67e-2	3.10e + 1	1.75e-l	7.72e-2	1.76e+2	1.37e + 1
500	8.52e-1	3.84e-2	4.55e-f-l	1.42e-1	5.74e-2	4.09e+2	2.98e + 1
1000	9.66e-l	3.25e-2	6.66e + 1	1.15e-l	4.44e-2	7.64e+2	5.45e + 1
2000	9.76e-1	2.35e-2	9.68e + 1	1.03e-1	3.80e-2	1.48e+3	1.06e+2
5000	8.49e-1	1.30e-2	1.52e+2	7.89e-2	2.69e-2	3.40e+3	2.55e+2

B on B, Maxwellian velocity distribution, sheath potential 3 kT zl = 5, ml = 10.81, z2 = 5. m2 = 10.81, sbe=5.73 eV, rho=2.35 g/cm**3 ef=5.68 eV, esb=5.73 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr=1 (KrC) program: testvmcx

ne=10

kT(eV)	Y	Уь	E sp	R/v	R _b	E &	range
3	4.69e-4	1.32e-4	4.21e+0	6.34e-4	2.63e-4	6.22e+0	1.07e + 0
5	3.97e-3	9.51e-4	5.99e4-0	4.59e-3	1.60e-3	8.69e+0	1.74e+0
10	2.99e-2	4.70e-3	7.85e + 0	1.71e-2	4.81e-3	1.41e + 1	3.17e+0
20	1.03e-1	1.04e-2	1.01e4-1	2.50e-2	5.30e-3	2.12e + 1	5.51e+0
50	2.38e-1	1.35e-2	1.42e + 1	2.24e-2	3.72e-3	4.16e-f-l	1.13e + 1
100	3.30e-1	1.32e-2	2.00e+1	2.30e-2	3.47e-3	7.52e+1	1.96e+l
200	3.81e-1	1.07e-2	2.81e + 1	1.29e-2	1.97e-3	1.52e+2	3.50e4-1
500	4.03e-1	7.22e-3	4.48e4-1	1.11e-2	1.60e-3	3.60e+2	8.04e+1
1000	3.55e-1	4.50e-3	6.32e+1	7.18e-3	9.66e-4	6.73e+2	1.58e+2
2000	2.88e-1	2.58e-3	8.98e4-1	3.99e-3	5.72e-4	1.44e+3	3.17e+2

B on B, Maxwellian velocity distribution, sheath potential 9 kT zl=s 5, ml= 10.81, z2= 5, m2= 10.81, sbe=5.73 eV, rho=2.35 g/cm**3 ef=5.68 eV, esb=5.73 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=l (KrC) program: testvmcx ne=11

kT(eV)	Y	YE	Esp	R?7	Re	Efc	range
2	2.89e-4	4.40e-5	3.35e+0	2.33e-4	5.28e-5	4.99e+0	1.75e + 0
5	1.36e-2	1.37e-3	5.54e4-0	4.57e-3	7.31e-4	8.80e + 0	3.74e+0
10	5.97e-2	3.95e-3	7.28e+0	9.30e-3	1.20e-3	1.42e + 1	6.39e+0
20	1.33e-1	6.10e-3	1.01e+1	1.16e-2	1.16e-3	2.21e + 1	1.09e + 1
50	2.34e-1	6.89e-3	1.62e + 1	9.38e-3	8.83e-4	5.18e + 1	2.25e+1
100	2.85e-1	6.06e-3	2.34e+1	7.68e-3	6.51e-4	9.33e+1	4.04e4-1
200	2.99e-1	4.34e-3	3.19e + 1	5.60e-3	5.22e-4	2.05e+2	7.59e + 1
500	3.06e-1	5.15e-3	3.71e + 1	7.50e-3	8.96e-4	2.64e+2	7.58e+1
1000	2.33e-1	1.50e-3	7.07e + 1	8.38e-4	1.03e-4	1.35e+3	3.73e+2
2000	1.78e-1	8.35e-4	1.03e+2	5.54e-4	2.77e-5	1.10e+3	7.52e+2
5000	1.13e-1	3.04e-4	1.48e4-2				1.80e+3

$O \rightarrow B$

Sputtering yield of B by O zl = 8, ml = 16.00, z2 = 5, m2 = 10.81, sbe=5.90 eV, rho=2.35 g/cm**3 ef=0.95 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program: IPP 9/82 only low fluence! ne=5 resc.

ne=	5,	na=1	

E ₀ (eV)	0 ^u	
150	3.75e-2	
300	1.14e-1	
1000	2.77e-1	
3000	3.87e-1	
6000	4.16e-1	

H -> C

Sputtering yield of C by H zl = 1, ml= 1.01. z2 = 6. m2 = 12.01. sbe=7.41 eV. rho=1.85 g/cm**3 ef=0.98 eV, esb = 1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=:3. ipot=ipotr = l (KrC) program : trvmc ne- 9, na= 9

$E_0(eV)$	0°	15°	30°	45°	55°	65°	75°	80°	85°
40	9.00E-6	1.33E-5	2.19E-5	2.97E-5	2.98 E-5	1.67E-5	1.20E-6		
50	1.75E-4	2.80E-4	3.08E-4	3.91E-4	3.76E-4	2.15E-4	1.13E-4	2.00E-5	3.33E-6
70	1.23E-3	1.35E-3	1.66E-3	2.10E-3	2.39E-3	2.36E-3	1.32E-3	5.17E-4	8.66E-5
100	2.92E-3	2.98E-3	3.93E-3	5.19E-3	6.96E-3	9.20E-3	8.58E-3	4.74E-3	6.72E-4
140	4.42E-3	4.88E-3	6.40E-3	8.76E-3	1.36E-2	1.98E-2	2.47E-2	1.68E-2	2.41E-3
200	5.84E-3	6.35E-3	8.34E-3	1.31E-2	1.93E-2	3.04 E-2	4.66E-2	3.87E-2	6.34E-3
300	7.05E-3	7.58E-3	1.04E-2	1.66E-2	2.58E-2	4.31E-2	6.95E-2	6.98E-2	1.52E-2
500	6.76E-3	7.54E-3	1.08E-2	1.89E-2	2.91E-2	4.94E-2	8.73 E-2	1.03E-1	3.86 E-2
1000	5.68E-3	6.50E-3	1.00 E-2	1.88E-2	2.93E-2	4.87E-2	9.06E-2	1.20E-1	9.05E-2

Sputtered energy of C by H ne= 9, na= 9

$E_0 (eV)$	0°	15°	30°	45°	55°	65°	75°	80°	85°
40	1.26e-7	2.04e-7	4.00e-7	6.52e-7	6.78e-7	3.46e-7	1.73e-8		
50	6.48E-6	8.13E-6	9.31E-6	1.37E-5	1.37E-5	9.00E-6	3.89E-6	5.62E-7	1.19E-7
70	5.02E-5	5.57E-5	7.25E-5	9.81E-5	1.17E-4	1.20E-4	6.79 E-5	2.77E-5	4.79E-6
100	1.27E-4	1.34E-4	1.86E-4	2.60E-4	3.59E-4	5.14E-4	5.21E-4	3.24E-4	5.08E-5
140	1.94E-4	2.16E-4	2.86E-4	4.10E-4	6.72E-4	1.07E-3	1.51E-3	1.20E-3	1.94E-4
200	2.35E-4	2.68E-4	3.51E-4	5.70E-4	9.01E-4	1.50E-3	2.73E-3	2.56E-3	4.96E-4
300	2.55E-4	2.67E-4	3.95E-4	6.47E-4	1.03E-3	1.86E-3	3.46E-3	3.91E-3	1.08E-3
500	1.79E-4	2.10E-4	3.03E-4	5.70E-4	9.38E-4	1.72E-3	3.34E-3	4.48E-3	2.04E-3
1000	1.00E-4	1.15E-4	1.91E-4	3.94E-4	6.74E-4	1.18E-3	2.43E-3	3.45E-3	3.18E-3

Particle reflection coefficient of H backscattered from C $z_{1}=1$. ml = 1.01, $z_{2}=6$, m2=12.01, sbe=7.41 eV, rho=1.85 g/cm^{**3} ef=0.98 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program : trvmc ne=11, na= 9

$E_0(eV)$	0 °	15"	30°	45 ^u	55°	65°	75°	80°	85°
10	4.79E-1	5.02E-1	5.62E-1	6.71E-1	7.65E-1	8.61E-1	9.40E-1	9.62E-1	9.74E-1
20	4.07E-1	4.27E-1	4.82E-1	5.85E-1	6.88E-1	8.14E-1	9.34E-1	9.70E-1	9.86E-1
40	3.58E-1	3.74E-1	4.11E-1	4.99E-1	5.93E-1	7.61E-1	8.99E-1	9.63E-1	9.92E-1
50	3.39E-1	3.54E-1	4.02E-1	4.76E-1	5.64E-1	7.27E-1	9.06E-1	9.72E-1	9.96E-1
70	3.05E-1	3.20E-1	3.63E-1	4.42E-1	5.25E-1	6.47E-1	8.41E-1	9.44E-1	9.93E-1
100	2.79 E-1	2.92E-1	3.33E-1	4.12E-1	4.86E-1	6.02E-1	7.92E-1	9.20E-1	9.92E-1
140	2.53E-1	2.66E-1	3.08E-1	3.82E-1	4.56E-1	5.59E-1	7.42E-1	8.86E-1	9.90E-1
200	2.26E-1	2.38E-1	2.78E-1	3.50E-1	4.24E-1	5.25E-1	6.88E-1	8.38E-1	9.85E-1
300	1.94E-1	2.05E-1	2.44E-1	3.17E-1	3.88E-1	4.83E-1	6.34E-1	7.75E-1	9.73E-1
500	1.53E-1	1.63E-1	2.01E-1	2.71E-1	3.43 E-1	4.36E-1	5.73 E-1	6.97E-1	9.35E-1
1000	9.81E-2	1.08E-1	1.39E-1	2.03E-1	2.75E-1	3.72E-1	5.10E-1	6.17E-1	8.41E-1

Energy reflection coefficient of H backscattered from C ne=11. na= 9 $\,$

$E_0 (eV)$	0°	15°	30°	45 ^u	55°	65°	75 6	80°	85 ^u
10	2.44E-1	2.64E-1	3.19E-1	4.29E-1	5.35E-1	6.59E-1	7.77E-1	8.16E-1	8.40E-1
20	1.98E-1	2.13E-1	2.59E-1	3.58E-1	4.70 E-1	6.26E-1	8.01E-1	8.65E-1	8.99E-1
40	1.67E-1	1.79E-1	2.08E-1	2.84E-1	3.77E-1	5.73E-1	7.69E-1	8.75E-1	9.30E-1
50	1.55E-1	1.66E-1	2.02E-1	2.64E-1	3.50E-1	5.35E-1	7.82E-1	8.92E-1	9.43E-1
70	1.35B-1	1.44E-1	1.74E-1	2.37E-1	3.13E-1	4.46E-1	6.98E-1	8.54E-1	9.42E-1
100	1.20E-1	1.28E-1	1.55E-1	2.13E-1	2.78 E-1	3.96E-1	6.36E-1	8.22E-1	9.44E-1
140	1.05E-1	1.13E-1	1.39E-1	1.92E-1	2.52E-1	3.53 E-1	5.72 E-1	7.76E-1	9.44E-1
200	9.07E-2	9.75E-2	1.21E-1	1.69E-1	2.25E-1	3.18E-1	5.06E-1	7.12E-1	9.38E-1
300	7.42E-2	8.02E-2	1.02E-1	1.45E-1	1.97E-1	2.78E-1	4.42E-1	6.26E-1	9.19E-1
500	5.48E-2	5.95E-2	7.77E-2	1.16E-1	1.63E-1	2.34E-1	3.71E-1	5.24E-1	8.64E-1
1000	3.14E-2	3.54E-2	4.77E-2	7.69E-2	1.15E-1	1.79E-1	3.00E-1	4.14E-1	7.21E-1

Average	dep	th	(mean	range)	in	Ä	of	Н	implanted	in	С
ne=11.	na=	9									

E ₀ (eV)	0°	15°	30°	45°	55°	65°	75°	80°	85°
10	6.30E+0	6.30E+0	6.10E + 0	6.00E+0	5.90E + 0	5.70E + 0	5.50E+0	5.50E4-0	5.40E + 0
20	1.02E + 1	1.01E+1	9.90E + 0	9.50E4-0	9.30E+0	9.10E+0	8.80E+0	8.70E + 0	8.60E + 0
40	1.68E + 1	1.66E+1	1.61E+1	1.55E+1	1.50E+1	1.46E+1	1.42E + 1	1.41E4-1	1.38E+1
50	1.98E+1	1.96E+1	1.90E+1	1.82E-}-!	1.76E + 1	1.71E+1	1.66E + 1	1.62E + 1	1.61E+1
70	2.55E-J-1	2.52E-J-1	2.44E+1	2.34E+1	2.26E + 1	2.18E+1	2.11E + 1	2.09E + 1	2.05E + 1
100	3.37E + 1	3.32E+1	3.21E4-1	3.06E+1	2.95E + 1	2.83E + 1	2.73E + 1	2.72E+1	2.65E + 1
140	4.39E+1	4.34E+1	4.18E+1	3.96E+1	3.79E + 1	3.65E-J-1	3.53E4-1	3.49E + 1	3.45E4-1
200	5.89B4-1	5.80E-J-1	5.59E+1	5.24E4-1	5.03E + 1	4.81E-J-1	4.62E-J-1	4.55E+1	4.55E-J-1
300	8.23E+1	8.11E+1	7.78E+1	7.30E+1	6.90E + 1	6.57E+1	6.30E4-1	6.20E-J-1	6.12E + 1
500	1.27E + 2	1.25E+2	1.19E + 2	1.10E + 2	1.04E+2	9.78E + 1	9.23E4-1	9.06E + 1	9.09E + 1
1000	2.34E+2	2.28E+2	2.15E + 2	1.95E+2	1.81E+2	1.67E+2	1.56E+2	1.50E4-2	1.50E-J-2

Sputtering yield of C by H zl = 1, ml = 1.00. z2 = 6. m2 = 12.01. sbe = 7.41 eV. rho= 2.20 g/cm**3 ef=1.80 eV. esb = 2.26 eV. ca=1.00. kk0=kk0r=2. kdeel = kdee2 = 3. ipot=ipotr=1 (KrC) alpha=0.00 program : trspvmc ne= 5. na= 1. n(dx)=8

$E_0(eV)$	dx = 10 Ä	50 A	100 A	300 A	500 A	1000 A	2000 A	5000 A
1000	1.45e-3	3.12e-3	5.49e-3	5.31e-3	5.34e-3	6.50e-3		6.50e-3
5000	1.65e-3	2.16e-3	1.80e-3		2.66e-3	2.19e-3	2.55e-3	
10000	1.20e-3	1.51e-3	1.33e-3		1.61e-3	1.72e-3		
20000	8.75e-4	8.44e-4	1.16e-3		1.16e-3	1.38e-3		
40000	5.17e-4	6.99e-4	5.91e-4					

Sputtered energy of C by H ne= 5, na= 1, n(dx)=8

$E_0 (eV)$	dx=10 Ä	50 A	100 Ä	300 Ä	500 Ä	1000 Ä	2000 A	5000 Ä
1000	1.87e-5	5.34e-5	1.11e-4	8.97e-5	1.09e-4	1.18e-4		1.18e-4
5000	6.15e-6	8.11e-6	5.89e-6		1.01e-5	1.07e-5	1.18e-5	
10000	3.22e-6	3.30e-6	4.36e-6		6.17e-6	4.24e-6		
20000	1.34e-6	1.14e-6	1.46e-6		1.80e-6	2.84e-6		
40000	4.71e-7	7.37e-7	5.02e-7					

Particle reflection coefficient of H backscattered from C ne= 5, na= 1. $n(dx)\!=\!8$

	$E_0(eV)$	dx=10 Ä	50 A	100 A	300 A	500 A	1000 A	2000 A	5000 A
1	1000	4.21e-3	3.31e-2	7.32e-2	1.03e-1	1.01e-1	9.80e-2		9.80e-2
	5000	2.64e-4	1.24e-3	3.05e-3		1.66e-2	1.74e-2	1.66e-2	
	10000	5.96e-5	3.68e-4	6.52e-4		4.99e-3	6.33e-3		
	20000	1.67e-5	9.27e-5	1.48e-4		1.09e-3	2.28e-3		
	40000	4.38e-6	1.50e-5	4.85e-5					

Energy reflection coefficient of H backscattered from C ne= 5, na= 1, n(dx)=8

E ₀ (eV)	dx=10 A	50 A	100 A	300 A	500 A	1000 A	2000 A	5000 A
1000	3.05e-3	1.70e-2	2.72e-2	3.33e-2	3.27e-2	3.20e-2		3.20e-2
5000	2.02e-4	7.716-4	1.67e-3		4.10e-3	4.47e-3	4.24e-3	
10000	4.55e-5	2.51e-4	3.75e-4		1.44e-3	1.58e-3		
20000	1.32e-5	6.74e-5	9.98e-5		3.89e-4	5.85e-4		
40000	3.48e-6	1.14e-5	2.84e-5					

Average depth (mean range) in Åof H implanted in C ne= 4, na= 1. n(dx)=7

1

Eq(eV)	dx = 50 A	100 A	300 A	500 A	1000 A	2000 A	5000 A	
1000	6.88e+0	4.49e4-1	1.68e + 2	1.98e+2	1.96e+2		1.96e-f-2	
5000		6.85e-1		2.62e + 2	6.99e-}-2	7.99e-f-2		1
10000				1.93e + 2	6.24e+2			
20000				4.54e+1	4.27e+2			

$$\mathbf{H} \to \mathbf{C}$$

Transmission sputtering yield of C by H zl = 1. ml = 1.00, z2= 6, m2= 12.01, sbe=7.41 eV, rho= 2.20 g/cm**3 ef=1.80 eV, esb=2.26 eV, ca=1.00, kkO=kkOr=2, kdeel = kdee2=3, ipot=ipotr = 1 (KrC) alpha=0.00 program : trspvmc ne= 5, na= 1, n(dx)=6

Eo(eV)	dx=10 Ä	50 A	100 Ä	300 A	500 A	1000 A
1000	2.20e-2	2.99e-2	3.38e-2	6.03e-3	3.38e-2	
5000	6.40e-3	1.02e-2	1.20e-2		1.94e-2	1.19e-2
10000	3.39e-3	5.46e-3	6.55e-3		9.93e-3	1.64e-2
20000	1.78e-3	2.71e-3	3.35e-3		4.20e-3	7.07e-3
40000	8.79e-4	1.36e-3	1.71e-3			

Tran	sm	ission		sputtered	energy	of	С	by	Н	
ne-	5	n 9	1	n(dx) = 6						

$B_0 (eV)$	dx=10 A	50 A	100 A	300 A	500 A	1000 A
1000	1.07e-3	1.22e-3	1.18e-3	9.09e-5	1.18e-3	
5000	1.37e-4	2.16e-4	2.66e-4		2.47e-4	5.16e-5
10000	4.83e-5	1.02e-4	9.98e-5		1.47e-4	1.23e-4
20000	1.53e-5	3.49e-5	4.81e-5		6.22e-5	6.25e-5
40000	4.76e-6	1.07e-5	2.23e-5			

Particle transmission coefficient of H transmitted through C ne= 5, na= 1, $n(dx)\!=\!6$

	-					
Eo(eV)	d x = 10 A	50 A	100 A	300 A	500 A	1000 A
1000	9.95e-1	9.64e-1	8.91e-l	1.65e-l	5.04e-5	
5000	9.99e-1	9.98e-1	9.96e-1		9.27e-1	2.70e-1
10000	1.00e-0	9.99e-1	9.99e-l		9.91e-l	9.29e-1
20000	1.00e-0	1.00e-0	9.99e-1		9.98e-1	9.93e-1
40000	1.00e-0	1.00e-0	1.00e-0			

Energy transmission coefficient of H transmitted through C ne= 5, na= 1, $n\left(dx\right){=}6$

		-					
E 0 (eV	7)	dx = 10 A	50 A	100 A	300 A	500 A	1000 A
100	00	9.66e-l	8.14e-1	6.01e-1	3.05e-2	1.93e-6	
500	00	9.88e-1	9.40e-1	8.81e-1		4.23e-1	2.60e-2
1000	00	9.92e-1	9.59e-1	9.19e-1		6.20e-1	2.92e-1
2000	00	9.94e-1	9.72e-1	9.44e-1		7.33e-1	5.01e-1
4000	00	9.96e-1	9.80e-1	9.60e-1			

$$\mathrm{D}\to\mathrm{C}$$

Sputtering yield of C by D zl = 1, ml = 2.01. z2= 6. m2= 12.01, sbe=7.41 eV. rho=1.85 g/cm**3 ef=0.98 eV. esb = 1.00 eV. ca=1.00. kk0=kk0r=2, kdeel = kdee2 = 3. ipot=ipotr=1 (KrC) program : trvmc ne=12. na= 9

_E ° (6A)	0°	15°	30°	45°	55°	65°	75°	80°	85°
30	8.58E-5	1.12E-4	1.78E-4	2.30E-4	2.08E-4	1.12E-4	2.55E-5	8.60E-6	2.56E-6
33	2.16e-4					3.29e-4			
40	7.35E-4	9.15E-4	1.26E-3	1.72E-3	2.21E-3	1.80 E-3	7.60E-4	3.12E-4	9.35E-5
50	1.96 E-3	2.33E-3	3.09E-3	4.58E-3	5.87E-3	5.95E-3	4.15E-3	1.76E-3	4.45E-4
70	4.79E-3	5.19E-3	7.01E-3	1.13E-2	1.57E-2	2.14E-2	1.78E-2	8.60E-3	1.57E-3
100	8.18E-3	8.77E-3	1.21E-2	1.96E-2	3.08E-2	4.59E-2	4.78E-2	2.72E-2	4.04E-3
140	1.10E-2	1.21E-2	1.68E-2	2.88E-2	4.40E-2	7.03E-2	8.63E-2	5.73E-2	8.17E-3
200	1.32E-2	1.48E-2	2.41E-2	3.56E-2	5.93E-2	9.10E-2	1.21E-1	9.76E-2	1.41E-2
300	1.47E-2	1.66E-2	2.40E-2	4.33E-2	6.81E-2	1.13E-1	1.63E-1	1.51E-1	2.94E-2
500	1.44E-2	1.72E-2	2.72E-2	4.58E-2	7.39E-2	1.20E-1	1.89E-1	2.12E-1	7.29E-2
1000	1.30E-2	1.49E-2	2.36E-2	4.18E-2	6.49E-2	1.08E-1	1.90E-1	2.35E-1	1.72E-1
2000	1.02E-2			3.45E-2			1.88E-1	2.22E-1	2.45E-1

Sputtered energy of C by D ne=12. na= 9

E (eV)	0°	15°	30°	45°	55°	65°	75°	80°	85°
30	3.32E-6	4.76E-6	8.71E-6	1.27E-5	1.21E-5	6.80E-6	1.71E-6	6.29E-7	2.24E-7
33	9.15e-6					2.31e-5			
40	3.58E-5	5.17E-5	8.06E-5	1.26E-4	1.81E-4	1.54E-4	6.87E-5	2.90E-5	8.69E-6
50	1.18E-4	1.50E-4	2.19E-4	3.60E-4	5.08E-4	5.70E-4	4.41E-4	1.95E-4	5.31E-5
70	3.26E-4	3.50E-4	5.33E-4	9.23E-4	1.38E-3	2.05 E-3	2.04E-3	1.10E-3	2.26E-4
100	5.27E-4	5.96E-4	8.80E-4	1.50E-3	2.56E-3	4.29E-3	5.49E-3	3.55E-3	5.71E-4
140	6.77E-4	7.50E-4	1.09E-3	2.03E-3	3.31E-3	5.93 E-3	8.75 E-3	6.73E-3	1.14E-3
200	7.12E-4	8.00E-4	1.18E-3	2.19E-3	3.99E-3	6.60E-3	1.04E-2	9.95E-3	1.73E-3
300	6.56E-4	7.50E-4	1.12E-3	2.23 E-3	3.84 E-3	7.15E-3	1.15E-2	1.19E-2	3.08 E-3
500	5.02E-4	5.80E-4	1.03E-3	1.87E-3	3.19E-3	5.90E-3	1.01E-2	1.26E-2	5.40E-3
1000	2.94E-4	3.70E-4	5.70E-4	1.17E-3	2.01E-3	3.61E-3	6.82E-3	9.28E-3	7.69E-3
2000	1.39E-4			6.56E-4			4.66E-3	5.72E-3	6.93E-3

$$D \rightarrow C$$

Particle reflection coefficient of D backscattered from C zl = 1, ml= 2.01, z2 = 6. m2 = 12.01. sbe = 7.41 eV. rho=1.85 g/cm**3 ef=0.98 eV, esb = 1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr = 1 (KrC) program : trunc

·	-		
ne	=14,	na=	9

$E_0(eV)$	0 ^u	15 ^u	30°	45 ^u	55°	65 ^u	75 ^u	80°	85 ^u
10	3.74E-1	3.99E-1	4.70E-1	6.00E-1	7.09E-1	8.29E-1	9.23E-1	9.51E-1	9.66E-1
20	3.13E-1	3.32E-1	3.92E-1	5.10E-1	6.29E-1	7.79E-1	9.21E-1	9.64E-1	9.84E-1
30	2.81E-1	2.99E-1	3.52E-1	4.57E-1	5.70E-1	7.27E-1	9.03E-1	9.63E-1	9.89E-1
33	2.75e-1					7.13e-1			
40	2.62E-1	2.77E-1	3.28E-1	4.23E-1	5.29E-1	6.83E-1	8.82E-1	9.59E-1	9.91E-1
50	2.48E-1	2.62E-1	3.09E-1	4.01E-1	4.99E-1	6.49E-1	8.60E-1	9.52E-1	9.92E-1
70	2.27E-1	2.41E-1	2.86E-1	3.71E-1	4.59E-1	5.99E-1	8.20E-1	9.37E-1	9.92E-1
100	2.07E-1	2.19E-1	2.62E-1	3.39E-1	4.26E-1	5.48E-1	7.65E-1	9.10E-1	9.91E-1
140	1.88E-1	2.00E-1	• 2.41E-1	3.17E-1	3.97E-1	5.11E-1	7.10E-1	8.69E-1	9.90E-1
200	1.69E-1	1.80E-1	2.19E-1	2.96E-1	3.66E-1	4.75E-1	6.56E-1	8.24E-1	9.84E-1
300	1.48E-1	1.57E-1	1.95E-1	2.64E-1	3.40E-1	4.38E-1	6.04E-1	7.53E-1	9.71E-1
500	1.20E-1	1.28E-1	1.63E-1	2.27E-1	3.01E-1	3.98E-1	5.48E-1	6.79E-1	9.32E-1
1000	8.00E-2	8.85E-2	1.20E-1	1.82E-1	2.51E-1	3.52E-1	4.96E-1	6.03E-1	8.31E-1
2000	4.53E-2			1.31E-1			4.19E-1	5.59E-1	7.53E-1

Energy reflection coefficient of D backscattered from C $ne\!=\!14,\ na\!=\!9$

		_							
Bq(eV)	0°	15°	30°	45 ^u	55 ^u	65°	75°	80°	85 ^u
10	1.47E-1	1.64E-1	2.18E-1	3.29E-1	4.39E-1	5.76E-1	7.11E-1	7.60E-1	7.89E-1
20	1.21E-1	1.34E-1	1.76E-1	2.73E-1	3.89E-1	5.59E-1	7.58E-1	8.34E-1	8.78E-1
30	1.06E-1	1.17E-1	1.53E-1	2.35E-1	3.40E-1	5.13E-1	7.51E-1	8.53E-1	9.08E-1
33	1.03e-1					5.00E-1			
40	9.73E-2	1.07E-1	1.39E-1	2.11E-1	3.06E-1	4.72E-1	7.32E-1	8.56E-1	9.23E-1
50	9.10E-2	9.92E-2	1.29E-1	1.96E-1	2.81E-1	4.38E-1	7.09E-1	8.53E-1	9.32E-1
70	8.20E-2	8.97E-2	1.17E-1	1.76E-1	2.49E-1	3.89E-1	6.62E-1	8.38E-1	9.41E-1
100	7.33E-2	8.02E-2	1.04E-1	1.56E-1	2.22E-1	3.40E-1	5.99E-1	8.06E-1	9.46E-1
140	6.55E-2	7.18E-2	9.43E-2	1.43E-1	2.01E-1	3.04E-1	5.35E-1	7.54E-1	9.47E-1
200	5.73E-2	6.34E-2	8.42E-2	1.30E-1	1.81E-1	2.74E-1	4.75E-1	6.93E-1	9.41E-1
300	4.95E-2	5.36E-2	7.22E-2	1.13E-1	1.63E-1	2.43E-1	4.15E-1	6.05E-1	9.22E-1
500	3.83E-2	4.22E-2	5.79E-2	9.24E-2	1.37E-1	2.10E-1	3.54E-1	5.10E-1	8.67E-1
1000	2.37E-2	2.70E-2	3.95E-2	6.77E-2	1.06E-1	1.71E-1	2.96E-1	4.18E-1	7.23E-1
2000	1.22E-2			4.29E-2			2.26E-1	3.53E-1	6.08E-1

. .

Average depth (mean range) in \ddot{A} of D implanted in C ne=13, na= 9

Eo(eV)	0°	15°	30°	45°	55°	65°	75°	80°	85°
10	5.20E4-0	5.20E+0	5.00E+0	4.80E+0	4.60E4-0	4.40E4-0	4.20E+0	4.10E+0	4.00E+0
20	8.60E4-0	8.50E4-0	8.20E+0	7.90E4-0	7.60E+0	7.30E+0	6.90E+0	6.70E+0	6.60E4-0
33	1.25e+1					1.03e+1			
40	1.45E4-1	1.43E+1	1.38E+1	1.30E+1	1.25E+1	1.19E + 1	1.14E + 1	1.10E + 1	1.07E + 1
50	1.72E + 1	1.70E+1	1.64E+1	1.54E+1	1.48E4-1	1.41E+1	1.34E4-1	1.30E4-1	1.27E + 1
70	2.26E + 1	2.22E4-1	2.14E+1	2.01E+1	1.90E4-1	1.82E+1	1.73E + 1	1.69E4-1	1.63E4-1
100	3.02E + 1	2.97E-H	2.84E+1	2.67E+1	2.53E + 1	2.39E+1	2.30E + 1	2.24E + 1	2.16E + 1
140	4.01E + 1	3.95E+1	3.77E4-1	3.52E+1	3.33E4-1	3.16E+1	3.01E4-1	2.96E4-1	2.88E + 1
200	5.48E + 1	5.39E4-1	5.13E+1	4.76E+1	4.49E + 1	4.26E+1	4.04E + 1	3.94E+1	3.87E + 1
300	7.88E + 1	7.74E+1	7.36E+1	6.79E4-1	6.38E4-1	5.95E + 1	5.65E4-1	5.55E + 1	5.47E + 1
500	1.26E+2	1.24E4-2	1.16E4-2	1.07E+2	1.00E+2	9.34E+1	8.72E-H	8.55E + 1	8.28E + 1
1000	2.45E+2	2.39E+2	2.24E4-2	2.02E+2	1.86E+2	1.70E4-2	1.57E+2	1.52E+2	1.51E+2
2000	3.91E4-2			3.11E+2			2.13E+2	2.20E+2	2.14E+2

$$D \rightarrow C$$

D on C. Maxwellian velocity distribution, sheath potential 0 kT zl = 1. ml = 2.01, z2=6, m2= 12.01, sbe=7.42 eV, rho=2.26 g/cm**3 ef=0.98 eV, esb = 1.00 eV, ca=1.00, kk0=kk0r=2. kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx

ne= 10							
kT(eV)	Y	YE	Esp	R _A r	Re	Bfe	range
8	2.22e-4	5.85e-5	4.23e+0	5.92e-1	3.53e-1	9.53e4-0	5.31e4-0
10	5.87e-4	1.45e-4	4.95e+0	5.82e-1	3.41e-1	1.17e + 0	6.45e + 0
14	1.81e-3	3.82e-4	5.90e+0	5.61e-1	3.19e-1	1.60e + 1	8.52e + 0
20	4.43e-3	8.30e-4	7.48e-f-0	5.31e-1	2.94e-1	2.21e + 1	1.12e+1
30	1.07e-2	1.66e-3	9.28e+0	4.93e-1	2.63e-1	3.21e + 1	1.56e + 1
50	2.18e-2	2.68e-3	1.23e + 1	4.44e-1	2.28e-1	5.14e4-l	2.34e+1
100	3.99e-2	3.04e-3	1.52e+1	3.81e-1	1.85e-1	9.72e + 1	4.15e + 1
200	5.32e-2	2.88e-3	2.16e+1	3.23e-1	1.48e-1	1.82e+2	7.62e4-1
500	5.86e-2	1.79e-3	3.07e + 1	2.52e-1	1.04e-1	4.14e4-2	1.73e + 2
1000	5.40e-2	1.05e-3	3.92e + 1	2.02e-1	7.32e-2	7.30e + 2	3.22e + 2

D on C. Maxwellian velocity distribution, sheath potential 3 kT zl = 1, ml = 2.01, z2 = 6, m2 = 12.01, sbe = 7.42 eV, rho=2.26 g/cm**3 . ef=0.98 eV, esb = 1.00 eV. ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=l(KrC) program: testvmcx

ne=	16	

kT(eV)	Y	Ye	E sp	R _N	Re	Eb	range
5	2.27e-4	2.70e-5	2.97e-0	3.72e-1	1.64e-1	1.10e + 1	7.91e+0
5	2.36e-4	2.79e-5	2.96e-0	3.71e-1	1.64e-1	1.10e+1	7.92e+0
7	1.17e-3	1.19e-4	3.56e-0	3.37e-1	1.45e-1	1.51e+1	1.09e+1
10	3.67e-3	3.61e-4	4.91e-0	3.06e-1	1.28e-1	2.10e+1	1.34e + 1
10	3.72e-3	3.47e-4	4.66e-0	3.05e-1	1.28e-1	2.09e-{-1	1.34e-f-l
14	7.36e-3	6.46e-4	6.15e-0	2.78e-1	1.14e-1	2.87e-}-l	1.75e- -1
20	1.19e-2	8.93e-4	7.50e-0	2.54e-1	1.01e-1	4.00e-}-1	2.35e+1
20	1.25e-2	9.47e-4	7.59e-0	2.54e-1	1.02e-1	4.00e+1	2.35e-H
30	1.70e-2	1.11e-3	9.66e-0	2.26e-1	8.80e-2	5.83e-{-1	3.30e + 1
40	2.15e-2	1.27e-3	1.18e + 1	2.08e-1	7.97e-2	7.65e + 1	4.25e + 1
50	1.99e-2	1.01e-3	1.27e + 1	1.95e-l	7.74e-2	9.43e + 1	5.16e + 1
50	2.23e-2	1.18e-3	1.32e+1	1.95e-l	7.32e-2	9.41e + 1	5.19e + 1
100	2.35e-2	8.68e-4	1.85e + 1	1.56e-l	5.53e-2	1.78e+2	9.78e-}-l
200	2.17e-2	4.91e-4	2.27e- -1	1.12e-1	3.65e-2	3.26e4-2	1.87e + 2
500	1.48e-2	2.10e-4	3.54e + 1	5.76e-2	1.55e-2	6.73e + 2	4.42e-f-2
1000	9.49e-3	7.33e-5	3.86e + 1	2.81e-2	6.54e-3	1.17e+3	8.31e4-2

D on C, Maxwellian velocity distribution, sheath potential 3 kT zl = 1, ml= 2.01, z2 = 6, m2 = 12.01, zbe=4-4 rho=1.85 g/cm^{**3} ef=0.98 eV, esb = 1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr = l(KrC) program: trspvmc ne=12

kT(eV)	Y	Ye	Esp	R?7	Re	Eb	range
2	1.77e-5		1.20e+0	4.46e-1		4.56e4-0	4.37e + 0
3	3.38e-4		1.71e-f-0	4.01e-1		6.77e + 0	5.96e-{-0
4	1.33e-3		2.16e- -0	3.69e-1		8.88e-]-0	7.42e + 0
5	2.95e-3		2.55e-{-0	3.46e-1		1.09e+1	8.81e+0
7	7.69e-3		3.26e+0	3.15e-1		1.50e-f-l	1.15e- -1
10	1.48e-2		4.15e + 0	2.87e-1		2.06e-f-l	1.53e-t-l
14	2.26e-2		5.13e- -0	2.64e-1		2.87e+1	2.02e + 1
20	2.98e-2		6.30e+0	2.42e-1		4.02e+1	2.73e + 1
50	4.03e-2		1.00e+ 1	1.89e-1		9.49e+1	6.15e-f-l
100	3.96e-2		1.36e-}-l	1.49e-1		1.79e + 2	1.17e- -2
200	3.30e-2		1.77e + 1	1.09e-1		3.27e-}-2	2.25e + 2
500	2.20e-2		2.44e-f-l	5.66e-2		6.83e- -2	5.34e+2

D on C, Maxwellian velocity distribution, sheath potential 3 kT zl = 1, ml= 2.01, z2=6. m2= 12.01, sbe = 7.40, $rho=2.00 \ g/cm^{**3}$ ef=0.95 eV, esb = 1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr = l(KrC) program: testvmcx

n	e	=	2

kT(eV)	Y	Ye	Egp	R?7	R £∎	Eb	range
1000	8.85e-3	7.47e-5	4.22e-H	2.80e-2	6.63e-3	1.19e4-3	9.32e+2
2000	5.54e-3	3.08e-5	5.57e+1	1.12e-2	2.34e-3	2.08e+3	1.69e+3

$$T \rightarrow C$$

Sputtering yield of C by T zl = 1. ml = 2.01, z2 = 6, m.2 = 12.01, sbe=7.41 eV, rho=1.85 g/cm**3 ef=0.98 eV. esb = 1.00 eV, ca=1.00. kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program : trvmc ne=12, na= 9

	-								
E ₀ (eV)	0 ^u	15°	30°	45°	55°	65 ^u	75 ^u	80°	85°
20			6.00E-6	7.80E-6					
25	4.70E-5	7.40E-5	1.43E-4	2.15E-4	1.82E-4	1.25E-4	4.14E-5	1.80E-5	7.00E-6
30	2.44E-4	3.25E-4	6.09E-4	9.78E-4	1.06E-3	9.45E-4	4.38E-4	2.30E-4	9.49E-5
40	1.23E-3	1.50E-3	2.56E-3	4.41E-3	6.15E-3	6.65E-3	4.37E-3	2.14E-3	6.37E-4
50	2.76E-3	3.50E-3	5.36E-3	9.16E-3	1.36E-2	1.77E-2	1.32E-2	6.16E-3	1.48E-3
70	6.05E-3	6.87E-3	1.03E-2	1.97E-2	3.02E-2	4.49E-2	3.92E-2	1.98E-2	3.57E-3
100	9.44E-3	1.14E-2	1.71E-2	3.20E-2	5.24E-2	7.87E-2	8.63E-2	4.77E-2	6.94E-3
140	1.28E-2	1.39E-2	2.25E-2	4.44E-2	6.92E-2	1.11E-1	1.38E-1	8.51E-2	1.17E-2
200	1.54E-2	1.76E-2	2.96E-2	5.58E-2	8.79E-2	1.41E-1	1.91E-1	1.45E-1	2.02E-2
300	1.75E-2	2.06E-2	3.29E-2	6.32E-2	1.02E-1	1.67E-1	2.35E-1	2.16E-1	4.29E-2
500	1.87E-2	2.23E-2	3.60E-2	6.58E-2	1.05E-1	1.73E-1	2.64E-1	2.92E-1	9.97E-2
1000	1.68E-2	2.02E-2	3.32E-2	5.98E-2	9.56E-2	1.61E-1	2.70E-1	3.40E-1	2.36E-1

Sputtered energy of C by T ne=12, na=9

	· ·								
$E_0 (eV)$	0°	15°	30°	45°	55°	65°	75°	80°	85°
20			2.08e-7	5.59e-7					

20			2.08e-7	5.59e-7					
25	2.26E-6	4.13E-6	9.81E-6	1.69E-5	1.57E-5	1.19E-5	4.67E-6	1.98E-6	9.39E-7
30	1.41E-5	2.14E-5	4.68E-5	8.94E-5	1.07E-4	1.03E-4	5.25E-5	2.85E-5	1.22E-5
40	8.27E-5	1.10E-4	2.18E-4	4.34E-4	6.94E-4	8.32E-4	6.24E-4	3.26E-4	1.02E-4
50	1.96E-4	2.70E-4	4.72E-4	9.44E-4	1.57E-3	2.29E-3	2.02E-3	1.07E-3	2.71E-4
70	4.54E-4	5.56E-4	8.91E-4	1.93E-3	3.24E-3	5.71E-3	6.29E-3	3.55E-3	6.91E-4
100	6.68E-4	8.18E-4	1.39E-3	2.88E-3	5.26E-3	9.12E-3	1.24E-2	7.74E-3	1.36E-3
140	8.37E-4	9.27E-4	1.58E-3	3.49E-3	6.22E-3	1.14E-2	1.72E-2	1.25E-2	2.16E-3
200	8.51E-4	1.07E-3	1.83E-3	3.86E-3	6.77E-3	1.27E-2	2.00E-2	1.75E-2	3.16E-3
300	8.36E-4	1.02E-3	1.73E-3	3.66E-3	6.79E-3	1.21E-2	1.98E-2	2.09E-2	5.34E-3
500	6.78E-4	8.14E-4	1.42E-3	3.03E-3	5.23E-3	9.51E-3	1.69E-2	2.09E-2	8.60E-3
1000	3.92E-4	5.01E-4	9.10E-4	1.98E-3	3.55E-3	6.45E-3	1.18E-2	_1.52E-2	_1.25E-2

Particle reflection coefficient of T backscattered from C zl = 1. ml = 2.01. z2 = 6. m2 = 12.01. sbe=7.41 eV. rho=1.85 g/cm^{**3} ef=0.98 eV, esb=1.00 eV, ea=1.00. kkO=kkOr=2. kdeel = kdee2=3. ipot=ipotr=1 (KrC) program : trvme ne=13. na=9

$E_0 (eV)$	0°	15 ^u	30 ^u	45 ^u	55°	65°	75 ^u	80°	85°
10	2.89E-1	3.13E-1	3.90E-1	5.32E-1	6.58E-1	7.92E-1	9.04E-1	9.38E-1	9.56E-1
20	2.41E-1	2.61E-1	3.24E-1	4.50E-1	5.82E-1	7.49E-1	9.10E-1	9.59E-1	9.81E-1
25	2.26E-1	2.44E-1	3.03E-1	4.20E-1	5.48E-1	7.21E-1	9.01E-1	9.59E-1	9.85E-1
30	2.14E-1	2.32E-1	2.86E-1	3.98E-1	5.20E-1	6.94E-1	8.91E-1	9.58E-1	9.87E-1
40	1.97E-1	2.13E-1	2.63E-1	3.66E-1	4.78E-1	6.49E-1	8.69E-1	9.53E-1	9.89E-1
50	1.85E-1	1.99E-1	2.47E-1	3.42E-1	4.48E-1	6.10E-1	8.46E-1	9.47E-1	9.91E-1
70	1.67E-1	1.82E-1	2.25E-1	3.11E-1	4.08E-1	5.60E-1	8.01E-1	9.30E-1	9.91E-1
100	1.52E-1	1.62E-1	2.05E-1	2.85E-1	3.73E-1	5.09E-1	7.43E-1	9.03E-1	9.90E-1
140	1.37E-1	1.49E-1	1.87E-1	2.64E-1	3.44E-1	4.69E-1	6.86E-1	8.60E-1	9.88E-1
200	1.21E-1	1.32E-1	1.68E-1	2.44E-1	3.19E-1	4.36E-1	6.27E-1	8.07E-1	9.83E-1
300	1.05E-1	1.16E-1	1.52E-1	2.22E-1	2.95E-1	4.04E-1	5.74E-1	7.35E-1	9.67E-1
500	8.46E-2	9.52E-2	1.27E-1	1.93E-1	2.63E-1	3.63E-1	5.21E-1	6.60E-1	9.27E-1
1000	5.77E-2	6.59E-2	9.38E-2	1.55E-1	2.20E-1	3.18E-1	4.69E-1	5.83E-1	8.24E-1

Energy reflection coefficient of T backscattered from C $ne{=}13.\ na{=}\ 9$

Bq(eV)	0°	15°	30°	45°	55°	65°	75°	80°	85 ^u
10	8 56E-2	9.98E-2	1.48E-1	2.53E-1	3.64E-1	5.05E-1	6.50E-1	7.05E-1	7.38E-1
2.0	7.31E-2	8.38E-2	1.21E-1	2.12E-1	3.27E-1	5.02E-1	7.17E-1	8.03E-1	8.53E-1
2.5	6.81E-2	7.77E-2	1.12E-1	1.94E-1	3.04E-1	4.82E-1	7.19E-1	8.20E-1	8.77E-1
30	6.42E-2	7.31E-2	1.04E-1	1.80E-1	2.83E-1	4.61E-1	7.15E-1	8.29E-1	8.93E-1
40	5.83E-2	6.62E-2	9.40E-2	1.61E-1	2.52E-1	4.22E-1	6.98E-1	8.35E-1	9.22E-1
50	5.41E-2	6.14E-2	8.68E-2	1.47E-1	2.30E-1	3.87E-1	6.77E-1	8.34E-1	9.24E-1
70	4.87E-2	5.53E-2	7.74E-2	1.30E-1	2.01E-1	3.42E-1	6.27E-1	8.19E-1	9.36E-1
100	4.37E-2	4.85E-2	6.92E-2	1.16E-1	1.78E-1	2.97E-1	5.64E-1	7.88E-1	9.42E-1
140	3.87E-2	4.40E-2	6.23E-2	1.05E-1	1.61E-1	2.63E-1	5.02E-1	7.37E-1	9.44E-1
200	3.42E-2	3.86E-2	5.56E-2	9.60E-2	1.44E-1	2.36E-1	4.38E-1	6.70E-1	9.38E-1
300	2.90E-2	3.39E-2	4.96E-2	8.59E-2	1.31E-1	2.12E-1	3.84E-1	5.83E-1	9.18E-1
500	2.30E-2	2.68E-2	4.05E-2	7.19E-2	1.14E-1	1.82E-1	3.30E-1	4.91E-1	8.61E-1
1000	1.46E-2	1.78E-2	2.81E-2	5.47E-2	8.88E-2	1.52E-1	2.78E-1	3.99E-1	7.20E-1

Average depth (mean range) in \ddot{A} of T implanted in C ne=13, na= 9

E ₀ (eV)	0°	15°	30°	45°	55°	65°	75°	80°	85°
10	4.60E4-0	4.50E+0	4.40E + 0	4.10E4-0	3.90B+0	3.60E4-0	3.30E+0	3.20E+0	3.00E4-0
20	7.70E+0	7.60E4-0	7.30E + 0	6.80E4-0	6.50E4-0	6.10E4-0	5.70E+0	5.50E4-0	5.30E+0
25	9.20E+0	9.00E+0	8.60E+0	8.10E+0	7.60E4-0	7.20E+0	6.70E4-0	6.50E4-0	6.20E + 0
30	1.05E + 1	1.04E4-1	9.90E4-0	9.20E4-0	8.70E4-0	8.20E4-0	7.70E+0	7.40E + 0	7.10E+0
40	1.32E + 1	1.29E+1	1.23E+1	1.15E+1	1.08E+1	1.02E+1	9.50E+0	9.20E+0	8.80E4-0
50	1.57E + 1	1.54E+1	1.47E+1	1.36E4-1	1.28E+1	1.21E4-1	1.13E+1	1.09E4-1	1.05E + 1
70	2.06E4-1	2.02E + 1	1.92E+1	1.77E+1	1.66E+1	1.57E4-1	1.47E + 1	1.42E + 1	1.34E4-1
100	2.77E4-1	2.72E+1	2.58E+1	2.38E4-1	2.22E+1	2.09E+1	1.95E4-1	1.89E4-1	1.79E + 1
140	3.71E + 1	3.63E+1	3.44E + 1	3.16E+1	2.96E + 1	2.74E4-1	2.59E+1	2.50E + 1	2.43E + 1
200	5.08E4-1	5.02E4-1	4.72E4-1	4.31E+1	4.01E+1	3.73E4-1	3.47E+1	3.43E + 1	3.28E4-1
300	7.41E + 1	7.26E4-1	6.83E+1	6.24E+1	5.75E4-1	5.27E + 1	4.96E+1	4.81E + 1	4.60E + 1
500	1.21E+2	1.18E+2	1.11E4-2	1.00E+2	9.22E + 1	8.47E + 1	7.82E + 1	7.66E + 1	7.44E + 1
1000	2.42E+2	2.35E + 2	2.19E + 2	1.95E+2	1.76E+2	1.62E4-2	1.47E+2	1.43E+2	1.39E+2

T -> C

T on C. Maxwellian velocity distribution, sheath potential 3 kT zl = 1. ml = 3.02, z2 = 6, m2 = 12.01. sbe=7.42 eV, rho=2.26 g/cm**3 ef=0.98 eV, esb = 1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=l (KrC) program: testvmcx ne= 9

kT(eV)	Y	Y _E	E sp	R/V	Rfi	Eb	range
7	2.13e-3	2.79e-4	4.51e+0	2.72e-1	9.87e-2	1.27e + 1	9.11e + 0
10	6.00e-3	6.80e-4	5.66e + 0	2.42e-1	8.51e-2	1.76e + 1	1.20e+1
14	1.15e-2	1.12e-3	6.79e+0	2.19e-1	7.62e-2	2.43e+1	1.58e+1
20	1.76e-2	1.46e-3	8.32e+0	1.98e-l	6.67e-2	3.37e+1	2.13e + 1
30	2.33e-2	1.69e-3	1.08e + 1	1.75e-l	5.88e-2	5.03e + 1	3.03e+1
50	2.95e-2	1.73e-3	1.47e + 1	1.50e-l	4.97e-2	8.28e + 1	4.80e + 1
100	3.23e-2	1.34e-3	2.07e + 1	1.19e-l	3.77e-2	1.58e + 2	9.29e + 1
200	3.05e-2	7.91e-4	2.60e+1	8.55e-2	2.60e-2	3.04e + 2	1.84e+2
500	1.96e-2	3.21e-4	4.10e + 1	4.71e-2	1.20e-2	6.36e+2	4.57e + 2

T on C, Maxwellian velocity distribution, sheath potential 3 kT zl=1, ml=3.02, z2=6, m2=12.01. $sbe=4-4^{\circ}$ rho=1.85 g/cm^{**3} ef=0.98 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=l(KrC) program: trspvme ne=9

kT(eV)	Y	Y_{E}	Esp	R _N	Rβ	Rb	range
2	7.83e-5		1.75e4-0	3.63e-1		3.77e+0	3.74e+0
3	7.40e-4		2.27e+0	3.29e-1		5.65e4-0	5.22e+0
5	5.04e-3		3.12e + 0	2.79e-1		9.22e+0	7.81e+0
7	1.19e-2		3.81e+0	2.51e-1		1.26e+1	1.02e+1
10	2.13e-2		4.68e-J-0	2.24e-1		1.77e+1	1.37e + 1
15	3.27e-2		5.88e + 0	2.00e-1		2.61e+1	1.93e + 1
20	3.98e-2		6.90e4-0	1.84e-1		3.44e+1	2.48e + 1
30	4.76e-2		8.37e+0	1.65e-l		5.08e+1	3.55e + 1
50	5.28e-2		1.07e + 1	1.43e-1		8.31e+1	5.71e+1

He C

Sputtering yield of G by He	
zl = 2, $ml = 4.00$. $z2 = 6$, $m2 = 12.01$. $sbe = 7.41$ eV, $rho = 1.85$ g/cm**3	
ef=0.20 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1	(KrC)
program : trvmc	
ne=22. na= 9	

Eo(eV)	0°	15°	30°	45°	55 ^u	65 ^u	75°	80°	85°
20	2.42E-6	7.10E-6	2.05E-5	2.04E-5	1.09E-5	3.84E-6	8.64E-7	4.00E-7	
25	4.20E-5	7.14E-5	1.51E-4	1.95E-4	1.68E-4	1.23E-4	3.83E-5	6.98E-6	
27	1.00E-4	1.51E-4	2.98E-4	4.29E-4	4.34E-4	3.45E-4	1.18E-4	1.97E-5	
30	2.40E-4	3.68E-4	7.02E-4	1.10E-3	1.25E-3	1.12E-3	3.84E-4	6.08E-5	
35	7.20E-4	9.99E-4	1.97E-3	3.33E-3	4.17E-3	4.04E-3	1.39E-3	2.13E-4	
40	1.50E-3	2.03E-3	3.86E-3	7.20E-3	9.33E-3	9.26E-3	3.22E-3	4.72E-4	2.18E-6
50	3.83E-3	5.03E-3	9.12E-3	1.75E-2	2.45E-2	2.59E-2	9.71 E-3	1.53E-3	6.43E-6
60	6.84E-3	8.61E-3	1.50E-2	2.94E-2	4.31E-2	4.73E-2	1.95E-2	3.40E-3	1.38E-5
70	1.01E-2	1.22E-2	2.07E-2	4.13E-2	6.23E-2	7.14E-2	3.30E-2	6.27E-3	2.35E-5
100	1.83E-2	2.23E-2	3.70E-2	7.36E-2	1.13E-1	1.44E-1	8.37E-2	2.02E-2	8.40E-5
140	2.63E-2	3.22E-2	5.31E-2	1.02E-1	1.61E-1	2.19E-1	1.58E-1	4.81E-2	2.64E-4
200	3.45E-2	4.23E-2	7.04E-2	1.35E-1	2.07E-1	2.95E-1	2.65E-1	1.04E-1	9.49E-4
300	4.28E-2	5.36E-2	8.65E-2	1.64E-1	2.50E-1	3.68E-1	3.90E-1	2.13E-1	4.03E-3
400	4.75E-2	5.80E-2	9.45E-2	1.76E-1	2.71E-1	4.05E-1	4.79E-1	3.19E-1	1.09E-2
500	5.05E-2	6.12E-2	9.96E-2	1.83E-1	2.81E-1	4.24E-1	5.33E-1	4.12E-1	2.25E-2
700	5.17E-2	6.30E-2	1.03E-1	1.87E-1	2.90E-1	4.38E-1	5.99E-1	5.41E-1	6.42E-2
1000	5.19E-2	6.28E-2	1.00E-1	1.86E-1	2.84E-1	4.36E-1	6.38E-1	6.58E-1	1.59E-1
2000	4.69E-2	5.63E-2	8.84E-2	1.56E-1	2.44E-1	3.93E-1	6.38E-1	7.58E-1	4.93E-1
3000	4.24E-2	4.91E-2	7.56E-2	1.36E-1	2.11E-1	3.45E-1	5.91E-1	7.49E-1	6.73E-1
5000	3.40E-2	4.00E-2	5.79E-2	1.07E-1	1.66E-1	2.74E-1	4.98E-1	6.83E-1	7.92E-1
10000	2.43E-2	2.76Er2	4.04E-2	6.84E-2	1.05E-1	1.81E-1	3.50E-1	5.23E-1	7.67E-1
20000	1.66E-2	1.85E-2	2.65E-2	4.13E-2	6.32E-2	1.07E-1	2.23E-1	3.48E-1	6.10E-1

Sputtered energy of 0 by He ne=22, na=-9

Bo(eV)	0°	15°	30°	45°	55°	65°	75°	80°	85°
20	1.Ole-7	3.72e-7	1.39e-6	1.79e-6	1.08e-6	4.62e-7	1.30e-7	6.71e-8	
25	2.34E-6	4.64E-6	1.26E-5	1.96E-5	1.95E-5	1.55E-5	5.29E-6	1.01E-6	
27	1.00E-5	1.03E-5	2.54E-5	4.41E-5	5.02E-5	4.51E-5	1.68E-5	2.93E-6	
30	2.00E-5	2.64E-5	6.29E-5	1.20E-4	1.55E-4	1.56E-4	5.88E-5	9.52E-6	
35	5.00E-5	7.71E-5	1.87E-4	3.85E-4	5.51E-4	6.02E-4	2.40E-4	3.96E-5	
40	1.10E-4	1.62E-4	3.78E-4	8.55E-4	1.27E-3	1.49 E-3	6.06E-4	9.43E-5	4.38E-7
50	2.80E-4	4.09E-4	8.88E-4	2.11E-3	3.44E-3	4.31E-3	1.96E-3	3.36E-4	1.43E-6
60	5.00E-4	7.04E-4	1.46E-3	3.44E-3	5.95E-3	7.81E-3	4.01E-3	7.58E-4	3.12E-6
70	7.40E-4	9.74E-4	1.92 E-3	4.71E-3	8.36E-3	1.15E-2	6.75 E-3	1.41E-3	5.35E-6
100	1.29E-3	1.66E-3	3.09E-3	7.41E-3	1.35E-2	2.11E-2	1.56E-2	4.41E-3	1.85E-5
140	1.68E-3	2.14E-3	4.10E-3	9.20E-3	1.68E-2	2.77E-2	2.57E-2	9.23E-3	5.45E-5
200	1.95E-3	2.48E-3	4.58E-3	1.05E-2	1.85E-2	3.12E-2	3.55E-2	1.67E-2	1.74E-4
300	2.01E-3	2.61E-3	4.74E-3	1.04E-2	1.86E-2	3.12E-2	• 4.04E-2	2.64E-2	6.41E-4
400	1.93E-3	2.46E-3	4.69E-3	9.93E-3	1.74E-2	2.97E-2	4.17E-2	3.26E-2	1.49E-3
500	1.85 E-3	2.24E-3	4.24 E-3	9.43E-3	1.63E-2	2.77E-2	4.09E-2	3.61E-2	2.66E-3
700	1.55 E-3	2.00E-3	3.72E-3	8.13E-3	1.41E-2	2.44E-2	3.74E-2	3.82E-2	6.07E-3
1000	1.26 E-3	1.65E-3	3.16E-3	6.94E-3	1.22E-2	1.99E-2	3.29E-2	3.68E-2	1.11E-2
2000	7.40E-4	9.80E-4	1.89 E-3	4.03E-3	7.17E-3	1.29E-2	2.30E-2	2.88E-2	2.07E-2
3000	5.30E-4	6.60E-4	1.28E-3	2.96E-3	5.17E-3	9.62E-3	1.77E-2	2.27E-2	2.10E-2
5000	2.90E-4	3.90E-4	7.30E-4	1.72E-3	3.14E-3	6.01E-3	1.18E-2	1.62E-2	1.81E-2
10000	1.20E-4	1.70E-4	3.30E-4	7.60E-4	1.36E-3	2.80E-3	6.03E-3	9.09E-3	1.19E-2
20000	5.00E-5	8.00E-5	1.60E-4	3.10E-4	5.90E-4	1.10E-3	2.77E-3	4.37E-3	6.88 E-3

Particle reflection coefficient of He back-scattered from C zl = 2. ml = 4.00, z2 = 6. m2 = 12.01. sbe=7.41 eV. rho=1.85 g/cm**3 ef=0.20 eV. esb=0.00 eV. ca=1.00. kk0=kk0r=2. kdeel = kdee2=3. ipot=ipotr=1 (KrC) program : trvmc ne=24. na=9

	_		_	_		_		_	
Eo (eV)	0°	15°	30°	45°	55°	65°	75°	80°	85°
10	4.09E-1	4.44E-1	5.37E-1	6.93E-1	8.16E-1	9.31E-1	9.92E-1	9.99E-1	1.00E+0
15	3.40E-1	3.72E-1	4.64E-1	6.29E-1	7.66E-1	9.08E-1	9.89E-1	9.99E-1	1.00E+0
20	2.96E-1	3.24E-1	4.10E-1	5.73E-1	7.21E-1	8.82E-1	9.86E-1	9.99E-1	1.00EffO
25	2.66E-1	2.91E-1	3.70E-1	5.27E-1	6.80E-1	8.56E-1	9.81E-1	9.98E-1	1.00E+0
27	2.56E-1	2.80E-1	3.57E-1	5.12E-1	6.64E-1	8.45E-1	9.79E-1	9.98E-1	1.00E4-0
30	2.44E-1	2.67E-1	3.40E-1	4.90E-1	6.43E-1	8.30E-1	9.76E-1	9.98E-1	1.00E+0
35	2.27E-1	2.48E-1	3.18E-1	4.60E-1	6.12E-1	8.05E-1	9.71E-1	9.97E-1	1.00EffO
40	2.14E-1	2.34E-1	2.99E-1	4.35E-1	5.83E-1	7.82E-1	9.64E-1	9.97E-1	1.00E+0
50	1.94E-1	2.13E-1	2.73E-1	3.96E-1	5.37E-1	7.39E-1	9.50E-1	9.95E-1	1.00E+0
60	1.80E-1	1.98E-1	2.54E-1	3.68E-1	5.02E-1	7.00E-1	9.36E-1	9.93E-1	1.00E+0
70	1.69E-1	1.86E-1	2.38E-1	3.47E-1	4.72E-1	6.68E-1	9.19E-1	9.91E-1	1.00E+0
100	1.47E-1	1.61E-1	2.07E-1	3.04E-1	4.14E-1	5.91E-1	8.71E-1	9.80E-1	1.00E+0
140	1.30E-1	1.44E-1	1.85E-1	2.72E-1	3.70E-1	5.30E-1	8.09E-1	9.61E-1	1.00E + 0
200	1.13E-1	1.25E-1	1.64E-1	2.43E-1	3.30E-1	4.70E-1	7.33E-1	9.25E-1	1.00E+0
300	9.74E-2	1.08E-1	1.42E-1	2.16E-1	2.99E-1	4.24E-1	6.50E-1	8.61E-1	9.99E-1
400	8.73E-2	9.60E-2	1.31E-1	2.00E-1	2.76E-1	3.90E-1	5.98E-1	8.04E-1	9.96E-1
500	7.99E-2	8.84E-2	1.19E-1	1.86E-1	2.61E-1	3.74E-1	5.64E-1	7.58E-1	9.92E-1
700	6.87E-2	7.68E-2	1.07E-1	1.71E-1	2.40E-1	3.48E-1	5.24E-1	6.91E-1	9.78E-1
1000	5.75E-2	6.43E-2	9.36E-2	1.53E-1	2.20E-1	3.24E-1	4.90E-1	6.33E-1	9.42E-1
2000	3.79E-2	4.37E-2	6.71E-2	1.19E-1	1.82E-1	2.81E-1	4.33E-1	5.54E-1	8.17E-1
3000	2.78E-2	3.36E-2	5.18E-2	9.82E-2	1.58E-1	2.56E-1	4.07E-1	5.21E-1	7.44E-1
5000	1.74E-2	2.07E-2	3.56E-2	7.22E-2	1.26E-1	2.19E-1	3.69E-1	4.79E-1	6.69E-1
10000	7.81E-3	9.70E-3	1.72E-2	4.20E-2	8.14E-2	1.64E-1	3.12E-1	4.27E-1	6.01E-1
20000	3.21E-3	3.99E-3	7.13E-3	1.83E-2	4.27E-2	1.05E-1	2.48E-1	3.66E-1	5.47E-1

Energy	reflection	coefficient	of	He	backscattered	from	C
ne=24.	na= 9						

$E_0(eV)$	0°	15°	30°	45°	55°	65°	75°	80°	85°
10	9.49E-2	1.16E-1	1.79E-1	3.20E-1	4.49E-1	6.35E-1	8.31E-1	9.08E-1	9.61E-1
15	8.05E-2	9.76E-2	1.55E-1	2.82E-1	4.24E-1	6.23E-1	8.38E-1	9.20E-1	9.70E-1
20	7.02E-2	8.46E-2	1.35E-1	2.55E-1	3.97E-1	6.03E-1	8.38E-1	9.25E-1	9.74E-1
25	6.28E-2	7.53E-2	1.20E-1	2.30E-1	3.70E-1	5.82E-1	8.34E-1	9.27E-1	9.77E-1
27	6.05E-2	7.23E-2	1.15E-1	2.22E-1	3.60E-1	5.73E-1	8.32E-1	9.27E-1	9.78E-1
30	5.74E-2	6.84E-2	1.08E-1	2.10E-1	3.45E-1	5.60E-1	8.28E-1	9.28E-1	9.78E-1
35	5.32E-2	6.31E-2	9.94E-2	1.94E-1	3.24E-1	5.38E-1	8.21E-1	9.28E-1	9.79E-1
40	4.99E-2	5.91E-2	9.27E-2	1.80E-1	3.04E-1	5.18E-1	8.12E-1	9.27E-1	9.80E-1
50	4.48E-2	5.29E-2	8.26E-2	1.59E-1	2.71E-1	4.80E-1	7.94E-1	9.24E-1	9.81E-1
60	4.13E-2	4.84E-2	7.56E-2	1.45E-1	2.47E-1	4.45E-1	7.75E-1	9.19E-1	9.81E-1
70	3.86E-2	4.53E-2	7.02E-2	1.33E-1	2.27E-1	4.17E-1	7.54E-1	9.14E-1	9.81E-1
100	3.31E-2	3.87E-2	5.93E-2	1.12E-1	1.90E-1	3.50E-1	6.97E-1	8.95E-1	9.81E-1
140	2.88E-2	3.41E-2	5.16E-2	9.72E-2	1.61E-1	2.98E-1	6.25E-1	8.65E-1	9.80E-1
200	2.50E-2	2.94E-2	4.54E-2	8.41E-2	1.38E-1	2.51E-1	5.38E-1	8.13E-1	9.77E-1
300	2.14E-2	2.50E-2	3.86E-2	7.32E-2	1.21E-1	2.15E-1	4.50E-1	7.29E-1	9.72E-1
400	1.91E-2	2.21E-2	3.57E-2	6.78E-2	1.10E-1	1.91E-1	3.95E-1	6.57E-1	9.66E-1
500	1.72E-2	2.02E-2	3.19E-2	6.20E-2	1.02E-1	1.80E-1	3.61E-1	5.97E-1	9.57E-1
700	1.49E-2	1.76E-2	2.83E-2	5.55E-2	9.19E-2	1.64E-1	3.21E-1	5.18E-1	9.31E-1
1000	1.22E-2	1.46E-2	2.46E-2	4.95E-2	8.28E-2	1.48E-1	2.89E-1	4.50E-1	8.77E-1
2000	7.71E-3	9.44E-3	1.68E-2	3.58E-2	6.46E-2	1.22E-1	2.38E-1	3.60E-1	7.01E-1
3000	5.47E-3	6.99E-3	1.24E-2	2.84E-2	5.36E-2	1.05E-1	2.13E-1	3.21E-1	5.99E-1
5000	3.22E-3	4.06E-3	7.89E-3	1.91E-2	3.89E-2	8.18E-2	1.78E-1	2.75E-1	4.95E-1
10000	1.33E-3	1.71E-3	3.39E-3	9.35E-3	2.08E-2	5.09E-2	1.29E-1	2.15E-1	3.95E-1
20000	5 10E-4	6.26E-4	1 23E-3	3 49E-3	8 71E-3	2 53E-2	8 03E-2	1 49E-1	3 09E-1

Average depth (mean range) in \ddot{A} of He implanted in C $ne{=}24.\ na{=}\ 9$

		1		1					
' E ₀ (eV)	0 "	15°	30°	45°	55 °	65°	75°	80 ^u	85 ^u
10	3.10E+0	3.00E+0	2.90E4-0	2.70E+0	2.60E+0	2.40E + 0	2.10E+0	1.80E+0	1.40E+0
15	4.00E + 0	4.00E+0	3.80E + 0	3.60E+0	3.40E + 0	3.10E + 0	2.80E+0	2.50E+0	1.90E+0
20	4.90E + 0	4.80E+0	4.60E4-0	4.30E+0	4.10E+0	3.80E + 0	3.40E+0	3.10E+0	2.60E4-0
25	5.70E+0	5.60E+0-	5.40E + 0	5.00E+0	4.70E + 0	4.40E + 0	3.90E+0	3.60E+0	3.20E+0
27	6.00E4-0	5.90E+0	5.70E + 0	5.30E4-0	5.00E+0	4.60E-J-0	4.10E4-0	3.80E+0	3.20E4-0
30	6.50E4-0	6.40E+0	6.10E4-0	5.70E+0	5.40E + 0	5.00E + 0	4.50E+0	4.10E+0	3.70E+0
35	7.20E4-0	7.10E+0	6.80E + 0	6.30E+0	5.90E4-0	5.50E + 0	5.00E+0	4.60E+0	4.30E+0
40	8.00E4-0	7.80E4-0	7.50E + 0	6.90E4-0	6.50E4-0	6.00E + 0	5.40E+0	5.00E+0	4.40E+0
50	9.40E+0	9.20E+0	8.70E+0	8.10E4-0	7.60E+0	7.10E+0	6.40E+0	5.90E4-0	4.90E4-0
60	1.07E+1	1.05E+1	1.00E+1	9.20E4-0	8.60E + 0	8.00E+0	7.30E+0	6.80E4-0	5.90E-f-0
70	1.20E + 1	1.18E+1	1.12E+1	1.03E+1	9.60E+0	8.90E4-0	8.10E+0	7.60E+0	6.70E+0
100	1.58E + 1	1.55E-J-1	1.47E+1	1.34E+1	1.24E + 1	1.15E+1	1.07E+1	1.00E+1	9.30E+0
140	2.07E + 1	2.02E+1	1.90E+1	1.73E-+1	1.61E4-1	1.49E+1	1.37E + 1	1.30E+1	1.14E+1
200	2.76E+1	2.70E4-1	2.54E+1	2.30E4-1	2.12E+1	1.95E+1	1.81E + 1	1.71E+1	1.55E+1
300	3.89E+1	3.80E4-1	3.56E4-1	3.22E+1	2.94E + 1	2.70E+1	2.49E + 1	2.42E4-1	2.23E + 1
400	5.01E+1	4.90E+1	4.56E+1	4.13E+1	3.77E + 1	3.45E+1	3.17E + 1	3.04E+1	2.85E4-1
500	6.12E+1	5.98E+1	5.58E + 1	5.03E+1	4.60E + 1	4.16E+1	3.83E + 1	3.70E+1	3.50E + 1
700	8.35E+1	8.13E+1	7.56E + 1	6.75E+1	6.18E+1	5.58E4-1	5.08E + 1	4.89E + 1	4.73E + 1
1000	1.17E+2	1.14E+2	1.05E+2	9.39E+1	8.51E+1	7.66E+1	6.99E + 1	6.65E + 1	6.47E4-1
2000	2.29E4-2	2.23E+2	2.05E + 2	1.80E+2	1.62E+2	1.44E + 2	1.29E+2	1.23E4-2	1.19E+2
3000	3.42E + 2	3.32E+2	3.05E+2	2.64E+2	2.36E+2	2.07E + 2	1.83E+2	1.75E+2	1.68E+2
5000	5.66E+2	5.48E4-2	4.99E + 2	4.29E+2	3.76E4-2	3.26E + 2	2.82E+2	2.66E+2	2.54E+2
10000	1.10E-J-3	1.06E+3	9.61E+2	8.08E+2	6.94E+2	5.81E+2	4.87E+2	4.50E+2	4.26E4-2
20000	2.04E+3	1.97E+3	1.77E+3	1.47E+3	1.23E4-3	9.88E+2	7.84E+2	7.06E+2	6.55E+2

 $Be \longrightarrow C$

$E_0 (eV)$	Ö ⁷³
30	1.20e-5
40	2.11e-4
50	9.28e-4
. 70	4.48e-3
100	1.25e-2
200	4.42e-2
500	1.07e-1
1000	1.40e-1

Sputtered energy of C by Be ne= 8. na= 1

E ₀ (eV)	0°
30	6.72e-7
40	1.41e-5
50	6.08e-5
70	2.65e-4
100	6.41e-4
200	1.74e-3
500	2.83e-3
1000	2.64e-3

Particle reflection coefficient of Be backscattered from C zl=4. ml=9.01. z2=6, m2=12.01. sbe=7.41 eV, rho=2.26 g/cm**3 ef=7.35 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program : trvmc95 only low fluence! ne=8, na=1

÷

Ep(eV)	(F
30	2.86e-2
40	2.48e-2
50	2.46e-2
70	2.64e-2
100	2.68e-2
200	2.60e-2
500	2.02e-2
1000	1.39e-2

Energy reflection ne= 8, na= 1 coefficient of Be backscattered from C

Eo(eV)	0°
30	1.92e-3
40	2.44e-3
50	2.85e-3
70	3.27e-3
100	3.01e-3
200	2.56e-3
500	1.76e-3
1000	1.23e-3

Average depth (mean range) in \ddot{A} Be implanted in C ne= 8, na= 1

E ₀ (eV)	. 0°
30	2.58e- -0
40	3.40e + 0
50	4.16e+0
70	5.53e + 0
100	7.28e + 0
200	1.26e + 1
500	2.64e + 1
1000	4.77e+1

$$\mathbf{C} \to \mathbf{C}$$

Sputtering yield of C by C 2l= 6, ml= 12.01, z2= 6. m2= 12.01, sbe=7.41 eV, rho=1.85 g/cm**3 ef=7.35 eV, esb=7.41 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program : trvmc, testvmcx ne=19, na= 9

$E_0(eV)$	0°	15 ^u	30°	45 ^u	55°	65°	75 ^u	80°	85°
8						5.00e-6	7.69e-6	8.99e-6	9.65e-6
10			5.00e-7	6.50e-6	2.07e-5	2.60e-5	3.81e-5	3.87e-5	3.78e-5
12			3.21e-6	2.36e-5	5.03e-5	7.39e-5	8.42e-5	8.64e-5	8.58e-5
15			1.10e-5	8.90e-5	1.47e-4	2.00e-4	2.36e-4	2.60e-4	2.64e-4
17						3.95e-4			
20		1.00e-5	8.10e-5	3.60e-4	6.74e-4	1.18e-3	1.73e-3	1.95e-3	2.05e-3
25	5.00e-6	3.10e-5	2.76e-4	1.28e-3	2.90e-3	5.02e-3	6.61e-3	7.13e-3	7.12e-3
30	1.83e-5	1.00e-4	8.15e-4	3.95e-3	8.02e-3	1.31e-2	1.55e-2	1.55e-2	1.60e-2
40	1.35e-4	5.96e-4	3.73e-3	1.56e-2	2.85e-2	4.06e-2	4.16e-2	3.40e-2	3.85e-2
45	2.74e-4								
50	5.21e-4	1.89e-3	1.04e-2	3.58e-2	5.81e-2	7.50e-2	7.57e-2	7.03e-2	6.37e-2
70	2.57e-3	7.31e-3	3.01e-2	8.40e-2	1.34e-1	1.63e-1	1.51e-l	1.28e-1	1.10e-1
100	8.84e-3	1.96e-2	6.53e-2	1.66e-l	2.45e-1	2.89e-1	2.45e-1	1.99e-1	1.54e-1
140	2.13e-2	3.95e-2	1.11e-1	2.52e-1	3.74e-1	4.43e-1	3.65e-1	2.60e-1	1.83e-1
200	4.14e-2	6.76e-2	1.63e-1	3.49e-1	5.16e-l	6.33e-1	5.14e-1	3.53e-1	2.11e-1
300	7.16e-2	1.06e-l	2.27e-1	4.60e-1	6.83e-1	8.63e-1	7.42e-1	4.94e-1	2.42e-1
500	1.16e-l	1.61e-1	3.05e-1	5.98e-1	8.91e-1	1.18e-0	1.15e-0	7.92e-1	3.01e-1
1000	1.78e-1	2.28e-1	3.93e-1	7.38e-1	1.10e-0	1.55e-0	1.77e-0	1.45e-0	4.92e-1
1200	2.13E-1								

Sputtered energy of C by C ne=19, na=-9

E ₀ (eV)	0°	15°	30°	45°	55°	65°	75°	80°	85°
8						6.25e-7	1.04e-6	1.27e-6	1.37e-6
10				5.76E-7	2.69E-6	3.92E-6	5.96E-6	6.31E-6	6.45E-6
12			2.79E-7	2.62E-6	6.69E-6	1.14E-5	1.47E-5	1.55E-5	1.59E-5
15			1.05E-6	1.07E-5	2.19E-5	3.46E-5	4.39E-5	5.10E-5	5.40E-5
17						7.13e-5			
20		7.29E-7	6.84E-6	4.83E-5	1.10E-4	2.30E-4	3.77E-4	4.42E-4	4.79E-4
25	2.49E-7	2.49E-6	2.94E-5	1.92E-4	5.19E-4	1.06E-3	1.61E-3	1.74E-3	1.80E-3
30	1.09E-6	7.99E-6	9.28E-5	6.15E-4	1.57E-3	2.94E-3	3.89E-3	4.07E-3	4.32E-3
40	8.28E-6	4.85E-5	4.35E-4	2.52E-3	5.71E-3	9.61R-3	1.12E-2	1.12E-2	1.10E-2
45	1.63e-5								
50	2.98E-5	1.49E-4	1.17E-3	5.77E-3	1.15E-2	1.80E-2	2.08E-2	2.00E-2	1.81E-2
70	1.32E-4	5.06E-4	3.08E-3	1.26E-2	2.47E-2	3.68E-2	4.01E-2	3.52E-2	3.10E-2
100	4.06E-4	1.21E-3	6.00E-3	2.19E-2	4.06E-2	5.90E-2	6.04 E-2	5.14E-2	4.06 E-2
140	8.92E-4	2.16E-3	8.86E-3	2.89E-2	5.32E-2	7.71E-2	7.89E-2	6.06E-2	4.48E-2
200	1.57E-3	3.26E-3	1.13E-2	3.40E-2	6.18E-2	9.29E-2	9.35 E-2	7.18E-2	4.66E-2
300	2.35E-3	4.40E-3	1.32E-2	3.67E-2	6.56E-2	1.01E-1	1.09E-1	8.23E-2	4.48 E-2
500	3.12E-3	5.29E-3	1.39E-2	3.70E-2	6.52E-2	1.02E-1	1.25E-1	1.00E-1	4.32E-2
1000	3.48E-3	5.41E-3	1.30E-2	3.27E-2	5.68E-2	9.42 E-2	1.26E-1	1.18E-1	4.88 E-2
1200	3.72E-3								

$$\mathbf{C} \to \mathbf{C}$$

.

Particle reflection coefficient of C backscattered from C zl= 6. ml = 12.01. z2 = 6. m2 = 12.01. sbe = 7.41 eV. rho=1.85 g/cm^{**3} ef=7.35 eV, esb=7.41 eV, ca=1.00. kk0 = kk0r=2. kdeel = kdee2=3. ipot=ipotr=1 (KrC) program : trvmc. testvmcx ne=18. na = 9

E ₀ (eV)	0°	15°	30°	45°	55 ^u	65°	75°	80°	85 ^u
10						6.67E-7		8.00E-8	1.20E-7
12					4.00E-8	7.91E-7	5.67E-6	9.98E-6	1.30E-5
15				5.00E-6	1.69E-5	1.07E-4	3.66E-4	5.13E-4	6.53E-4
17						6.76e-4			
20			7.00E-6	2.20E-4	1.14E-3	3.69E-3	8.11E-3	1.02E-2	1.17E-2
25		4.00E-6	1.38E-4	1.99E-3	7.19E-3	1.78E-2	3.26E-2	3.94E-2	4.35E-2
30	2.02E-6	3.46E-5	6.64E-4	6.27E-3	1.98E-2	4.43E-2	7.30E-2	8.64E-2	9.39E-2
40	2.82E-5	2.58E-4	3.16E-3	2.16E-2	5.60E-2	1.12E-1	1.75E-1	2.03E-1	2.20E-1
45	6.23e-5								
50	1.11E-4	7.41E-4	6.47E-3	3.74E-2	9.15E-2	1.81E-1	2.82E-1	3.25E-1	3.56E-1
70	4.23E-4	1.97E-3	1.30E-2	6.25E-2	1.43E-1	2.80E-1	4.51E-1	5.30E-1	5.76E-1
100	1.11E-3	3.76E-3	1.96E-2	7.98E-2	1.78E-1	3.51E-1	5.88E-1	6.89E-1	7.58E-1
140	2.14E-3	5.52E-3	2.34E-2	8.52E-2	1.83E-1	3.70E-1	6.34E-1	7.67E-1	8.53E-1
200	3.38E-3	7.28E-3	2.61E-2	8.48E-2	1.77E-1	3.50E-1	6.39E-1	7.91E-1	8.92E-1
300	4.36E-3	8.44E-3	2.53E-2	8.10E-2	1.62E-1	3.23E-1	6.08E-1	7.88E-1	9.18E-1
500	5.32E-3	8.91E-3	2.45E-2	7.09E-2	1.39E-1	2.73E-1	5.36E-1	7.40E-1	9.28E-1
1000	4.84E-3	7.34E-3	2.05E-2	5.91E-2	1.17E-1	2.24E-1	4.46E-1	6.36E-1	9.09E-1
1200	3.70E-3								

Energy reflection coefficient of C backscattered from C ne=18. na= 9

E ₀ (eV)	0 ^d	15°	30°	45°	55°	65°	75 ^u	80°	85°
10						1.03 E-7		1.50E-8	1.89E-8
12					6.97E-9	1.37E-7	1.11E-6	1.99E-6	2.57E-6
15				8.57E-7	2.73E-6	1.95E-5	7.67E-5	1.11E-4	1.45E-4
17						1.36e-4			
20			8.15E-7	3.51E-5	2.19E-4	8.51E-4	2.11E-3	2.78E-3	3.29 E-3
25		1.95E-7	1.86E-5	3.63E-4	1.61E-3	4.77E-3	9.99E-3	1.28E-2	1.45E-2
30	1.34E-6	3.44E-6	9.73B-5	1.25E-3	4.93E-3	1.32E-2	2.49E-2	3.12E-2	3.48E-2
40	1.93E-6	2.59E-5	4.84E-4	4.83E-3	1.56E-2	3.79E-2	6.82E-2	8.34E-2	9.36E-2
45	1.08e-5								
50	7.52E-6	7.29E-5	9.88E-4	8.69E-3	2.69E-2	6.52E-2	1.18E-1	1.45E-1	1.64E-1
70	2.79E-5	1.89E-4	1.99E-3	1.46E-2	4.45E-2	1.09E-1	2.10E-1	2.62E-1	2.97E-1
100	6.78E-5	3.37E-4	2.82E-3	1.84E-2	5.61E-2	1.44E-1	3.00E-1	3.81E-1	4.43E-1
140	1.26E-4	4.75E-4	3.19E-3	1.91E-2	5.63E-2	1.55E-1	3.49E-1	4.70E-1	5.57E-1
200	1.98E-4	5.92E-4	3.44E-3	1.81E-2	5.19E-2	1.46E-1	3.69E-1	5.19E-1	6.41E-1
300	2.55E-4	6.40E-4	3.11E-3	1.60E-2	4.60E-2	1.31E-1	3.56E-1	5.43E-1	7.12E-1
500	2.94E-4	6.46E-4	2.90E-3	1.32E-2	3.58E-2	1.03E-1	3.02E-1	5.16E-1	7.63E-1
1000	2.72E-4	5.21E-4	2.30 E-3	1.05E-2	2.84E-2	7.58E-2	2.33E-1	4.27E-1	7.75E-1
1200	1.98E-4								

Average depth (mean range) in \ddot{A} of C implanted in C ne=19, na= 9

$E_0 (eV)$	0°	15°	30°	45°	55 ^u	65°	75°	80 ^u	85°
8						5.02e-1	4.24e-1	3.97e-1	3.79e-1
10	1.28E+0	1.23E+0	1.10E-j-0	9.28 E-1	8.03E-1	6.90 E-1	6.03E-1	5.72E-1	5.54E-1
12			1.23E+0	9.95E-1	8.08E-1	6.28E-1	4 83 E-1	4.33E-1	4.02E-1
15	1.81E+0	1.73E-J-0	1.54E + 0	1.24E4-0	9.36E-1	6.99E-1	5.13E-1	4.51E-1	4.11E-1
17						7.46e-l			
20	2.31E+0	2.21E + 0	1.95E + 0	1.48E+0	1.14E4-0	8.16E-1	5.71E-1	4.89E-1	4.38E-1
25	2.77E + 0	2.65E+0	2.30E + 0	1.75E+0	1.33E4-0	9.44E-1	6.36E-1	5.36E-1	4.74E-1
30	3.19E4-0	3.05E + 0	2.66E-J-0	2.03E + 0	1.50E + 0	1.10E + 0	7.00E-1	6.00E-1	5.00E-1
40	3.97E+0	3.80E-J-0	3.32E-J-0	2.60E+0	2.00E+0	1.40E + 0	9.00E-1	8.00E-1	6.00E-1
45	4.34e+0								
50	4.69E4-0	4.49E+0	3.90E + 0	3.10E+0	2.40E+0	1.80E+0	1.10E-J-0	9.00E-1	8.00E-1
70	5.99E4-0	5.75E+0	5.10E-J-0	4.10E4-0	3.30E + 0	2.50E + 0	1.70E+0	1.40E + 0	1.20E+0
100	7.74E+0	7.40E+0	6.70E + 0	5.50E4-0	4.60E + 0	3.80E + 0	2.80E-J-0	2.30E + 0	1.90E4-0
140	9.84E + 0	9.50E+0	8.50E + 0	7.20E4-0	6.20E + 0	5.20E+0	4.00E+0	3.50E4-0	3.00E+0
200	1.27E4-1	1.23E+1	1.11E + 1	9.40E+0	8.20E4-0	6.90E + 0	5.70E+0	5.00E + 0	4.20E4-0
300	1.71E+1	1.65E4-1	1.50E + 1	1.27E+1	1.10E + 1	9.40E + 0	7.90E+0	7.10E+0	6.00E + 0
500	2.51E+1	2.43E-J-1	2.20E+1	1.87E + 1	1.63E+1	1.38E+1	1.17E + 1	1.07E4-1	9.50E4-0
1000	4.34E4-1	4.20E+1	3.80E+1	3.22E+1	2.78E + 1	2.38E+1	2.03E + 1	1.85E+1	1.71E+1
1200	4.14E + 1								

 $\mathbf{C} \to \mathbf{C}$

Sputtering yield of C by C zl = 6, ml = 12.01, z2 = 6, m2 = 12.01, sbe=7.42 eV. rho = 2.26 g/cm**3 ef=7.37 eV. esb = 7.42 eV, ca=1.00. kk0=kk0r=2. kdeel=kdee2=3. ipot=ipotr=1 (KrC) program : testvmcx, trspvlcn. trvmc95, trvmc ne=36, na=7

Bo(eV)	o	30°	45°	50 ^u	70°	75°	85 ^u	
8					2.63e-6			
10					1.83e-5			
12					5.49e-5			
14					1.14e-4			
15					1.72e-4			
20					1.32e-3			
25	5.72e-6				5.72e-3			
28	1.15e-5							
30	1.94E-5				1.40e-2			
35	5.53e-5							
40	1.44e-4				4.16e-2			
45	2.97e-4							
50	5.33E-4				7.77e-2			
50	5.75e-4							
70	2.72E-3				1.55e-l			
100	9.31E-3				2.64e-1			
100	1.0le-2							
150	2.65e-2							
200	4.51e-2				5.98c-1			
200	4.60e-2							
500	1.27E-1				1.27e-0			
500	1.30e-1							
1000	1.92E-1				1.81e-0			
1000	1.85e-l		•					
1200	2.13e-1	•						
2000	2.26e-1				2.16e-0			
2000	2.24e-1							
3000		4.59e-1	8.23e-1			2.68e-0	1.23e-0	
3000			8.27e-1	1.03e-0				
5000	2.54e-1				2.35e-0			Ŀ
5000	2.34e-1							
10000	2.25E-1				2.06e-0			
10000	2.12e-1			7.67e-1				
30000	1.60E-1				1.13e-0			Ľ
30000	1.56e-l							
100000	8.58e-2				4.39e-1			

Sputtered	energy	of	С	by	С
na-36 no	- 7				

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
35 3.69e-6 40 8.84e-6 45 1.88e-5 50 3.16E-5 50 3.43e-5 70 1.42E-4 100 4.30E-4 150 1.04e-2 150 1.04e-3 200 1.62e-3 9.82e-2 200 1.60e-3 500 3.26E-3 100 3.56E-3	
40 8.84e-6 1.04e-2 45 1.88e-5 1.97e-2 50 3.43e-5 1.97e-2 70 1.42E-4 3.82e-2 100 4.30E-4 6.00e-2 100 4.89e-4 9.82e-2 200 1.60e-3 9.82e-2 500 3.26E-3 1.22e-1 500 3.56E-3 1.13e-1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
50 3.16E-5 1.97e-2 50 3.43e-5 3.82e-2 70 1.42E-4 3.82e-2 100 4.30E-4 6.00e-2 150 1.04e-3 9.82e-2 200 1.62e-3 9.82e-2 500 3.26E-3 1.22e-1 500 3.56E-3 1.13e-1	
50 3.43e-5 70 1.42E-4 100 4.30E-4 150 1.04e-3 200 1.62e-3 200 1.60e-3 500 3.26E-3 1000 3.56E-3 1000 3.56E-3	
70 1.42E-4 3.82e-2 100 4.30E-4 6.00e-2 100 4.89e-4 6.00e-2 150 1.04e-3 9.82e-2 200 1.60e-3 9.82e-2 500 3.26E-3 1.22e-1 500 3.56E-3 1.13e-1	
100 4.39E-4 6.00e-2 100 4.89E-4 6.00e-2 150 1.04e-3 9.82e-2 200 1.60e-3 9.82e-2 500 3.26E-3 1.22e-1 500 3.56E-3 1.13e-1	
100 4.89c-4 150 1.04e-3 200 1.62c-3 9.82e-2 200 1.60e-3 500 3.26E-3 1000 3.56E-3 1.13e-1	
150 1.04e-3 200 1.62e-3 200 1.60e-3 500 3.26E-3 1000 3.56E-3 1.13e-1	
200 1.62e-3 9.82e-2 200 1.60e-3 1.22e-1 500 3.19e-3 1.13e-1	
200 1.60e-3 500 3.26E-3 1.22e-1 500 3.56E-3 1.13e-1	
500 3.26E-3 1.22e-1 500 3.19e-3 1.13e-1	
500 3.19e-3 1000 3.56E-3 1.13e-1	
1000 3.56E-3	
1000 3.27e-3	
2000 3.076-3	
	,
3000 9.000-3 2.12/02 1.070-1 0.040-	
5000 2 15a 3 2 7 36a 2 7 36a 2	
5000 1.96-3	
10000 1.32E 3 5 13e-2	
10000 1.326-3	
30000 4 66E-4	
30000 5.03e-4	
100000 1 08e-4 2.34e-3	

$$\mathbf{C} \to \mathbf{C}$$

Particle reflection coefficient of C backscattered from C zl = 6, ml = 12.01, z2= 6, m2= 12.01, sbe=7.42 eV, rho = 2.26 g/cm**3 ef=7.37 eV, esb = 7.42 eV, ca=1.00, kk0=kk0r=2. kdeel = kdee2=3. ipot=ipotr = 1 (KrC) program : testvmcx, trspvlcn. trvmc95. trvmc ne = 34, na = 7

$E_0 (eV)$	0°	30°	45°	50 °	70°	75°	85°	
12					2.82e-6			
14					5.91e-5			
15					1.86e-4			
20					5.44e-3			
25	1.41e-7				2.61e-2			
28	4.65e-7							
30	1.45E-6				6.32e-2			
35	8.15e-6							
40	2.88e-5				1.58e-1			
45	6.58e-5							
50	1.14E-4				2.59e-1			
50	1.10e-4							
70	5.03E-4				4.13e-1			
100	1.25E-3				· 5.28e-1			
100	1.33e-3							
150	2.46e-3							
200	3.45e-3				5.42e-1			
200	3.03e-3							
500	5.29E-3				4.05e-1			
500	3.84e-3							
1000	5.04E-3				3.37e-1			
1000	4.04e-3							
1200	3.70e-3							
2000	3.95e-3				2.91e-1			
2000	3.56e-3							
3000		1.30e-2	4.01e-2			3.56e-1	8.28e-1	
. 3000			4.19e-2	6.01e-2				
5000	1.60e-3				2.28e-1			
5000	1.82e-3							
10000	1.10E-3				1.88e-1			
10000	1.16e-3			3.75e-2				
30000	4.67E-4				1.46e-1			
30000	4.20e-4							
100000	5.79e-5				7.52e-2			

Energy reflection coefficient of C backscattered from C $ne{=}34.,\ na{=}7$

E ₀ (eV)	0°	30°	45°	50°	70°	75°	85°
12					1.47e-6		
14					1.16e-5		
15					3.82e-5		
20					1.31e-3		
25	3.63e-7				7.34e-3		
28	2.09e-7						
30	1.02E-7				1.99e-2		
35	6.11e-7						
40	2.05e-6				5.69e-2		
45	4.74e-6						
50	8.44E-6				1.01e-1		
50	1.22e-5						
70	3.40E-5				1.78e-1		
100	7.89E-5				2.48e-1		
100	8.64e-5						
150	1.51e-4						
200	2.08e-4				2.77e-1		
200	1.83e-4						
500	2.88E-4				1.94e-1		
500	2.02e-4						
1000	2.99E-4				1.44e-1		
1000	2.29e-4						
1200	1.09e-4						
2000	2.28e-4				1.14e-1		
2000	2.20e-4						
3000		1.44e-3	6.86e-3			1.6'3e-l	7.05e-1
3000			7.31e-3	1.22e-2			
5000	8.71e-5				8.49e-2		
5000	1.08e-4						
10000	6.68E-5				6.84e-2		
10000	5.59e-5			7.28e-3			
30000	1.27E-5				4.50e-2		
30000	2.22e-5						
100000	2.47e-6				1.54e-2		

$$\mathbf{C} \to \mathbf{C}$$

Average depth (mean range) in Å of C implanted in C zl = 6. ml = 12.01. z2= 6. m2= 12.01. sbe=7.42 eV. rho = 2.26 g/cm**3 ef=7.37 eV. esb = 7.42 eV. ca=1.00. kk0=kk0r=2 + kdeel = kdee2=3, ipot=ipotr=1 (KrC) program : testvmcx. trspvlcn. trvmc95. trvmc ne=37. na= 7

$E_0(eV)$	0 °	30°	45 ^u	50°	70°	75°	85 ^u
8					2.59e-1		
10					3.16e-l		
12					3.46e-1		
14					3.67e-1		
15					3.76e-1		
20	1.46e + 0				4.33e-1		
25	2.10e4-0				4.98e-1		
28	2.31e + 0						
30	2.45E+0				5.74e-1		
30	2.03e + 0						
35	2.78e+0						
40	3.09e+0				7.59e-1		
45	3.39e+0						
50	3.68E+0				9.81e-1		
50	3.07e+0						
70	4.74E+0				1.53e+0		
100	6.17E+0				2.48e + 0		
100	5.30e+0						
150	8.30e + 0						
200	1.02e+1				4.95e + 0		
200	9.08e+0						
500	2.04E4-1				1.02e + 1		
500	1.89e+1						
1000	3.54E+1				1.81e + 1		
1000	3.37e+1						
1200	4.11e4-l						
2000	6.41e + 1				3.14e + 1		
2000	6.18e + 1						
3000		8.05e + 1	6.74e + 1			4.08e+1	3.49e + 1
3000			6.76e + 1	6.29e + 1			
5000	1.49e + 2				6.97e + 1		
5000	1.46e + 2						
10000	2.94E + 2				1.34e4-2		
10000	2.91e+2			1.96e4-2			
30000	8.82E+2				3.69e+2		
30000	8.77e+2						
100000	2.72e+3				1.02e + 3		

$$\mathbf{C} \to \mathbf{C}$$

Sputtering yield of C by C zl = 6, ml = 12.01, z2 = 6. m2 = 12.01, sbe = 7.40 eV, $rho=2.00 \ g/cm^{**3}$ ef=7.35, 6.90 eV, esb=7.40 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=:3. ipot=ipotr= 1 (KrC) program : testvmcx. newtrim (Laszlo), trspvmc ne=22, na= 7

E ₀ (eV)	0°	30°	45°	60 ^u	65 ^u	70°	80°
17					3.83e-4		
18					5.37e-4		
18					3.06e-4		
19					8.09e-4		
19					5.21e-4		
20					1.23e-3		
20					8.65e-4		
25					5.22e-3		
25					4.62e-3		
30					1.26e-2		
45	2.59e-4						
50	5.05E-4				8.12e-2		
53	7.48e-4						
55	8.66e-4						
70	2.62E-3				1.73e-1		
100	9.49E-3				3.12e-1	2.83e-1	
150						4.57e-1	
300	7.36e-2				8.97e-1		
300	8.05e-2	2.33e-1	4.85e-1	8.16e-1		8.49e-1	4.66e-1
1000	1.79e-l	4.23e-1	7.37e-1	1.38e-0		1.73e-0	1.39e-0
3000	2.49e-1			1.50e-0		2.25e-0	2.68e-0
6000						2.26e-0	

Sputtered energy of C by C

$B_0(eV)$	0°	30°	45°	60°	65°	70°	80°
17					6.68e-5		
18					9.62e-5		
18					5.66e-5		
19					1.53e-4		
19					9.95e-5		
20					2.35e-4		
20					1.71e-4		
25					1.10e-3		
25					1.01e-3		
30					2.89e-3		
45	1.63e-5						
50	305E-5				1.92e-2		
53	4.28e-5						
55	5.05e-5						,
70	1.37E-4				3.90e-2		
100	4.36E-4				6.35e-2	6.37e-2	
150						8.66e-2	
300	2.24e-3				9.96e-2		
300	2.41e-3	1.30e-2	3.85e-2	8.21e-2		1.08e-1	7.84e-2
1000	3.54e-3	1.36e-2	2.99e-2	7.40e-2		1.14e-1	1.lle-1
3000	2.80e-3			4.91e-2		9.20e-2	1.12e-1
6000						6.34e-2	

 $\mathbf{C} \to \mathbf{C}$

Particle reflection coefficient of C backscattered from C zl = 6. ml = 12.01. z2 = 6. m2 = 12.01. sbe=7.40 eV. rho=2.00 g/cm^{**3} ef=7.35, 6.90 eV. esb=7.40 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program : testvmcx. newtrim (Laszlo), trspvmc ne=22, na=7

E ₀ (eV)	0°	30°	45°	60°	65°	70 ^u	80°	
17					6.42e-4			
18					1.30e-3			L
18					1.27e-3			L
19					2.24e-3			L
19					2.21e-3			L
20					3.77e-3			L
20					3.60e-3			L
25					1.87e-2			L
25					1.86e-2			L
30					4.49e-2			L
45	6.93e-5							L
50	1.13E-4				1.90e-1			L
53	1.53e-4							L
55	1.79e-4							L
70	3.98E-4				2.96e-1			L
100	1.30E-3				3.68e-1	4.84e-1		L
150						5.19e-1		L
300	4.27e-3				3.40e-1			L
300	4.47e-3	2.54e-2	8.19e-2	2.47e-1		4.73e-1	8.06e-1	1
1000	4.46e-3	1.76e-2	5.98e-2	1.54e-1		3.40e-1	6.56e-l	
3000	3.98e-3			1.34e-1		2.44e-1	4.93e-1	
6000						2.42e-1		

Energy reflection coefficient of C backscattered from C $ne\!=\!22,\ na\!=\!7$

E ₀ (eV)	0°	30°	45°	60°	65°	70°	80°
17					1.37e-4		
18					2.75e-4		
18					2.65e-4		
19					4.90e-4		
19					4.81e-4		
20					8.47e-4		
20					8.15e-4		
25					4.94e-3		
25					4.81e-3		
30					1.32e-2		
45	4.84e-6						
50	7.50E-6				6.87e-2		
53	9.82e-6						
55	1.13e-5						
70	2.73E-5				1.16e-l		
100	8.89E-5				1.52e-1	2.25e-1	
150						2.55e-1	
300	2.31e-4				1.38e-1		
300	2.54e-4	3.23e-3	1.66e-2	8.64e-2		2.32e-1	5.63e-1
1000	2.13e-4	1.70e-3	1.03e-2	4.55e-2		1.40e-1	4.52e-1
3000	1.31e-4			3.69e-2		9.34e-2	2.91e-1
6000						8.17e-2	

Average depth- (mean range) in \ddot{A} of C implanted in C ne=22. na= 7

-								
E ₀ (eV)	0°	30°	45°	60°	65 ⁰	70 [°]	80°	1
17					6.36e-1			1
18					6.57e-1			Ι.
18					3.12e-1			L
19					6.77e-1			L
19					5.73e-1			L
20					6.97e-1			L
20					6.87e-1			L
25					8.07e-1			L
25					8.05e-1			L
30					9.36e-1			L
45	3.51e + 0							L
50	3.86E+0				1.53e+0			L
53	4.08e + 0							L
55	4.21e + 0							L
70	5.12E+0				2.33e+0			L
100	7.09E+0				3.40e- -0	2.94e-0		L
150						4.49e-0		L
300	1.57e+1				8.64e+0			L
300	1.57e+l	1.39e-H	1.18e + 1	9.29e-0		8.22e-0	6.46e-0	Ľ
1000	4.00e + 1	3.50e+1	3.09e-f-l	2.39e + 1		1.98e+1	1.70e+1	
3000	1.03e+2			5.99e + 1		5.13e+1	4.15e+1	
6000						9.50e+1		L

$\mathbf{C} \to \mathbf{C}$

C on C. Maxwellian velocity distribution, sheath potential 0 kT zl = 6, ml = 12.01, z2 = 6. m2 = 12.01. sbe=7.42 eV. rho = 2.26 g/cm**3 ef=7.37), esb=7.42 eV, ca=1.00. kk0 = kk0r=2. kdeel=kdee2 = 3, ipot=ipotr=l(KrC) program: testvmcx ne = 11

kT(eV)	Y	Ye	Esp	Rw	Re	Eb	range
5	4.24e-4	2.85e-4	6.71e+0	1.27e-3	1.28e-3	1.01e+1	4.93e-1
7	1.63e-3	9.62e-4	8.23e + 0	4.78e-3	4.51e-3	1.32e4-1	6.95e-l
10	5.88e-3	3.00e-3	1.02e+1	1.44e-2	1.19e-2	1.66e+l	9.77e-1
20	3.35e-2	1.22e-2	1.46e+l	5.89e-2	4.11e-2	2.80e + 1	1.82e + 0
50	1.54e-1	3.22e-2	2.09e+1	1.40e-1	7.71e-2	5.54e-f-l	4.10e + 0
100	3.15e-1	4.28e-2	2.78e + 1	1.70e-l	8.35e-2	9.85e-f-l	7.39e + 0
200	5.06e-l	4.60e-2	3.64e+1	1.72e-1	7.55e-2	1.75e+2	1.27e + 1
500	7.67e-l	4.21e-2	5.49e+1	1.46e-l	5.87e-2	4.02e+2	2.67e+1
1000	9.08e-1	3.54e-2	7.75e+l	1.22e-l	4.77e-2	7.75e + 2	4.79e + 1
2000	9.94e-1	2.72e-2	1.09e + 2	1.02e-1	3.72e-2	1.46e + 3	9.01e4-1
5000	9.16e-1	1.58e-2	1.73e+2	8.36e-2	2.93e-2	3.52e + 3	2.16e + 2

C on C, Maxwellian velocity distribution, sheath potential 3 kT ne= 13 $\,$

kT(eV)	Y	Ye	Esp	R?7	Re	Eb	range
3.5	2.87e-4	7.74e-5	4.72e+0	3.71e-4	1.61e-4	7.58e+0	1.29ed-0
5	1.45e-3	3.68e-4	6.36e-j-0	1.75e-3	6.70e-4	9.57e+0	1.78e + 0
7	5.25e-3	1.19e-3	7.91e4-0	5.15e-3	1.76e-3	1.19e + 1	2.37e + 0
10	1.58e-2	2.81e-3	8.92e + 0	1.03e-2	3.12e-3	1.51e4-1	3.17e+0
14	3.44e-2	5.08e-3	1.03e+1	1.52e-2	3.99e-3	1.84e + 1	4.14e + 0
20	6.52e-2	7.68e-3	1.18e + 1	2.02e-2	4.53e-3	2.25e+1	5.44e + 0
30	1.14e-1	1.05e-2	1.37e+l	2.22e-2	4.58e-3	3.09e + 1	7.36e+0
50	1.82e-1	1.25e-2	1.72e+1	2.33e-2	4.04e-3	4.34e + 1	1.08e + 1
100	2.77e-1	1.31e-2	2.36e-f-l	2.14e-2	3.33e-3	7.78e+1	1.84e+1
200	3.56e-1	1.18e-2	3.31e4-1	1.79e-2	2.54e-3	1.42e + 2	3.19e4-1
500	4.05e-1	8.48e-3	5.24e + 1	1.25e-2	1.76e-3	3.52e + 2	7.03e + 1
1000	3.86e-1	5.88e-3	7.62e + 1	9.26e-3	1.35e-3	7.30e+2	1.33e+2
2000	3.37e-1	3.70e-3	1.09e+2	4.60e-3	6.80e-4	1.46e-{-3	2.61e+2

•

C on C, Maxwellian velocity distribution, sheath potential 9 kT ne= $15\,$

kT(eV)	Y	Ye	Esp	Rjv	Re	E _b	range
2	8.57e-5	1.32e-5	3.39e + 0	6.90e-5	1.48e-5	4.72e+0	2.13e-}-0
3	7.70e-4	1.05e-4	4.52e-}-0	5.20e-4	1.10e-4	6.82e-j-0	2.48e+0
5	6.07e-3	6.76e-4	6.13e + 0	2.78e-3	4.83e-4	9.55e-}-0	3.72e + 0
7	1.68e-2	1.55e-3	7.09e+0	4.92e-3	7.25e-4	1.13e-}-l	4.80e + 0
10	3.69e-2	2.82e-3	8.41e + 0	7.52e-3	1.01e-3	1.48e + 1	6.28e+0
14	6.35e-2	4.00e-3	9.71e+0	9.15e-3	1.09e-3	1.83e + 1	8.04e + 0
20	9.93e-2	5.22e-3	1.16e-J-l	1.07e-2	1.20e-3	2.47e + 1	1.05e + 1
30	1.47e-1	6.34e-3	1.43e + 1	1.09e-2	1.12e-3	3.39e + 1	1.42e+1
50	2.02e-1	6.84e-3	1.87e + 1	1.06e-2	9.51e-4	4.95e-H	2.09e + 1
100	2.68e-1	6.39e-3	2.63e-{-1	9.12e-3	8.05e-4	9.70e+1	3.66e + 1
200	3.06e-1	5.17e-3	3.71e-f-l	6.74e-3	6.Ole-4	1.96e + 2	6.66e-}-l
500	3.01e-1	3.28e-3	6.01e + 1	4.43e-3	4.39e-4	5.45e+2	1.55e+2
1000	2.52e-1	1.97e-3	8.60e- -1	2.65e-3	1.81e-4	7.51e+2	3.50e+2
2000	2.01e-1	1.19e-3	1.30e + 2	7.32e-4	3.52e-5	1.06e + 3	6.93e-}-2
5000	1.33e-1	3.78e-4	1.57e + 2				1.70e + 3

~

 $^{13}c \rightarrow ^{12}c$

Particle reflection coefficient of ¹³ C backscattered from ¹² C zl = 6, ml = 13.00, z2 = 6. m2 = 12.00, sbe=7.41 eV, rho=2.26 g/cm**3 ef=0.50 eV, esb=7.41 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) alpha=0.00 program : trvmc95 ne=10, na = 1

$B_0(eV)$	0°	comment
22	3.03e-2	ef=7.35 eV. esb=0.00 eV
22	4.51e-2	esb=0.00 eV
47	2.00e-5	
72	1.50e-4	
92	3.30e-4	
122	6.60e-4	
222	1.95e-3	
472	3.33e-3	
692	3.34e-3	
1000	3.32e-3	

Particle reflection coefficient of 13 C backscattered from 12 C ne=10, na= 1 $\,$

$E_0(eV)$	0°	comment
22	7.19e-5	ef=7.35 eV, esb=0.00 eV
22	8.57e-4	esb=0.00 eV
47	1.53e-6	
72	8.Ole-6	
92	1.97e-5	
122	3.07e-5	
222	9.47e-5	
472	1.58e-4	
692	1.64e-4	
1000	1.48e-4	

Moments of depth distribution in Ä of 13 C implanted in 12 C zl = 6, ml = 13.00, z2= 6, m2= 12.00, sbe=7.41 eV, rho = 2.26 g/cm**3 ef=0.50 eV, esb=7.41 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) alpha=0.00 program : trvmc95 ne=10, na= 1

E ₀ (eV)	range	sigma	skewness	kurtosis	comment
10	1.46e + 0	9.74e-1	3.61e-1	2.51e+0	
22	1.39e+0	8.18e-1	2.98e-1	2.28e4-0	ef=7.35 eV, esb=0.00 eV
22	1.88e-}-0	1.16e + 0	2.88e-1	2.50e + 0	ef=7.35 eV, esb=7.41 eV
22	2.38e+0	1.34e- -0	2.18e-1	2.53e-}-0	
22	2.40ed-0	1.37e-J-0	2.27e-1	2.54e+0	kdeel=kdee2=2
22	2.32e+0	1.30e4-0	2.05e-1	2.54e+0	kdeel=kdee2=l
22	2.55e + 0	1.44e-}-0	2.48e-1	2.59e4-0	kkO=kkOr=l
22	2.29e+0	1.30e+0	2.09e-1	2.53e + 0	kk0=kk0r=3
22	2.59e+0	1.47e+0	2.64e-1	2.59e+0	ipot=ipotr=3
22	2.39e- -0	1.36e+0	2.26e-1	2.54e-f-0	ck=0.50
22	2.42e+0	1.39e+0	2.33e-1	2.54e+0	ck=0.00
22	3.41e- -0	1.95e- -0	3.04e-1	2.67e + 0	kkO=kkOr=O
22	1.91e + 0	1.05e+0	3.15e-1	2.52e+0	esb=0.00 eV
32	3.00e+0	1.61e+0	2.03e-1	2.58e+0	
47	3.87e4-0	1.99e+0	2.11e-1	2.62e + 0	
72	5.15e + 0	2.59e+0	2.53e-1	2.68e- -0	
92	6.08e4-0	3.04e+0	2.82e-1	2.69e+0	
122	7.39e+0	3.67e+0	3.11e-1	2.73e+0	
222	1.13e+1	5.56e4-0	3.88e-1	2.86e+0	
472	1.95e-H	9.62e4-0	4.35e-1	2.94e + 0	
692	2.63e+1	1.28e+1	4.29e-1	2.91e-j-0	
1000	3.54e + 1	1.70e- -1	4.06e-1	2.88e4-0	

61

Sputtering yield of C by N z1 = 7, ml= 14.01. z2 = 6. m2= 12.01, sbe=7.41 eV. rho=1.85 g/cm**3 ef=0.95 eV. esb = 1.00 eV. ca=1.00. kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: trvmc ne=14. na=10

E ₀ (eV)	0°	15 °	30 ^u	45 ^u	55 "	60 ^u	65°	75°	80°	85°
15				7.93E-6	1.68E-5		1.28E-5	5.29E-6	3.00E-6	2.15E-6
20			1.31E-5	9.85E-5	1.41E-4		1.57E-4	1.31E-4	9.04E-5	5.71E-5
25		3.60E-6	7.67E-5	3.70E-4	8.16E-4		1.36E-3	9.78E-4	5.75E-4	2.91E-4
30	1.12E-6	1.78E-5	2.39E-4	1.40E-3	3.41E-3		5.10E-3	3.15E-3	1.58E-3	6.70E-4
40	1.81E-5	1.55E-4	1.70E-3	9.34E-3	1.85E-2		2.20E-2	1.10E-2	4.46E-3	1.46E-3
50	1.23E-4	7.40E-4	6.03E-3	2.68E-2	4.57E-2		4.89E-2	2.25E-2	8.25E-3	2.06E-3
70	1.11E-3	4.30E-3	2.38E-2	7.85E-2	1.19E-1		1.22E-1	5.45E-2	1.77E-2	2.89E-3
100	5.53E-3	1.50E-2	5.98E-2	1.64E-1	2.42E-1		2.52E-1	1.14E-1	3.47E-2	3.66E-3
140	1.63E-2	3.47E-2	1.08E-1	2.62E-1	3.84E-1		4.19E-1	2.05E-1	6.24E-2	4.54E-3
200	3.68E-2	6.42E-2	1.67E-1	3.75E-1	5.52E-1		6.31E-1	3.57E-1	1.16E-1	6.18E-3
300	6.94E-2	1.06E-1	2.39E-1	5.06E-1	7.46E-1		9.08E-1	6.20E-1	2.27E-1	1.03E-2
500	1.21E-1	1.68E-1	3.30E-1	6.55E-1	9.78E-1		1.27E+0	1.10E + 0	5.16E-1	2.45E-2
1000	1.96E-1	2.53E-1	4.40E-1	8.31E-1	1.24E + 0		1.74E+0	1.90E + 0	1.29E + 0	1.08E-1
15000						1.15e-0				

Sputtered energy of C by N ne=14, na=10

$E_0 (eV)$	0 "	15°		45°	55°'	60 ^u	65°	75°	80°	85°
15				5.85e-7	1.62e-6		1.63e-6	8.24e-7	5.39e-7	4.74e-7
20			8.14e-7	9.36E-6	1.81E-5		2.53E-5	2.41E-5	1.75E-5	1.21E-5
25		1.79e-7	5.56E-6	4.12E-5	1.19E-4		.2.44E-4	2.04E-4	1.26E-4	6.56E-5
30	4.60e-8	9.61e-7	2.01E-5	1.77E-4	5.65E-4		1.03E-3	7.42 E-4	3.88E-4	1.70E-4
40	7.69e-7	9.64E-6	1.65E-4	1.38E-3	3.42E-3		5.00E-3	2.90E-3	1.22E-3	4.08E-4
50	5.63E-6	4.88E-5	6.15E-4	4.11E-3	8.78E-3		1.16E-2	6.26E-3	2.34E-3	5.70B-4
70	5.03E-5	2.78E-4	2.33E-3	1.16E-2	2.25E-2		2.87E-2	1.52E-2	5.08E-3	7.77E-4
100	2.35E-4	8.73E-4	5.28E-3	2.18E-2	4.11E-2		5.40E-2	3.00E-2	9.43E-3	8.90E-4
140	6.37E-4	1.81E-3	8.44E-3	3.02E-2	5.63E-2		7.81E-2	4.85E-2	1.55E-2	9.68E-4
200	1.31E-3	2.97E-3	1.13E-2	3.64E-2	6.76E-2		9.75E-2	7.19E-2	2.53E-2	1.12E-3
300	2.20E-3	4.21E-3	1.36E-2	4.02E-2	7.26E-2		1.10E-1	9.84-E-2	4.16E-2	.1.59E-3
500	3.13E-3	5.39E-3	1.49E-2	4.05E-2	7.23E-2		1.14E-1	1.26E-1	7.07E-2	3.Ö7E-3
1000	3.74E-3	5.89E-3	1.44E-2	3.67E-2	6.45E-2		1.06E-1	1.40E-1	1.12E-1	1.08E-2
15000						2.18e-2				- ±
										1642

$$N \rightarrow C$$

Particle reflection coefficient of N backscattered from C zl = 7, ml = 14.01. z2 = 6. m2 = 12.01, sbe = 7.41 eV. rho - 1.85 g/cm**3 ef = 0.95 eV, esb = 1.00 eV. ea = 1.00, kk0 = kk0r = 2, kdeel = kdee 2 = 3, ipot = ipot r = 1 (KrC) program: trvmc ne = 16, na = 10

Eo(eV)	0°	15°	30°	45°	55°	60°	65°	75 ^u	80°	85°
10	2.78e-6	3.02E-4	7.13E-3	5.63E-2	1.54E-1		3.21E-1	5.10E-1	5.80E-1	6.20E-1
12	3.84E-5	9.46E-4	1.48E-2	9.34E-2	2.23E-1		4.28E-1	6.38E-1	7.12E-1	7.55E-1
15	2.85E-4	2.71E-3	2.76E-2	1.43E-1	3.07E-1		5.40E-1	7.65E-1	8.37E-1	8.76E-1
20	1.06E-3	6.20E-3	4.57E-2	1.98E-1	3.90E-1		6.40E-1	8.61E-1	9.23E-1	9.54E-1
25	1.91E-3	8.99E-3	5.65E-2	2.24E-1	4.28E-1		6.83E-1	8.96E-1	9.53E-1	9.78E-1
30	2.62E-3	1.08E-2	6.18E-2	2.34E-1	4.41E-1		6.97E-1	9.11E-1	9.65E-1	9.87E-1
40	3.62E-3	1.27E-2	6.46E-2	2.34E-1	4.39E-1		7.00E-1	9.21E-1	9.75E-1	9.94E-1
50	4.27E-3	1.34E-2	6.31E-2	2.23E-1	4.24E-1		6.87E-1	9.23E-1	9.79E-1	9.96E-1
70	4.93E-3	1.36E-2	5.76E-2	1.97E-1	3.85E-1		6.53E-1	9.16E-1	9.81E-1	9.98E-1
100	5.57E-3	1.32E-2	5.01E-2	1.66E-1	3.32E-1		5.98E-1	8.96E-1	9.79E-1	9.99E-1
140	5.53E-3	1.23E-2	4.25E-2	1.38E-1	2.81E-1		5.32E-1	8.65E-1	9.73E-1	9.99E-1
200	5.43E-3	1.11E-2	3.66E-2	1.14E-1	2.36E-1		4.59E-1	8.15E-1	9.61E-1	9.99E-1
300	4.94E-3	9.64E-3	3.00E-2	9.41E-2	1.92E-1		3.82E-1	7.38E-1	9.34E-1	9.99E-1
500	4.45E-3	7.91E-3	2.36E-2	7.36E-2	1.50E-1		3.04E-1	6.20E-1	8.68E-1	9.98E-1
1000	3.28E-3	5.77E-3	1.70E-2	5.49E-2	1.16E-1		2.34E-1	4.79E-1	7.23E-1	9.87E-1
15000						6.88e-2				

Energy	reflection	coefficient	of	Ν	backscattered	from	C
ne=16.	na=10						

Eo(eV)	0°	15°	30°	45°	55°	60°	65°	75°	80°	85°
10	1.53e-7	2.59E-5	9.18E-4	1.06E-2	3.86E-2		1.05E-1	2.06E-1	2.52E-1	2.82E-1
12	2.25e-6	8.41E-5	2.00E-3	1.85E-2	5.82E-2		1.47E-1	2.76E-1	3.34E-1	3.73E-1
15	1.78E-5	2.40E-4	3.86E-3	2.96E-2	8.44E-2		1.98E-1	3.61E-1	4.34E-1	4.81E-1
20	6.53E-5	5.58E-4	6.39E-3	4.29E-2	1.14E-1		2.54E-1	4.54E-1	5.42E-1	6.00E-1
25	1.12E-4	7.84E-4	7.82E-3	4.97E-2	1.30E-1		2.85E-1	5.08E-1	6.09E-1	6.74E-1
30	1.44E-4	9.01E-4	8.39E-3	5.24E-2	1.38E-1		3.02E-1	5.42E-1	6.53E-1	7.24E-1
40	1.79E-4	9.73E-4	8.37E-3	5.21E-2	1.41E-1		3.15E-1	5.80E-1	7.07E-1	7.88E-1
50	1.93E-4	9.53E-4	7.79E-3	4.89E-2	1.36E-1		3.15E-1	5.98E-1	7.38E-1	8.27E-1
70	2.00E-4	8.59E-4	6.55E-3	4.14E-2	1.22E-1		3.01E-1	6.09E-1	7.69E-1	8.71E-1
100	1.97E-4	7.55E-4	5.20E-3	3.30E-2	1.01E-1		2.72E-1	6.01E-1	7.86E-1	9.03E-1
140	1.82E-4	6.53E-4	4.11E-3	2.55E-2	8.07E-2		2.35E-1	5.77E-1	7.88E-1	9.23E-1
200	1.73E-4	5.49E-4	3.34E-3	1.98E-2	6.29E-2		1.92E-1	5.33E-1	7.76E-1	9.36E-1
300	1.52E-4	4.60E-4	2.59E-3	1.52E-2	4.73E-2		1.49E-1	4.65E-1	7.43E-1	9.44E-1
500	1.44E-4	3.77E-4	1.95E-3	1.11E-2	3.39E-2		1.07E-1	3.65E-1	6.66E-1	9.44E-1
1000	1.15E-4	2.80E-4	1.43E-3	7.86E-3	2.43E-2		7.36E-2	2.49E-1	5.10E-1	9.21E-1
15000						1.60e-2				

Average depth (mean range) in A of N implanted in C $ne\!=\!16, \ na\!=\!10$

E₀(eV) 0° 1.5° 30° 45° 55° 60° 65° 75° 80° 85° 3.00E-1 1.00E 1.00E-6.00E-1 5.00E-1 2.00E-1 1.20E+0 1.10E+0 10 9.00E-1 12 15 1.40E + 0 1.70E4-0 1.30E+0 1.60E+0 1.10E+0 1.30E+0 8.00E-1 1.00E4-0 6.00E-1 4 00E-1 2 00E-1 2.00E-1 1.00E-1 8.00E-1 5.00E-1 3.00E-1 2.00E-1 2.00E-1 1.80E4-0 2.20E+0 2.50E4-0 20 25 2.20E+0 2.60E+0 2.00E4-0 2.50E4-0 3.00E-1 1.40E4-0 1.10E4-0 8.00E-1 5.00E-1 4.00E-1 1.30E+0 1.70E+0 2.30E4-0 5.00E-1 8.00E-1 3.00E-1 7.00E-1 2.00E-1 5.00E-1 1.70E + 01.00E+0 30 4 0 2.90E4-0 2.10E4-0 1.20E+03.10E + 01.20E+0 1.50E+0 3.80E+0 3.60E4-0 3.20E+0 2.60E4-0 1.80E + 09.00E-1 6.00E-1 3.60E + 0 4.60E + 0 6.00E + 0 9.00E-1 1.10E+0 50 70 4.50E+0 5.70E+0 4.30E4-0 3.20E+0 2.70E4-0 2.20E+0 1.60E4-0 2.40E+0 3.30E4-0 4.20E+0 5.40E4-0 3.60E+0 4.70E+0 3.00E4-0 4.00E4-0 2.10E4-0 3.00E4-0 1.10E+0 1.60E+0 5.50E + 07.10E+0 9.00E+0 1.16E4-1 100 7.40E+09.40E+0 1.20E+1 8.20E+0 1.05E+1 6.90E+0 8.90E+0 6.00E4-0 7.70E4-0 5.10E4-0 6.60E+0 4.00E+0 5.40E+0 7.30E4-0 140 2.20E + 04.60E+0 6.40E+0 9.50E+0 3.20E+0 200 1.40E+1 2.02E + 1 3.44E+1 1.18E4-1 1.71E+1 2.89E+1 300 1.60E+1 2.32E-H 1.55E+1 2.24E+1 1.02E4-1 1.48E + 1 8.70E4-0 4.80E+0 7.60E4-0 1.26E + 1 2.10E + 1 1.06E4-1 1.76E + 1 500 1000 15000 2.50E4-1 1.62E4-1 1.39E4-1 3.94E4-1 3.80E+1 2.48e+2

$$\mathbf{N} \to \mathbf{C}$$

B _o (eV)	0°	10°	20°	30 ^u	40°	50 ^u	60 ^u	70°	75°	80°	85 ^u	87°
15000	2.64e-1	2.79e-1	3.25e-1	4.11e-1	5.54e-1	8.02e-1	1.28e-0	2.24e-0	2.99e-0	3.87e-0	4.04e-0	2.05e-0
30000	2.15e-1	2.23e-1	2.54e-1	3.07e-1	3.95e-1	5.43e-1	8.37e-1	1.53e-0	2.21e-0	3.22e-0	4.29e-0	

Sputtered energy of C by N ne=2, na=12

$B_0(eV)$	0°	10°	20°	30°	40°	50°	60°	70°	75°	80°	85°	87°
15000	1.21e-3	1.44e-3	2.15e-3	3.74e-3	6.70e-3	1.23e-2	2.40e-2	4.68e-2	6.32e-2	7.90e-2	7.72e-2	4.05e-2
30000	6.40e-4	7.57e-4	1.14e-3	1.92e-3	3.34e-3	5.90e-3	1.10e-2	2.30e-2	3.47e-2	4.93e-2	5.72e-2	

Particle reflection coefficient of N backscattered from C zl=7, ml=14.01, z2=6. m2=12.01, sb=7.41 eV, rho=2.26 g/cm**3 ef=0.95 eV, esb=1.00 eV. ca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr = 1 (KrC) program: trvmc ne=2, na=12

E ₀ (eV)	0°	10°	20°	30°	40°	50°	60°	70 ⁰	75°	80°	85°	87°
15000	3.93e-4	5.85e-4	1.27e-3	3.41e-3	9.43e-3	2.65e-2	7.02e-2	1.70e-1	2.60e-1	3.85e-1	6.07e-1	8.38e-1
30000	1.50e-4	2.68e-4	5.20e-4	1.69e-3	5.19e-3	1.63e-2	4.96e-2	1.39e-1	2.22e-1	3.44e-1	5.43e-1	

Energy reflection coefficient of N backscattered from C $ne=\ 2,\ na=12$

E ₀ (eV)	0°	10°	20 ^u	30 ^u	40°	50 ^u	60°	70°	75 ^u	80 ^u	85°	87°
15000	1.80e-5	3.33e-5	9.01e-5	3.36e-4	1.21e-3	4.58e-3	1.63e-2	5.61e-2	1.05e-l	1.96e-1	4.27e-1	7.34e-1
30000	6.75e-6	1.28e-5	3.71e-5	1.57e-4	6.28e-4	2.62e-3	1.08e-2	4.23e-2	8.25e-2	1.62e-1	3.48e-1	

Average depth (mean range) in \ddot{A} of N implanted in C ne= 2, na=12

$B_{\circ}(eV)$	0°	10°	20°	30°	40°	50°	60°	70°	75°	80°	85°	87°
15000	3.76e-}-2	3.70e + 2	3.54e + 2	3.26e+2	2.90e+2	2.48e+2	2.04e+2	1.62e+2	1.45e+2	1.30e+2	1.20e+2	1.18e+2
30000	7.52e-f-2	7.43e+2	7.08e + 2	6.53e-{-2	5.80e- -2	4.92e + 2	3.98e + 2	3.11e+2	2.73e+2	2.43e + 2	2.20e + 2	

 $O \rightarrow C$

Sputtering yield of C by O $z_1 = 8$, $m_1 = 16.00$, $z_2 = 6$, $m_2 = 12.01$, sbe = 7.41 eV, rho=l.85, 2.00 g/cm**3 ef=0.95, 2.10 eV, esb = 1.00. 2.60 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: trvme95, newtrim only low fluence! ne=11, na=1

$E_0(eV)$	0°	
38	4.60e-6	I
40	7.98e-6	
42	1.30e-5	
45	2.56e-5	
50	6.56e-5	
60	2.87e-4	
70	7.79e-4	
100	4.59e-3	
150	1.80e-2	
300	6.85e-2	
1000	2.15e-1	
3000	3.23e-1	
6000	3.40e-1	

Sputtered energy of C by O only low fluence! ne= 7, na=1

E ₀ (eV)	O
38	1.78e-7
40	3.17e-7
42	5.33e-7
45	1.09e-6
150	6.75e-4
300	2.06e-3
1000	4.15e-3
3000	3.34e-3
6000	2.67e-3

Particle reflection coefficient of O backscattered from C zl=8, ml=16.00, z2=6, m2=12.01, sb=7.40 eV, 1.85, 2.00 g/cm**3 ef=2.10 eV, sb=2.60 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program: newtrim, trvmc95 only low fluence! ne= 7, na=l

Eq (eV) 0^u

38	9.90e-4	
40	1.06e-3	
42	1.12e-3	
45	1.21e-3	
150	9.89e-4	
300	1.44e-3	
1000	6.39e-4	5
3000	3.21e-4	
6000	4.18e-4	

Energy reflection only low fluence! ne= 7, na=1 coefficient of O backscattered from C

Eo(eV)	0°	
38	4.34e-5	
40	4.53e-5	
42	4.70e-5	
45	4.92e-5	
150	2.78e-5	
300	3.60e-5	
1000	2.42e-5	
3000	1.60e-6	
6000	5.00e-6	

Average depth (mean range) in \ddot{A} of O implanted in C only low fluence! ne= 7, na=1

$B_0(eV)$	0°
38	3.54e+0
40	3.68e + 0
42	3.82e+0
45	4.02e+0
150	8.68e+0
300	1.40e-J-l
1000	3.37e + 1
3000	8.34e+1
6000	1.55e+2

$$\mathrm{Ne} \to \mathrm{C}$$

Sputtering yield of C by Ne zl = 10, ml = 20.18, z2 = 6, m2 = 12.01, sbe = 7.41, rho = 1.85 g/cm^{**3} ef = 0.05 eV. esb = 0.00 eV, ca = 1.00. kkO = kkOr = 2, kdeel = kdee2 = 3, ipot = ipotr = 1 (KrC) program : trvnic ne = 24. na = 9

E ₀ (eV)	0°	15°	30 ^u	45°	55°	65°	75 ^u	80°	85°
15					9.51e-7	7.53e-7			
16				1.17e-6	3.45e-6	2.15e-6			
17				3.60e-6	7.68e-6	5.34e-6	1.38e-6		
18				8.20e-6	1.40e-5	1.04e-5	3.60e-6	1.09e-6	
20			1.23e-6	4.15e-5	6.95e-5	5.65e-5	2.28e-5	5.44e-6	
22			2.86e-6	4.71e-5	7.73e-5	1.05e-4	6.48e-5	1.67e-5	6.67e-7
25		1.20e-7	2.32e-5	2.03e-4	3.48e-4	5.24e-4	2.64e-4	5.71e-5	1.05e-6
30		2.76e-6	1.03e-4	6.70e-4	1.64e-3	2.63e-3	1.09e-3	2.27e-4	3.53e-6
35	6.40e-7	9.52e-6	2.02e-4	1.86e-3	5.55e-3	7.95e-3	2.89e-3	5.45e-4	8.66e-6
40	3.74e-6	4.61e-5	6.93e-4	5.10e-3	1.19e-2	1.53e-2	5.10e-3	9.67e-4	1.62e-5
45	1.07e-5	9.47e-5	1.38e-3	1.03e-2	2.26e-2	2.68e-2	8.92e-3	1.64e-3	2.29e-5
50	3.41e-5	2.53e-4	2.99e-3	1.72e-2	3.35e-2	3.65e-2	1.21e-2	2.38e-3	3.57e-5
.60	1.48e-4	8.44e-4	7.70e-3	3.81e-2	6.81e-2	7.16e-2	2.40e-2	4.43e-3	6.18e-5
70	4.59e-4	2.12e-3	1.47e-2	6.09e-2	9.95e-2	1.05e-l	3.80e-2	6.73e-3	9.62e-5
100	3.25e-3	9.87e-3	4.63e-2	1.47e-l	2.27e-1	2.36e-1	8.83e-2	1.73e-2	2.20e-4
140	1.18e-2	2.69e-2	9.44e-2	2.56e-1	3.93e-1	4.21e-1	1.75e-l	3.81e-2	4.74e-4
200	3.03e-2	5.61e-2	1.60e-1	3.87e-1	5.91e-1	6.63e-1	3.26e-1	8.21e-2	1.04e-3
300	6.50e-2	1.03e-1	2.46e-1	5.46e-1	8.32e-1	9.92e-1	6.04e-1	1.80e-1	2.72e-3
500	1.26e-1	1.80e-1	3.61e-1	7.43e-1	1.13e-0	1.47e-0	1.15e-0	4.59e-1	9.91e-3
1000	2.32e-1	2.99e-1	5.24e-1	9.98e-1	1.51e-0	2.09e-0	2.17e-0	1.31e-0	6.38e-2
2000	3.36e-1	4.09e-1	6.49e-1	1.18e-0	1.79e-0	2.63e-0	3.25e-0	2.69e-0	3.79e-1
5000	4.16e-1	4.90e-1	7.30e-1	1.25e-0	1.92e-0	2.99e-0	4.28e-0	4.54e-0	2.19e-0
10000	4.21e-1	4.84e-1	6.88e-1	1.13e-0	1.73e-0	2.82e-0	4.55e-0	5.31e-0	4.28e-0
20000	3.81e-1	4.28e-1	5.76e-l	8.83e-l	1.31e-0	2.19e-0	4.09e-0	5.32e-0	5.70e-0

Sputtered energy of C by Ne ne=24, na=9

E ₀ (eV)	0°	15°	30°	45°	55°	65°	75°	80°	85°
15					5.96e-8	7.77e-8			
16				6.16e-8	2.46e-7	2.17e-7			
17				1.87e-7	6.08e-7	6.25e-7	2.08e-7		
18				4.97e-7	1.25e-6	1.25e-6	5.86e-7	1.75e-7	
20			4.97e-8	3.04e-6	7.13e-6	8.10e-6	3.80e-6	8.81e-7	
22			1.36e-7	3.67e-6	8.39e-6	1.46e-5	1.06e-5	2.93e-6	1.55e-7
25		4.47e-9	1.20e-6	1.80e-5	4.22e-5	8.02e-5	4.83e-5	1.08e-5	1.99e-7
30		9.65e-8	6.20e-6	6.60e-5	2.29e-4	4.54e-4	2.21e-4	4.91e-5	6.28e-7
35	1.87e-8	4.36e-7	1.39e-5	2.16e-4	8.56e-4	1.55e-3	6.66e-4	1.28e-4	1.88e-6
40	1.31e-7	2.13e-6	5.38e-5	6.38e-4	1.96e-3	3.13e-3	1.18e-3	2.30e-4	3.31e-6
45	4.11e-7	4.81e-6	1.14e-4	1.36e-3	3.86e-3	5.73e-3	2.24e-3	4.11e-4	4.64e-6
50	1.29e-6	1.34e-5	2.59e-4	2.30e-3	5.81e-3	7.89e-3	3.05e-3	5.99e-4	6.96e-6
60	6.14e-6	4.69e-5	6.79e-4	5.26e-3	1.20e-2	1.60e-2	6.23e-3	1.13e-3	1.20e-5
70	1.90e-5	1.16e-4	1.30e-3	8.34e-3	1.74e-2	2.32e-2	9.82e-3	1.72e-3	1.76e-5
100	1.27e-4	5.28e-4	3.81e-3	1.85e-2	3.70e-2	4.85e-2	2.19e-2	4.25e-3	3.61e-5
140	4.34e-4	1.34e-3	6.98e-3	2.84e-2	5.59e-2	7.65e-2	4.02e-2	8.49e-3	6.73e-5
200	1.02e-3	2.46e-3	1.04e-2	3.66e-2	7.11e-2	1.01e-1	6.45e-2	1.66e-2	1.32e-4
300	1.95e-3	3.96e-3	1.35e-2	4.23e-2	7.96e-2	1.20e-1	9.74e-2	3.13e-2	2.86e-4
500	3.12e-3	5.51e-3	1.58e-2	4.54e-2	8.23e-2	1.31e-1	1.35e-l	6.33e-2	9.19e-4
1000	4.24e-3	6.71e-3	1.66e-2	4.33e-2	7.79e-2	1.27e-1	1.64e-1	1.18e-1	5.53e-3
2000	4.41e-3	6.52e-3	1.48e-2	3.66e-2	6.56e-2	1.12e-1	1.62e-1	1.53e-1	2 62e-2
5000	3.53e-3	5.13e-3	1.11e-2	2.76e-2	4.98e-2	8.85e-2	1.40e-1	1.54e-1	8.59e-2
10000	2.53e-3	3.62e-3	7.82e-3	1.92e-2	3.63e-2	6.70e-2	1.14e-1	1.34e-1	1.11e-1
20000	1.56e-3	2.21e-3	4.71e-3	1.14e-2	2.11e~2	4.12e-2	8.11e-2	1.03e-1	1.04e-1

Ne
$$\rightarrow C$$

Particle reflection coefficient of Ne backscattered from C zl = 10, ml = 20.18. z2 = 6. m2 = 12.01. sbe=7.41. rho=1.85 g/cm**3 ef=0.05 eV. esb=0.00 eV. ca=1.00. kk0 = kk0r=2. kdeel = kdee2=3 jipot=ipotr = 1 (KrC) program : trvmc ne=22. na= 9

Eq(eV)	0°	15°	30 ^u	45°	55°	65 ^u	75°	80°	85 ^u
10	1.31e-2	3.12e-2	1.15e-1	3.53e-1	5.94e-1	8.37e-1	9.77e-1	9.97e-1	1.00e-0
15	5.45e-3	1.78e-2	8.99e-2	3.22e-1	5.70e-1	8.29e-1	9.77e-l	9.97e-1	1.00e-0
20	3.10e-3	1.28e-2	7.66e-2	3.01e-1	5.51e-l	8.19e-1	9.77e-l	9.97e-1	1.00e-0
22	2.91e-3	1.27e-2	7.59e-2	2.98e-1	5.48e-1	8.18e-1	9.77e-l	9.98e-1	1.00e-0
25	2.17e-3	1.11e-2	6.79e-2	2.82e-1	5.32e-1	8.08e-1	9.76e-l	9.98e-1	1.00e-0
30	1.72e-3	8.69e-3	6.10e-2	2.65e-1	5.14e-1	7.97e-l	9.75e-l	9.98e-1	1.00e-0
35	1.67e-3	8.22e-3	5.75e-2	2.54e-1	5.00e-1	7.87e-1	9.74e-1	9.98e-1	1.00e-0
40	1.31e-3	6.86e-3	5.09e-2	2.36e-1	4.79e-1	7.72e-1	9.71e-1	9.97e-1	1.00e-0
45	1.34e-3	6.67e-3	4.83e-2	2.26e-1	4.67e-1	7.62e-1	9.70e-1	9.97e-1	1.00e-0
50	1.11e-3	5.73e-3	4.39e-2	2.12e-1	4.48e-1	7.48e-1	9.67e-1	9.97e-1	1.00e-0
60	1.08e-3	5.32e-3	3.92e-2	1.93e-1	4.22e-1	7.25e-1	9.63e-1	9.97e-1	1.00e-0
70	8.56e-4	4.53e-3	3.50e-2	1.75e-1	3.95e-1	6.99e-1	9.57e-1	9.96e-1	1.00e-0
100	7.17e-4	3.48e-3	2.59e-2	1.39e-1	3.29e-1	6.35e-1	9.38e-1	9.94e-1	1.00e-0
140	6.46e-4	2.74e-3	1.99e-2	1.09e-1	2.69e-1	5.63e-1	9.08e-1	9.91e-1	1.00e-0
200	5.97e-4	2.27e-3	1.57e-2	8.32e-2	2.17e-1	4.82e-1	8.63e-1	9.83e-1	1.00e-0
300	5.03e-4	1.98e-3	1.26e-2	6.43e-2	1.68e-1	3.92e-1	7.88e-1	9.64e-1	1.00e-0
500	4.63e-4	1.58e-3	9.35e-3	4.74e-2	1.26e-l	2.98e-1	6.66e-l	9.11e-1	1.00e-0
1000	3.72e-4	1.27e-3	7.09e-3	3.38e-2	9.08e-2	2.14e-1	5.01e-1	7.74e-1	9.96e-1
2000	2.97e-4	7.68e-4	4.57e-3	2.45e-2	6.36e-2	1.64e-1	3.82e-1	6.06e-1	9.67e-1
5000	1.48e-4	4.47e-4	2.84e-3	1.57e-2	4.42e-2	1.22e-1	2.96e-1	4.54e-1	8.07e-1
10000	1.0le-4	2.86e-4	1.81e-3	1.08e-2	3.43e-2	9.79e-2	2.56e-1	3.95e-1	6.60e-1
20000	4.80e-5	1.31e-4	9.10e-4	6.80e-3	2.45e-2	7.98e-2	2.24e-1	3.49e-1	5.66e-l

Energy reflection coefficient of Ne backscattered from C $ne\!=\!22,\ na\!=\!9$

$E_0(eV)$	0°	15°	30°	45°	55°	65°	75°	80°	85°
10	1.15e-5	2.37e-4	3.97e-3	3.40e-2	1.08e-1	2.73e-1	5.43e-1	6.98e-1	8.33e-1
15	2.23e-5	2.88e-4	4.42e-3	3.78e-2	1.17e-l	2.92e-1	5.76e-1	7.32e-1	8.67e-1
20	2.68e-5	3.07e-4	4.43e-3	3.88e-2	1.21e-1	3.02e-1	5.96e-l	7.54e-1	8.87e-1
22	2.38e-5	2.86e-4	4.20e-3	3.82e-2	1.21e-l	3.04e-1	6.02e-1	7.61e-l	8.93e-1
25	- 2.66e-5	2.72e-4	4.27e-3	3.83e-2	1.22e-l	3.07e-1	6.09e-1	7.69e-l	9.01e-1
30	2.63e-5	2.72e-4	4.01e-3	3.72e-2	1.21e-l	3.08e-1	6.17e-1	7.81e-l	9.10e-1
35	2.16e-5	2.27e-4	3.57e-3	3.51e-2	1.18e-1	3.07e-1	6.23e-1	7.89e-l	9.17e-1
40	2.26e-5	2.22e-4	3.43e-3	3.39e-2	1.16e-l	3.04e-1	6.27e-1	7.95e-l	9.23e-1
45	1.81e-5.	1.87e-4	3.04e-3	3.17e-2	1.12e-1	3.01e-1	6.28e-1	8.00e-1	9.27e-1
50	1.89e-5	1.83e-4	2.91e-3	3.05e-2	1.09e-1	2.98e-1	6.29e-1	8.04e-1	9.31e-1
60	1.41e-5	1.43e-4	2.40e-3	2.71e-2	1.01e-1	2.89e-1	6.28e-1	8.09e-1	9.37e-1
70	1.38e-5	1.28e-4	2.21e-3	2.46e-2	9.58e-2	2.80e-1	6.25e-1	8.12e-1	9.41e-1
100	9.64e-6	9.05e-5	1.50e-3	1.88e-2	7.66e-2	2.50e-1	6.09e-1	8.14e-1	9.49e-1
140	8.10e-6	6.58e-5	1.04e-3	1.34e-2	5.97e-2	2.16e-1	5.83e-1	8.09e-1	9.54e-1
200	6.83e-6	5.27e-5	7.61e-4	9.66e-3	4.46e-2	1.77e-l	5.40e-1	7.94e-l	9.57e-1
300	5.87e-6	4.28e-5	5.89e-4	6.77e-3	3.15e-2	1.33e-l	4.73e-1	7.62e-l	9.58e-1
500	5.88e-6	3.51e-5	4.02e-4	4.48e-3	2.08e-2	9.00e-2	3.72e-1	6.90e-1	9.55e-1
1000	5.62e-6	2.98e-5	3.21e-4	3.08e-3	1.36e-2	5.68e-2	2.44e-1	5.36e-1	9.37e-1
2000	5.58e-6	2.05e-5	2.17e-4	2.31e-3	9.09e-3	3.92e-2	1.64e-l	3.72e-1	8.76e-1
5000	3.19e-6	1.39e-5	1.60e-4	1.56e-3	6.43e-3	2.81e-2	1.15e-l	2.39e-1	6.59e-1
10000	2.38e-6	1.10e-5	1.20e-4	1.16e-3	5.30e-3	2.27e-2	9.47e-2	1.95e-1	4.83e-1
20000	1.40e-6	4.71e-6	6.56e-5	7.49e-4	3.92e-3	1.84e-2	7.99e-2	1.63e-l	3.76e-1

Average	depth	(mean	range)	in	Ä	of	Ne	implanted	in	С
ne=22.	na= 9									

Eo(eV)	0°	15°	30 ^ö	45°	55°	65°	75°	80°	85°
10	1.10E+0	1.00E4-0	9.00E-1	8.00E-1	7.00E-1	6.00E-1	4.00E-1	3.00E-1	2.00E-1
15	1.60E+0	1.50E-J-0	1.30E + 0	1.10E+0	1.00E4-0	8.00E-1	6.00E-1	4.00E-1	2.00E-1
20	2.10E+0	2.00E+0	1.70E + 0	1.40E+0	1.20E+0	1.00E + 0	7.00E-1	5.00E-1	3.00E-1
22	2.30E+0	2.10E-J-0	1.90E+0	1.60E+0	1.30E + 0	1.00E + 0	8.00E-1	6.00E-1	2.00E-1
25	2.50E+0	2.40E+0	2.10E + 0	1.70E+0	1.50E+0	1.20E+0	8.00E-1	6.00E-1	3.00E-1
30	2.90E+0	2.80E4-0	2.40E + 0	2.00E+0	1.70E+0	1.40E + 0	1.00E+0	7.00E-1	3.00E-1
35	3.30E+0	3.10E4-0	2.70E+0	2.30E-J-0	1.90E4-0	1.60E + 0	1.10E+0	8.00E-1	5.00E-1
40	3.60E4-0	3.50E-I-0	3.00E+0	2.50E+0	2.10E + 0	1.70E+0	1.20E+0	9.00E-1	5.00E-1
45	4.00E+0	3.80E+0	3.30E + 0	2.70E+0	2.30E4-0	1.90E4-0	1.40E+0	1.10E+0	6.00E-1
50	4.30E+0	4.10E+0	3.60E+0	3.00E+0	2.50E4-0	2.10E4-0	1.50E4-0	1.20E+0	7.00E-1
60	4.90E+0	4.70E+0	4.10E+0	3.40E4-0	2.90E4-0	2.40E + 0	1.80E+0	1.40E+0	9.00E-1
70	5.50E4-0	5.30E+0	4.60E + 0	3.80E+0	3.20E+0	2.70E+0	2.00E+0	1.50E + 0	1.00E4-0
100	7.00E4-0	6.70E+0	6.00E4-0	4.90E+0	4.20E4-0	3.50E-J-0	2.70E4-0	2.30E4-0	1.50E-+-0
140	8.80E+0	8.50E+0	7.50E4-0	6.20E+0	5.30E+0	4.40E + 0	3.50E+0	2.80E+0	2.10E+0
200	1.12E + 1	1.07E+1	9.60E + 0	7.90E+0	6.70E4-0	5.60E+0	4.50E+0	3.80E+0	2.80E+0
300	1.46E + 1	1.40E4-1	1.25E+1	1.03E+1	8.90E+0	7.40E4-0	6.00E+0	5.20E+0	3.90E+0
500	2.06E+1	1.98E+1	1.78E+1	1.47E+1	1.24E + 1	1.03E+1	8.50E+0	7.70E4-0	6.00E4-0
1000	3.34E-J-1	3.23E4-1	2.89E-J-1	2.39E+1	2.03E+1	1.67E-J-1	1.38E+1	1.22E + 1	1.04E+1
2000	5.60E4-1	5.40E+1	4.84E+1	4.01E4-1	3.39E4-1	2.76E+1	2.24E + 1	2.03E+1	1.80E + 1
5000	1.19E+2	1.15E+2	1.03E+2	8.47E-J-1	7.08E+1	5.73E+1	4.57E+1	4.11E+1	3.74E + 1
10000	2.21E+2	2.14E+2	1.92E + 2	1.58E+2	1.31E+2	1.05E4-2	8.17E+1	7.34E-H	6.72E + 1
20000	4.29E+2	4.14E+2	3.71E+2	3.04E+2	2.52E+2 .	2.00E+2	1.52E+2	_1.36E4-2_	_1.23E + 2

Sputtering yield of C by Ar zl = 18, ml = 39.95, z2 = 6, m2 = 12.01, sbe = 7.41 eV, rho = 1.85 g/cm **3 ef=0.05 eV, esb = 0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr=1 (KrC) program: trvmc ne=ll, na=9

Eo(eV)	0°	15°	30°	45°	55"	65°	75°	80°	85"
25			1.60e-7	1.88e-5	4.80e-5	4.12e-5	1.62e-5	4.00e-6	9.00e-8
30			4.44e-6	9.87e-5	1.94e-4	2.29e-4	1.32e-4	3.73e-5	7.10e-7
40	1.80e-7	2.52e-6	7.96e-5	6.71e-4	1.75e-3	3.40e-3	1.77e-3	3.74e-4	7.38e-6
50	2.46e-6	2.31e-5	4.18e-4	3.20e-3	8.55e-3	1.47e-2	6.49e-3	1.33e-3	2.33e-5
70	6.64e-5	3.67e-4	3.54e-3	2.00e-2	4.57e-2	6.11e-2	2.65e-2	5.31e-3	9.35e-5
100	8.27e-4	2.98e-3	1.76e-2	7.25e-2	1.40e-1	1.78e-1	7.67e-2	1.60e-2	2.73e-4
140	4.62e-3	1.18e-2	4.90e-2	1.63e-1	2.99e-1	3.76e-1	1.72e-l	3.94e-2	6.61e-4
200	1.66e-2	3.34e-2	1.05e-l	2.94e-1	5.21e-1	6.75e-1	3.46e-1	8.68e-2	1.53e-3
300	4.54e-2	7.57e-2	1.93e-1	4.70e-1	8.13e-1	1.10e-0	6.73e-1	1.96e-l	3.94e-3
500	1.09e-1	1.60e-l	3.34e-1	7.22e-1	1.19e-0	1.73e-0	1.34e-0	4.96e-1	1.31e-2
1000	2.47e-1	3.21e-1	5.68e-1	1.09e-0	1.72e-0	2.62e-0	2.75e-0	1.46e-0	6.94e-2

Sputtered energy of C by Ar ne=11, na=9

$E_0(eV)$	0 °	15°	30°	45°	55°	65°	75°	80°	85°
25			4.77e-9	8.41e-7	3.12e-6	3.78e-6	1.94e-6	5.16e-7	1.06e-8
30			1.33e-7	5.68E-6	1.51E-5	2.36E-5	1.71E-5	5.05E-6	8.74E-8
40	3.51e-9	8.05e-8	3.44e-6	4.90E-5	1.74E-4	4.25E-4	2.68E-4	5.91E-5	9.55E-7
50	6.13e-8	7.95e-7	2.21E-5	2.75E-4	9.65E-4	2.08E-3	1.11E-3	2.30E-4	3.24E-6
70	1.97e-6	1.49E-5	2.21E-4	1.95E-3	5.58E-3	9.49E-3	4.83E-3	9.66E-4	1.27E-5
100	2.58E-5	1.26E-4	1.13E-3	6.98E-3	1.69E-2	2.73E-2	1.42E-2	2.86E-3	3.44 E-5
140	1.37E-4	4.83E-4	2.99E-3	1.44E-2	3.33E-2	5.37E-2	3.01E-2	6.72E-3	7.14E-5
200	4.66E-4	1.25E-3	5.80E-3	2.30E-2	5.05E-2	8.38E-2	5.51E-2	1.38E-2	1.45E-4
300	1.15E-3	2.49E-3	9.21E-3	3.11E-2	6.54E-2	1.12E-1	9.01E-2	2.77E-2	3.09E-4
500	2.32E-3	4.28E-3	1.28E-2	3.77E-2	7.42E-2	1.31E-1	1.36E-1	5.75E-2	8.75E-4
1000	3.91E-3	6.30E-3	1.57E-2	4.13E-2	7.60E-2	1.35E-1	1.83E-1	1.17E-1	4.28E-3
Ar-» C

Particle reflection coefficient of Ar backscattered from C zl = 18. ml = 39.95. z2 = 6. m2= 12.01. sbe=7.41 eV, rho=1.85 g/cm**3 ef=0.20 eV, esb = 0.00 eV, ca=1.00, kk0 = kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: trvmc ne=14. na=8

$E_0(eV)$	15°	30°	45 ^u	55 ^u	65 ^u	75 ^u	80°	85°
10	2.76E-4	8.67E-3	1.14E-1	3.69E-1	7.42E-1	9.70E-1	9.97E-1	1.00E4-0
15	5.26E-5	5.43E-3	1.01E-1	3.56E-1	7.40E-1	9.73E-1	9.98E-1	1.00E+0
20	3.00E-5	4.27E-3	9.36E-2	3.48E-1	7.37E-1	9.73E-1	9.98E-1	- 1.00E+0
25	3.15E-5	3.75E-3	8.82E-2	3.38E-1	7.30E-1	9.74E-1	9.98E-1	1.00E-f-0
30	3.22E-5	3.41E-3	8.30E-2	3.27E-1	7.22E-1	9.73E-1	9.98E-1	1.00E+0
40	2.76E-5	2.84E-3	7.32E-2	3.05E-1	7.01E-1	9.71E-1	9.98E-1	1.00E+0
50	2.49E-5	2.35E-3	6.44E-2	2.82E-1	6.79E-1	9.67E-1	9.98E-1	1.00E-f-0
70	1.94E-5	1.66E-3	5.01E-2	2.42E-1	6.34E-1	9.58E-1	9.97E-1	1.00E-f-O
100	1.46E-5	1.11E-3	3.61E-2	1.94E-1	5.71E-1	9.43E-1	9.96E-1	1.00E-f-0
140	9.93E-6	8.47E-4	2.56E-2	1.49E-1	5.00E-1	9.19E-1	9.93E-1	1.00E-f-0
200	5.95E-6	5.96E-4	1.78E-2	1.09E-1	4.13E-1	8.77E-1	9.88E-1	1.00E-f-0
300	5.98E-6	4.49E-4	1.28E-2	7.68E-2	3.21E-1	8.09E-1	9.76E-1	1.00E-f-0
500	5.20E-6	3.45E-4	8.91E-3	5.10E-2	2.24E-1	6.88E-1	9.38E-1	1.00E-f-0
1000		2.61E-4	5.86E-3	3.15E-2	1.42E-1	4.97E-1	8.22E-1	9.98E-1

Energy reflection coefficient of Ar backscattered from C $ne\!=\!14,\ na\!=\!8$

$E_0(eV)$	15 ^u	30°	45 ^u	55°	65°	75°	80 ^u	85°
10	8.53e-8	5.74E-5	4.06E-3	3.25E-2	1.52E-1	4.33E-1	6.15E-1	7.95E-1
15	2.32e-7	7.96E-5	4.74E-3	3.65E-2	1.67E-1	4.64E-1	6.49E-1	8.25E-1
20	3.17e-7	8.79E-5	4.97E-3	3.85E-2	1.75E-1	4.83E-1	6.72E-1	8.45E-1
25	3.71e-7	8.70E-5	4.99E-3	3.90E-2	1.79E-1	4.97E-1	6.88E-1	8.58E-1
30	3.86e-7	8.21E-5	4.85E-3	3.88E-2	1.81E-1	5.06E-1	7.01E-1	8.68E-1
40	3.Ole-7	6.83E-5	4.39E-3	3.73E-2	1.80E-1	5.17E-1	7.18E-1	8.83E-1
50	2.51e-7	5.46E-5	3.87E-3	3.50E-2	1.78E-1	5.23E-1	7.29E-1	8.94E-1
70	1.69e-7	3.51E-5	2.94E-3	3.00E-2	1.68E-1	5.25E-1	7.42E-1	9.08E-1
100	1.Ole-7	2.01E-5	1.97E-3	2.35E-2	1.50E-1	5.18E-1	7.49E-1	9.20E-1
140	6.53e-8	1.27E-5	1.26E-3	1.71E-2	1.30E-1	5.01E-1	7.49E-1	9.28E-1
200	2.95e-8	7.88E-6	7.44E-4	1.17E-2	1.03E-1	4.69E-1	7.42E-1	9.34E-1
300	2.92e-8	5.17E-6	4.61E-4	7.09E-3	7.39E-2	4.18E-1	7.19E-1	9.38E-1
500	1.39e-8	3.60e-6	2.78E-4	3.86E-3	4.49E-2	3.32E-1	6.64E-1	9.37E-1
1000		2.68e-6	1.59E-4	1.91E-3	2.25E-2	2.08E-1	5.35E-1	9.25E-1

Average depth (mean range of Ar implanted in C ne=14, na=9

$E_0 (eV)^{}$	0°	15°	30°	45°	55°	65°	75°	80°	85°
10	1.30E+0	1.30E4-0	1.10E-f-0	9.00E-1	8.00E-1	6.00E-1	5.00E-1	4.00E-1	2.00E-1
15	2.00E4-0	1.90E-J-0	1.70E4-0	1.30E+0	1.10E-f-0	8.00E-1	6.00E-1	5.00E-1	3.00E-1
20	2.60E-J-0	2.50E-J-0	2.10E+0	1.60E+0	1.30E-J-0	1.00E-f-0	8.00E-1	6.00E-1	5.00E-1
25	3.10E+0	3.00E+0	2.60E+0	2.00E+0	1.60E+0	1.20E-J-0	9.00E-1	7.00E-1	5.00E-1
30	3.60E4-0	3.50E+0	3.00E+0	2.20E+0	1.80E4-0	1.40E4-0	1.10E-f-0	9.00E-1	6.00E-1
40	4.50E-J-0	4.30E+0	3.70E4-0	2.80E+0	2.20E4-0	1.70E+0	1.30E+0	1.10E+0	8.00E-1
50	5.20E+0	5.00E4-0	4.30E + 0	3.30E+0	2.60E4-0	2.00E+0	1.60E-J-0	1.30E4-0	9.00E-1
70	6.50E+0	6.20E-J-0	5.40E-J-0	4.10E+0	3.30E+0	2.60E + 0	2.00E4-0	1.70E4-0	1.10E+0
100	8.10E+0	7.80E+0	6.80E + 0	5.20E4-0	4.20E-J-0	3.30E-J-0	2.50E-J-0	2.20E4-0	1.70E+0
140	1.00E-f-1	9.60E+0	8.40E + 0	6.50E4-0	5.20E+0	4.10E + 0	3.20E+0	2.70E4-0	2.30E4-0
200	1.23E + 1	1.18E4-1	1.04E+1	8.20E-J-0	6.50E4-0	5.10E + 0	4.00E+0	3.40E+0	2.80E-I-0
300	1.56E+1	1.50E-J-1	1.32E-J-1	1.05E4-1	8.40E+0	6.60E4-0	5.20E+0	4.50E4-0	3.50E+0
500	2.10E+1	2.02E-J-1	1.79E-f-l	1.43E+1	1.15E + 1	9.00E+0	7.00E+0	6.20E+0	5.40E4-0
1000	3.16E4-1	3.05E-J-1	2.72E4-1	2.19E+1	1.78E-J-1	1.38E+1	1.06E + 1	9.40E4-0	7.20E + 0

$$Ar \rightarrow C$$

 $Sputtering yield of C by Ar \\ zl = 18, ml = 39.95, z2 = 6, m2 = 12.01, sbe=7.40, 7.42 eV, rho=2.26 g/cm**3 \\ ef=0.50 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) \\ program : trspvmex \\ ne= 9, na= 1$

$E_0(eV)$	0°
100	8.51E-4
100	8.60e-4
200	1.80e-2
300	4.96E-2
500	1.23E-1
500	1.20e-1
1000	2.64E-1
1000	2.67e-1
4000	6.32E-1

Sputtered energy of C by Ar ne=9, na=1

$E_0(eV)$	0°
100	2.65E-5
100	2.67e-5
200	4.92e-4
300	1.24E-3
500	2.55E-3
500	2.49e-3
1000	4.09E-3
1000	4.07e-3
4000	4.95E-3

Average depth (mean range) in \ddot{A} of Ar implanted in C zl = 18, ml = 39.95, z2= 6, m2= 12.01, sbe=7.40, 7.42 eV, rho=2.26 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr = 1 (KrC) program : trspvmcx ne= 7, na= 1

E ₀ (eV)	0°
50	3.82e+0
100	6.20E+0
200	9.61e4-0
300	1.23E + 1
500	1.67E + 1
1000	2.55E4-1
4000	6.28E + 1

$$Ar \rightarrow C$$

Sputtering yield of C by Ar z1-18. ml = 39.95. z2= 6. m2= 12.01. sbe=7.40, rho=2.26 g/cm**3 ef=0.50 eV. esb=0.00 eV. ca=1.00. kk0=kk0r=2, kdee1=kdee2=3. ipot=ipotr alpha=0.00 program : trspvmcx ne= 4, n(ipot) = 3

$B_0(eV)$	KrC	Moliere	ZBL	comment
5000	6.83B-1	7.58e-1	6.70e-1	
5000	1.12e-0			sbe=4.40 eV
5000	1.04e-0			sbe=4.40 eV, rho=1.85 g/cm**3
5000	6.24e-1			rho=1.85 g/cm**3

Sputtered energy of C by Ar ne= 4, n(ipot)= 3

ne= 1, n(1p	01)= 5			
Bo(eV)	KrC	Moliere	ZBL	comment
5000	4.98B-3	4.57e-3	5.26e-3	
5000	5.68e-3			sbe=4.40 eV
5000	5.69e-3			sbe=4.40 eV, rho=1.85 g/cm**3
5000	4.66e-3			rho=1.85 g/cm**3

Average depth (mean range) in \ddot{A} of Ar implanted in C ne= 4. $n(ipot)\!=\!3$

$B_0(eV)$	KrC	Moliere	ZBL	comment
5000	7.41E+1	6.00e4-1	7.51e + 1	
5000	7.37e+1			sbe=4.40 eV
5000	9.05e + 1			sbe=4.40 eV. rho=1.85 g/cm**3
5000	9.10e+1			rho = 1.85 g/cm**3

à-

Sputtering yield of C by Xe zl=54 * ml = 131.30, z2= 6. m2= 12.01. sbe=7.42, 7.40 eV. rho=2.26 g/cm**3 ef=0.50. esb = 0.00. ca=1.00. kk0=kk0r=2. kdeel=kdee2 = 3. ipot=ipotr=1 (KrC) program: testvmcx. trspvmcx ne=45. na=ll

$E_0 (eV)$	0°	15°	30°	45°	60°	65°	70°	75°	77.5°	80°	85 ^u
53								2.97e-6			
55				4.38e-6						2.34e-6	
56								1.01e-5			
59										1.00e-5	
60				1.71e-5				4.08e-5			
61										1.60e-5	
63										2.72e-5	
65				4.06e-5				1.25e-4		4.49e-5	
70			3.19e-6	8.01e-5				3.65e-4		1.23e-4	
75			7.66e-6	1.48e-4				8.80e-4		2.85e-4	
77								1.24e-3			
80			1.60e-5	2.18e-4				1.84e-3		5.67e-4	
85			3.35e-5								
90		2.12e-6	5.10e-5	5.44e-4				5.63e-3		1.61e-3	
95			7.92e-5								
100		6.33e-6	1.29e-4	1.15e-3				1.22e-2		3.42e-3	
105		1.00e-5									
110	1.86e-6	1.76e-5	2.68e-4							6.16e-3	
120	5.62e-6	3.88e-5	5.37e-4	4.26e-3	2.20e-2	3.47e-2	4.57e-2	3.70e-2		1.07e-2	
130	1.22e-5	7.48e-5	8.54e-4							1.52e-2	
135			1.19e-3								
140	2.22e-5	1.36e-4	1.49e-3	1.06e-2							
150	4.50e-5	2.33e-4	2.40e-3	1.55e-2	6.74e-2	1.04e-1	1.29e-1	1.Q2e-1		2.86e-2	
160		3.82e-4									
170	1.24e-4		5.04e-3	2.79e-2				1.62e-1		4.69e-2	
180	1.89e-4	8.74e-4									
190		1.20e-3									
200	4.15e-4	1.62e-3	1.04e-2	5.21e-2	1.89e-1	2.66e-1	3.33e-1	2.74e-1	1.80e-1	8.12e-2	
220	8.08e-4	2.64e-3 '									
230	1.11e-3										
250	1.70e-3	5.30e-3	2.60e-2	1.06e-1				5.02e-1		1.54e-1	
300	4.24e-3	1.07e-2	4.56e-2	1.63e-1				/.6/e-1		2.466-1	
300	3.89e-3				1					6.07.1	
500	2.76e-2	5.31e-2	1.52e-1	3.99e-1	1.00e-0		1.83e-0	1.82e-0		0.976-1	
500	3.00e-2										
700	6.71e-2	1.06 1	2.02.1	0.20 1	1 70 0		2 2 2 - 0	2.82- 0		2.07.0	
1000	1.27e-1	1.86e-1	3.93e-1	8.39e-1	1.79e-0		3.23e-0	3.82e-0		2.07e-0	
1000	1.28e-1										
2000	3.25e-1	6 0 0 1	0.81-1	1 77- 0	2 42 - 0		5 02 - 0	7 08 0 0		7 420 0	
3000	4.66e-1	0.00e-1	9.81e-1	1.//e-0	3.43e-0		5.92e-0	1.980-0		/.42e-0	
4000	5.99e-1										
/000	8.50e-1	1.10 0	1.80- 0	2.04-0	5 47 - 0			1.25-11		1.62011	6770.0
10000	1.02e-0	1.19e-0	1.800-0	3.040-0	5.4/e-0			1.230+1		2 280+1	0.776-0
30000	1.466-0	1./3e-0	2.450-0	3.880-0				1.00e- -1		2.200+1	
100000	1.696-0	1.89e-0	2.53e-0	5./3e-0				1.50e-H		2.43e+1	

$$\mathrm{Xe} \to \mathrm{C}$$

•

Sputtered energy of C by Xe zl=54, ml = 131.30. z2= 6. m2= 12.01. sbe=7.42 eV. rho=2.26 g/cm**3 ef=0.50, esb=0.00. ca=1.00, kk0=kk0r=2. kdeel=kdee2=3. ipot=ipotr=1 (KrC) program: testvmcx ne=44, na=11

Eo(eV)	0°	15°	30°	45 ^u	60°	65°	70°	75 ^u	77.5 ^U	80°	85°
53								1.43e-7			
55				8.12e-8						1.30e-7	
56								4.88e-7			
59										5.64e-7	
60				3.33e-7				1.93e-6			
61										9.02e-7	
63										1.41e-6	
65				8.63e-7				6.25e-6		2.32e-6	
70			1.40e-7	1.80e-6				1.78e-5		6.69e-6	
75			2.22e-7	3.52e-6				4.68e-5		1.57e-5	
77								6.66e-5			
80			2.76e-7	6.47e-6				9.94e-5		3.18e-5	
85			6.40e-7								
90		1.05e-7	9.27e-7	1.54e-5				3.22e-4		9.78e-5	
95			1.47e-6								
100		2.68e-7	2.47e-6	3.43e-5				7.32e-4		2.25e-4	
105		5.28e-7									
110	1.50e-7	3.33e-7	5.54e-6							3.95e-4	
120	2.12e-7	9.82e-7	1.18e-5	1.62e-4	1.09e-3	1.84e-3	2.67e-3	2.40e-3		7.29e-4	
130	2.48e-7	1.80e-6	1.94e-5							1.05e-3	
135			2.61e-5								
140	6.15e-7	2.29e-6	3.58e-5	3.88e-4							
150	1.27e-6	4.03e-6	5.97e-5	5.73e-4	3.42e-3	5.73e-3	7.81e-3	6.91e-3		2.01e-3	
160		6.92e-6									
170	1.72e-6		1.29e-4	1.06e-3				1.10e-2		3.32e-3	
180	2.80e-6	1.55e-5									
190		2.09e-5									
200	5.65e-6	2.88e-5	2.76e-4	1.98e-3	9.74e-3	1.48e-2	2.03e-2	1.89e-2	1.30e-2	5.84e-3	
220	1.09e-5	4.56e-5									
230	1.50e-5										
250	2.28e-5	9.45e-5	6.93e-4	3.95e-3				3.36e-2		1.11e-2	
300	5.51e-5	1.88e-4	1.15e-3	5.90e-3				5.07e-2		1.72e-2	
300	5.21e-5		2 40 2		4.01.2		0.74	1.01.1			
500	3.36e-4	8.22e-4	3.40e-3	1.23e-2	4.01e-2		8./6e-2	1.01e-1		4.41e-2	
500	3.47e-4										
700	7.23e-4	2 2 2 - 2	6.86-2	2 00- 2	5 49 - 2		1.12.1	15401		1.020.1	
1000	1.20e-3	2.23e-3	0.86e-3	2.00e-2	5.48e-2		1.13e-1	1.54e-1		1.05e-1	
2000	2.36e-3	4 22 - 2	1.020.2	2580.2	6 2 1 0 2		1 220 1	1 770 1		2 030 1	
3000	2.91e-3	4.22e-3	1.02e-2	2.58e-2	0.31e-2		1.22e-1	1.//e-1		2.050-1	
4000	3.10e-3										
1000	3.48e-3	5 00 - 2	1 140 2	2750 2	6 4 4 9 2			1.670.1		2 30 0 1	1 240 1
10000	3.43e-3	5.09e-3	1.14e-2	2.75e-2	0.440-2			1.0/0-1		2.500-1	1.240-1
30000	3.03e-3	4.946-3	7.140.2	2.54e-2				1.300-1		1.8201	
100000	2.19e-3	2.99e-3	/.14e-3	1./1e-2				1.21e-1		1.820-1	

Xe -> C

Particle reflection coefficient of Xe backscattered from C zl=54, IXII= 131.30, z2= 6, m2 = 12.01, sbe=7.42 eV, rho=2.26 g/cm**3 ef=0.50, esb = 0.00, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx ne=38. na=1

E ₀ (eV)	0 °	15°	30 ^u	45°	60 ^u	65 ^u	70°	75°	77.5°	80°	85°
53								9.13e-1			
55				1.90e-5						9.97e-1	
56								9.11e-1			
59										9.97e-1	
60				1.90e-5				9.09e-1			
61										9.97e-1	
63										9.97e-1	
65				1.91e-5				9.05e-1		9.97e-1	
70			1.07e-5	1.89e-5				9.02e-1		9.96e-1	
75			1.01e-5	1.83e-5				8.98e-1		9.96e-1	
77								8.97e-1			
80			9.40e-6	1.95e-5				8.94e-1		9.96e-1	
85			8.18e-6								
90		8.91e-6	7.17e-6	1.80e-5				8.87e-1		9.96e-1	
95			7.55e-6								
100		8.43e-6	7.63e-6	1.75e-5				8.79e-1		9.95e-1	
105		8.95e-6									
110	8.72e-6	8.22e-6	1.00e-5							9.95e-1	
120	7.67e-6	8.33e-6	8.67e-6	2.00e-5	2.36e-2	1.43e-1	4.79e-1	8.64e-1		9.94e-1	
130	7.95e-6	7.20e-6	7.33e-6							9.94e-1	
135			7.00e-6								
140	6.91e-6	7.80e-6	8.00e-6	1.50e-5							
150	1.04e-5	9.40e-6	1.69e-5	2.00e-5	1.90e-2	1.21e-1	4.33e-1	8.41e-1		9.93e-1	
160	0.00	1.00e-5									
170	9.50e-6							8.24e-1		9.91e-1	
180	8.88e-6	8.00e-6									
190		4.00e-6						7 00 1			
200	7.50e-6	7.00e-6		3.00e-5	1.31e-2	9.55e-2	3.70e-1	7.98e-1	9.34e-1	9.90e-1	
220	6.67e-6										
230	6.00e-6							7 50 1		0.04	
250	7.00e-6			2.00 5				7.586-1		9.86e-1	
300	6.00e-6			5.00e-5	5 00 0		1.0 4 1	7.23e-1		9.80e-1	
500					5.90e-3		1.866-1	5.85e-1		9.54e-1	
1000					4.60e-3		9.866-2	5./3e-1		8.62e-1	
3000					2.90e-3		4.566-2	1.656-1		5.52e-1	9 25 - 1
10000					8.00e-4			8.80e-2		2./9e-1	8.55e-1
30000								5.846-2		1840-1	
100000								4.12e-2		1.32e-1	

Energy	reflection	coefficient	of	Xe	backscattered	from	С
ne = 38,	na=11						

									U.		
$E_0 (eV)$	0°	15 ^u	30 °	45 °	60 °	65°	70 °	75°	77.5 °	80°	85 °
53								2.90e-1			
55				3.65e-6						5.72e-1	
56								2.91e-1			
59										5.75e-1	
60				7.12e-6				2.91e-1			
61										5.77e-1	
63										5.78e-1	
65				4.02e-6				2.92e-1		5.80e-1	
70			1.12e-5	2.89e-6				2.92e-1		5.83e-1	
75			2.91e-6	2.02e-6				2.92e-1		5.85e-1	
77								2.91e-1			
80			2.28e-6	3.06e-6				2.91e-1		5.88e-1	
85			4.10e-6								
90		1.89e-6	1.87e-6	1.81e-6				2.90e-1		5.92e-1	
95			1.48e-6								
100		1.68e-6	1.17e-6	8.03e-7				2.88e-1		5.95e-1	
105		1.57e-6									
110	3.97e-5	1.43e-6	9.10e-7							5.97e-1	
120	1.56e-6	1.62e-6	1.50e-6	6.82e-7	9.38e-4	1.13e-2	7.71e-2	2.85e-1		5.99e-1	
130	4.76e-6	1.07e-6	8.06e-6							6.00e-1	
135			6.46e-7								
140	1.17e-6	9.65e-7	6.08e-7	5.91e-7							
150	6.42e-6	6.33e-6	3.29e-6	4.26e-6	6.77e-4	9.15e-3	6.91e-2	2.75e-1		6.02e-1	
160		2.24e-6									
170	2.54e-6							2.70e-1		6.03e-1	
180	4.36e-6	1.54e-6									
190		9.00e-7									
200	1.40e-6	9.07e-7		5.42e-6	4.15e-4	6.93e-3	5.79e-2	2.60e-1	4.25e-1	6.02e-1	
220	1.24e-6										
230	2.84e-6										
250	7.98e-7							2.43e-1		5.98e-1	
300	1.99e-6			2.14e-7				2.27e-1		5.93e-1	
500					9.16e-5		2.41e-2	1.73e-1		5.59e-1	
1000					6.43e-5		8.45e-3	9.15e-2		4.67e-1	
3000					2.77e-5		2.00e-3	2.28e-2		2.32e-1	
10000					1.50e-6			7.71e-3		7.39e-2	6.11e-1
30000								4.67e-3		3.35e-2	
100000								3.32e-3		2.35e-2	

Average depth (mean range) of Xe implanted in C zl = 54, ml = 131.30. z2 = 6, m2 = 12.01, sbe=7.42 eV, rho = 2.26 g/cm**3 ef=0.50, esb=0.00, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx ne = 43, na=1l

Bq(eV)	0°	15 ^u	30°	45°	60 ^u	65 ^u	70 ^u	75 ^u	77.5°	80 ^u	85°
50	1.20e + 1										-
53								2.48e + 0			
55				8.24e+0						2.12e+0	
56								2.55e+0			
59										2.21e+0	
60				8.57e+0				2.65e4-0			
61										2.25e+0	
63										2.29e4-0	
65				8.89e-f-0				2.76e + 0		2.35e+0	
70			1.18e+1	9.19e+0				2.87e+0		2.44e+0	
75			1.21e4-1	9.47e+0				2.98e+0		2.52e+0	
77											
80			1.25e+1	9.75e+0				3.08e+0		2.61e+0	
85			1.28e4-1								
90		1.49e+l	1.31e + 1	1.03e + 1				3.28e4-0		2.82e+0	
95			1.34e+1								
100	1.62e + 1	1.55e+l	1.37e+1	1.07e+1				3.45e + 0		3.01e+0	
105											
110	1.68e + 1	1.62e+1								3.10e+0	
120	1.74e+l	1.68e+l	1.48e + 1	1.16e+1	7.21e + 0	5.70e+0	4.54e4-0	3.76e+0		3.30e+0	
130	1.80e + 1	1.73e+1	1.53e + 1							3.29e+0	
135			1.56e + 1								
140	1.86e4-1	1.79e+l	1.58e + 1	1.24e+1							
150	1.91e + 1	1.84e+1		1.28e + 1	8.03e-J-0	6.36e4-0	5.05e+0	4.16e + 0		3.53e+0	
160		1.89e+1									
170	2.01e + 1		1.71e+l	1.35e + 1				4.44e + 0		3.86e4-0	
180	2.06e + 1	1.98e+1									
190		2.03e+1									
200	2.15e-f-l	2.07e+1	1.84e4-1	1.45e + 1	9.20e + 0	7.27e+0	5.80e+0	4.80e+0	4.42e+0	4.20e+0	
220		2.15e+1									
230	2.28e + 1										
250	2.36e + 1	2.27e+1	2.01e + 1	1.59e + 1				5.28e+0		4.54e+0	
300	2.54e + 1	2.45e+1	2.17e + 1	1.73e4-1				5.75e + 0		4.98e+0	
500	3.14e+1	3.02e+1	2.69e + 1	2.14e+1	1.41e-H		8.97e+0	7.25e4-0		6.29e+0	
700	3.61e4-1										
1000	4.20e + 1	4.05e+1	3.61e + 1	2.91e+1	1.95e+1		1.26e+1	1.01e+l		8.26e4-0	
2000	5.69e+1										
3000	6.84e + 1	6.62e+1	5.90e + 1	4.79e + 1	3.30e + 1		2.21e+1	1.73e + 1		1.41e+1	
4000	7.85e+1				-						
7000	1.03e+2										
10000	1.24e+2	1.20e+2	1.08e+2	8.80e + 1	6.12e + 1			3.34e+1		2.56e+1	2.09e+1
30000	2.33e+2	2.24e+2	2.01e+2	1.64e+2				6.23e + 1		4.77e+1	
100000	5.17e+2	5.05e+2	4.51e+2	3.68e+2				1.39e+2		1.06e+2	

75

D-4Al

Sputtering yield of Al by D zl = 1, ml = 2.01. z2=13, m2= 26.98. sbe=3.36 eV. rho = 2.70 g/cm**3 ef=0.98 eV. esb = 1.00 eV. ca=1.00, kk0 = kk0r=2, kdeel = kdee2=3, ipot=ipotr = l (KrC) program: testvmcx ne= 5, na=l

Ep(eV)	0 ^u
40	7.55e-3
300	4.15e-2
1000	3.91e-2
3000	2.87e-2
10000	1.33e-2

Sputtered energy of Al by D ne= 5, na=l

E ₀ (eV)	0°
· 40	3.33e-4
300	1.07e-3
1000	4.64e-4
3000	1.63e-4
10000	2.46e-5

Particle reflection coefficient of D backscattered from Al zl=1, ml=2.01, z2=13, m2=26.98, sbe=3.36 eV, rho=2.70 g/cm**3 ef=0.98 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx ne= 5, na=l

Eq(eV)	<u>0°</u>
40	4.24e-1
300	2.96e-1
1000	2.04e-1
3000	1.08e-1
10000	3.06e-2

Energy reflection coefficient of D backscattered from Al ne= 5, na=l

• E ₀ (eV)	0°
40	2.14e-1
300	1.32e-1
1000	8.23e-2
3000	3.67e-2
10000	8.39e-3

Average depth (mean range) in \ddot{A} of D implanted in Al ne= 5, na=1

E _o (eV)	0°
40	2.17e+1
300	9.32e + 1
1000	2.52e + 2
3000	6.66e4-2
10000	1.95e4-3

Sputtering yield of Al by He zl = 2. ml = 4.00, z2 = 13, m2 = 26.98. sbe=3.36 eV. rho = 2.70 g/cm**3 ef=0.50 eV. esb=0.00 eV, ea=1.00, kk0=kk0r=2. kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: trspvmcx, TPP 9/82 ne=13, na=1

$E_0(eV)$	0°	
15	1.83e-4	
20	2.83e-3	
30	1.46e-2	
40	2.97e-2	
50	4.20e-2	
70	6.24e-2	
100	8.64e-2	
300	1.49e-1	
500	1.62e-1	
1000	1.63e-1	
5000	1.10e-1	1
10000	7.62e-2	
30000	3.47e-2	

Sputtered energy of Al by He program: trspvmcx ne=13, na=1

$B_0(eV)$	0°	
15	7.37e-6	
20	1.50e-4	
30	9.58e-4	
40	1.98e-3	
50	2.74e-3	
70	3.77e-3	
100	4.38e-3	1.1
300	4.42e-3	
500	3.48e-3	1
1000	2.45e-3	
5000	5.37e-4	
10000	1.95e-4	
30000	3.63e-5	

$He \longrightarrow Al$

Particle reflection coefficient He backscattered from Al zl = 2. ml = 4.00, z2 = 13, m2 = 26.98, sbe=3.36 eV, rho=2.70 g/cm**3 ef=0.50 eV, esb=0.00 eV, ea=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr = l (KrC) program: trspvmcx ne=13, na=l

E ₀ (eV)	0°
15	4.86e-1
20	4.51e-1
30	4.04e-1
40	3.73e-1
50	3.59e-1
70	3.33e-1
100	3.12e-1
300	2.44e-1
500	2.17e-l
1000	1.79e-l
5000	8.30e-2
10000	4.94e-2
30000	1.38e-2

Energy reflection ne = 13, na=1

coefficient of He backscattered from Al

E ₀ (eV)	0°
15	2.15e-1
20	1.95e-l
30	1.69e-l
40	1.53e-1
50	1.45e-l
70	1.31e-1
100	1.21e-l
300	9.05e-2
500	7.82e-2
1000	6.10e-2
5000	2.46e-2
10000	1.36e-2
30000	3.16e-3

Average depth (mean range) in \ddot{A} of He implanted in Al $ne\!=\!13,\ na\!=\!l$

Bo(eV)	0°
15	6.59e+0
20	7.83e + 0
30	1.01e4-1
40	1.21e + 1
50	1.39e+1
70	1.73e+1
100	2.20e + 1
300	4.85e + 1
500	7.18e + 1
1000	1.26e + 2
5000	5.35e+2
10000	1.01e+3
30000	2.72e+3

Ne -> Al

Sputtering yield of Al by Ne zl = 10, ml = 20.18, z2=13, m2= 26.98, sbe=3.36 eV, rho=2.70 g/cm**3 ef=0.50 eV, esb = 0.00 eV, ca=sl.OO, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: IPP 9/82 ne=14, na=1

$E_0(eV)$	0°
20	2.40e-4
30	4.46e-3
50	3.90e-2
100	1.74e-l
200	3.85e-1
500	6.92e-1
1000	9.17e-l
2000	1.06e-0
5000	1.13e-0
10000	1.09e-0
20000	9.71e-1
50000	7.64e-1
100000	5.53e-1
200000	4.12e-1

Al -4- Al

Sputtering yield of Al by A] zl = 13, ml = 26.98, z2 = 13, m2 = 26.98, sbe=3.36 eV. rho=2.70 g/cm**3 ef=3.30 eV. esb=3.36 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: trspvmcx ne= 6, na=1

_MeV)	0'3
40	1.16e-2
80	8.75e-2
200	3.46e-1
500	7.22e-1
50000	1.04e-0
100000	7.92e-1

Sputtered energy of Al by Al ne= 6, na=l

E ₀ (eV)	0°
40	6.10e-4
80	3.31e-3
200	9.10e-3
500	1.15e-2
50000	1.43e-3
100000	6.57e-4

Particle reflection coefficient of Al backscattered from Al zl = 13, ml = 26.98, z2 = 13, m2 = 26.98, sbe=3.36 eV, rho=2.70 g/cm**3 ef=3.30 eV, esb=3.36 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=l (KrC) program: trspvmcx ne= 6, na=1

E ₀ (eV)	0°
40	1.28e-3
80	5.60e-3
200	9.40e-3
500	1.54e-2
50000	1.50e-3
100000	5.00e-4

Energy reflection coefficient of Al backscattered from Al ne- 6, na=l $% \left[{\left({n_{\rm s}} \right)_{\rm s}} \right]$

E _o (eV)	0°
40	9.42e-5
80	3.39e-4-
200	4.41e-4
500	6.12e-4
50000	8.67e-5

Average depth (mean range) in \ddot{A} of Al implanted in Al ne= 6, na=1

E ₀ (eV)	0°
40	4.04e4-0
80	6.34e+0
200	1.12e + 1
500	1.98e+1
50000	7.33e+2
100000	1.46e+3

$E_0(eV)$	0°
40	2.33e+0
60	3.21e+0
80	4.03e+0
200	7.52e + 0
500	1.43e4-1
1000	2.28e + 1
5000	8.26e + 1
10000	1.51e4-2
20000	2.89e+2
50000	7.09e+2
100000	1.43e + 3

Average depth (mean range) in \ddot{A} of Al implanted in Al ne=ll, $na\!=\!l$

$E_0(eV)$	0°
40	7.51e-5
60	2.47e-4
80	4.33e-4
200	7.47e-4
500	5.34e-4
1000	5.39e-4
5000	3.29e-4
10000	1.88e-4
20000	1.50e-4
50000	3.51e-5

Energy reflection coefficient of Al backscattered from Al ne=l1, na=1

ne=11, na=1		
$E_0(eV)$	0°	
40	1.03e-3	
60	3.35e-3	
80	6.70e-3	
200	1.45e-2	
500	1.44e-2	
1000	1.20e-2	
5000	7.00e-3	
10000	3.33e-3	
20000	2.00e-3	
50000	8.00e-4	

Particle reflection coefficient of Al backscattered from Al zl = 13, ml = 26.98, z2 = 13, m2 = 26.98, sbe=3.36 eV, rho=2.70 g/cm**3 ef=3.30 eV, esb=3.36 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr=2 (Moliere) program: trspvmcx

ne=11, na=1	
Ep(eV)	ö ⁷³
40	9.29e-4
60	3.42e-3
80	6.39e-3
200	1.55e-2
500	1.81e-2
1000	1.56e-2
5000	7.29e-3
10000	4.75e-3
20000	2.81e-3
50000	1.27e-3
100000	6.13e-4

Sputtered energy of Al by Al

E _o (eV)	0°
40	1.61e-2
60	6.88e-2
80	1.43e-1
200	5.88e-1
500	1.16e-0
1000	1.56e-0
5000	1.91e-0
10000	1.76e-0
20000	1.55e-0
50000	1.14e-0
100000	9.67e-1

$$Ar \rightarrow Al$$

Sputtering yield of Al by Ar zl = 18, ml = 39.95, z2 = 13, m2 = 26.98, sbe=3.36 eV, rho=2.70 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: TPP 9/82, trslc, trvmc95c ne=18, na=4

E. (aV)	0.0	30 ^u	60°	850
E ₀ (ev)	0	30	00	65
30	5.10e-4			
50	1.09e-2			
100	9.72e-2			
100	1.17e-l	3.78e-1	6.67e-l	1.93e-3
200	3.10e-1			
500	7.38e-1			
500	9.10e-1	1.58e-0	2.99e-0	3.716-2
1000	1.08e-0			
1000	1.37e-0	2.21e-0	4.57e-0	1.43e-1
1000	1.10e-0			
2000	1.40e-0			
5000	1.73e-0			
10000	1.87e-0			
10000	2.39e-0	3.54e-0	9.08e-0	6.53e-0
20000	1.87e-0			
50000	1.69e-0			
100000	1.45e-0			
200000	1.18e-0			

Sputtered energy of Al by Ar program: trslc, trvmc95c ne= 5, na=4

E ₀ (eV)	0°	30°	60 ^u	85 ^u
100	3.67e-3	2.48e-2	9.43e-2	1.45e-4
500	1.33e-2	3.97e-2	1.61e-l	1.10e-3
1000	1.38e-2	3.67e-2	1.54e-l	3.74e-3
1000	1.16e-2			
10000	7.29e-3	1.86e-2	9.11e-2	1.07e-l

Particle reflection coefficient of Ar backscattered from Al zl = 18, ml = 39.95, z2 = 13, m2 = 26.98, sbe=3.36 eV, rho=2.70 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=l (KrC) program: trsle, trvmc95c ne= 5, na=4

Bo(eV)	0°	30°	60°	85°
100	3.14e-3	5.72e-2	5.67e-l	1.00e-0
500	2.32e-3	2.52e-2	3.01e-1	1.00e-0
1000	2.18e-3	1.84e-2	2.24e-1	9.99e-l
1000	2.80e-3			
10000	9.20e-4	7.47e-3	1.07e-l	8.01e-l

Energy reflection coefficient of Ar backscattered from Al ne= 5, $na\!=\!4$

Ro(eV)	0°	30°	60°	85°
100	6.99e-5	4.38e-3	1.88e-1	9.42e-1
500	3.83e-5 ·	1.38e-3	8.07e-2	9.53e-1
1000	3.62e-5	9.37e-4	5.17e-2	9.43e-1
1000	1.33e-5			
10000	2.10e-5	4.47e-4	2.06e-2	6.39e-1

Average depth (mean range) in \ddot{A} of Ar implanted in Al ne= 5, na=4

Ro(eV)	0°	30°	60°	85°
100	5.32e-j-0	4.55e+0	3.07e + 0	1.20e+0
500	1.42e + 1	1.23e+1	8.36e+0	4.42e4-0
1000	2.16e + 1	1.88e+1	1.26e+1	6.84e + 0
1000	2.90e + 1			
10000	1.05e+2	9.11e+1	5.89e + 1	3.71e4-1

Sputtering yield of Si by H zl = 1, ml = 1.01, z2 = 14, m2= 28.09, sbe=4.70, rho=2.33 g/cm**3 ef=0.95 eV, esb = 1.00 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program : trvmc95, IPP 9/82 ne=ll, na= 1

Eo (eV)	0°	
50	5.23e-5	
60	3.60e-4	
70	8.90e-4	
100	2.40e-3	
200	7.60e-3	
300	9.57e-3	
500	1.10e-2	
1000	1.05e-2	
2000	9.00e-3	
5000	5.50e-3	
10000	3.60e-3	

Sputtered energy of Si by H program : trvmc95 ne= 2, na= 1

Ep(eV)	(T
50	5.16e-7
300	2.01e-4

Particle reflection coefficient of H backscattered from Si Zl=1, ml= 1.01, z2=14, m2= 28.09, sbe=4.70, rho=2.32 g/cm**3 ef=0.95 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program : trvmc95 ne= 2, na= 1

"Ö ⁶
4.65e-1
3.35e-1

Energy reflection coefficient of H backscattered from Si $ne=\ 2,\ na=\ 1$

E ₀ (eV)	0 ^u
50	2.53e-1
300	1.58e-1

Average depth (mean range) in \ddot{A} of H implanted in Si ne= 2, na= 1

$B_0(eV)$	0°
50	3.33e+1
300	1.12e+2

D -> Si

Sputtering yield of Si by D zl = 1. ml = 2.01, z2 = 14, m2 = 28.09, sbe=4.70. rho=2.32 g/cm**3 ef=0.95 eV, esb = 1.00 eV. ca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr=1 (KrC) program : trvmc95, trspvmcx. IPP 9/82 ne=10, na= 9

Eo(eV)	0°	15°	30 ^u	45°	55 ^u	65 ^u	75 ^u	80°	85 ^u
25	1.90e-6	8.25e-3	1.11e-2	1.57e-2	1.87e-2	1.85e-2	1.08e-2	5.51e-3	2.51e-3
27	2.82e-5								
30	1.52e-4	1.22e-2	1.69e-2	2.54e-2	3.25e-2	3.46e-2	2.07e-2	1.02e-2	3.82e-3
50	3.09e-3	2.40e-2	3.45e-2	5.78e-2	8.53e-2	1.07e-l	7.40e-2	3.23e-2	7.37e-3
100	1.15e-2	3.59e-2	5.42e-2	9.78e-2	1.49e-1	2.13e-1	2.00e-1	1.01e-1	1.27e-2
200	2.03e-2	4.03e-2	6.32e-2	1.14e-1	1.77e-l	2.68e-1	3.42e-1	2.43e-1	2.93e-2
500	2.48e-2	3.85e-2	5.82e-2	1.04e-1	1.59e-1	2.57e-1	4.08e-1	4.39e-1	1.38e-1
1000	2.36e-2	2.96e-2	4.37e-2	7.80e-2	1.25e-l	2.06e-1	3.65e-1	4.59e-1	3.34e-1
2000	1.96e-2								
5000	1.22e-2								

Sputtered energy of Si by D program : trvmc95 ne= 2, na= 1

0.3
1.67e-8
3.28e-7

Particle reflection coefficient of D backscattered from Si zl=1, ml=2.01, z2=14, m2=28.09, sbe=4.70, rho=2.32 g/cm**3 ef=0.95 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program : trvmc95 ne= 3, na= 1

E ₀ (eV)	0°
20	4.64e-1
25	4.51e-1
27	4.47e-1

Energy reflection coefficient of D backscattered from Si

ne= 5, nu=	•
$E_0(eV)$	0°
20	2.44e-1
25	2.34e-1
27	2.31e-1

Average depth (mean range) in \ddot{A} of D implanted in Si ne= 3, na= 1

Eo(eV)	0°
20	1.67e-(-l
25	1.93e + 1
27	2.02e + 1

D on Si, Maxwellian velocity distribution, sheath potential 3 kT zl=1, ml=2.01, z2=14, m2=28.09, sbe=4.70 eV, rho=2.32 g/cm**3 ef=0.95 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=l(KrC) program: trvmc95 ne=11

kT(eV)	Y	Υ E	E sp	RN	Rß	E _b	range
5	2.47e-4	1.56e-5	1.58e-f-0	4.99e-1	2.77e-1	1.39e + 1	1.89e4-1
7	1.19e-3	7.04e-5	2.07e-}-0	4.74e-1	2.57e-1	1.90e + 1	2.33e + 1
10	4.05e-3	2.26e-4	2.79e+0	4.52e-1	2.41e-1	2.66e+1	2.94e+1
20	1.47e-2	7.06e-4	4.79e+0	4.12e-1	2.11e-1	5.12e+1	4.72e+1
30	2.20e-2	9.09e-4	6.19e4-0	3.89e-1	1.95e-l	7.51e4-1	6.29e+1
50	2.97e-2	9.85e-4	8.30e- -0	3.55e-l	1.73e-1	1.22e+2	9.20e-{-1
100	3.54e-2	7.88e-4	1.11e + 1	3.06e-1	1.41e-l	2.31e-f-2	1.58e+2
200	3.62e-2	5.55e-4	1.53e4-1	2.52e-1	1.08e-1	4.31e-J-2	2.81e+2
300	3.39e-2	3.82e-4	1.69e + 1	2.14e-1	8.66e-2	6.08e+2	3.96e- -2
500	2.76e-2	2.33e-4	2.12e+1	1.71e-l	6.30e-2	9.23e+2	6.17e + 2
1000	2.03e-2	9.66e-5	2.38e + 1	1.08e-1	3.47e-2	1.61e4-3	1.13e+3

He Si

E ₀ (eV)	0 ^u
50	1.64e-2
100	4.43e-2
300	8.77e-2
500	1.01e-1
1000	1.04e-1
4000	8.08e-2

Sputtered energy of Si by He program : trspvmcx ne= 6, na= 1

Eo(eV)	0°
50	1.08e-3
100	2.61e-3
300	3.37e-3
500	2.88e-3
1000	1.99e-3
4000	6.47e-4

Particle reflection coefficient of He backscattered from Si zl= 2, ml= 4.00, z2=14, m2= 28.09, sbe=4.70, rho=2.32 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program : trspvmcx ne= 6, na= 1

E ₀ (eV)	0°
50	3.60e-1
100	3.16e-1
300	2.57e-1
500	2.27e-1
1000	1.88e-1
4000	1.06e-l

Energy reflection coefficient of He backscattered from Si ne= 6, na= 1 $\,$

$E_0(eV)$	0°
50	1.47e-l
100	1.24e-l
300	9.54e-2
500	8.37e-2
1000	6.68e-2
4000	3.32e-2

Average depth (mean range) in \ddot{A} of He implanted in Si ne= 6, na= 1

$E_0(eV)$	0°
50	1.69e + 1
100	2.66e+1
300	5.75e+l
500	8.46e+l
1000	1.48e+2
4000	5.04e+2

$$C \rightarrow Si$$

C on Si, Maxwellian velocity distribution, sheath potential 9 kT zl = 6, ml = 12.01, z2 = 14, m2 = 28.09, sbe=4.70 eV, rho= 2.32 g/cm**3 ef=4.65 eV, esb = 4.70 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: trvme ne 5

kT(eV)	Y	Ye	Esp	∎R-n	Rje?	EL	range
5	5.27e-2	4.74e-3	4.94e+0	1.42e-1	2.72e-2	1.05e+l	7.91e+0
10	1.46e-1	9.82e-3	7.41e+0	1.50e-l	2.95e-2	2.15e+1	1.24e+1
20	2.75e-1	1.30e-2	1.04e+1	1.40e-1	2.72e-2	4.26e + 1	1.92e + 1
40	4.10e-1	1.35e-2	1.45e + 1	1.24e-l	2.35e-2	8.37e + 1	3.04e + 1
50	5.57e-1	1.31e-2	1.58e+1	1.17e-1	2.14e-2	1.01e+2	3.54e + 1

C on Si, Maxwellian velocity distribution, sheath potential 9 kT zl= 6, ml= 12.01, z2=14, m2 = 28.09, sbe=4.70 eV, rho= 2.32 g/cm**3 ef=0.98 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=l(KrC) program: trvmc ne= 4

kT(eV)	Y	Yβ	Esp	■R/V	Re	Bfe	range
5	4.79e-2	4.27e-3	4.90e+0	2.27e-1	4.62e-2	1.12e + 1	8.29e + 0
10	1.42e-1	9.32e-3	7.24e4-0	1.90e-l	3.69e-2	2.14e + 1	1.26e4-1
20	2.71e-1	1.30e-2	1.05e + 1	1.57e-l	2.94e-2	4.13e + 1	1.94e + 1
40	4.10e-1	1.34e-2	1.43e + 1	1.34e-1	2.48e-2	8.15e + 1	3.05e+1

Ne -4-Si

Sputtering yield of Si by Ne zl = 10, ml = 20.18, z2 = 14, m2 = 28.09, sbe=4.70, rho=2.32 g/cm**3 ef=0.50 eV, esb = 0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program : IPP 9/82 ne=12, na= 1

Bo(eV)	0°
30	7.60e-4
40	4.50e-3
50	1.15e-2
70	3.60e-2
100	8.00e-2
300	3.00e-1
1000	6.20e-1
3000	7.70e-1
10000	7.90e-1
30000	6.80e-1
100000	4.10e-1
300000	2.70e-1

Mg -4-Si

Particle reflection coefficient of Mg backscattered from Si zl = 12, miss 24.00, z2 = 14, m2= 28.09, rho= 2.33 g/cm**3 ef=1.00 eV. esb = 1.00 eV. ca=1.00. kk0 = 2. kdeel = 3, ipot = 1 (KrC) program: trrange3 only low fluence! ne= 2, na= 1

E ₀ (eV)	0°
100000	1.55e-3
200000	6.10e-4

Energy reflection only low fluence! ne= 2, na= 1 coefficient of Mg backscattered from Si

$E_0(eV)$	0°
100000	1.03e-4
200000	3.36e-5

Average depth (mean range) in \ddot{A} of Mg implanted in Si only low fluence! ne= 2, na= 1

$B_0(eV)$	0°
100000	1.78e + 3
200000	3.47e+3

$\mathrm{Al}\to\mathrm{Si}$

Particle reflection coefficient of Al backscattered from Si z1 = 13, miss 27.00; z2=14. m2 = 28.09, rho = 2.33 g/cm**3 ef=1.00 eV, esb=1.00 eV, ca=1.00, kk0=2, kdeel=3, ipot=1 (KrC) program: trrange3 only low fluence! ne= 2, na= 1

$E_0(eV)$	0°
100000	9.17e-4
200000	3.65e-4

Energy reflection only low fluence! ne= 2, nass 1 coefficient of Al backscattered from Si

Bo(eV)	0°
100000	4.86e-5
200000	1.73e-5

Average depth (mean range) in \ddot{A} of Al implanted in Si only low fluence! ne= 2, na= 1

$E_0(eV)$	0°
100000	1.65e+3
200000	3.22e+3

Si Si

Sputtering yield of Si by Si zl = 14, ml = 28.09. z2 = 14, m2 = 28.09. sbe=4.70 eV. rho=2.32 g/cm**3 ef=4.65 eV, esb=4.70 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program : trvmc, trvmc95, IPP 9/82 ne=18, na= 9

Bo(eV)	0°	15 ^u	30°	45°	55 °	65 ^u	75 ^u	80 ^u	85 ^u
30	4.70e-4								
40	2.00e-3								
50	1.40e-2								
70	3.80e-2								
100	6.20e-2								
300	3.00e-1								
500	4.40e-1	5.38e-1	8.43e-1	1.35e-0	1.76e-0	2.03e-0	1.69e-0	1.07e-0	3.50e-1
1000	7.00e-1								
1000	4.60e-1								
2000	8.96e-1	1.02e-0	1.47e-0	2.32e-0	3.12e-0	3.97e-0	4.24e-0	3.52e-0	1.26e-0
3000	9.60e-1								
10000	1.20e-0								
25000	1.13e-0								
30000	1.02e-0								
50000	1.09e-0								
75000	9.13e-1								
100000	7.36e-1								
100000	7.90e-1								

Sputtered energy of Si by Si program : trvmc95 ne= 2, na= 9

						1			
$E_0(eV)$	0°	15°	30 ^u	45°	55°	65°	75 ^u	80°	85 ^u
500	9.04e-3	1.33e-2	2.87e-2	6.38e-2	1.01e-1	1.44e-1	1.54e-1	1.12e-1	
2000	9.22e-3	1.23e-2	2.46e-2	5.24e-2	8.53e-2	1.29e-1	1.69e-l	1.60e-l	6.76e-2

Particle reflection coefficient of Si backscattered from Si zl = 14, ml = 28.09, z2 = 14, m2 = 28.09, sbe=4.70 eV, rho=2.32 g/cm**3 ef=4.65 eV, esb = 4.70 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program : trvmc95 ne= 2, na= 9

E _o (eV)	0°	15°	30°	45°	55°	65°	75°	80°	85°
500	1.20e-2	1.87e-2	4.32e-2	1.06e-l	1.91e-l	3.38e-1	6.05e-l	8.01e-1	
2000	1.08e-2	1.52e-2	3.13e-2	8.07e-2	1.42e-1	2.51e-1	4.44e-1	6.14e-1	9.00e-1

Energy reflection coefficient of Si backscattered from Si ne= 2, na= 9 $\,$

$B_{o}(eV)$	· 0 °	15°	30°	45°	55°	65°	75°	80°	85°
500	5.55e-4	1.16e-3	4.46e-3	1.86e-2	4.77e-2	1.24e-1	3.39e-1	5.58e-1	
2000	4.51e-4	8.81e-4	3.00e-3	1.24e-2	3.06e-2	7.76e-2	2.09e-1	3.80e-1	7.57e-l

Average depth (mean range) in $\ddot{\rm A}$ of Si implanted in Si ne= 2, na= 9

B₀(eV)	0°	15°	30°	45°	55°	65°	75°	80°	85°
500	2.28e + 1	2.21e-f-l	2.02e + 1	1.75e4-1	1.55e-)-l	1.35e+1	1.16e + 1	1.06e-}-l	
2000	5.55e- -1	5.39e+1	4.91e+1	4.23e-f-l	3.71e + 1	3.21e-j-l	2.77e + 1	2.57e- -1	2.37e+1

$$Si \rightarrow Si$$

Sputtering yield of Si by Si zl = 14, ml = 28.09, z2=14, m2= 28.09, sbe=4.70 eV. rho=2.32 g/cm**3 ef=4.60 eV. esb=4.70 eV. ca=1.00. kk0=kk0r=2. kdeel = kdee2=3. KrC potential program : testsi. Gauss-Mehler integration (nn-n=16) ne=12, na=15

$E_0(eV)$	0°	10°	20°	30 ^u	40°	50°	55 ^u	60 ^u	65°	70°	75°	80 ^u
$\begin{array}{c} \hline E_0 (eV) \\ \hline 25 \\ 30 \\ 40 \\ 50 \\ 70 \\ 100 \\ 200 \\ 500 \\ 1000 \\ 2000 \end{array}$	0° 1.64e-4 5.42e-4 2.79e-3 7.93e-3 2.72e-2 2.13e-1 5.08e-1 7.52e-1 9.72e-1	10° 2.46e-1	20° 3.40e-1	30 ^u 5.07e-1	40° 7.06e-1	50° 9.34e-1	55 " 1.03e-0	60 ^u	65° 1.06e-0	70° 9.66e-1	75° 7.47e-1	80 ^a

$E_0(eV)$	85 ^u	87 ^u	88 ^u	89°
200	2.44e-1	1.89e-1	1.70e-1	1.64e-1

Sputtered energy of Si by Si ne=12. na=15

E ₀ (eV)	0°	10°	20°	30°	40°	50°	55°	60°	65°	70°	75°	80°
25	9.07e-6											
30	3.17e-5											
40	1.60e-4											
50	4.21e-4											
70	1.28e-3										-	
100	2.78e-3											
200	6.40e-3	8.36e-3	1.46e-2	2.82e-2	4.99e-2	8.33e-2	1.04e-1	1.21e-1	1.33e-1	1.36e-l	1.18e-1	7.73e-2
500	1.00e-2											
1000	1.05e-2											
2000	9.64e-3											
5000	7.41e-3											
10000	5.48e-3											

E ₀ (eV)	85°	87°	88°	89°
200	3.97e-2	2.91e-2	2.64e-2	2.54e-2

Si -» Si

Particle reflection coefficient of Si backscattered from Si zl = 14, ml = 28.09, z2 = 14, m2= 28.09, sbe = 4.70 eV, rho=2.32 g/cm**3 ef=4.60 eV, esb=4.70 eV, ca=1.00. kk0=kk0r=2, kdeel = kdee2=3, KrC potential program : testsi, Gauss-Mehler integration (nnn=16) ne=12, na=15

E ₀ (eV)	0°	10°	20 ^u	30°	40°	50°	55°	60°	65°	70°	75 ^u	80°
25	5.38e-6											
30	2.91e-5											
40	1.83e-4											
50	4.77e-4											
70	1.57e-3											
100	3.11e-3											
200	7.34e-3	1.02e-2	2.09e-2	4.50e-2	8.87e-2	1.77e-l	2.41e-1	3.27e-1	4.40e-1	5.71e-l	7.23e-1	8.67e-1
500	1.15e-2											
1000	1.11e-2											
2000	9.77e-3											
5000	6.89e-3											
10000	5.02e-3											

$E_0(eV)$	85°	87°	88 ^u	89°
200	9.48e-1	9.68e-1	9.71e-1	9.74e-1

Energy reflection coefficient of Si backscattered from Si $ne\!=\!12,\ na\!=\!15$

E ₀ (eV)	0 °	10°	20°	30°	40°	50°	55°	60°	65°	70°	75°	80°
25	3.04e-7											
30	1.98e-6											
40	1.27e-5											
50	3.20e-5											
70	8.79e-5											
100	1.69e-4											
200	3.41e-4	6.05e-4	1.75e-3	5.17e-3	1.49e-2	4.14e-2	6.80e-2	1.10e-1	1.78e-1	2.74e-1	4.11e-1	5.78e-1
500	5.06e-4											
1000	4.59e-4											
2000	4.39e-4											
5000	3.29e-4											
10000	2.40e-4											

Bq(eV)	85°	87°	88°	- 89°
200	7.15e-1	7.52e-1	7.62e-1	7.68e-1

Average depth (mean range) in $\ddot{\rm A}$ of Si implanted in Si $ne{=}12,~na{=}15$

E ₀ (eV)	0°	10°	20 ^u	30 ^u	40°	50 ^b	55°	60°	65°	70°	75 6	80°
25	2.81e+0											
30	3.21e+0											
40	3.93e+0											
50	4.56e4-0											
70	5.71e+0											
100	7.16e+0											
200	1.11e+1	1.09e+1	1.05e+1	9.79e+0	8.96e+0	7.86e4-0	7.43e+0	6.91e+0	6.26e+0	5.76e4-0	5.25e+0	4.29e+0
500	1.97e+l											
1000	3.08e4-1											
2000	4.93e- -1											
5000	9.70e + 1											
10000	1.70e + 2											

$E_0 (eV)$	85°	87°	88°	89°
200	3.55e + 0	3.19e+0	3.28e + 0	2.88e+0

$$Si \longrightarrow Si$$

Sputtering yield of Si by Si zl = 14. ml = 28.09. z2=14. m2= 28.09. sbe=4.70 eV. rho=2.32 g/cm**3 ef=4.60 eV, esb=4.70 eV, ca=1.00. kk0=kk0r=2. kdeel=kdee2 = 3. ipot=ipotr=2 (Moliere potential) program : testsi, Gauss-Mehler integration (nnn=16) ne=12. na=16

$E_0(eV)$	0°	10 ^u	20°	30°	40°	50 ^u	55°	60°	65°	70°	75 0	80°
25	1.86e-4											
30	5.83e-4											
40	3.16e-3											
50	9.53e-3											
70	3.48e-2											
100	8.76e-2											
200	2.86e-1	3.19e-1	4.37e-1	6.16e-1	8.25e-1	1.03e-0	1.11e-0	1.12e-0	1.05e-0	9.12e-1	6.87e-1	4.18e-1
500	6.75e-l											
1000	9.64e-1											
2000	1.18e-0											
5000	1.27e-0											
10000	1.25e-0											

$E_0(eV)$	85°	87°	88°	89°
200	2.08e-1	1.64e-1	1.53e-1	1.40e-1

Sputtered energy of Si by Si ne=12, na=16

E ₀ (eV)	0°	10°	20°	30°	40°	50°	55°	60°	65°	70°	75°	80°
25	1.0le-5											
30	3.36e-5											
40	1.86e-4	-										
50	5.28e-4											
70	1.74e-3											
100	3.69e-3											
200	8.63e-3	1.08e-2	1.89e-2	3.43e-2	5.85e-2	9.36e-2	1.14e-1	1.27e-1	1.35e-1	1.30e-1	1.06e-1	6.67e-2
500	1.29e-2											
1000	1.26e-2											
2000	1.05e-2											
5000	7.01e-3											
10000	4.67e-3											

Bo(eV)	85°	87°	88° ·	89°
200	3.09e-2	2.26e-2	2.11e-2	1.87e-2

Si Si

Particle reflection coefficient of Si backscattered from Si zl = 14, ml = 28.09. z2 = 14, m2= 28.09. sbe=4.70 eV, rho=2.32 g/cm**3 ef=4.60 eV, esb=4.70 eV. ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, *ipot=ipotr=2* (Moliere potential) program : testsi, Gauss-Mehler integration (nnn = 16) ne=12, na=16

Bo(eV)	0°	10°	20 ^u	30°	40°	50°	55°	60°	65°	70°	75°	80°
25	2.13e-6											
30	2.78e-5											
40	1.93e-4											
50	6.27e-4											
70	1.67e-3											
100	4.03e-3											
200	9.50e-3	1.27e-2	2.56e-2	5.34e-2	1.13e-1	2.13e-1	2.86e-1	3.77e-1	4.96e-1	6.36e-1	7.71e-1	8.97e-1
500	1.23e-2											
1000	1.11e-2											
2000	8.58e-3											
5000	6.04e-3											
10000	4.03e-3											

$E_0(eV)$	85°	87°	88 ^u	89 ^u
200	9.67e-1	9.78e-1	9.80e-1	9.83e-1

Energy reflection coefficient of Si backscattered from Si $ne{=}12,\ na{=}16$

Bo (eV)	0°	10°	20°	30°	40°	50°	55°	60°	65°	70°	75°	80°
25	1.91e-7											
30	1.95e-6											
40	1.40e-5											
50	4.14e-5											
70	1.06e-4											
100	2.27e-4											
200	4.65e-4	7.71e-4	2.14e-3	6.34e-3	1.99e-2	5.16e-2	8.39e-2	1.32e-1	2.05e-1	3.16e-1	4.52e-1	6.07e-1
500	5.43e-4											
1000	4.69e-4											
2000	3.86e-4											
5000	2.91e-4										1.1	
10000	2.10e-4											

E ₀ (eV)	85°	87°	88°	- 89°
200	7.38e-1	7.69e-1	7.75e-1	7.84e-1

Average depth (mean range) in \ddot{A} of Si implanted in Si $ne{=}12,\ na{=}16$

												N
$B_0(eV)$	0°	10°	20 °	30°	40°	50 °	55°	60°	65°	70°	75°	80 °
25	2.26e+0											
30	2.59e+0											
40	3.19e+0											
50	3.72e+0											
70	4.67e+0											
100	5.88e+0											
200	9.17e+0	9.04e+0	8.65e+0	8.06e4-0	7.38e+0	6.56e+0	6.06e+0	5.71e+0	5.24e4-0	4.69e+0	4.24e+0	3.54e+0
500	1.65e4-1											
1000	2.65e4-1											
2000	4.38e+1											
5000	9.16e + 1											
10000	1.67e+2											
		•										

E ₀ (eV)	85°	87°	88 ^d	89°
200	2.66e+0	2.36e4-0	2.25e+0	2.35e+0

Si -> Si

Sputtering yield of Si by Si zl = 14, ml = 28.09, z2 = 14, m2 = 28.09. sbe=4.70 eV. rho=2.33 g/cm**3 ef=4.60 eV. esb=4.70 eV, ca=0.65. kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=2 (Moliere potential) program : testsi. Gauss-Mehler integration (nnn = 16) ne= 4, na= 1

Eq(eV)	0°
50	4.06e-3
70	1.38e-2
100	3.77e-2
200	1.37e-1

Sputtered energy of Si by Si ne= 4, na= 1

Bq(eV)	0°
50	1.99e-4
70	6.24e-4
100	1.62e-3
200	4.60e-3

Particle reflection coefficient of Si backscattered from Si zl = 14, ml= 28.09, z2 = 14, m2= 28.09, sbe=4.70 eV, rho=2.33 g/cm**3 ef=4.60 eV, esb=4.70 eV, ca=0.65, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=2 (Moliere potential) program : testsi, Gauss-Mehler integration (nnn=16) ne= 4, na= 1

Eo (eV)	Ö ⁷³
50	3.35e-4
· 70	1.16e-3
100	2.97e-3
200	7.31e-3

Energy reflection coefficient of Si backscattered from Si ne = 4, na = 1

Ep(eV)	0 ^s
50	1.82e-5
70	6.87e-5
100	1.69e-4
200	3.86e-4

Average depth (mean range) in \ddot{A} of Si implanted in Si ne= 4, na= 1

$B_{o}(eV)$	0°
50	9.47e+0
70	1.13e+1
100	1.35e + 1
200	1.94e+1

Si Si

. Sputtering yield of Si by Si zl = 14, ml= 28.09, z2=14, m2 = 28.09, sbe=4.70 eV, rho=2.32 g/cm**3 ef=4.60 eV, esb=4.70 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=4 (Si-Si potential (with attractive part)) program : testsi, Gauss-Mehler integration (nnn=16) ne=12, na=16

$E_0(eV)$	0 °	10°	20 ^u	30 ^u	40°	50°	55°	60 ^u	65°	70°	75°	80°
25	1.29e-4											
30	3.84e-4											
40	1.77e-3											
50	5.16e-3											
70	1.83e-2											
100	4.74e-2											
200	1.70e-1	1.86e-1	2.54e-1	3.74e-1	5.30e-1	7.13e-1	8.00e-1	8.71e-1	9.09e-1	8.99e-1	8.24e-1	7.25e-1
500	4.11e-1											
1000	6.61e-l											
2000	9.50e-1											
5000	1.24e-0											
10000	1.29e-0											
	-	-		-								

B _o (eV)	85°	87°	88°	89°
200	5.87e-1	5.44e-1	5.40e-1	5.37e-1

Sputtered energy of Si by Si ne=12. na=16

												-
Bo(eV)	0°	10°	20°	30°	40°	50°	55°	60°	65°	70°	75°	80°
25	7.26e-6											
30	2.17e-5											
40	9.58e-5											
50	2.73e-4											
70	8.55e-4											
100	1.92e-3											
200	5.39e-3	6.49e-3	1.08e-2 .	2.01e-2	3.61e-2	6.05e-2	7.56e-2	9.22e-2	1.08e-1	1.19e-1	1.18e-1	1.13e-1
500	8.61e-3											
1000	1.00e-2											
2000	1.03e-2											
5000	8.36e-3											
10000	6.03e-3								-			

Eo(eV)	85°	87°	88°	· 89°
200	9.71e-2	9.11e-2	9.01e-2	9.05e-2

Si -> Si

Particle reflection coefficient of Si backscattered from Si zl = 14, ml= 28.09, z2 = 14, m2= 28.09, sbe=4.70 eV, rho=2.32 g/cm**3 ef=4.60 eV, esb=4.70 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr=4 (Si-Si potential (with attractive part)) program : testsi, Gauss-Mehler integration (nnn = 16) ne=12, na=16

E ₀ (eV)	0°	10 ^u	20 ^u	30°	40°	50°	55"	60°	65°	70°	75°	80°
25	1.38e-6											
30	9.13e-6											
40	7.08e-5											
50	1.99e-4											
70	6.20e-4											
100	1.83e-3											
200	5.10e-3	7.25e-3	1.28e-2	2.78e-2	5.67e-2	1.16e-l	1.63e-1	2.19e-1	2.95e-1	3.83e-1	4.96e-1	5.98e-1
500	9.35e-3											
1000	1.12e-2											
2000	1.03e-2											
5000	7.89e-3											
10000	5.32e-3										× 100	

$E_0(eV)$	85°	87 ^u	88°	89°
200	6.97e-1	7.22e-1	7.28e-1	7.32e-1

Energy reflection coefficient of Si backscattered from Si ne=12, na=16

$B_{o}(eV)$	0°	10°	20°	30°	40°	50°	55°	60°	65°	70°	75°	80°
25	9.83e-8			1								
30	7.67e-7											
40	4.46e-6											
50	1.12e-5											
70	3.07e-5											
100.	9.83e-5											
200	2.37e-4	4.21e-4	1.01e-3	2.75e-3	8.18e-3	2.34e-2	3.84e-2	6.08e-2	9.63e-2	1.47e-l	2.17e-1	3.02e-1
500	4.18e-4											
1000	4.93e-4											
2000	4.73e-4											
5000	3.80e-4											
10000	2.64e-4											

$B_0(eV)$	85°	87°	88° ·	89°
200	3.87e-1	4.13e-1	4.15e-1	4.19e-1

Average depth (mean range) in \ddot{A} of Si implanted in Si ne=12, na=16

E ₀ (eV)	0°	10°	20 ^u	30°	40°	50°	55°	60°	65°	70°	75°	80°
25	3.20e + 0											
30	3.65e+0											
40	4.43e+0											
50	5.12e + 0											
70	6.35e- -0											
100	7.96e+0											
20Ö	1.22e + 1	1.21e+1	1.16e- -l	1.07e + 1	9.87e-f-0	8.73e+0	8.18e4-0	7.67e+0	7.13e+0	6.56e+0	6.04e+0	5.44e4-0
500	2.13e + 1											
1000	3.22e + 1											
2000	4.98e+1											
5000	9.66e-}-1											
10000	1.70e + 2											

E ₀ (eV)	85°	87°	88°	89°
200	5.00e+0	4.85e4-0	4.85e+0	4.85e- -0

Sputtering yield of Si by Si zl = 14, ml = 28.09. z2 = 14, m2= 28.09, sbe=4.70 eV, rho = 2.32 g/cm**3 ef=4.60 eV, esb=4.70 eV. ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=3 (ZBL potential) program : testsi, Gauss-Mehler integration (nnn=16) ne=12, na=16

Eq(eV)	0°	10"	20°	30"	40°	50°	55"	60"	65°	70"	75"	80°
25	1.27e-4											
30	4.29e-4											
40	2.21e-3											
50	6.15e-3											
70	2.12e-2											
100	5.28e-2											
200	1.73e-1	1.99e-1	2.82e-1	4.33e-1	6.28e-1	8.43e-1	9.52e-1	1.03e-0	1.03e-0	9.81e-1	8.02e-1	5.18e-1
500	4.18e-1											
1000	6.26e-1											
2000	8.37e-1											
5000	1.06e-0											
10000	1.12e-0											

$E_0(eV)$	85°	87°	88"	89"
200	2.77e-1	2.14e-1	1.97e-l	1.87e-1

Sputtered energy of Si by Si ne=12, na=16

										100 C		
E ₀ (eV)	0°	10°	20°	30°	40°	50°	55°	60°	65°	70°	-75°	80°
25	7.06e-6											
30	2.44e-5											
40	1.20e-4											
50	3.14e-4											
70	9.70e-4											
100	2.06e-3											
200	5.30e-3	6.84e-3	1.23e-2	2.40e-2	4.48e-2	7.46e-2	9.47e-2	1.15e-l	1.28e-1	1.38e-1	1.26e-1	8.94e-2
500	8.58e-3											
1000	9.25e-3											
2000	8.83e-3											
5000	7.10e-3											
10000	5.34e-3											

E ₀ (eV)	85°	87°	88"	· 89"
200	4.77e-2	3.72e-2	3.26e-2	3.04e-2

Si -> Si

Particle reflection coefficient of Si backscattered from Si zl = 14. ml = 28.09, z2 = 14. m2 = 28.09, sbe=4.70 eV, rho = 2.32 g/cm*"3 ef=4.60 eV. esb=4.70 eV, ca=1.00. kk0=kk0r=2. kdeel=kdee2 = 3. ipot=ipotr=3 (ZBL potential) program : testsi. Gauss- Mehler integration (nnn=16) ne=12. na=16

$E_0(eV)$	0°	10°	20°	30°	40°	50°	55°	60°	65 ^u	70°	75 ^u	80°
25	3.50e-6											
30	2.38e-5											
40	1.45e-4											
50	3.83e-4											
70	1.14e-3											
100	2.45e-3											
200	7.06e-3	9.40e-3	1.94e-2	3.89e-2	8.17e-2	1.61e-1	2.22e-1	2.97e-1	4.03e-1	5.19e-1	6.71e-1	8.30e-1
500	1.05e-2											
1000	1.08e-2											
2000	9.57e-3											
5000	7.58e-3											
10000	5.53e-3											

E ₀ (eV)	85°	87°	88 ^u	89°
200	9.36e-1	9.54e-1	9.61e-1	9.63e-1

Energy reflection coefficient of Si backscattered from Si ne=12. na=16

							100 C					
Bo(eV)	0°	10°	20°	30°	40°	50°	55°	60°	65°	70°	75°	80°
25	2.33e-7											
30	1.47e-6											
40	8.95e-6											
50	2.21e-5											
70	6.02e-5								-			
100	1.33e-4											
200	3.46e-4	5.44e-4	1.61e-3	4.36e-3	1.29e-2	3.63e-2	5.98e-2	9.47e-2	1.56e-l	2.40e-1	3.67e-1	5.38e-1
500	4.80e-4											
1000	4.60e-4											
2000	4.31e-4											
5000	3.54e-4											
10000	2.87e-4											

E ₀ (eV)	85°	87°	88° -	89°
200	6.84e-1	7.21e-1	7.32e-1	7.41e-1

Average depth (mean range) in \ddot{A} of Si implanted in Si ne=12, na=16

E ₀ (eV)	0°	10°	20°	30 ^u	40°	50°	55°	60°	65°	70 ^u	75°	80°
25	3.33e+0											
30	3.79e+0											
40	4.60e + 0											
50	5.32e- -0											
70	6.59e- -0											
100	8.22e+0											
200	1.26e + 1	1.24e4-1	1.19e-H	1.11e + 1	1.01e+1	8.92e+0	8.30e + 0	7.76e+0	7.20e+0	6.49e-}-0	5.84e + 0	5.05e+0
500	2.22e + 1											
1000	3.45e+1											
2000	5.48e + 1											
5000	1.06e + 2											
10000	1.84e+2											

$E_0(eV)$	85°	87°	88°	89°
200	4.16e + 0	3.82e+0	3.76e+0	3.90e+0

Sputtering yield of Si by Si zl = 14, ml = 28.09. z2 = 14, m2 = 28.09, sbe=4.70 eV, rho = 2.32 g/cm**3 ef=4.60 eV, esb=4.70 eV, ca=1.00, kk0 = kk0r=2, kdeel = kdee2 = 3, ipot=ipotr=1 (KrC potential) program : testsi, Gauss-Mehler integration (nnn=number of pivots) ne=1, n(nnn)=4

Bo(eV)	2	4	8	16
100	6.20e-2	6.61e-2	6.82e-2	6.79e-2

Sputtered energy of Si by Si ne=1, np(nnn)=4

$E_0(eV)$	2	4	8	16
100	2.48e-3	2.65e-3	2.73e-3	2.77e-3

Particle reflection coefficient of Si backscattered from Si zl = 14, ml= 28.09, z2 = 14, m2= 28.09, sbe=4.70 eV, rho=2.32 g/cm**3 ef=4.60 eV, esb=4.70 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC potential) program : testsi, Gauss-Mehler integration (nnn=number of pivots) ne=1, n(nnn)=4

					· -
$B_0(eV)$	2	4	8	16	1
100	3.07e-3	3.38e-3	3.17e-3	3.03e-3	4

Energy reflection ne=1, n(nnn)=4coefficient of Si backscattered from Si

$E_0(eV)$	2	4	8	16
100	1.61e-4	1.90e-4	1.73e-4	1.64e-4

4

.

1

÷.

 ξ . Average depth (mean range) in \ddot{A} of Si implanted in Si ne=1, $h^\ell(nnn){=}4$

-				
B ₀ (eV')'	. 2	4	8 ·	16 ,
100	8.15e4-0	7.39e+0	7.19e+0	7.15e+0

Si -> Si

Sputtering yield of Si by Si 21=14, m1 = 28.09. z2=14, m2= 28.09. sbe=4.70 eV, rho=2.33 g/cm**3 ef=4.65 eV, esb=4.70 eV, ca=1.00, kk0=kk0r, kdeel = kdee2=3, KrC potential e0=100 eV. alpha=0.0 program : testsi. Gauss-Mehler integration (nnn=16) ne=1, n(kk0)=4

•

a. . ×

1. Sec. 1

×

•

Potential	kk0 = 0	1	2	3
KrC	7.53e-2	6.35e-2	6.81e-2	7.13e-2
Mol	1.01e-l	8.20e-2	8.76e-2	9.39e-2
ZBL	5.82e-2	5.Ole-2	5.28e-2	5.76e-2
Si-Si	7.45e-2	7.12e-2	4.74e-2	3.36e-2

Sputtered energy of Si by Si ne=1, n(kk0) = 4

Potential	kk0=0	1	2	3
KrC	2.99e-3	2.62e-3	2.78e-3	2.87e-3
Mol	4.10e-3	3.41e-3	3.69e-3	3.89e-3
ZBL	2.29e-3	2.00e-3	2.06e-3	2.22e-3
Si- Si	3 17e-3	3 04e-3	1 92e-3	1.39e-3

Particle reflection coefficient of Si backscattered from Si zl=14, ml= 28.09, z2=14, m2= 28.09, sb=4.70 eV, rho=2.33 g/cm**3 ef=4.65 eV, esb=4.70 eV, ca-1.00. kkO=kkOr, kdeel = kdee2=3, KrC potential e0=100 eV, alpha=0.0 program' : testsi, Gauss-Mehler integration (nnn=16) ne=1, n(kk0)=4

Potential	kk0 = 0	1	2	3
KrC	2.59e-3	2.69e-3	3.11e-3	3.33e-3
Mol	3.06e-3	3.44e-3	4.03e-3	3.96e-3
ZBL	2.45e-3	2.29e-3	2.45e-3	2.78e-3
Si-Si	3.05e-3	3.05e-3	1.83e-3	1.15e-3

Energy reflection coefficient of Si backscattered from Si ne=1, n(kk0) = 4

Potential	k k 0 = 0	1	2	3
KrC	1.25e-4	1.48e-4	1.69e-4	1.97e-4
Mol	1.43e-4	1.92e-4	2.27e-4	2.21e-4
ZBL	1.21e-4	1.23e-4	1.33e-4	1.39e-4
Si-Si	1.63e-4	1.47e-4	9.83e-5	6.52e-5

Average depth (mean range) in \ddot{A} of Si implanted in Si ne=l, n(kk0) = 4

Potential	kk0=0	1	2	3	
KrC	7.83e+0	7.21ed-0	7.16e-f-0	7.14e+0	
Mol	6.53e + 0	5.93e+0	5.88e-f-0	5.89e-f-0	
ZBL	8.84e + 0	8.32e+0	8.22e+0	8.24e+0	Ľ
Si-Si	8.36e + 0	8.13e-f-0	7.96e-J-0	7.75e+0	

Si -4 Si

Sputtering yield of Si by Si z1 = 14, ml = 28.09. z2=14, m2= 28.09. sbe=4.70 eV. rho = 2.32 g/cm**3 ef=4.65 eV. esb = 4.70 eV, kk0=kk0r=2, kdeel=kdee2=3 program : trspvmcx ne=1; alpha=0.

	Pot. = KrC ca=1.00	Mol 1.00	ZBL 1.00	Mol 0.62
$E_0(eV)$				
200	1.73e-1	2.84e-1	1.78e-1	1.26e-1

Sputtered energy of Si by Si ne=1; alpha=0.

			-	
	Pot.=KrC	Mol	ZBL	Mol
	ca=1.00	1.00	1.00	0.62
E ₀ (eV)				
200	5.34e-3	8.63e-3	5.55e-3	4.39e-3

Particle reflection coefficient of Si backscattered from Si zl = 14, ml = 28.09, z2 = 14, m2 = 28.09, sbe=4.70 eV, rho=2.32 g/cm^{*3} ef=4.65 eV, esb = 4.70 eV, kk0=kk0r=2, kdeel=kdee2=3 program : trspvmcx ne=1; alpha=0.

	Pot. = KrC ca=1.00	Mol 1.00	ZBL 1.00	Mol 0.62
$B_o(eV)$				
200	8.46e-3	1.11e-2	7.28e-3	6.54e-3

coefficient of Si backscattered from Si

	Pot. = KrC	Mol	ZBL	Mol
E ₀ (eV)	ca=1.00	1.00	1.00	0.62
200	4.54e-4	5.77e-4	3.59e-4	3.49e-4

Average depth (mean range) in \ddot{A} of Si implanted in Si ne=1; alpha=0.

	Pot. = KrC ca=1.00	Mol 1.00	ZBL 1.00	Mol 0.62
$E_0 (eV)$				
200	1.31e+1	9.03e+0	1.24e+1	2.07e+1

P -> Si

Particle reflection coefficient of P backscattered from Si zl = 15, ml = 31.00. z2 = 14, m2 = 28.09, rho = 2.33 g/cm**3 ef = 1.00 eV. esb = 1.00 eV, ca = 1.00, kk0 = 2, kdeel = 3, ipot = 1 (KrC) program: trrange3 only low fluence! ne = 2, na = 1

Eo(eV)	0 ^u
100000	5.50e-4
200000	2.25e-4

Energy reflection coefficient of P backscattered from Si only low fluence! ne= 2, na= 1

Bo(eV)	0°	
100000	2.56e-5	
200000	9.26e-6	

.

Average depth (mean range) in \tilde{A} of P implanted in Si only low fluence! ne= 2, na= 1

Eo(eV)	0°
100000	1.43e+3 2.81e+3
200000	2.01015

	-
Bp(eV)	0°
50	6.27e- -0
100	9.36e4-0
300	1.73e+1
500	2.30e+1
1000	3.44e + 1
4000	8.24e + 1

.

Average depth (mean range) in \ddot{A} of Ar implanted in Si ne= 6, na= 1

ne= 0, na= 1		
Bp(eV)	0°	
50	1.04e-4	
100	7.12e-5	
300	8.09e-5	
500	6.04e-5	
1000	7.64e-5	
4000	1.68e-5	

coefficient Energy reflection of Ar backscattered from Si

Ep(eV)	Ö ³
50	7.83e-3
100	4.01e-3
300	3.93e-3
500	3.55e-3
1000	3.40e-3
4000	1.29e-3

Particle reflection coefficient of Ar backscattered from Si zl = 18, ml = 39.95, z2=14, m2= 28.09, sbe=4.70, rho=2.32 $g/cm^{**}3$ ef=0.50 eV, esb=0.00 eV, eca=1.00, $kkO=kk\ddot{O}r=2$, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program : trspvmcx ne= 6, na= 1

Eq(eV)	Ö ⁷³
50	1.79e-3
50	1.60e-3
100	3.08e-2
100	3.20e-2
300	2.33e-1
300	2.30e-1
500	3.96e-1
500	3.50e-1
1000	6.64e-1
1000	6.20e-1
3000	9.50e-1
4000	1.19e-0
10000	1.20e-0
30000	1.25e-0
100000	1.20e-0
100000	1.20e-0

Sputtered energy of Si by Ar program : trspvmcx ne= 6, na= 1

Bp(eV)	0°
50	1.79e-3
50	1.60e-3
100	3.08e-2
100	3.20e-2
300	2.33e-1
300	2.30e-1
500	3.96e-1
500	3.50e-1
1000	6.64e-1
1000	6.20e-1
3000	9.50e-1
4000	1.19e-0
10000	1.20e-0
30000	1.25e-0
100000	1.20e-0

Sputtering yield of Si by Ar zl = 18, ml = 39.95, z2 = 14, m2 = 28.09; sbe=4.70, rho=2.32 g/cm**3 ef=0.50 eV, esb = 0.00 eV, ca=1.00, kk0=kk0r=2. kdeel = kdee2=3, ipot=ipotr = l (KrC) program : trspvmex, TPP 9/82 ne=15, na= l

Xe Si

$E_0(eV)$	0 ^u
50	3.54e-5
50	4.00e-5
100	3.84e-3
100	3.65e-3
200	4.83e-2
300	1.14e-1
500	2.56e-1
500	2.74e-1
1000	5.53e-1
1000	5.84e-1
2000	9.76e-1
4000	1.48e-0
5000	1.54e-0
10000	2.09e-0
20000	2.51e-0
50000	2.99e-0
100000	3.13e-0
200000	3.10e-0

Sputtered energy of Si by Xe program : trspvmcx ne = 6, na = 1

Eo(eV)	0°	
50	8.90e-7	
100	9.24e-5	
300	2.09e-3	
500	3.87e-3	
1000	5.98e-3	
4000	7.87e-3	

Particle reflection coefficient of Xe backscattered from Si zl=54, 1111=131.30, z2=14. m2=28.09, sbe=4.70, rho=2.32 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=l (KrC) program : trspvmcx ne=1, na=1

Bo(eV)	<u>0°</u>
50	6.13e-6

Energy reflection coefficient of Xe backscattered from Si $ne=\ 1,\ na=\ 1$

E ₀ (eV)	"O' ·
50	1.44e-6

Average depth (mean range) in \ddot{A} of Xe implanted in Si ne= 6, na= 1

E ₀ (eV)	0°
50	1.24e+1
100	1.72e+1
300	2.79e+1
500	3.48e+1
1000	4.72e + 1
4000	8.91e + 1

$Bi \mathrel{-\!\!\!>} Si$

Average depth (mean range) in \tilde{A} of Bi implanted in Si z1=83. ml = 209.00, z2 = 14. m2= 28.09. rho= 2.33 g/cm**3 ef =1.00 eV. esb = 1.00 eV, ca=1.00, kk0=2, kdeel=3, ipot = 1 (KrC) program: trrange3 only low fluence.' ne= 2. na= 1

nc= 2, nu=	•
$E_0(eV)$	0°
200000	8.94e4-2
400000	1.48e+3

$$D \longrightarrow Ti$$

Sputtering yield of Ti by D zl = 1, ml= 2.01, z2=22, m2= 47.90, sbe=4.89 eV, rho = 4.52 g/cm**3 ef=0.98, esb = 1.00, ca=1.00, kk0 = kk0r=2, kdeel = 4,kdee2 = 3, ipot=ipotr= 1 (KrC) program: testvmcx, IPP 9/82 ne= 8, na=1

Bo(eV)	0 °
50	3.64e-4
70	2.49e-3
100	6.53e-3
300	2.14e-2
1000	2.72e-2
3000	2.17e-2
10000	1.13e-2
30000	5.00e-3

Sputtered energy of Ti by D program: testvmcx ne= 8, na=l

E ₀ (eV)	0°
50	5.69e-6
70	6.59e-5
100	1.92e-4
300	5.04e-4
1000	3.56e-4
3000	1.36e-4
10000	3.13e-5
30000	3.70e-6

$B_0(eV)$	0°
50	5.13e-1
70	4.95e-1
100	4.73e-1
300	4.01e-1
1000	3.09e-1
3000	1.89e-1
10000	7.85e-2
30000	1.95e-2

Energy reflection coefficient of D backscattered from Ti $ne=\ 8,\ na=l$

$B_0(eV)$	0°
50	2.94e-1
70	2.78e-1
100	2.61e-1
300	2.08e-1
1000	1.46e-l
3000	7.62e-2
10000	2.55e-2
30000	5.22e-3

Average depth (mean range) in \ddot{A} of D implanted in Ti ne= 8, na=l

E ₀ (eV)	0°
50	2.78e4-1
70	3.42e + 1
100	4.29e+1
300	9.04e+1
1000	2.23e + 2
3000	5.48e + 2
10000	1.53e+3
30000	3.93e + 3
He -> Ti

. ---

$E_0(eV)$	0°
40	3.31e-3
60	1.50e-2
100	3.58e-2
300	8.09e-2
1000	1.13e-1
3000	1.07e-1
10000	6.63e-2
30000	3.40e-2

Sputtered energy of Ti by He program: testvmcx ne= 8, na=1

Bp(eV)	Ö ⁷³
40	1.30e-4
60	7.34e-4
100	1.72e-3
300	2.62e-3
1000	1.82e-3
3000	8.56e-4
10000	2.07e-4
30000	4.89e-5

Particle reflection coefficient of He backscattered from Ti zl= 2, ml = 4.00, z2=22, m2= 47.90, sb=4.89 eV, rho=4.52 g/cm**3 ef=0.50, esb=0.00, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx ne= 8, na=1

E ₀ (eV)	0°
40	4.93e-1
60	4.58e-1
100	4.27e-1
300	3.62e-1
1000	2.87e-1
3000	2.06e-1
10000	1.09e-l
30000	3.95e-2

Energy reflection coefficient of He backscattered from Ti ne= 8, na=1

$E_0(eV)$	0°	
40	2.53e-1	
60	2.28e-1	
100	2.06e-1	
300	1.66e-l	
1000	1.23e-1	
3000	8.11e-2	
10000	3.59e-2	
30000	1.10e-2	
		-

Average depth (mean range) in \ddot{A} of He implanted in Ti ne= 8, na=1

$E_0(eV)$	0°
40	1.38e + 1
60	1.76e+1
100	2.39e+1
300	4.89e+1
1000	1.17e+2
3000	2.83e4-2
10000	7.96e4-2
30000	2.12e+3

Ne -> Ti

Sputtering yield of Ti by Ne zl = 10, ml = 20.18. z2=22. m2= 47.90. sbe=4.89 eV. rho=4.51 g/cm**3 ef=0.50. esb=0.00. ca=1.00. kk0=kk0r=2. kdeel=kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx, TPP 9/82 ne=15. na=12

E_0(eV)	0 ^u	10°	20°	30°	40°	45 ^u	50 ^u	60°	70°	75°	80°	85 ^u
38	1.02e-2	1.12e-2	1.43e-2	1.98e-2	2.75e-2	3.24e-2	3.71e-2	3.79e-2	2.34e-2	1.04e-2	2.10e-3	2.00e-5
50	3.00e-2											
100	1.45e-1											
200	3.23e-1											
380	5.33e-1	5.62e-1	6.58e-1	8.17e-1	1.03e-0	1.13e-0	1.24e-0	1.37e-0	1.18e-0	8.51e-1	3.46e-1	1.25e-2
500	6.14e-1											
1000	8.20e-1											
2000	9.98e-1											
3800	1.08e-0	1.15e-0	1.27e-0	1.61e-0	2.00e-0	2.32e-0	2.65e-0	3.47e-0	4.22e-0	4.30e-0	3.81e-0	1.38e-0
5000	1.09e-0											
10000	1.08e-0											
20000	9.40e-1											
50000	7.32e-1											
100000	5.51e-1											
200000	4.14e-1											

-

Sputtered energy of Ti by Ne program: testvmcx. IPP 9/82 ne=15, na=12

Eo(eV)	0°	10°	20°	30°	40°	45°	50°	60°	70°	75°	80°	85°
38	8.60e-4	1.04e-3	1.44e-3	2.39e-3	3.72e-3	4.67e-3	5.83e-3	6.97e-3	4.73e-3	2.26e-3	4.66e-4	7.46e-6
50	2.30e-3											
100	9.00e-3											
200	1.34e-2											
380	1.57e-2	1.70e-2	2.24e-2	3.12e-2	4.74e-2	5.60e-2	6.85e-2	9.23e-2	9.99e-2	8.31e-2	3.77e-2	8.54e-4
500	1.55e-2											
1000	1.41e-2											
2000	1.17e-2											
3798	8.92e-3	9.86e-3	1.24e-2	1.78e-2	2.62e-2	3.27e-2	4.01e-2	6.08e-2	8.71e-2	9.82e-2	9.83e-2	4.30e-2
5000	7.83e-3											
10000	5.21e-3											
20000	3.13e-3											
50000	1.43e-3											
100000	6.29e-4											
200000	3.03e-4											

Ne -> Ti

Particle reflection coefficient of Ne backscattered from Ti zl = 10. ml = 20.18. z2=22; m2=47.90. sbe=4.89 eV. rho=4.51 g/cm**3 ef=0.50. esb=0.00. ca=1.00, kkO=kkOr=2, kdeel = kdee2=3. ipot=ipotr=1 (KrC) program: testvmcx ne=15. na=12

Eo(eV)	0°	10°	20°	30°	40°	45 ^u	50°	60°	70 ^u	75°	80 ^u	85°
38	3.27e-1	3.49e-1	3.95e-1	4.60e-1	5.60e-1	6.14e-1	6.79e-1	8.17e-1	9.43e-1	9.83e-1	9.98e-1	1.00e-0
50	3.07e-1											
100	2.34e-1											
200	1.81e-1											
380	1.50e-1	1.58e-1	1.79e-l	2.11e-1	2.67e-1	3.00e-1	3.49e-1	4.67e-1	6.71e-1	8.07e-1	9.47e-1	1.00e-0
500	1.40e-1											
1000	1.15e-l											
2000	9.90e-2											
3798	8.05e-2	8.54e-2	9.52e-2	1.23e-1	1.60e-l	1.82e-1	2.14e-1	2.96e-1	4.24e-1	5.10e-1	6.40e-1	9.02e-1
5000	7.45e-2											
10000	5.89e-2											
20000	4.35e-2											
50000	2.39e-2											
100000	1.42e-2											
200000	7.56e-3											

Energy reflection coefficient of Ne backscattered from Ti $ne\!=\!15,\ na\!=\!12$

									_			
$E_0(eV)$	0°	10°	20°	30°	40°	45°	50°	60°	70°	75°	- 80°	85°
38	5.58e-2	6.46e-2	8.59e-2	1.23e-1	1.88e-1	2.34e-1	2.90e-1	4.43e-1	6.56e-1	7.81e-1	8.92e-1	.9.68e-1
50	5.21e-2											
100	3.98e-2											
200	2.97e-2											
380	2.48e-2	2.74e-2	3.41e-2	4.70e-2	7.24e-2	9.00e-2	1.18e-1	2.04e-1	3.97e-1	5.64e-1	7.93e-1	9.68e-1
500	2.32e-2											
1000	1.85e-2											
2000	1.60e-2											
3798	1.32e-2	1.46e-2	1.76e-2	2.63e-2	4.04e-2	4.95e-2	6.41e-2	1.09e-1	2.01e-1	2.80e-1	4.27e-1	7.95e-1
5000	1.24e-2											
10000	9.68e-3											
20000	7.12e-3											
50000	3.89e-3											
100000	2.07e-3											
200000	1.10e-3											

Average depth (mean range) in \ddot{A} of Ne implanted in Ti $ne{=}15._\,na{=}12$

E_0(eV)	0°	10°	20°	30°	40°	45°	50°	60°	70°	75°	80°	85°
38	6.91e+0	6.86e+0	6.76e+0	6.65e+0	6.49e+0	6.42e+0	6.35e+0	6.07e+0	5.70e- -0	5.50e+0	5.19e-f-0	
50	7.58e4-0											
100	9.90e+0											
200	1.35e-{-l											
380	1.87e + 1	1.86e+l	1.82e+1	1.76e + 1	1.67e + 1	1.63e+1	1.58e + 1	1.49e+1	1.40e + 1	1.35e+1	1.27e+1	1.26e + 1
500	2.17e4-l											
1000	3.27e+1											
2000	5.51e+1											
3798	7.99e + 1	7.91e+l	7.67e + 1	7.31e-f-l	6.85e + 1	6.58e- -1	6.32e+1	5.75e + 1	5.26e + 1	5.13e- -1	4.88e+1	4.65e+1
5000	9.84e- -1											
10000	1.70e+2											
20000	3.09e+2											
50000	7.12e+2											
100000	1.37e+3											
200000	2.60e+3											

Ar -> Ti

Sputtering yield of Ti by Ar zl = 18, ml = 39.95, z2 = 22, m2 = 47.90. sbe=4.89 eV. rho=4.52 g/cm**3 ef=0.20, 0.50 eV, esb = 0.00 eV. ca=1.00. kk0 = kk0r=2, kdeel = kdee2 = 3, ipot = ipotr= 1 (KrC) program : trvmc95 ne= 5, na= 5

I	$E_0(eV)$	0°	20°	45 ^u	50°	60°
Γ	640					2.29e-0
I	1000	1.04e-0				
I	1040		1.15e-0	2.14e-0		3.15e-0
I	1440					3.84e-0
I	5000				4.62e-0	

Sputtered energy of Ti by Ar ne=5, na=5

I	E ₀ (eV)	0°	20°	45°	50°	60°
	640 1000 1040 1440	1.52e-2	2.22e-2	7.00e-2		1.34e-1 1.33e-1 1.34e-1
I	5000				6.66e-2	

Particle reflection coefficient of Ar backscattered from Ti zl = 18, ml = 39.95, z2=22, m2=47.90, sbe=4.89 eV, rho=4.52 g/cm**3 ef=0.20, 0.50 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2. kdeel = kdee2 = 3, ipot=ipotr= 1 (KrC) program : trvmc95 ne= 5, na= 5

Eq(eV)	0°	20°	45°	50°	60°
640					3.28e-1
1000	3.76e-2				
1040		6.04e-2	1.49e-1		3.08e-1
1440					2.88e-1
5000				1.33e-1	

coefficient of Ar backscattered from Ti

I	$E_0(eV)$	0°	20°	45°	50°	60°	
I	640					9.65e-2	l
	1000	2.06e-3					
	1040		4.33e-3	2.47e-2		9.13e-2	
	1440					8.45e-2	
	5000				2.59e-2		

Average depth (mean range) in $\ddot{\rm A}$ of Ar implanted in Ti ne= 5, na= 5

E ₀ (eV)	0°	20°	45°	50°	60°
640	2 40 - 1				1.33e4-1
1000	2.40e+1	2.54e+1	2.10e + 1		1.65e+l
1440					2.04e + 1
5000				4.85e+1	

Ti -> Ti

 $Sputtering yield of Ti by Ti \\ zl=22, ml = 47.90, z2=22, m2= 47.90, sbe=4.89 eV, rho=4.52 g/cm^{**}3 \\ ef=4.85, esb=4.89, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=l (KrC) \\ program: testvmcx, IPP 9/82 \\ ne=13, na=l$

E ₀ (eV)	0°	
60	7.14e-3	
80	1.96e-2	
100	6.62e-2	
100	3.62e-2	
200	2.39e-1	
300	2.41e-1	
1000	1.04e-0	
1000	7.16e-l	
10000	2.14e-0	
10000	1.73e-0	
50000	1.62e-0	
100000	1.71e-0	
100000	1.39e-0	

Sputtered energy of Ti by Ti program: testvmcx ne= 5, na=l

$E_0(eV)$	0°
100	2.73e-3
200	7.43e-3
1000	1.45e-2
10000	8.88e-3
100000	2.10e-3

Particle reflection coefficient of Ti backscattered from Ti zl=22, ml = 47.90, z2=22, m2= 47.90. sbe=4.89 eV, rho=4.52 g/cm**3 eff=4.85, esb=4.89, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx ne= 5, na=1 (KrC)

E ₀ (eV)	0°
100	4.19e-3
200	1.08e-2
1000	1.65e-2
10000	7.70e-3
100000	2.00e-3

$E_0(eV)$	0°
100	2.36e-4
200	5.31e-4
1000	6.48e-4
10000	4.30e-4
100000	1.55e-4

Average depth (mean range) in $\ddot{\rm A}$ of Ti implanted in Ti ne= 5, na=1

$E_0(eV)$	0°
100	6.04e-f-0
200	9.03e+0
1000	2.23e + 1
10000	9.72e + 1
100000	6.60e+2

.

. . .

$\mathrm{Ti}\to\mathrm{Ti}$

Sputtering yield of Ti by Ti zl=22, ml = 47.90, z2=22, m2= 47.90. sbe=4.89 eV. rho=4.52 g/cm**3 ef=4.85, esb=4.89, ca=0.75. kk0=kk0r=2. kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx ne= 8, na=1

E ₀ (eV)	0 ^u
60	7.14e-3
80	1.96e-2
100	3.62e-2
300	2 41e-1
1000	7.16e-l
10000	1.73e-0
50000	1.62e-0
100000	1.39e-0

Sputtered energy of Ti by Ti program: testvmcx ne= 8, na=l

E ₀ (eV)	0°
60	3.29e-4
80	8.63e-4
100	1.49e-3
300	6.66e-3
1000	1.12e-2
10000	8.54e-3
50000	3.22e-3
100000	1.87e-3

Particle reflection coefficient of Ti backscattered from Ti zl=22, ml=47.90, z2=22, m2=47.90, sbe=4.89 eV, rho=4.52 g/cm**3 ef=4.85, esb=4.89, ca=0.75. kk0=kk0r=2, kdeel = kdee2=3, ipots=ipotr=1 (KrC) program: testvmcx ne= 8, nas=l

Eo(eV)	0
60	7.96e-4
80	1.75e-3
100	2.91e-3

80	1.75e-3	
100	2.91e-3	
300	1.08e-2	
1000	1.46e-2	
10000	9.50e-3	
50000	4.50e-3	
100000	2.43e-3	

Energy reflection coefficient of Ti backscattered from Ti ne= 8, na=1 $% \left({{\left[{{n_{ij}} \right]_{ij}} \right]_{ij}} \right)$

E ₀ (eV)	0°
60	4.19e-5
80	9.48e-5
100	1.61e-4
300	5.39e-4
1000	6.40e-4
10000	3.43e-4
50000	2.08e-4
100000	1.14e-4

Average depth (mean range) in $\ddot{\rm A}$ of Ti implanted in Ti ne= 8, na=1

E ₀ (eV)	0°
60	8.23e + 0
80	9.56e + 0
100	1.07e + 1
300	1.86e + 1
1000	3.49e + 1
10000	1.36e + 2
50000	4.59e+2
100000	8.27e+2

D -> V

Sputtering yield of V by T) zl = 1, ml = 2.01, z2=23, m2= 50.94. sbe=5.33 eV, rho = 6.10 g/cm**3 ef=0.95 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = 4,kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx ne=ll. na=l

.

Eo(eV)	0°	
50	7.42e-5	
60	5.72e-4	
70	1.49e-3	
80	2.72e-3	
100	5.27e-3	
200	1.56e-2	
500	2.60e-2	
1000	2.68e-2	
2000	2.49e-2	
5000	1.84e-2	
10000	1.30e-2	

Sputtered energy of V by D ne=11, na=1

$E_0(eV)$	0°
50	6.86e-7
60	9.59e-6
70	3.12e-5
80	6.52e-5
100	1.36e-4
200	4.08e-4
500	5.15e-4
1000	3.53e-4
2000	2.09e-4
5000	7.78e-5
10000	3.00e-5

Particle reflection coefficient of D backscattered from V $zl=1, ml=2.01, z2=23, m2=50.94, sbe=5.33 eV, rho=6.10 g/cm^{**}3 ef=0.95 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = 4, kdee2=3, ipot=ipotr=l (KrC) program: testvmcx ne=ll, na=l$

Bo(eV) 0° 5.32e-1 5.20e-1 5.10e-1 5.00e-1 4.86e-1 4.42e-1 3.75e-1 3.17e-1 2.50e-1 1.52e-1 8.55e-2 50 60 70 80 100 200 500 1000 2000 5000 10000

Energy reflection ne=11, na=1 coefficient of D backscattered from V

Bo(eV)	0°	
50	3.12e-1	
60	3.02e-1	
70	2.93e-1	
80	2.86e-1	
100	2.74e-1	
200	2.39e-1	
500	1.90e-1	
1000	1.51e-1	
2000	1.09e-1	
5000	5.61e-2	
10000	2.74e-2	

Average depth (mean range) in \ddot{A} of D implanted in V ne=ll, na=l

E ₀ (eV)	0°
50	2.18e + 1
60	2.44e+1
70	2.70e+1
80	2.93e + 1
100	3.38e+1
200	5.35e+1
500	1.03e+2
1000	1.73e+2
2000	3.03e+2
5000	6.53e+2
10000	1.19e+3

$$\mathbf{V} \to \mathbf{V}$$

Sputtering yield of V by V zl = 23. ml = 50.94. z2=23, m2= 50.94. sbe=5.33 eV. rho=6.10 g/cm**3 ef=5.28 eV. esb=5.33 eV. ca=1.00. kk0=kk0r=2. kdeel = kdee2 = 3. ipot=ipotr=l (KrC) program: testvmcx ne=13. na=l

E ₀ (eV)	0°	
30	2.15e-4	
40	1.18e-3	
50	4.07e-3	
60	9.75e-3	
70	1.85e-2	
80	3.04e-2	
100	6.05e-2	
200	2.48e-1	
500	7.13e-1	
1000	1.17e-0	
2000	1.66e-0	
5000	2.23e-0	
10000	2.56e-0	

Sputtered energy of V by V ne=13. na=1

MeV)	0'
30	1.16e-5
40	6.67e-5
50	2.32e-4
60	5.35e-4
70	9.56e-4
80	1.48e-3
100	2.70e-3
200	8.11e-3
500	1.51e-2
1000	1.71e-2
2000	1.67e-2
5000	1.36e-2
10000	1.08e-2

$$\mathbf{V} \rightarrow \mathbf{V}$$

Particle reflection coefficient of V backscattered from V zl=23, ml = 50.94, z2=23, m2= 50.94, sbe=5.33 eV. rho=6.10 g/cm**3 ef=5.28 eV, eb=5.33 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx ne=13, na=l

Bq(eV)	0°
30	4.37e-6
40	1.06e-4
50	4.65e-4
60	1.05e-3
70	1.75e-3
80	2.61e-3
100	4.23e-3
200	1.07e-2
500	1.57e-2
1000	1.69e-2
2000	1.65e-2
5000	1.27e-2
10000	1.01e-2

Energy reflection coefficient of V backscattered from V $ne\!=\!13,\ na\!=\!l$

$E_0(eV)$	0°
30	2.91e-7
40	7.69e-6
50	3.36e-5
60	7.39e-5
70	1.18e-4
80	1.79e-4
100	2.67e-4
200	5.59e-4
500	7.29e-4
1000	7.20e-4
2000	6.45e-4
5000	5.35e-4
10000	4.48e-4

Average depth (mean range) in \ddot{A} of V implanted in V ne=13, na=1

$B_{o}(eV)$	0°
30	1.90e-J-0
40	2.36e+0
50	2.77e4-0
60	3.14e+0
70	3.47e-{-0
80	3.79e-}-0
100	4.36e+0
200	6.65e-J-0
500	1.13e + 1
1000	1.70e + 1
2000	2.55e4-1
5000	4.55e+1
10000	7.32e-}-1

$H \rightarrow Fe$

Particle reflection coefficient of H backscattered from Fe zl = 1, ml = 1.01, z2 = 26, m2 = 55.85, sbe=4.34 eV, rho = 7.87 g/cm**3 ef=100.00 eV, esb = 1.00 eV, ca=1.00, kkO=O, kkOr=2, kdeel=4, kdeel=4, kdeel=3, ipot=ipotr= 1 (KrC) dx = 50000.00 A

program: trvmc95 ne= 1, na= 4

Ro (eV)	83 ^u	86°	88°	89°
3000000	5.19e-2	1.81e-1	3.83e-1	5.52e-1

Energy reflection coefficient of H backscattered from Fe $n\,e=\,1,\;n\,a=\,4$

E ₀ (eV)	83°	86°	88 ^u	89°
3000000	1.91e-2	8.16e-2	2.32e-1	4.05e-1

Average depth (mean range) in \ddot{A} of H implanted in Fe ne= 1, na= 4

E ₀ (eV)	83 ^u	86°	88°	89°
3000000	3.06e + 4	2.54e4-4	2.23e-f-4	2.13e+4

Particle transmission coefficient of IT transmitted through Fe $n\,e\!=\!-1\,,\ n\,a\!=\!-4$

• E 0 (eV)	83°	86°	88°	89°
3000000	3.99e-1	1.53e-1	6.71e-2	4.08e-2

Energy transmission coefficient of H transmitted through Fe $ne=\ 1,\ na=\ 4$

E ₀ (eV)	83°	86°	88°	89°
3000000	1.18e-1	3.60e-2	1.48e-2	9.05e-3

$D \rightarrow Fe$

D on Fe, Maxwellian velocity distribution, sheath potential 3 kT zl = 1, ml = 2.01, z2=26, m2=55.85, sbe=4.34 eV, rho=7.87 g/cm**3 ef=0.95 eV, esb=1.00 eV, ca=1.00, kk0 = kk0r=2, kdeel=kdee2 = 3, ipot=ipotr = 1 (KrC) program: trvmc95 ne= 11

kT(eV)	Y	Y_{E}	E sp	Rat	Re	Efe	range
7	1.57e-4	5.87e-6	1.31ed-0	6.20e-1	4.02e-1	2.27e + 1	1.44e + 1
8	3.56e-4	1.27e-5	1.43e + 0	6.09e-1	3.91e-1	2.57e4-1	1.56e+l
9	7.04e-4	2.44e-5	1.56e+0	5.99e-1	3.81e-1	2.86e + 1	1.67e+l
10	1.20e-3	4.06e-5	1.70e + 0	5.91e-1	3.73e-1	3.16e + 1	1.78eRl
14	4.42e-3	1.39e-4	2.20e+0	5.67e-1	3.50e-1	4.32e4-1	2.20e + 1
20	1.10e-2	3.25e-4	2.95e + 0	5.42e-1	3.27e-1	6.04e + 1	2.75e + 1
50	3.41e-2	7.66e-4	5.63e + 0	4.84e-1	2.75e-1	1.42e+2	5.03e+1
100	4.50e-2	7.22e-4	8.02e + 0	4.29e-1	2.33e-1	2.71e+2	8.21e + 1
200	4.99e-2	5.44e-4	1.09e + 1	3.75e-1	1.91e-l	5.11e + 2	1.37e + 2
500	4.55e-2	2.66e-4	1.46e+1	2.88e-1	1.31e-1	1.14e+3	2.82e + 2
1000	3.63e-2	1.29e-4	1.77e+l	2.13e-1	8.51e-2	2.00e+3	4.96e + 2

$$T \to Fe$$

Particle reflection coefficient of T backscattered from Fe zl = 1. ml = 3.02. z2=26. m2=55.85. sbe=4.34 eV. rho = 7.87 g/cm**3 ef=100.00 eV, esb = 1.00 eV, ca=1.00. $kkO=O_j$ kkOr=2, kdeel = 4, kdee2 = 3. ipot=ipotr=1 (KrC) dx = 15000.00 A

program: trvmc95 ne= 1, na= 4

Eo(eV)	79°	83°	86°	88 ^u	89°
1000000	4.06e-2	1.35e-1	3.03e-1	4.94e-1	6.37e-1

Energy reflection coefficient of T backscattered from Fe $ne=\ 1,\ na=\ 4$

Eo(eV)	79 ^u	83°	86°	88°	89 ^u
1000000	5.60e-3	2.01e-2	7.24e-2	2.02e-1	3.68e-1

Average depth (mean range) in \ddot{A} of T implanted in Fe $ne=\ 1,\ na=\ 4$

E ₀ (eV)	79°	83°	86 ^u	88°	89 ^u
1000000	8.63e- -3	6.77e- -3	5.57e+3	5.04e+3	4.90e+3

Particle transmission coefficient of T transmitted through Fe ne= 1, na= 4 $\,$

E ₀ (eV)	79°	83°	86°	88°	<u>89°</u>
1000000	1.33e-l	3.73e-2	1.41e-2	7.72e-3	5.24e-3

Energy transmission coefficient of T transmitted through Fe ne= 1, na= 4 $\hfill 4$

E ₀ (eV)	79°	83°	86°	88°	89°
1000000	6.63e-3	1.91e-3	8.99e-4	5.86e-4	4.35e-4

Sputtering yield of Fe by He zl = 2, ml = 4.00. z2 = 26, m2 = 55.85. sbe=4.34 eV. rho= 7.87 g/cm**3 ef=0.50 eV. esb = 0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3. ipot=ipotr = 1 (KrC) program: trspvmcx. TPP 9/82 ne=10. na= 1 -

E ₀ (eV)	0°
40	5.02e-3
50	1.26e-2
70	3.04e-2
100	5.52e-2
300	1.24e-1
1000	1.66e-l
1000	1.72e-1
5000	1.42e-1
10000	1.06e-1
30000	5.15e-2

Sputtered energy of Fe by He program: testvmcx, trspvmcx ne=ll, na=l

E ₀ (eV)	0°
40	1.79e-4
50	5.15e-4
70	1.31e-3
100	2.30e-3
300	3.48e-3
1000	2.38e-3
1000	2.36e-3
3000	1.03e-3
5000	6.37e-4
10000	2.77e-4
30000	5.50e-5

He —> Fe

Particle reflection coefficient of He backscattered from Fe zl = 2, ml = 4.00. z2=26, m2=55.85; sb=4.34 eV, rho= 7.87 g/cm**3 ef=0.50 eV. esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) 5.5 MeV : kk0=0, kdeel=5, ef=100 eV, esb=1.00 eV, dx=7000 nm program: testvmcx, trvmc95 ne=11, na=5

Bo (eV)	0 ^u	83°	86°	88°	89°
40	5.62e-1				
50	5.38e-1				
70	5.05e-1				
100	4.75e-1				
300	3.99e-1				
1000	3.19e-1				
3000	2.40e-1				
5000	1.93e-1				
10000	1.33e-1				
30000	5.34e-2				
5500000		1.38e-2	8.17e-2	2.76e-1	4.72e-1

Energy reflection coefficient of He backscattered from Fe $ne\!=\!11.$, $na\!=\!5$

E ₀ (eV)	0°	83°	86°	88°	89°
40	3.11e-1				
50	2.92e-1				
70	2.67e-1				
100	2.45e-1				
300	1.94e-1				
1000	1.43e-1				
3000	1.01e-l				
5000	7.59e-2				
10000	4.52e-2				
30000	1.51e-2				
5500000		3.67e-3	1.86e-2	9.78e-2	2.51e-1

Average depth (mean range) in \ddot{A} of He implanted in Fe program: testvmcx, trspvmcx ne=10, na=1

-

$E_0(eV)$	0°
40	9.20e+0
50	1.05e- -1
70	1.28e-f-l
100	1.59e+l
300	3.21e+1
1000	7.55e + 1
3000	1.79e+2
5000	2.72e+2
10000	4.92e+2
30000	1.30e4-3

Fe -> Fe

Sputtering yield of Fe by Fe zl = 26, ml = 55.85, z2=26, m2 = 55.85. sbe=4.34 eV. rho = 7.87 g/cm**3 eff=4.29 eV. esb = 4.34 eV. ca=1.00. kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx, TPP 9/82 ne=11. na= 1

$E_0(eV)$	0°
50	9.84e-3
70	4.00e-2
100	1.18e-1
200	4.10e-1
500	1.12e-0
1000	1.80e-0
2000	2.47e-0
5000	3.19e-0
10000	3.91e-0
30000	3.88e-0
100000	3.38e-0

Sputtered energy of Fe by Fe program: testvmcx ne=11, na= 1

E ₀ (eV)	0°	
50	5.35e-4	
70	2.05e-3	
100	4.90e-3	
200	1.29e-2	
500	2.12e-2	
1000	2.24e-2	
2000	2.03e-2	
5000	1.58e-2	
10000	1.32e-2	
30000	7.94e-3	
100000	3.10e-3	

.

Particle reflection coefficient of Fe backscattered from Fe zl = 26, ml = 55.85, z2=26, m2 = 55.85, sbe=4.34 eV, rho = 7.87 g/cm**3 ef=4.29 eV, esb=4.34 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=l (KrC) program: testvmcx ne=ll, na= 1

$E_0(eV)$	0°
50	9.25e-4
70	3.06e-3
100	5.95e-3
200	1.38e-2
500	1.98e-2
1000	2.34e-2
. 2000	1.88e-2
5000	1.24e-2
10000	1.30e-2
30000	6.67e-3
100000	4.00e-3

Energy reflection coefficient of Fe backscattered from Fe ne=11, na= 1 $\,$

$E_0(eV)$	0°
50	6.52e-5
70	2.10e-4
100	3.79e-4
200	6.23e-4
500	8.52e-4
1000	9.52e-4
2000	7.11e-4
5000	4.40e-4
10000	4.76e-4
30000	3.61e-4
100000	2.29e-4

Average depth (mean range) in \ddot{A} of Fe implanted in Fe ne=l1, $na\!=\!1$

$E_0 (eV)$	0°
50	2.06e+0
70	2.63e+0
100	3.36e+0
200	5.21e+0
500	8.82e+0
1000	1.31e + 1
2000	1.98e + 1
5000	3.57e4-1
10000	5.52e4-1
30000	1.26e+2
100000	3.39e+2

$$\mu \to \text{Ni}$$

Particle reflection coefficient of /j. backscattered from Ni zl = 1. ml = 0.11, z2=28. m2= 58.71, sbe=4.46 eV, rho = 8.90 g/cm**3 ef=0.50 eV, esb=0.00 eV. ca=1.00, kk0=kk0r=2, kdee2 = 3, ipot=ipotr=1 (KrC) 10 - 1000 eV : kdeel = 3, 1000 - 20000 eV : kdeel = 4 program: trvmc ne= 8, na= 1

$B_0(eV)$	0 ^u
10	7.08e-1
100	4.25e-1
500	2.64e-1
1000	2.01e-1
1000	1.78e-l
5000	5.99e-2
10000	3.05e-2
20000	1.29e-2

Energy reflection coefficient of p, backscattered from Ni ne= 8, na= 1

E ₀ (eV)	0°
10	4.39e-1
100	2.04e-1
500	1.04e-1
1000	7.05e-2
1000	6.25e-2
5000	1.81e-2
10000	8.96e-3
20000	4.63e-3

Average depth (mean range) in \ddot{A} of p implanted in Ni ne= 8, na= 1

E ₀ (eV)	0°
10	5.53e+0
100	1.80e + 1
500	4.61e + 1
1000	7.19e+1
1000	6.60e+l
5000	2.13e+2
10000	3.76e+2
20000	7.21e+2

ъ

H -> Ni

Sputtering yield of Ni by H zl = 1, ml = 1.01, z2=28, m2 = 58.71, sbe=4.46 eV, rho = 8.90 g/cm**3 ef=0.98 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2. kdeel = kdee2 = 3, ipot=ipotr=1 (KrC) program: TESTVMCX, TPP 9/82 ne=13, na=16

E ₀ (eV)	0°	<u>10°</u>	20°		40 "	50°	55 ^u	60°	65°	70°	75°	80°
150	2.00e-3	2.10e-3	2.05e-3	2.20e-3	2.35e-3	2.35e-3	2.25e-3	2.05e-3	1.80e-3	1.20e-3	6.40e-4	
200	4.50e-3	4.50e-3	4.80e-3	5.40e-3	5.50e-3	6.20e-3	5.90e-3	6.10e-3	5.80e-3	4.70e-3	3.03e-3	1.05e-3
400	1.16e-2	1.25e-2	1.35e-2	1.45e-2	1.60e-2	1.90e-2		2.40e-2	2.65e-2	2.80e-2	3.05e-2	2.50e-2
500	1.44e-2											
700	1.52e-2											
1000	1.52e-2	1.40e-2	1.70e-2	1.95e-2	2.40e-2	3.30e-2		4.80e-2		7.10e-2	9.30e-2	9.80e-1
2000	1.42e-2											
3000	1.20e-2											
5000	1.10e-2											
10000	8.20e-3											
20000	4.50e-3											
50000	2.70e-3		2.55e-3		4.09e-3			9.68e-3				4.42e-2
100000	1.20e-3											

$E_0 (eV)$	85°	87°	88 ^ö	89°
1000	3.80e-2	3.60e-4		
50000	8.97e-2	1.54e-1	1.72e-1	7.68e-2

Sputtered energy of Ni by H program: TESTVMCX ne= 1, na= 3

$E_0 (eV)$	87°	<u>88°</u>	<u>89°</u>
50000	1.12e-4	1.39e-4	7.97e-5

Particle reflection coefficient of H backscattered from Ni zl= 1, ml= 1.01, z2=28, m2= 58.71, sb=4.46 eV, rho= 8.90 g/cm^{**3} ef=0.98 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr = 1 (KrC) program: TESTVMCX ne= 1, na= 3

$\underline{Bp(eV)}$	87°	<u>88°</u>	<u>89°</u>
50000	6.69e-1	7.46e-1	9.26e-1

Energy reflection coefficient of H backscattered from Ni ne= 1, na= 3 $\,$

$E_0(eV)$	<u>87°</u>	<u>88°</u>	<u>89°</u>
50000	4.20e-1	5.34e-1	8.55e-1

Average depth (mean range) in \ddot{A} of H implanted in Ni ne= 1, na= 3

E ₀ (eV)	87°	88°	89°
50000	9.38e+2	9.41e + 2	9.35e + 2

Ni D

Sputtering yield of Ni by D z1= 1. ml= 2.01, z2=28, m2= 58.71. sbe=4.46 eV. rho= 8.90 g/cm**3 ef=0.98 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: TPP 9/82 ne=14, na= 1

Ro(eV)	0°	
75	3.10e-3	
100	7.90e-3	
150	1.84e-2	
200	2.52e-2	
300	3.27e-2	
500	4.13e-2	
700	3.86e-2	
1000	4.03e-2	
2000	3.72e-2	
3000	3.26e-2	
5000	2.64e-2	
10000	1.85e-2	
50000	6.00e-3	
100000	4.00e-3	

³He Ni

Sputtering yield of Ni by ³He zl= 2, ml = 3.02, z2=28, m2= 58.71, sb=4.46 eV, rho=8.90 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: TPP 9/82 ne=13, na= 1

Eo(eV)	0°
40	7.60e-4
50	3.70e-3
70	1.35e-2
100	3.50e-2
200	8.00e-2
300	1.00e-l
750	1.30e-1
1500	1.40e-1
2000	1.40e-1
5000	1.20e-l
20000	5.50e-2
30000	6.47e-2
50000	3.18e-2

4

He -> Ni

Sputtering yield of Ni by He zl = 2. ml= 4.00. z2=28, m2= 58.71, sbe=4.46 eV, rho=8.90 g/cm**3 ef=0.50 eV. esb=0.00 eV. ca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr = 1 (KrC) program: TESTVMCX, TRSPV1CS, TRSPV1C, IPP 9/82 ne=30, na= 9

E ₀ (eV)	0°	30 ^u	60°	75 ^u	80 ^u	85°	87°	88°	89°
26	4.28e-6								
28	5.49e-5								
30	2.06e-4								
35	1.27e-3								
40	3.27e-3								
50	1.00e-2								
70	2.83e-2								
100	5.38e-2								
150	8.20e-2								
150	7.14e-2								
200	1.02e-1								
200	9.64e-2								
300	1.29e-1								
300	1.20e-1								
500	1.54e-1								
500	1.40e-1								
700	1.54e-1								
1000	1.75e-l								
1000	1.63e-1								
1500	1.68e-1								
2000	1.58e-1								
3000	1.77e-l								
3000	1.48e-1								
5000	1.35e-1								
10000	1.19e-1								
10000	1.03e-1								
20000	6.97e-2								
30000	6.47e-2								
50000	3.64e-2								
100000	2.23e-2	3.28e-2	8.44e-2	2.34e-1	3.27e-1	7.50e-1	9.37e-1	9.98e-1	4.12e-1

Sputtered energy of Ni by He program: TESTVMCX, TRSPVICS, TRSPVIC ne=17, na= 6

Bq(eV)	0°	75 ^u	85 ^u	87 ^u	88 ^u	89 ^u
26	6.35e-8					
28	1.42e-6					
30	3.60e-6					
35	3.37e-5					
40	1.04e-4					
50	3.95e-4					
70	1.18e-3					
100	2.20e-3					
150	3.06e-3					
200	3.41e-3					
300	3.56e-3					
500	3.19e-3					
1000	2.38e-3					
3000	1.15e-3					
10000	3.38e-4					
30000	6.86e-5					
100000		1.99e-4	8.59e-4	9.78e-4	1.08e-3	5.17e-4

He -4- Ni

Particle reflection coefficient of He backscattered from Ni zl = 2. ml = 4.00, z2=28, m2= 58.71. sbe=4.46 eV, rho=8.90 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: TESTVMCX, TRSPVICS, TRSPVIC ne=17, na= 6

Ro(eV)	0°	75°	85°	87 ^u	88°	89°
26	6.37e-1					
28	6.27e-1					
30	6.18e-1					
35	5.98e-1					
40	5.81e-1					
50	5.58e-1					
70	5.23e-1					
100	4.91e-1					
150	4.61e-1					
200	4.37e-1					
300	4.13e-1					
500	3.81e-1					
1000	3.30e-1					
3000	2.50e-1					
10000	1.46e-l					
30000	6.06e-2					
100000		3.04e-1	5.76e-1	6.76e-1	7.37e-1	9.26e-1

Energy reflection coefficient of He backscattered from Ni $ne\!=\!17,\ na\!=\!6$

Ro(eV)	0°	75°	85°	87°	88°	890	
26	3.72e-1						
28	3.64e-1						
30	3.57e-1						
35	3.41e-1						
40	3.28e-1						
50	3.09e-1						
70	2.83e-1						
100	2.58e-1						
150	2.37e-1						
200	2.22e-1						
300	2.05e-1						
500	1.83e-1						1
1000	1.54e-1						
3000	1.05e-l						
10000	5.32e-2						
30000	1.82e-2						
100000		9.81e-2	3.15e-1	4.43e-1	5.37e-1	8.55e-1	

Average depth (mean range) in \ddot{A} of He implanted in Ni ne=17, na= 6

E ₀ (eV)	. 0°	75°	85°	87°	88°	89°
26	6.79e+0					
28	7.06e4-0				. ~	
30	7.33e+0					
35	7.98e4-0					
40	8.60e+0					
50	9.77e + 0					
70	1.19e + 1					
100	1.47e+1					
150	1.90e+1					
200	2.27e + 1					
300	2.95e + 1					
500	4.18e + 1					
1000	6.78e + 1					
3000	1.60e+2					
10000	4.43e+2					
30000	1.15e + 3					
100000		1.24e + 3	1.08e4-3	1.07e + 3	1.08e+3	1.03e4-3

Ne -> Ni

-

Sputtering yield of Ni by Ne zl = 10. ml= 20.18. z2=28. m2= 58.71. sbe=4.46 eV. rho=8.90 g/cm**3 ef=0.50 eV. esb=0.00 eV. ca=1.00. kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: TESTVMCX, TPP 9/82 ne=49. na= 18

E ₀ (eV)	0°	5°	10°	15°	20°	25°	30°	40°	45°	50°	55°	60°
18	2.61e-6											
19	1.05e-5											
20	3.01e-5											
22	1.22e-4											
23	2.18e-4											
25	5.44e-4											
2.5	5.40e-4											
27	1.12e-3											
2.7	1.11e-3											
28	1.52e-3											
30	2 50e-3											
30	2.00e-3											
35	7 386-3											
40	1.51e-2											
40	1.30e 2											
50	3.91e 2											
50	3.900.2											
70	1.080.1											
70	1.080-1											
100	2.220.1											
100	2.236-1											
100	2.386-1											
150	3.90e-1											
150	4.1/e-1											
200	5.32e-1											
200	5.666-1											
300	7.53e-1											
300	8.05e-1											
500	1.03e-0											
500	1.09e-0											
700	1.29e-0											
1000	1.41e-0											
1000	1.47e-0	1.45e-0	1.52e-0	1.57e-0	1.68e-0	1.80e-0	1.95e-0	2.29e-0	2.50e-0	2.63e-0	2.76e-0	2.82e-0
1500	1.62e-0											
2000	1.75e-0											
3000	1.85e-0											
3000	1.78e-0											
5000	1.90e-0											
7000	1.79e-0											
10000	1.86e-0											
10000	1.81e-0											
15000	1.67e-0											
20000	1.56e-0											
30000	1.48e-0											
30000	1.39e-0											
50000	1.18e-0											
100000	9.33e-1											
100000	8.89e-1											
200000	6.94e-1											
300000	5.00e-1											

$E_{o}(eV)$	65°	70°	75°	80°	82.5°	89°
1000	2.77e-0	2.44e-0	1.81e-0	7.62e-1	2.93e-1	3.23e-2

$$Ne \rightarrow Ni$$

Sputtered energy of Ni by Ne program: TRSTVMCX ne = 26, na = 18

$R_0(eV)$	0°	5°	10°	15°	20°	25°	30 ^u	40 ^u	45 ^u	50 ^u	55 °	60°
18	1.15e-6											
19	2.88e-6											
20	2.29e-6											
22	9.66e-6											
23	2.10e-5											
25	4.22e-5											
25	4.14e-5											
27	9.91e-5										•	
27	8.54e-5											
28	1.20e-4											
30	2.00e-4											
35	6.21e-4											
40	1.28e-3											
50	3.24e-3											
70	8.17e-3											
100	1.45e-2											
150	2.03e-2											
200	2.34e-2											
300	2.57e-2											
500	2.56e-2											
1000	2.26e-2											
1000	2.27e-2	2.17e-2	2.38e-2	2.59e-2	2.88e-2	3.25e-2	3.81e-2	5.12e-2	6.15e-2	7.29e-2	8.13e-2	9.37e-2
3000	1.52e-2											
10000	7.18e-3											
30000	3.12e-3									~		
100000	7.92e-4											
P. (aV)	65°	70°	750	80°	82.50	800	٦					
1000	1.020.1	1.03e.1	8 780 2	4 194 2	1.50.0.2	9.96e-4	-					
1000	1.020-1	1.036-1	0.786-2	4.196-2	1.506-2	7.700-4	~					

Ne -> Ni

Particle reflection coefficient of Ne backscattered from Ni zl = 10. ml = 20.18. z2 = 28. m2 = 58.71. sbe = 4.46 eV. rho=8.90 g/cm**3 ef=0.50 eV. esb=0.00 eV. ca=1.00. kk0=kk0r=2. kdeel = kdee2 = 3. ipot=ipotr=1 (KrC) program: TESTVMCX ne=25. na = 18

E ₀ (eV)	0°	5°	10°	15 ^u	20 ^u	25°	30°	40°	45°	50°	55°	60°
18	5.48e-1											
19	5.47e-1											
20	5.45e-1											
22	5.41e-1											
25	5.33e-1											
25	5.51e-1											
27	5.28e-1											
27	5.54e-1											
28	5.40e-1											
30	5.16e-1											
35	5.01e-1											
40	4.86e-1											
50	4.56e-1											
70	4.08e-1											
100	3.57e-1											
150	3.12e-1											
200	2.83e-1											
300	2.48e-1											
500	2.13e-1											
1000	1.79e-1											
1000	1.59e-1	1.68e-1	1.70e-1	1.79e-l	1.90e-l	2.01e-1	2.15e-1	2.66e-1	3.08e-1	3.37e-1	3.97e-1	4.55e-1
3000	1.31e-1											
10000	8.58e-2											
30000	5.52e-2											
100000	2.60e-2											

Bq(eV)	65 ^u	70°	75°	80 ^u	82.5°	89 ^u
1000	5.37e-1	6.46e-l	7.79e-1	9.35e-1	9.83e-1	1.00e-0

$E_0(eV)$	0°	5°	10°	15°	20°	25°	30°	40°	45°	50 ^u	55°	60°
18	1.08e-1											
19	1.09e-1											
20	1.09e-1											
22	1.10e-1											
25	1.10e-1											
25	1.10e-1											
27	1.10e-1											
27	1.10e-1											
28	1.09e-1											
30	1.08e-1											
35	1.07e-1											
40	1.05e-1											
50	9.94e-2											
70	9.03e-2											
100	7.97e-2											
150	6.87e-2											
200	6.15e-2											
300	5.35e-2											
500	4.48e-2											
1000	3.66e-2											
1000	3.35e-2	3.52e-2	3.61e-2	3.93e-2	4.26e-2	4.91e-2	5.58e-2	8.05e-2	1.02e-1	1.23e-1	1.62e-1	2.08e-1
3000	2.65e-2											
10000	1.71e-2											•
30000	1.06e-2											
100000	4.54e-3											

1000 2.78e-1 3.89e-1 5.57e-1 7.93e-1 9.02e-1 9.70e-1	E ₀ (eV)	65°	70°	75°	80 ^u	82.5°	89°
	1000	2.78e-1	3.89e-1	5.57e-1	7.93e-1	9.02e-1	9.70e-1

$$Ne \rightarrow Ni$$

Average depth (mean range) in \ddot{A} of Ne implanted in Ni 21=10, ml= 20.18. z2=28, m2= 58.71, sbe=4.46 eV, rho=8.90 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: TESTVMCX ne=25, na= 18

E ₀ (eV)	0°	5°	10°	15°	20 ^u	25 ^u	30°	40°	45 ^u	50°	55°	60°
18	1.73e4-0											
19	1.80e+0											
20	1.87e + 0											
22	1.99e + 0											
25	2.16e + 0											
25	2.21e+0											
27	2.26e+0											
27	2.31e+0											
28	2.36e+0											
30	2.41e+0											
35	2.64e+0											
40	2.84e + 0											
50	3.22e + 0											
70	3.87e-f-0											
100	4.69e+0											
150	5.90e+0											
200	6.93e4-0											
300	8.76e+0											
500	1.19e+1											
1000	1.83e + 1											
1000	1.94e+l	1.94e+l	1.91e + 1	1.91e + 1	1.88e + 1	1.85e+1	1.81e + 1	1.72e + 1	1.70e + 1	1.64e+l	1.59e+l	1.55e4-l
3000	3.81e+1											
10000	9.50e+1											
30000	2.47e4-2											
100000	7.48e4-2											

E ₀ (eV)	65°	70°	75 ^u	80°	82.5°	89°
1000	1.50e4-1	1.48ed-1	1.41e+1	1.35e + 1	1.40e + 1	8.58e+0

$$Ar \rightarrow Ni$$

.

Sputtering yield of Ni by Ar zl = 18, ml= 39.95. z2 = 28, m2 = 58.71. sbe=4.46 eV, rho=8.90 g/cm**3 ef=0.20 (0.5) eV, esb = 0.00 eV, ca=1.00. kk0 = kk0r=2. kdeel = kdee2=3, ipot=ipotr= 1 (KrC) program: TRS1C, TESTVMCX, TRVMC, TRSPV1C,' TPP 9/82, newtrspd, trsplcn ne=42. na= 8

$E_0 (eV)$	0 ^u	30 ^u	45°	50°	55 °	60°	75°	80°
18	3.92e-6							
19	1.45e-5							
20	2.02e-5		9.43e-4				6.41e-4	
22	7.61e-5							
25	1.51e-4		4.47e-3				2.17e-3	
27	3.44e-4							
30	5.39e-4		1.27e-2				4.37e-3	
32	9.48e-4							
35	1.54e-3							
40	3.43e-3		4.35e-2				1.13e-2	
50	1.30e-2		8.87e-2				2.05e-2	
50	1.16e-2							
60	2.92e-2							
70	5.21e-2		2.03e-1				4.34e-2	
70	5.35e-2							
100	1.49e-1		3.87e-1				8.27e-2	
100	1.60e-1							
150	3.52e-1							
200	4.93e-1		9.25e-l				2.53e-1	
200	5.32e-1							
290	7.65e-1	1.09e-0	1.32e-0	1.33e-0	1.29e-0	1.19e-0	4.30e-1	
300	7.78e-1	1.12e-0	1.35e-0	1.38e-0	1.35e-0	1.25e-0	4.49e-1	1.32e-1
300	8.51e-1							
500	1.19e-0		2.02e-0				8.71e-1	
500	1.29e-0							
700	1.61e-0							
1000	1.80e-0		3.15e-0				1.95e-0	
1000	1.90e-0							
1000	1.97e-0	2.70e-0	3.32e-0			3.62e-0	2.05e-0	
2000	2.49e-0							
3000	2.69e-0							
3000	2.70e-0							
10000	3.25e-0							
20000	3.130-0							
20000	2.888-0							
30000	3.000-0							
50000	2.926-0							
100000	2.810-0							
100000	2.460-0							
200000	1 820 0							
200000	1.640.0							
300000	1.040-0							

$$Ar \rightarrow Ni$$

Sputtered energy of Ni by Ar zl = 18. ml= 39.95. z2=28. m2= 58.71. sbe=4.46 eV. rho=8.90 g/cm**3 efs=0.20 (0.5) eV. esb=0.00 eV. ca=1.00. kk0=kk0r=2, kdeel=kdee2 = 3, ipot=ipotr=1 (KrC) program: TRS1C. TESTVMCX. TRVMC, TRSPV1C, newtrspd. trsplcn ne=24. na= 8

$E_0(eV)$	0 ^u	30°	45°	50°	55°	60°	75 ^u	80°
18	3.92e-6							
19	1.45e-5							
20	2.02e-5		9.43e-4				6.41e-4	
22	7.61e-5							
25	1.51e-4		4.47e-3				2.17e-3	
27	3.44e-4							
30	5.39e-4		1.27e-2				4.37e-3	
32	9.48e-4							
35	1.54e-3							
40	3.43e-3		4.35e-2				1.13e-2	
50	1.30e-2		8.87e-2				2.05e-2	
50	1.16e-2							
60	2.92e-2							
70	5.21e-2		2.03e-1				4.34e-2	
70	5.35e-2							
100	1.49e-1		3.87e-1				8.27e-2	
100	1.60e-1							
150	3.52e-1							
200	4.93e-1		9.25e-1				2.53e-1	
200	5.32e-1							
290	7.65e-1	1.09e-0	1.32e-0	1.33e-0	1.29e-0	1.19e-0	4.30e-1	
300	7.78e-1	1.12e-0	1.35e-0	1.38e-0	1.35e-0	1.25e-0	4.49e-1	1.32e-1
300	8.51e-1							
500	1.19e-0		2.02e-0				8.71e-1	
500	1.29e-0							
700	1.61e-0		2.1.5 0				1.05.0	
1000	1.80e-0		3.15e-0				1.95e-0	
1000	1.90e-0	2 7 0 0	2.22.0			2 (2- 0	2.05-0	
1000	1.97e-0	2.70e-0	3.32e-0			5.620-0	2.05e-0	
2000	2.496-0							
3000	2.090-0							
10000	2.700-0							
10000	3 130 0							
20000	2 88e-0							
20000	3.06e-0							
30000	2 926-0							
50000	2.920-0							
100000	2.48e-0							
100000	2.24e-0							
200000	1.82e-0							
300000	1.64e-0							

$$Ar \rightarrow Ni$$

Particle reflection coefficient of Ar backscattered from Ni zl = 18, ml = 39.95. z2=28, m2= 58.71, sbe=4.46 eV, rho=8.90 g/cm**3 ef=0.20 (0.5) eV. esb = 0.00 eV, ca=1.00, kk0=kk0r=2. kdeel = kdee2=3, ipot=ipotr= 1 (KrC) program: TRS1C, TESTVMCX, TRVMC, TRSPV1C newtrspd, trsplcn ne=24. na= 8

E ₀ (eV)	0°	30 ^u	45°	50°	55 ^u	60°	75°	80°
18	2.61e-1							
19	2.55e-1							
20	2.51e-1		6.15e-1				9.85e-1	
22	2.43e-1							
25	2.34e-1		6.07e-1				9.85e-1	
27	2.29e-1							
30	2.24e-1		5.97e-1				9.85e-1	
32	2.21e-1							
35	2.18e-1							
40	2.12e-1		5.82e-1				9.84e-1	
50	2.05e-1		5.68e-1				9.83e-1	
60	2.00e-1							
70	1.97e-l		5.41e-1				9.81e-1	
100	1.83e-1		5.02e-1				9.77e-1	
200	1.52e-1		4.20e-1				9.59e-1	
290	1.35e-1	2.23e-1	3.64e-1	4.35e-1	5.27e-1	6.17e-1	9.42e-1	
300	1.37e-1	2.23e-1	3.62e-1	4.31e-1	5.16e-l	6.09e-1	9.38e-1	9.92e-1
500	1.13e-1		3.02e-1				8.95e-l	
1000	8.44e-2		2.41e-1				7.97e-1	
1000	7.71e-2	1.31e-1	2.21e-1			4.11e-1	8.00e-1	
3000	5.77e-2							
10000	3.65e-2							
30000	2.43e-2							
100000	1.01e-2							

 $\begin{array}{cccc} Energy & reflection & coefficient & of Ar backscattered & from Ni \\ ne=24, & na= & 8 \end{array}$

$E_0(eV)$	0°	30°	45°	50°	55°	60°	75°	80°
18	1.09e-2							
19	1.12e-2							
20	1.14e-2		1.49e-1				6.78e-1	
22	1.19e-2							
25	1.25e-2		1.53e-1				6.91e-1	
27	1.27e-2							
30	1.31e-2		1.56e-l				6.98e-1	
32	1.34e-2							
35	1.37e-2							
40	1.40e-2		1.59e-1				7.09e-1	
50	1.43e-2		1.59e-l				7.15e-1	
60	1.44e-2							
70	1.42e-2		1.53e-1				7.20e-1	
100	1.34e-2		1.42e-1				7.20e-1	
200	1.13e-2		1.14e-1				6.99e-1	
290	9.74e-3	3.38e-2	9.44e-2	1.34e-1	1.95e-l	2.69e-1	6.73e-1	
300	9 «82e-3	3.34e-2	9.31e-2	1.31e-1	1.87e-1	2.62e-1	6.74e-1	8.49e-1
500	8.48e-3		7.14e-2				6.26e-1	
1000	6.22e-3		5.29e-2				5.26e-1	
1000	5.79e-3	1.84e-2	4.94e-2		-	1.52e-1	5.28e-1	
3000	4.27e-3							
10000	3.04e-3							
30000	2.11e-3							
100000	8.23e-4							

Average depth (mean range) in \ddot{A} of Ar implanted in Ni $ne{=}24,\ na{=}\ 8$

E ₀ (eV)	0°	30°	45°	50°	55°	60°	75°	80°
18	1.11e+0							
19	1.15e+0							
20	1.19e+0		1.02e+0				5.29e-1	
22	1.27e+0							
25	1.39e+0		1.20e+0				6.05e-1	
27	1.47e+0							
30	1.58e + 0		1.36e+0				6.93e-1	
32	1.65e+0							
35	1.76e+0							
40	1.93e + 0		1.66e + 0				8.80e-1	
50	2.24e + 0		1.93e + 0				1.03e + 0	
60	2.54e+0							
70	2.80e + 0		2.40e + 0				1.36e+0	
100	3.51e + 0		3.00e4-0				1.81e-}-0	
200	5.30e + 0		4.50e+0				3.01e+0	
290	6.57e + 0	6.04e+0	5.47e+0	5.30e + 0	5.07e + 0	4.83e + 0	3.86e4-0	
300	6.69e+0	6.18e4-0	5.57e+0	5.39e-f-0	5.16e + 0	4.91e+0	3.96e+0	3.29e+0
500	8.93e+0		7.38e + 0				5.38e + 0	
1000	1.33e + 1		1.08e + 1				8.12e+0	
1000	1.20e + 1	1.09e+1	1.21e+1			1.08e+1	9.39e+0	
3000	2.63e + 1							
10000	6.03e + 1							
30000	1.42e + 2							
100000	4.23e + 2							

Sputtering yield of Ni by Ar zl = 18, ml = 39.95, z2=28, m2 = 58.71, sbe=4.46 eV, rho = 8.90 g/cm**3 ef=0.20, esb=0.00, ca=1.00, kk0=kk0r=2. kdeel=kdee2 = 3, *ipot=ipotr=3* (ZBL) program: TRVMC ne= 7, na= 7

n	e= 7, na=	/	-	-				
F	Bo(eV)			45°	50 ^u	55°	60°	75°
Γ	50	1.10e-2		6.83e-2				
L	70	4.61e-2		1.62e-1				
L	200	1.38e-1		8.55e-l				
L	290	7.80e-1	1.06e-0	1.26e-0	1.25e-0	1.22e-0	1.10e-0	3.88e-1
L	500	1.32e-0		1.99e-0				
L	1000	2.04e-0		3.21e-0				

Sputtered energy of Ni by Ar ne= 7, na= 7

ne= /, nu=							
E ₀ (eV)				50°	55°	60 °	<u>75°</u>
50 70 100 200 290 500 1000	7.04e-4 2.95e-3 7.95e-3 2.13e-2 2.57e-2 3.02e-2 2.97e-2	5.47e-2	9.70e-3 2.20e-2 4.07e-2 7.90e-2 9.43e-2 1.03e-1 1.00e-1	1.06e-1	1.13e-1	1.16e-1	4.94e-2

Particle reflection coefficient of Ar backscattered from Ni zl = 18, ml = 39.95. z2=28, m2 = 58.71, sbe=4.46 eV, rho=8.90 g/cm 3 . . . ef=0.20, esb=0.00, ca=1.00, kk0=kk0r=2, kdeel=kdee2 = 3, *ipot=ipotr-3* (ZBLJ program: TRVMC ne= 7, na= 7

Eo(eV)	0 ^{,3}		45°	50°	55°	60°	75°
50 70 100 200 290 500 1000	$\begin{array}{c} HI & I-HI-H \ll r-I & Id & O'\\ HI & I & I & I & Id & O'\\ HI & IO & D- & OO & D'\\ HI & IO & D- & OO & D'\\ HI & IO & IO & W \ll r-< & co\\ OI & OI & OI & W \ll r-< & co\\ \end{array}$	2.32e-1	5.82e-1 5.61e-1 5.20e-1 4.33e-1 3.69e-1 3.04e-1 2.27e-1	4.48e-1	5.33e-1	6.35e-l	9.44e-1

Energy reflection ne= 7, na= 7 coefficient of Ar backscattered from Ni

E ₀ (eV)			45°	<u>50°</u>	55°	60°	75 ^s
50 70 100 200 290 500 1000	1.29e-2 1.32e-2 1.35e-2 1.22e-2 9.96e-3 8.53e-3 6.56e-3	3.52e-2	1.47e-1 1.48e-1 1.39e-1 1.15e-1 9.26e-2 7.27e-2 5.15e-2	1.35e-1	1.90e-l	2.69e-1	6.68e-l

Average depth (mean range) in \tilde{A} of Ar implanted in Ni ne= 7, na= 7

E ₀ (eV)			<u>45°</u>	<u></u>	55°	<u>60°</u>	75°
50 70 100 200 290 500 1000	1.58e+0 2.08e4-0 2.71e-J-0 4.36e- -0 5.55e4-0 7.76e+0 1.19e+1	5.12e+0	1.33e-f0 1.73e+0 2.27e+0 3.64e+0 4.49ed-0 6.30e+0 9.62e+0	4.42e+0	4.13e+0	3.92e+0	3.09e + 0

$$Ni \rightarrow Ni$$

$E_0 (eV)$	0°	15°	30°	45°	50 ^u	55°	60°	65°	70°	75°	80 ^u	85°	87°
14	-									1.20e-3			
15	2.49e-6												
16										2.93e-3			
18	1.51e-5												
20	3.72e-5									8.86e-3			
25	1.79e-4									2.00e-2			
30	5.33e-4									3.28e-2			
40	2.63e-3									6.01e-2			
50	8.72e-3												
60										1.13e-1			
70	3.63e-2												
80										1.56e-l			
100	1.08e-1									1.98e-1			
100	1.24e-1		3.30e-1	4.80e-1	5.00e-1	4.90e-1	4.80e-1	4.20e-1	3.80e-1	2.90e-1	2.10e-1	1.80e-1	1.70e-1
200	4.08e-1									4.04e-1			
500	1.16e-0									1.07e-0			
1000	1.89e-0									2.18e-0			
1000	2.03e-0		2.90e-0	3.70e-0	3.90e-0	4.00e-0	3.90e-0	3.80e-0	3.10e-0	2.30e-0	1.10e-0	2.10e-1	8.00e-2
2000	2.81e-0									4.24e-0			
2500	2.90e-0	3.22e-0	4.10e-0	5.47e-0		6.38e-0	6.66e-0	6.70e-0		5.19e-0		5.35e-1	
3000	3.06e-0												
5000	3.63e-0									8.72e-0			
10000	4.11e-0									1.29e+1			
30000	4.40e-0									2.02e4-1			
100000	4.20e-0									2.41e+1			
300000	3.05e-0												

Sputtered energy of Ni by Ni program: TESTVMCX, TRSPV1C, TRSPV1CS ne=23, na= 9

Eo(eV)	0°	15°	30°	45°	55°	60°	65°	75°	85°
14								4.09e-4	
15	9.94e-6								
16								6.05e-4	
18	4.18e-6								
20	4.61e-6							1.92e-3	
25	1.17e-5							4.36e-3	
30	2.92e-5							7.41e-3	
40	1.53e-4							1.33e-2	
50	4.80e-4								
60								2.35e-2	
70	1.86e-3								
80								3.07e-2	
100	4.81e-3							3.65e-2	
200	1.31e-2							5.72e-2	
500	2.26e-2							9.95e-2	
1000	2.42e-2							1.38e-1	
2000								1.75e-l	
2500	2.14e-2	2.73e-2	4.80e-2	9.03e-2	1.34e-1	1.58e-1	1.80e-1	1.81e-1	1.31e-2
3000	2.10e-2								
5000								1.93e-1	
10000	1.43e-2							1.87e-1	
30000	8.56e-3							1.53e-l	
100000	4.24e-3							1.07e-l	

•

Ni -4- Ni

Particle reflection coefficient of Ni backscattered from Ni zl=28, ml = 58.71, z2=28, m2= 58.71. sbe=4.46 eV. rho=8.90 g/cm**3 ef=4.41 eV, esb=4.46 eV, ca=1.00. kk0=kk0r=2. kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: TESTVMCX, TRSPV1C, TRSPV1CS ne=23. na= 9

E ₀ (eV)	0°	15°	30°	45°	55°	60°	65°	75°	85°
14								1.42e-2	
15	1.45e-7								
16								3.16e-2	
18	7.47e-7								
20	5.50e-7							8.73e-2	
25								1.87e-1	
30	2.75e-6							2.99e-1	
40	1.24e-4							5.02e-1	
50	5.72e-4								
60								7.39e-1	
70	2.69e-3								
80								8.31e-1	
100	6.13e-3							8.65e-1	
200	1.39e-2							8.98e-1	
500	2.16e-2							8.59e-1	
1000	2.15e-2							7.81e-1	
2000								6.75e-l	
2500	1.90e-2	2.62e-2	5.30e-2	1.20e-1	2.09e-1	2.71e-1	3.62e-1	6.32e-1	9.93e-1
3000	1.76e-2								
5000								5.24e-1	
10000	1.23e-2							4.37e-1	
30000	8.27e-3							3.82e-1	
100000	4.00e-3							3.16e-1	

Energy reflection coefficient of Ni backscattered from Ni ne=23, na= $9\,$

E ₀ (eV)	0°	15°	30°	45°	55°	60°	65°	75°	85°
14								3.87e-3	
15	6.08e-6								
16								9.38e-3	
18	1.63e-6								
20	1.62e-6							2.85e-2	
25								6.63e-2	
30	1.50e-7							1.13e-1	
40	7.34e-6							2.08e-1	
50	4.27e-5								
60								3.50e-1	
70	1.89e-4								
80								4.34e-1	
100	3.98e-4							4.79e-1	
200	7.14e-4							5.56e-1	
500	8.74e-4							5.48e-1	
1000	8.32e-4							4.84e-1	
2000								3.88e-1	
2500	7.22e-4	1.39e-3	4.85e-3	1.88e-2	4.85e-2	7.60e-2	1.26e-1	3.55e-1	9.12e-1
3000	6.28e-4							2 (1 1	
5000								2.64e-1	
10000	4.57e-4							2.09e-1	
30000	4.46e-4							1.66e-l	
100000	1.86e-4							1.33e-1	

Average depth (mean range) in \ddot{A} of Ni implanted in Ni ne=23, na= 9

⁻ E ₀ (eV) ⁻	0°	15°	30°	45°	55°	60°	65°	75°	85°
15	4.63e-1								
18	6.47e-1								
20	7.44e-1								
25	9.41e-1								
30	1.12e+0								
40	1.47e+0							2.40e-2	
50	1.76e+0								
60								2.77e-1	
70	2.27e+0								
80								5.74e-1	
100	2.91e+0							8.09e-1	
200	4.52e+0							1.79e+0	
500	7.84e + 0							3.83e+0	
1000	1.16e + 1							6.00e+0	
2000								9.11e+0	
2500	1.99e + 1	1.94e+1	1.77e + 1	1.54e+1	1.37e+1	1.29e+1	1.21e + 1	1.04e + 1	8.13e+0
3000	2.24e+1								
5000								1.59e+1	
10000	4.79e + 1							2.41e+1	
30000	1.05e+2							5.00e+1	
100000	2.85e+2							1.26e+2	

$$Kr \rightarrow Ni$$

Sputtering yield of Ni by Kr zl=36. ml = 83.80. z2=28. m2= 58.71. sbe=4.46 eV, rho=8.90 g/cm**3 ef=0.50 eV. esb=0.00 eV. ca=1.00. kk0 = kk0r=2, kdeel = kdee2=3. ipot=ipotr=1 (KrC) program: TESTVMCX, IPP 9/82 ne = 20. na= 2

E ₀ (eV)	0°	75°
20		8.09e-4
22	5.93e-6	
25	2.19e-5	
30	1.08e-4	6.12e-3
40	8.67e-4	1.54e-2
50	3.02e-3	2.77e-2
70	1.65e-2	5.96e-2
100	6.46e-2	1.14e-1
100	6.36e-2	
150	1.80e-1	
200	3.07e-1	3.32e-1
300	6.34e-1	
500	1.01e-0	1.07e-0
1000	1.93e-0	2.23e-0
2000		4.49e-0
3000	3.26e-0	
5000		9.48e-0
10000	4.43e-0	1.50e + 1
30000	5.06e-0	2.36e + 1
100000	4.99e-0	

Sputtered energy of Ni by Kr program: TESTVMCX ne=16, na= 2

	-	
$E_0(eV)$	0°	75°
20		1.53e-4
22	3.32e-6	
25	1.48e-6	
30	4.16e-6	1.24e-3
40	3.88e-5	3.05e-3
50	1.28e-4	5.44e-3
70	6.78e-4	1.08e-2
100	2.41e-3	1.87e-2
150	5.81e-3	
200	8.96e-3	4.36e-2
500	1.81e-2	9.66e-2
1000		1.42e-1
2000		1.89e-l
5000		2.16e-1
10000		2.16e-1
30000		1.83e-1

$\mathrm{Kr}\to\mathrm{Ni}$

Particle reflection coefficient of Kr backscattered from Ni zl=36, ml= 83.80, z2=28, m2 = 58.71. sbe=4.46 eV, rho = 8.90 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: TESTVMCX ne=16, na= 2

$E_0 (eV)$	0°	75°
20		9.77e-1
22	1.86e-1	
25	1.60e-1	
30	1.28e-1	9.78e-1
40	8.98e-2	9.77e-1
50	6.78e-2	9.76e-1
70	4.42e-2	9.73e-1
100	2.79e-2	9.69e-1
150	1.56e-2	
200	1.05e-2	9.50e-1
500	5.00e-3	8.91e-1
1000		8.07e-1
2000		6.83e-1
5000		5.29e-1
10000		4.31e-1
30000		3.57e-1

Energy reflection coefficient of Kr backscattered from Ni $ne\!=\!16,\ na\!=\!2$

Eo(eV)	0°	75°
20		5.58e-1
22	6.62e-5	
25	7.65e-5	
30	1.04e-4	5.82e-1
40	1.33e-4	5.94e-1
50	1.45e-4	6.02e-1
70	1.58e-4	6.11e-1
100	1.50e-4	6.14e-1
150	1.28e-4	
200	1.09e-4	6.02e-1
500	7.86e-5	5.46e-1
1000		4.70e-1
2000		3.66e-1
5000		2.50e-1
10000		1.75e-l
30000		1.34e-1

Average depth (mean range) in \ddot{A} of Kr implanted in Ni ne=16, na= 2

$E_0(eV)$	0°	75°
20		4.33e-1
22	1.17e+0	
25	1.27e+0	
30	1.45e4-0	5.39e-1
40	1.79e+0	6.37e-1
50	2.08e+0	7.38e-1
70	2.60e4-0	9.34e-1
100	3.27e+0	1.23e+0
150	4.17e4-0	
200	4.94e + 0	2.03e+0
500	8.26e+0	3.80e4-0
1000		5.75e+0
2000		8.54e+0
5000		1.39e+1
10000		2.11e-f-l
30000		4.14e+1

Xe -4- Ni

Sputtering yield of Ni by Xe zl=54. ml = 131.30. z2=28. m2= 58.71. sbe=4.46 eV. rho=8.90 g/cm**3 ef=0.50 eV. esb=0.00 eV. ca=1.00, kkO=kkOr=2; kdeel = kdee2 = 3, ipot=ipotr=:1 (KrC) program: TESTVMCX, IPP 9/82 ' ne=38, na= 2

E ₀ (eV)	0°	60 ^u
15		7.78e-6
18		1.52e-4
20		5.87e-4
25	6.23e-6	4.38e-3
30	3.83e-5	1.34e-2
40	3.53e-4	4.56e-2
50	1.36e-3	9.03e-2
70	8.28e-3	2.00e-1
70	6.40e-3	
100	3.66e-2	3.90e-1
100	3.47e-2	
150	1.22e-1	
200	2.19e-1	9.61e-1
200	2.39e-1	
300	4.25e-1	
300	4.88e-1	
500	8.13e-1	2.34e-0
500	9.68e-1	
1000	1.60e-0	4.16e-0
1000	1.77e-0	
1500	2.40e-0	
2000	2.60e-0	6.81e-0
2000	2.82e-0	
3000	3.44e-0	
5000	3.98e-0	1.17e+l
5000	4.18e-0	
7000	4.78e-0	
10000	5.20e-0	1.55e+1
10000	4.95e-0	
15000	5.67e-0	
20000	5.98e-0	1.94e4-1
20000	5.90e-0	
30000	6.53e-0	
50000	7.06e-0	2.38e+1
50000	6.63e-0	
100000	7.18e-0	2.41e+1
100000	6.76e-0	
200000	6.79e-0	

Sputtered energy of Ni by Xe program: TESTVMCX ne=19, na= 2

E ₀ (eV)	0°	60°
15		7.19e-6
18		1.83e-5
20		7.12e-5
25	1.92e-6	7.52e-4
30	3.64e-6	1.86e-3
40	1.38e-5	6.73e-3
50	4.75e-5	1.34e-2
70	2.95e-4	2.92e-2
100	1.24e-3	5.36e-2
200	5.76e-3	1.04e-1
300	8.98e-3	
500	1.38e-2	1.58e-1
1000	1.85e-2	1.79e-l
2000	1.96e-2	1.77e-l
5000	1.76e-2	1.59e-1
10000	1.57e-2	1.45e-1
20000	1.25e-2	1.24e-1
50000	9.31e-2	1.03e-1
100000	6.41e-2	8.22e-2

Xe -> Ni

Particle reflection coefficient of Xe backscattered from Ni zl=54, 1111= 131.30, z2=28, m2 = 58.71, sbe = 4.46 eV, rho=8.90 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: TESTVMCX ne=18, na= 2

$E_0(eV)$	0°	60°
15		6.67e-l
18		6.60e-l
20		6.56e-l
25	1.20e-l	6.48e-1
30	8.73e-2	6.38e-1
40	4.86e-2	6.31e-1
50	2.87e-2	6.18e-1
70	1.17e-2	5.99e-1
100	3.34e-3	5.70e-1
200	1.00e-4	4.98e-1
500		3.67e-1
1000		2.63e-1
2000		2.04e-1
5000		1.31e-1
10000		1.10e-l
20000		8.46e-2
50000		7.20e-2
100000		4.96e-3

Energy reflection coefficient of Xe backscattered from Ni ne=18, na= $2\,$

$E_0(eV)$	0°	60°
15		1.18e-1
18		1.22e-1
20		1.25e-1
25	1.43e-6	1.29e-1
30	4.90e-7	1.33e-1
40	1.94e-6	1.39e-1
50	1.67e-6	1.39e-1
70	1.52e-6	1.39e-1
100	1.03e-6	1.36e-1
200	1.16e-6	1.19e-1
500		8.11e-2
1000		5.13e-2
2000		3.33e-2
5000		1.68e-2
10000		1.39e-2
20000		1.03e-2
50000		8.15e-3
100000		5.77e-3

Average depth (mean range) in \ddot{A} of Xe implanted in Ni ne=19, na= 2

E ₀ (eV)	0°	60 ^u
15		5.83e-1
18		6.44e-1
20		6.84e-1
25	1.47e + 0	7.79e-1
30	1.69e+0	8.71e-1
40	2.10e + 0	1.05e+0
50	2.46e+0	1.23e4-0
70	3.10e+0	1.54e+0
100	3.91e+0	1.97e+0
200	5.93e+0	3.08e+0
300	7.37e+0	
500	9.64e+0	5.18e+0
1000	1.36e + 1	7.44e4-0
2000	1.92e4-1	1.05e+1
5000	3.08e + 1	1.67e+l
10000	4.50e+1	2.46e4-1
20000	6.65e + 1	3.65e+1
50000	1.19e+2	6.32e4-1
100000	1.93e+2	1.02e+2

Sputtering yield of Cu by H zl= 1. ml = 1.01, z2=29. m2 = 63.54. sbe=3.52 eV, rho= 8.95 g/cm**3 ef=0.98 eV. esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = 3. 4, kdee2=3, ipot=ipotr=1 (KrC) program: TESTVMCX, TPP 9/82 ne=16, na=10

E ₀ (eV)	0°	30 ^u	50°	70°	78 ^u	80°	85°	87 ^u	88°	89°
80	1.57e-4									
100	1.01e-3									
150	4.82e-3									
200	8.89e-3									
300	1.39e-2									
500	2.10e-2									
1000	1.95e-2									
2000	1.80e-2									
5000	1.40e-2									
10000	9.68e-3									
20000	3.20e-3									
26700	5.10e-3									
40000	2.80e-3									
50000	3.01e-3	3.87e-3	7.02e-3	2.27e-2	3.87e-2	6.02e-2	1.22e-l	1.75e-l	1.97e-l	9.74e-2
80000	2.30e-3									
100000	2.20e-3									

Sputtered energy of Cu by H program: TESTVMCX

ne=9, na=6									
E ₀ (eV)	0°	80°	85°	87°	88°	89°			
80	9.12e-7								
100	8.93e-6								
150	5.37e-5								
200	1.03e-4								
300	1.55e-4								
1000	1.34e-4								
2000	7.86e-5								
10000	9.70e-6								
50000		3.58e-5	7.65e-5	1.13e-4	1.35e-4	8.36e-5			

Particle reflection coefficient of H backscattered from Cu zl= 1, ml = 1.01, z2=29, m2= 63.54, sbe=3.52 eV, rho= 8.95 g/cm**3ef=0.98 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = 3, 4, kdee2=3, ipot=ipotr=1 (KrC) program: TESTVMCX ne= 9, na= 6

$B_0(eV)$	0°	80°	85°	87°	88°	89°	
80	5.62e-1						
100	5.46e-1						
150	5.14e-1						
200	4.94e-1						
300	4.62e-1						
1000	3.48e-1						
2000	2.74e-1						
10000	9.79e-2						
50000		4.13e-1	5.78e-1	6.71e-l	7.45e-1	9.17e-1	

Energy reflection coefficient of H backscattered from Cu ne= 9, na= $\,6\,$

$E_0(eV)$	0°	80°	85°	87°	88°	89°
80	3.41e-1					
100	3.26e-1					
150	2.98e-1					
200	2.80e-1					
300	2.54e-1					
1000	1.69e-l					
2000 «	-\L.20e-1					
10000	3.14e-2					
50000		1.62e-1	3.08e-1	4.26e-1	5.37e-1	8.40e-1

Average depth (mean range) in \ddot{A} of H implanted in Cu ne= 9, na= 6

E ₀ (eV)	0°	80°	85°	87°	88°	89°
80	2.58e + 1					
100	2.94e + 1					
150	3.75e+1					
200	4.47e+1					
300	5.76e+1					
1000	1.29e4-2					
2000	2.15e+2					
10000	7.61e+2					
50000		1.06e+3	9.98e + 2	9.85e+2	9.79e + 2	1.01e+3

$D \rightarrow Cu$

Sputtering yield of Cu by D zl = 1, ml = 2.01, z2=29, m2= 63.54. sbe=3.52 eV. rho=8.95 g/cm**3 ef=0.98 eV. esb = 1.00 eV. ca=1.00. kk0=kk0r=2. kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx, IPP 9/82. newtrim ne=28. na=11

$E_0(eV)$	0°	30"	45"	60"	65 ⁶	70"	75"	77.5"	80"	85"	87"
37	2.80e-5										
40	1.43e-4		1.10e-4								
42	2.89e-4										
45	5.69e-4		4.68e-4								
47	8.71e-4		7.56e-4								
50	1.47e-3		1.26e-3	7.31e-4	5.60e-4	3.10e-4	1.31e-4		3.85e-5		
53					8.95e-4						
55			2.27e-3								
60	3.56e-3										
70	6.24e-3						1.34e-3				
75	8.80e-3								6.39e-4		
80	9.39e-3										
100	1.64e-2	1.81e-2	1.84e-2	1.71e-2	1.49e-2		8.95e-3		3.60e-3		
120	2.17e-2										
150	2.59e-2										
200	3.50e-2						6.57e-2				
250	4.06e-2							1 00 1			
300	4.34e-2	5.52e-2	6.39e-2	9.37e-2	1.05e-1		1.24e-1	1.09e-1	8.55e-2		
500	4.62e-2								2.50 1	1 00 1	
1000	5.39e-2	6.93e-2	9.19e-2	1.44e-1	1.75e-1		2.50e-1		2.58e-1	1.00e-1	
2000	5.16e-2				1.85e-1						
2000	4.83e-2				1.62.1		2 70 1		2 24 - 1	2 0 4 - 1	
3000	3.93e-2		8.51e-2	1.39e-1	1.62e-1		2.70e-1		3.346-1	3.046-1	2 47-1
10000	2.47e-2		5.45e-2		1.13e-1		1.92e-1		2.830-1	4.100-1	5.4/e-1
30000	9.31e-3										
53000	6.10e-3										
80000	6.20e-3										
160000	2.90e-3										

Sputtered energy of Cu by D program: testvmcx, newtrim ne=15. na= 8

_E ₀ (eV)	0°	30°	45°	60°	65"	75"	77.5"	80°
40			9.90e-7					
45			6.20e-6					
47			1.09e-5					
50				1.16e-5		1.94e-6		5.60e-7
53					1.51e-5			
,55			4.17e-5					
70						2.83e-5		
75								1.36e-5
100		4.19e-4		4.13e-4				
200	7.16e-4					1.62e-3		
300	7.60e-4	9.23e-4		1.74e-3			2.53e-3	
500	6.15e-4							
1000	4.75e-4		8.33e-4	1.45e-3		2.99e-3		
2000	2.63e-4				1.24e-3			
3000	1.69e-4		3.78e-4	7.05e-4		1.47e-3		

$D \rightarrow Cu$

Particle reflection coefficient of D backscattered from Cu zl = 1. ml = 2.01. z2=29, m2= 63.54, sbe=3.52 eV, rho=8.95 g/cm**3 ef=0.98 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2. kdeel = kdee2 = 3, ipot=ipotr = 1 (KrC) program: testvmcx, newtrim ne=15, na= 8

$B_0(eV)$	0 ^u	30°	45 ^u	60 ^u	65°	75°	77.5°	80°
40			7.09e-1					
45			6.99e-l					
47			6.95e-l					
50				7.98e-1		9.48e-1		9.83e-1
53					8.40e-1			
55			6.81e-1					
70						9.32e-1		
75								9.77e-1
100		5.74e-1		7.35e-1				
200	4.87e-1					8.44e-1		
300	4.53e-1	5.00e-1		6.49e-1			8.50e-1	
500	4.21e-1							
1000	3.59e-1		4.75e-1	5.65e-l		7.01e-l		
2000	2.91e-1				5.49e-1			
3000	2.45e-1		3.67e-1	4.71e-l		6.19e-1		

Energy reflection coefficient of D backscattered from Cu $ne\!=\!15,\ na\!=\!8$

B ₀ (eV)	0°	30°	45°	60°	65 ^u	75 6	77.5°	80°
40			5.09e-1					
45			4.97e-1					
47			3.92e-1					
50				6.32e-1		8.67e-1		9.35e-1
53					6.22e-1			
55			4.70e-1					
70						8.43e-1		
75								8.18e-1
100		3.55e-1		5.50e-1				
200	2.76e-1					7.17e-l		
300	2.50e-1	2.90e-1		4.48e-1			7.28e-1	
500	2.25e-1							
1000	1.81e-1		2.72e-1	3.60e-1		5.24e-1		
2000	1.34e-1				3.45e-1			
3000	1.08e-1		1.85e-1	2.67e-1		4.21e-1		

Average depth (mean range) in A of D implanted in Cu $ne{=}15,\ na{=}\ 8$

ne=15, na=	0							
B ₀ (eV)	0°	30°	45°	60°	65°	75°	77.5°	80°
40			1.60e + 1					
45			1.71e+l					
47			1.61e-f-l					
50				1.79e + 1		1.75e+1		1.74e + 1
53					1.80e+1			
55			1.89e + 1					
70						2.14e-f-l		
75								2.19e + 1
100		2.79e+1		2.71e+1				
200	4.47e+1					4.11e+1		
. 300	5.84e-f-l	5.69e+1		5.45e-f-l			5.31e-H	
500	8.33e+1							
1000	1.39e+2		1.31e+2	1.24e+2		1.20e+2		
2000	2.37e+2				2.03e+2			
3000	3.28e+2		2.99e+2	2.78e+2		2.70e+2		

D on Cu, Maxwellian velocity distribution, sheath potential 3 kT zl = 1, ml = 2.01, z2=29, m2= 63.54, sbe=3.52 eV, rho=8.95 g/cm**3 ef=0.98 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx ne= 4

kT(eV)	Y	Υ E	B _s p	R/V	Rfi	B _b	range
15	8.64e-3	2.37e-4	2.06e+0	5.85e-1	3.67e-1	4.71e + 1	2.35e+1
20	1.64e-2	4.25e-4	2.59e+0	5.65e-l	3.49e-1	6.17e4-1	2.82e-H
25	2.35e-2	5.78e-4	3.08e4-0	5.50e-1	3.35e-1	7.60e + 1	3.23e + 1
1000	4.55e-2	1.39e-4	1.52e + 1	2.33e-1	9.75e-2	2.10e- -3	4.79e + 2
Sputtering yield of Cu by He zl = 2. ml = 4.00. z2=29j m2= 63.54. sbe=3.52 eV. rho= 8.95 g/cm**3 ef=0.50 eV. esb=0.00 eV. ca=1.00, kk0=kk0r=2, kdeel = kdee2=3. ipot=ipotr=1 (KrC) program: trspvmcx. IPP 9/82 ne~-15; na 1

n	e ~~	15;	na	1

Bo(eV)	0°	
50	2.04e-2	
50	1.93e-2	
70	4.58e-2	
100	7.86e-2	
100	7.77e-2	
200	1.33e-1	
300	1.60e-l	
500	1.90e-1	
500	1.91e-l	
1000	2.17e-l	
1000	2.13e-1	
2000	2.16e-l	
4000	1.92e-1	
5000	1.74e-l	
10000	1.31e-1	

Sputtered energy of Cu by He program: trspvmcx ne=14. na= 1

E ₀ (eV)	0°
50	8.02e-4
50	7.59e-4
70	1.84e-3
100	2.87e-3
100	2.92e-3
200	3.84e-3
300	3.88e-3
500	3.49e-3
500	3.53e-3
1000	2.48e-3
2000	1.65e-3
4000	8.52e-4
5000	5.99e-4
10000	2.96e-4

÷

He -4 Cu

Particle reflection coefficient of He backscattered from Cu zl= 2, miss 4.00. z2=29. m2= 63.54, sbe=3.52 eV, rho= 8.95 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kk0=kk0rs=2, kdeel = kdee2=3, ipot=sipotr=1 (KrC) program: trspvmcx ne=14, na= 1

E ₀ (eV)	0°
50	5.62e-1
50	5.63e-1
70	5.29e-1
100	5.00e-1
200	4.54e-1
300	4.20e-1
500	3.91e-1
500	3.93e-1
1000	3.49e-1
1000	3.50e-1
2000	2.92e-1
4000	2.33e-1
5000	2.20e-1
10000	1.50e-1

Energy reflection coefficient of He backscattered from Cu $ne\!=\!13,\ nass\ 1$

 $\begin{array}{c|c} E_0 \left(eV \right) & 0^\circ \\ \hline 50 & 3.17 e-1 \\ 70 & 2.89 e-1 \\ 100 & 2.68 e-1 \\ 200 & 2.33 e-1 \\ 300 & 2.11 e-1 \\ 500 & 1.90 e-1 \\ 500 & 1.91 e-1 \\ 1000 & 1.66 e-1 \\ 1000 & 1.66 e-1 \\ 2000 & 1.32 e-1 \\ 4000 & 9.66 e-2 \\ 5000 & 8.78 e-2 \\ 1000.0 & 5.45 e-2 \\ \end{array}$

Average depth (mean range) in \ddot{A} of He implanted in Cu $ne{=}14._$ $na{=}-1$

$B_0(eV)$	0°
50	1.08e + 1
70	1.31e-H
100	1.61e + 1
100	1.60e + 1
200	2.47e+1
300	3.21e + 1
500	4.55e+1
500	4.58e + 1
1000	7.33e + 1
1000	7.34e + 1
2000	1.25e+2
4000	2.15e+2
5000	2.63e+2 ·
10000	4.70e+2

Ne -> Cu

Eq (eV)	0'
50	8.36e-2
100	3.33e-1
200	7.10e-1
500	1.30e-0
1000	1.72e-0
2000	2.08e-0
4000	2.26e-0

Sputtered energy of Cu by Ne ne=7, na=1

$E_0(eV)$	0°
50	6.64e-3
100	1.98e-2
200	2.80e-2
500	2.85e-2
1000	2.44e-2
2000	1.93e-2
4000	1.36e-2

Particle reflection coefficient of Ne backscattered from Cu zl = 10, ml = 20.18, z2=29, m2= 63.54. sbe=3.52 eV, rho= 8.95 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx ne= 7, na= 1

Ep(eV)	0'
50	4.65e-1

4.65e-1
3.67e-1
2.91e-1
2.28e-1
1.86e-l
1.60e-1
1.32e-1

Energy reflection ne=7, na=1coefficient of Ne backscattered from Cu

Ep(eV)	0°
50	1.13e-1
100	8.89e-2
200	6.90e-2
500	5.13e-2
1000	4.13e-2
2000	3.40e-2
4000	2.89e-2

Average depth (mean range) in \ddot{A} of Ne implanted in Cu ne= 7, na= 1

E _o (eV)	0°
50	3.58e4-0
100	5.17e+0
200	7.57e+0
500	1.30e+1
1000	1.98e + 1
2000	3.14e+1
4000	5.07e+1

$$Ar \rightarrow Cu$$

Sputtering yield of Cu by Ar zl = 18, ml = 39.95, z2=29, m2= 63.54, sbe=3.52 eV, rho= 8.95 g/cm**3 ef=0.50 eV, esb=0.00 eV, cas=1.00, kk0=kk0rs=2, kdeels=kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx, trspvmcx, trspvlcs ne=20, na=12

$E_0 (eV)$	0°	15°	30°	45°	50°	55 "	60°	65°	70°	75°	80 ^u	85°
10								4.63e-6			1.14e-6	
11				3.65e-6								
12			3.16e-6	2.10e-5				1.06e-4			1.45e-5	
13		2.49e-6										
14	1.84e-6	9.58e-6	5.61e-5	2.17e-4		4.71e-4	5.66e-4	6.10e-4	4.65e-4	2.56e-4	5.73e-5	
15						9.79e-4	1.20e-3	1.10e-3	8.64e-4			
16	2.12e-5	6.31e-5	2.41e-4	9.23e-4		1.60e-3	1.86e-3	1.78e-3	1.29e-3	6.58e-4	1.43e-4	
18	7.78e-5	1.86e-4	6.09e-4	2.34e-3		3.96e-3		3.99e-3				
20	1.80e-4	4.00e-4	1.44e-3	4.77e-3		7.79e-3	7.98e-3	6.80e-3	4.82e-3	2.03e-3	4.80e-4	
25	8.40e-4	1.72e-3	5.36e-3	1.57e-2		2.25e-2		1.78e-2			1.16e-3	
30	3.12e-3	5.52e-3	1.46e-2	3.34e-2	4.05e-2	4.33e-2	4.08e-2	3.33e-2	2.08e-2	9.09e-3	2.06e-3	
40	1.54e-2	2.38e-2	4.85e-2	8.92e-2		9.89e-2		6.94e-2			4.46e-3	
50	3.96e-2	5.54e-2	9.91e-2	1.55e-l	1.65e-l	1.61e-l		1.13e-1	7.14e-2	3.21e-2	7.62e-3	
100	2.65e-1											
300	1.05e-0	1.15e-0	1.41e-0	1.66e-0	1.65e-0	1.64e-0	1.52e-0	1.28e-0	9.67e-1	5.76e-l	1.83e-1	7.76e-3
500	1.55e-0											
1000	2.27e-0											
2000	3.10e-0											
3000	3.48e-0											
4000	3.50e-0											

Sputtered	energy	of	Cu	by	Ar	
ne = 21, na	= 12					

E_0(eV)	0°	15°	30°	45°	50°	55°	60°	65°	70°	75°	80° ·	85°
10								1.03e-6			3.44e-7	
11				2.20e-6								
12			1.54e-6	3.61e-6				1.63e-5			2.70e-6	
13		2.60e-6										
14	1.89e-6	1.99e-6	6.55e-6	2.83e-5		6.90e-5	8.63e-5	9.70e-5	7.92e-5	4.66e-5	1.08e-5	
15						1.46e-4	1.85e-4	1.91e-4	1.61e-4			
16	3.65e-6	5.32e-6	2.31e-5	1.23e-4		2.49e-4	3.02e-4	3.03e-4	2.32e-4	1.28e-4	2.77e-5	
18	6.24e-6	1.36e-5	6.12e-5	3.10e-4		6.00e-4		7.09e-4				
20	1.21e-5											
20	1.09e-5	2.93e-5	1.58e-4	7.Ole-4		1.23e-3	1.36e-3	1.23e-3	9.29e-4	4.03e-4	9.47e-5	
25	5.57e-5	1.39e-4	5.73e-4	2.21e-3		3.66e-3		3.35e-3			2.58e-4	
30	2.16e-4	4.65e-4	1.60e-3	4.70e-3	6.17e-3	7.21e-3	7.31e-3	6.35e-3	4.26e-3	1.84e-3	3.99e-4	
40	1.10e-3	2.04e-3	5.23e-3	1.23e-2		1.65e-2		1.34e-2			8.27e-4	
50	2.72e-3	4.43e-3	1.03e-2	2.08e-2	2.40e-2	2.60e-2		2.10e-2	1.38e-2	6.12e-3	1.31e-3	
100	1.34e-2											
300	2.87e-2	3.55e-2	5.98e-2	9.99e-2	1.12e-1	1.23e-1	1.28e-1	1.20e-1	9.62e-2	5.95e-2	1.57e-2	3.19e-4
500	3.03e-2											
1000	2.85e-2											
2000	2.68e-2											
3000	2.32e-2											
4000	1.85e-2											

Particle reflection coefficient of Ar backscattered from Cu zl = 18. ml = 39.95. z2=29 : m2= 63.54. sbe=3.52 eV. rho= 8.95 g/cm**3 ef=0.50 eV. esb=0.00 eV. ca=1.00. kk0=kk0r=2. kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: testvmcXj trspvmcx. trspvlcs ne=22. na=12

Ro(eV)	0°	15°	30 ^u	45°	50 ^u	55 °	60°	65 ^u	70°	75°	80°	85 ^u
5	4.86e-1											
10	3.42e-1							9.08e-1			9.97e-1	
11				6.44e-1								
12			4.57e-1	6.40e-1				9.08e-1			9.98e-1	
13		3.39e-1										
14	2.93e-1	3.33e-1	4.45e-1	6.34e-1		7.75e-1	8.46e-1	9.07e-1	9.54e-1	9.85e-1	9.98e-1	
15						7.74e-1	8.45e-1	9.07e-1	9.55e-1			
16	2.81e-1	3.23e-1	4.37e-1	6.28e-1		7.73e-1	8.43e-1	9.06e-1	9.55e-1	9.85e-1	9.98e-1	
18	2.73e-1	3.16e-l	4.31e-1	6.24e-1		7.70e-1		9.06e-1				
20	2.67e-1	3.11e-1	4.15e-1	6.20e-1		7.67e-1	8.40e-1	9.05e-1	9.54e-1	9.86e-1	9.98e-1	
25	2.57e-1	3.01e-1	4.17e-1	6.12e-1		7.59e-1		9.01e-1			9.98e-1	
30	2.52e-1	2.95e-1	4.08e-1	6.04e-1	6.76e-l	7.53e-1	8.29e-1	8.98e-1	9.52e-1	9.85e-1	9.98e-1	
40	2.44e-1	2.85e-1	3.98e-1	5.88e-1		7.38e-1		8.90e-1			9.98e-1	
50	2.38e-1	2.77e-1	3.85e-1	5.74e-1	6.47e-1	7.27e-1		8.82e-1	9.45e-1	9.83e-1	9.98e-1	
100	2.14e-1											
300	1.51e-1	1.75e-1	2.36e-1	3.63e-1	4.36e-1	5.08e-1	6.05e-1	7.21e-1	8.31e-1	9.32e-1	9.91e-1	1.00e-0
500	1.25e-l											
1000	9.64e-2											
1000	1.01e-1											
2000	8.42e-2											
3000	7.03e-2											
4000	6.26e-2											

Energy reflection coefficient of Ar backscattered from Cu $ne{=}22,\ na{=}12$

Ro(eV)	0°	15°	30°	45 ^u	50 ^u	55°	60°	65 ^u	70°	75°	80°	85°
5	3.27e-3											
10	1.18e-2							4.34e-1			7.67e-l	
11				1.49e-1								
12			6.29e-2	1.51e-1				4.43e-1			7.81e-1	
13		2.74e-2										
14	1.46e-2	2.82e-2	6.63e-2	1.56e-1		2.72e-1	3.53e-1	4.50e-1	5.60e-1	6.77e-1	7.91e-1	
15						2.74e-1	3.55e-1	4.52e-1	5.64e-1			
16	1.55e-2	2.95e-2	6.89e-2	1.60e-1		2.77e-1	3.57e-1	4.55e-1	5.67e-1	6.85e-1	7.99e-1	
18	1.63e-2	3.04e-2	7.08e-2	1.63e-1		2.79e-1		4.59e-1				
20	1.71e-2	3.11e-2	7.22e-2	1.66e-1		2.82e-1	3.64e-1	4.62e-1	5.77e-1	6.96e-1	8.12e-1	
25	1.82e-2	3.21e-2	7.45e-2	1.69e-1		2.86e-1		4.68e-1			8.23e-1	
30	1.90e-2	3.25e-2	7.53e-2	1.72e-1	2.23e-1	2.90e-1	3.71e-1	4.72e-1	5.89e-1	7.13e-1	8.31e-1	
40	1.99e-2	3.23e-2	7.47e-2	1.73e-1		2.91e-1		4.75e-1			8.42e-1	
50	1.99e-2	3.18e-2	7.27e-2	1.71e-1	2.23e-1	2.90e-1		4.74e-1	5.95e-1	7.26e-1	8.49e-1	
100	1.85e-2											
300	1.31e-2	1.79e-2	3.87e-2	9.61e-2	1.37e-1	1.87e-1	2.64e-1	3.69e-1	5.07e-1	6.70e-1	8.49e-1	9.68e-1
500	1.11e-2											
1000	8.26e-3											
1000	8.72e-3											
2000	7.59e-3											
3000	6.63e-3											
4000	5.01e-3											

Average depth (mean range) in \ddot{A} of Ar implanted in Cu $ne{=}21.\ na{=}1l$

Ro(eV)	0°	15°	30 ^u	45°	50°	55°	60°	65°	70°	75°.	· 80°
5	5.43e-1										
10	8.65e-l							5.60e-1			3.30e-1
11				7.70e-1							
12			8.51e-l	8.16e-1				6.21e-1			3.53e-1
13		9.54e-1									
14	1.06e+0	1.00e + 0	9.49e-1	9.04e-1		8.14e-1	7.54e-1	6.83e-1	5.96e-1	4.95e-1	3.79e-1
15						8.53e-1	7.88e-1	7.10e-1	6.23e-1		
16	1.16e + 0	1.11e+0	1.05e-}-0	9.90e-1		8.87e-1	8.20e-1	7.41e-1	6.48e-1	5.33e-1	4.01e-1
18	1.26e+0	1.21e+0	1.14e + 0	1.08e+0		9.66e-l		8.01e-1			
20	1.35e+0	1.30e+0	1.23e+0	1.16e-}-0		1.04e+0	9.60e-1	8.68e-1	7.51e-l	6.17e-1	4.63e-1
25	1.58e+0	1.53e+0	1.45e+0	1.35e-}-0		1.22e+0		1.01e+0			5.34e-1
30	1.79e + 0	1.74e+0	1.66e+0	1.54e- -0	1.47e + 0	1.39e-}-0	1.27e + 0	1.16e + 0	9.94e-1	8.44e-1	5.88e-1
40	2.17e + 0	2.12e+0	2.02e+0	1.87e+0		1.69e+0		1.42e+0			8.14e-1
50	2.53e-f-0	2.47e+0	2.36e+0	2.17e+0	2.08e+0	1.97e+0		1.68e- -0	1.47e+0	1.24e+0	9.14e-1
100	3.90e+0										
300	7.25e+0	7.10e+0	6.64e+0	6.05e4-0	5.86e-}-0	5.68e+0	5.34e+0	5.14e+0	4.82e+0	4.53e4-0	4.00e+0
500	9.61e+0										
1000	1.45e4-l										
2000	2.22e+1										
3000	2.89e + 1										
4000	3.39e-f-l										

$$\operatorname{Ar} \to \operatorname{Cu}$$

Sputtering yield of Cu by Ar zl = 18, ml = 39.95, z2=29, m2= 63.54, sbe=3.52 eV, rho= 8.95 g/cm**3 ef=0.50 eV, esb = 0.00 eV, ca=1.00, kk0 = kk0r=2, kdeel=kdee2=3, ipot=ipotr alpha=0. program: trspvmcx ne = 1, na = 1

Eo(eV)	Y	YE	RN	Rg	range	potential
100	2.65e-1	1.34e-2	2.14e-1	1.85e-2	3.90e+0	KrC
100	2.52e-1	1.53e-2	2.88e-1	2.34e-2	2.43e + 0	Moliere
100	2.41e-1	1.36e-2	2.35e-1	1.92e-2	3.01e + 0	ZRL

Cu->Cu

Sputtering yield of Cu by Cu zl=29, ml = 63.54, z2=29, m2= 63.54, sbe=3.52 eV, rho=8.95 g/cm**3 ef=3.45 eV, esb=3.52 eV, ca=1.00, kk0 = kk0r=2, kdeel = kdee2=3, ipot=ipotr=rl (KrC) program: IPP 9/82 ne=24, na=10

Eo(eV)	0°	15°	30°	45°	55°	65°	70°	75°	80°	85°
14	1.00e-5									
16	4.00e-5									
18	1.00e-4									
20	1.90e-4	6.10e-4	2.54e-3	9.63e-3	1.71e-2	2.13e-2		2.06e-2	1.82e-2	1.58e-2
23	4.60e-4									
25	7.50e-4									
28	1.39e-3									
30	1.98e-3									
32	2.70e-3									6.04.0
50	2.45e-2	4.28e-2	1.02e-1	1.83e-1	2.06e-1	1.83e-1		1.14e-1	8.45e-2	6.04e-2
60	4.84e-2									
70	7.93e-2									
80	1.16e-1	2.55 1	4.10.1	5 60 1	5 (0)	4 60 1		2 42 - 1	1 44- 1	8 22- 2
100	1.8/e-1	2.556-1	4.19e-1	5.60e-1	5.69e-1	4.60e-1		2.420-1	1.44e-1	8.220-2
200	5.85e-1	1.07.0	1 40- 0	1 71 - 0	1 71 - 0	1 42- 0		7 (4 - 1	2 7 2 0 1	1.070.1
500	9.476-1	1.076-0	1.406-0	1./10-0	1.716-0	1.436-0		7.046-1	5.720-1	1.070-1
1000	2.400.0	2 50 0 0	2 20 2 0	1060.0	4 4 2 0 0	4 140 0	3 560 0		1 350 0	25401
2000	2.400-0	2.396-0	3.300-0	4.000-0	4.426-0	4.146-0	5.500-0		1.550-0	2.540-1
3000	3.80e-0	4.21e-0	5.33e-0	6.96e~0		8.86e-0	8.46e-0		4.38e-0	8.84e-1
5000	4.51e-0		2.2.2.0 0							
10000	5.14e-0	5.84e-0	7.24e-0	1.02e+1	1.26e+1	1.53e + 1	1.57e + 1	1.56e+1	1.26e+1	4.25e-0
30000	5.57e-0									
100000	4.66e-0	5.35e-0	6.71e-0	9.45e-0		1.95e + 1			3.03e+1	1.85e + 1

-

Sputtered energy of Cu by Cu zl = 29. ml = 63.54. z2 = 29. m2 = 63.54. sbe=3.52 eV. rho=8.95 g/cm**3 ef=3.47 eV. esb = 3.52 eV. ca=1.00. kk0=kk0r=2. kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx ne=43, na=14

E ₀ (eV)	0°	15°	25°	30°	35°	40°	45°	55°	60°	65°	70°	75°
7										7.19e-6		
7.5										2.12e-6		
8				2.51e-6			2.20e-6			4.48e-6		
9				2.36e-6			4.36e-6			1.83e-5		
10		3.00e-6		5.25e-6			1.21e-5			5.59e-5		
11		2.55e-6		9.23e-6			1.12e-4					
11.8										2.34e-4		
12	4.09e-6	2.56e-6	2.06e-5	1.51e-5	2.39e-5	3.66e-5	5.89e-5	1.42e-4		2.71e-4		3.80e-4
13				2.56e-5						5.07e-4		
14	3.91e-6	6.11e-6		3.86e-5			1.82e-4			7.74e-4		
15				5.98e-5								
16	3.26e-6	1.35e-5		8.14e-5			4.24e-4	9.62e-4		1.55e-3		1.88e-3
17				1.17e-4						2.25e-3		
18	1.28e-5	2.66e-5		1.56e-4			8.26e-4					
20	9.71e-6	4.10e-5		2.69e-4			1.44e-3	3.02e-3		4.22e-3		
22		6.71e-5										
23	2.31e-5	8.70e-5		5.73e-4			2.68e-3					
25	6.85e-5			8.35e-4								
27		2.24e-4										
28	7.23e-5											
30	1.06e-4	3.64e-4		1.92e-3			6.82e-3	1.18e-2		1.39e-2	1.31e-2	
32	1.46e-4											
35		7.24e-4		3.43e-3								
40	4.96e-4	1.38e-3		5.47e-3			1.55e-2			2.46e-2		
50	1.30e-3	2.97e-3		1.01e-2			2.50e-2	3.44e-2				2.34e-2
60	2.43e-3											
70	3.77e-3	7.27e-3		1.98e-2			4.26e-2			5.25e-2		
95							6.00e-2					
100	8.00e-3	1.35e-2		3.20e-2			6.32e-2	7.76e-2		7.16e-2		3.99e-2
120							7.30e-2					
200	1.74e-2	2.55e-2		5.22e-2			9.52e-2			1.15e-1		
300	2.27e-2	3.09e-2		5.91e-2			1.10e-1	1.38e-1		1.41e-1		8.03e-2
500	2.58e-2						1.15e-l			1.70e-1		
1000	2.78e-2	3.39e-2		6.10e-2			1.11e-1	1.53e-1		1.88e-1	1.84e-1	
2000										1.90e-1		
3000	2.17e-2	2.75e-2		4.69e-2			8.81e-2		1.61e-1	1.82e-1	1.98e-1	
5000	1.96e-2									1.68e-1		
10000	1.46e-2	1.92e-2		3.33e-2			6.51e-2	9.96e-2		1.50e-l	1.68e-l	1.87e-l
30000	9.30e-3	1.11e-2		2.08e-2			4.48e-2			1.10e-l		
100000	3.32e-3	5.67e-3		9.98e-3			2.02e-2			6.34e-2		

-

E (eV)	80°	850
L ₀ (CV)	1 61 9 6	05
0.5	2.080.6	
7 4	2.986-0	
/.4	4.406-0	
0	2 820 5	4 150 5
10	1.04- 4	4.156-5
10	1.04e-4	1.11e-4
11	2.276-4	4 10 - 4
12	4.166-4	4.196-4
14	1.02e-3	1.02e-3
15		1.42e-3
16	1.85e-3	1.86e-3
18	2.89e-3	
20	4.04e-3	3.66e-3
30	9.53e-3	8.10e-3
40	1.36e-2	1.03e-2
50	1.64e-2	1.17e-2
70	1.96e-2	
100	2.21e-2	1.16e-2
200	2.83e-2	
300	3.39e-2	7.35e-3
500	4.76e-2	
1000	7.27e-2	7.63e-3
3000	1.32e-1	1.80e-2
10000	1.76e-l	6.68e-2
30000	1.75e-1	1.15e-1
100000	1.30e-1	1.18e-1
300000		9.87e-2

Cu -4 Cu

Particle reflection coefficient of Cu backscattered from Cu zl=29. ml = 63.54, z2=29. m2 = 63.54. sbe=3.52 eV. rho=8.95 g/cm**3 ef=3.47 eV. esb=3.52 eV, ca=1.00, kk0=kk0r=2. kdeel=kdee2=3. ipot=ipotr=1 (KrC) program: testvmcx ne=43, na=14

$E_0 (eV)$	ou	15°	25°	30°	35 ^u	40°	45°	55°	60°	65 ^u	70°	75 ^u
7										8.29e-6		
7.5										4.60e-5		
8				5.05e-8			5.25e-7			1.38e-4		
9				5.00e-8			6.70e-6			7.32e-4		
10		2.02e-8		1.50e-7			3.64e-5			2.38e-3		
11				3.33e-7			1.29e-4					
11.8										9.07e-3		
12	2.22e-8	2.00e-7	4.29e-7	2.00e-6	1.03e-5	8.04e-5	3.09e-4	2.50e-3		1.02e-2		2.33e-2
13				7.00e-6						1.64e-2		
14	1.75e-7			1.98e-5			1.18e-3			2.46e-2		
15				6.10e-5								
16		1.33e-6		1.33e-4			3.21e-3	1.54e-2		4.61e-2		9.13e-2
17				2.61e-4						5.89e-2		
18	1.00e-6	9.00e-6		4.41e-4			6.95e-3					
20	7.50e-7	3.70e-5		1.08e-3			1.26e-2	4.29e-2		1.06e-l		
22		9.40e-5										
23	1.14e-6	1.49e-4		3.04e-3			2.47e-2					
25	4.00e-6			5.13e-3								
27		4.48e-4										
28	2.60e-5											
30	4.87e-5	8.78e-4		1.16e-2			6.47e-2	1.49e-1		2.92e-1	3.78e-1	
32	9.71e-5											
35		2.25e-3		2.03e-2						· · · ·		
40	5.15e-4	3.71e-3		2.96e-2			1.26e-l			4.42e-1		
50	1.92e-3	7.71e-3		4.77e-2			1.74e-1	3.30e-1				7.62e-1
60	3.18e-3											
70	4.53e-3	1.63e-2		7.30e-2			2.35e-1			6.40e-1		
95							2.63e-1					
100	9.78e-3	2.47e-2		9.45e-2			2.64e-1	4.55e-1		6.84e-1		8.89e-1
120							2.70e-1					
200	1.83e-2	3.67e-2		1.03e-1			2.62e-1			6.67e-1		
300	2.08e-2	3.83e-2		1.01e-1			2.35e-1	4.08e-1		6.25e-1		8.88e-1
500	2.28e-2						2.07e-1			5.55e-l		
1000	2.18e-2	3.13e-2		7.03e-2			1.67e-1	2.79e-1		4.64e-1	6.01e-1	
2000										3.72e-1		
3000	2.44e-2	2.76e-2		5.46e-2			1.14e-1		2.70e-1	3.35e-1	4.44e-1	
5000	1.62e-2									2.96e-1		
10000	1.44e-2	1.30e-2		4.33e-2			7.97e-2	1.50e-1		2.53e-1	3.36e-1	4.54e-1
30000	9.67e-3	1.00e-2		2.70e-2			5.40e-2			2.13e-1		
100000	3.00e-3	4.67e-3		1.36e-2			4.10e-2			1.80e-1		

E 0 (eV)	80°	85°
6.5	1.84e-5	
7	8.86e-5	
7.4	2.26e-4	
8	7.76e-4	
9	3.48e-3	4.24e-3
10	8.85e-3	1.04e-2
11	1.74e-2	
12	2.96e-2	3.35e-2
14	6.42e-2	7.35e-2
15		9.68e-2
16	1.11e-1	1.25e-1
18	1.68e-l	
20	2.29e-1	2.54e-1
30	5.26e-1	5.70e-1
40	7.29e-1	7.76e-l
50	8.36e-1	8.78e-1
70	9.19e-1	
100	9.51e-1	9.79e-1
200	9.70e-1	
300	9.70e-1	9.97e-1
500	9.61e-1	
1000	9.30e-1	9.98e-1
3000	8.05e-1	9.88e-1
10000	6.14e-1	9.13e-1
30000	5.09e-1	7.58e-1
100000	4.70e-1	6.17e-l

Cu Cu

Energy reflection coefficient of Cu backscattered from Cu z1=29, m1 = 63.54, z2=29. m2 = 63.54, sb=3.52 eV. rbo=8.95 g/cm**3 ef=3.47 eV, esb=3.52 eV, ca=1.00. kk0=kk0r=2. kdeel = kdee2=3. ipot=ipotr=1 (KrC) program: testvmcx ne=43. na=14

E ₀ (eV)	0°	15°	25 ^u	30 ^u	35°	40°	45°	55 ^u	60°	65°	70°	75 ^u
7										2.24e-6		
7.5										6.90e-6		
8				5.06e-7			1.98e-7			2.18e-5		
9				7.35e-6			1.05e-6			1.35e-4		
10		6.78e-7		3.77e-7			5.24e-6			5.01e-4		
11				5.51e-7			2.09e-5					
11.8										2.24e-3		
12	2.64e-8	9.95e-8	8.71e-8	8.68e-7	1.68e-6	1.15e-5	5.21e-5	5.19e-4		2.55e-3		6.66e-3
13				6.42e-7						4.35e-3		
14	4.76e-7			2.04e-6			2.07e-4			6.73e-3		
15				6.53e-6								
16		2.53e-7		1.57e-5			5.77e-4	3.61e-3		1.32e-2		2.99e-2
17				3.00e-5						1.70e-2		
18	2.44e-6	3.29e-6		5.45e-5			1.27e-3					
20	2.93e-7	1.11e-5		1.44e-4			2.37e-3	1.04e-2		3.22e-2		
22		9.40e-6										
23	7.58e-7	1.51e-5		4.26e-4			4.78e-3					
25	2.80e-7			7.45e-4								
27		4.71e-5										
28	1.49e-6											
30	2.91e-6	9.15e-5		1.73e-3			1.34e-2	3.92e-2		9.81e-2	1.40e-1	
32	6.25e-6											
35		2.28e-4		3.11e-3								
40	3.30e-5	3.67e-4		4.52e-3			2.76e-2			1.59e-1		
50	1.37e-4	8.10e-4		7.45e-3			3.95e-2	9.69e-2				3.67e-1
60	2.02e-4											
70	3.10e-4	1.61e-3		1.11e-2			5.53e-2			2.62e-1		
95							6.27e-2					
100	6.02e-4	2.23e-3		1.39e-2			6.28e-2	1.47e-1		2.98e-1		5.17e-1
120							6.40e-2					
200	9.33e-4	2.84e-3		1.34e-2			6.04e-2			3.02e-1		
300	1.15e-3	2.62e-3		1.22e-2			5.01e-2	1.28e-1		2.82e-1		5.6Be-1
500	9.76e-4						4.10e-2			2.41e-1		
1000	8.42e-4	1.61e-3		7.18e-3			2.96e-2	7.48e-2		1.84e-1	2.99e-1	
2000										1.31e-1		
3000	9.87e-4	1.28e-3		4.57e-3			1.58e-2		7.24e-2	1.11e-1	1.83e-1	
5000	5.77e-4									9.18e-2		
10000	5.02e-4	8.13e-4		3.44e-3			1.14e-2	3.20e-2		7.66e-2	1.25e-1	2.04e-1
30000	4.25e-4	5.81e-4		2.87e-3			7.83e-3			6.66e-2		
100000	7.11e-5	3.04e-4		1.09e-3			5.56e-3			5.46e-2		

E ₀ (eV)	80°	85°
6.5	3.16e-6	
7	1.42e-5	
7.4	3.98e-5	
8	1.48e-4	
9	7.91e-4	9.91e-4
10	2.27e-3	2.75e-3
11	4.87e-3	
12	8.83e-3	1.02e-2
14	2.08e-2	2.45e-2
15		3.33e-2
16	3.82e-2	4.41e-2
18	6.02e-2	
20	8.54e-2	9.81e-2
30	2.27e-1	2.56e-1
40	3.50e-1	3.93e-1
50	4.39e-1	4.89e-1
70	5.48e-1	
100	6.28e-1	7.07e-1
200	7.18e-1	
300	7.38e-1	8.69e-1
500	7.39e-1	
1000	7.05e-1	9.18e-1
3000	5.70e-1	9.01e-1
10000	3.74e-1	7.82e-1
30000	2.69e-1	5.88e-1
100000	2.44e-1	4.25e-1
300000		4.28e-1

C11-4- Cu

Average depth (mean range) in \ddot{A} of Cu implanted in Cu zl=29, ml = 63.54, z2=29, m2= 63.54. sbe=3.52 eV, rho=8.95 g/cm**3 ef=3.47 eV, esb=3.52 eV, ca=1.00, kkO=kkOr=2, kdeel=kdee2=3, ipot=ipotr = l (KrC) program: testvmcx ne=38, na=14

E ₀ (eV)	0°	15°	25°	30 ^u	35 ^u	40°	45°	55°	60°	65°	70 ^u	75°
8				5.15e-3								
9				6.78e-2			1.59e-2					
10		1.83e-1		1.35e-l			5.78e-2					
11		2.69e-1		2.02e-1			9.87e-2					
12	3.84e-1	3.52e-1	3.01e-1	2.67e-1	2.28e-1	1.85e-1	1.38e-1	3.00e-2				
13				3.27e-1								
14	5.45e-1	5.00e-1		3.82e-1			2.08e-1					
15				4.33e-1								
16	6.75e-1	6.18e-1		4.79e-1			2.69e-1	1.13e-1				
17				5.20e-1								
18	7.81e-1	7.19e-l		5.60e-1			3.24e-1					
20	8.73e-1	8.07e-1		6.35e-1			3.75e-1	1.87e-1		9.19e-3		
22		8.89e-1										
23	1.00e-0	9.32e-1		7.38e-1			4.49e-1					
25	1.09e-0			8.06e-1								
27		1.09e-0										
28	1.21e-0											
30	1.30e-0	1.20e-0		9.69e-1			6.36e-1	3.94e-1		1.57e-1	5.39e-2	
32	1.37e-0											
35		1.38e-0		1.13e-0								
40	1.66e-0	1.56e-0		1.28e-0			9.00e-1			3.49e-1		
50	1.97e-0	1.85e-0		1.57e-0			1.17e-0	8.87e-1				2.74e-1
60	2.26e-0											
70	2.51e-0	2.39e-0		2.09e-0			1.67e-0			1.02e-0		
95							2.21e-0					
100	3.21e-0	3.06e-0		2.75e-0			2.30e-0	1.99e-0		1.56e-0		9.91e-1
120							2.66e-0					
200	4.94e-0	4.79e-0		4.39e-0			3.83e-0			2.90e-0		
300	6.25e-0	6.06e-0		5.65e-0			4.92e-0	4.38e-0		3.72e-0		2.88e-0
500	8.36e-0						6.57e-0			5.10e-0		
1000	1.24e + 1	1.21e+1		1.11e + 1			9.87e-0	8.73e-0		7.72e-0	7.25e-0	
2000										1.12e4-1		
3000	2.34e+1	2.30e+1		2.09e + 1			1.85e + 1		1.52e+1	1.42e+1	1.31e + 1	
5000	3.16e + 1									1.91e + 1		
10000	5.02e + 1	4.74e4-1		4.46e + 1			3.86e-}-1	3.37e+1		2.86e + 1	2.78e + 1	2.54e-f-l
30000	1.07e+2	1.06e+2		9.73e-]-1			8.50e+1			5.96e + 1		
100000	3.00e-f-2	2.81e+2		2.54e+2			2.19e- -2			1.59e+2		

Bo (eV)	80°	85°
50	1.32e-1	3.05e-2
70	3.87e-1	
100	7.71e-l	4.52e-1
200	1.54e-0	
300	2.36e-0	1.46e-0
500	3.67e-0	
1000	5.55e-0	4.57e-0
3000	1.12e+1	9.26e-0
10000	2.44e+1	2.28e+1
30000	4.83e + 1	4.52e-f-l
100000	1.30e+2	1.06e+2
300000		1.78e+2

Cu on Cu, Maxwellian velocity distribution, sheath potential 3 kT zl=29, ml= 63.54, z2=29, m2= 63.54, sbe=3.52, rho=8.95 g/cm**3 ef=3.50 eV, esb=3.52 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx ne= 3

1.00

kT(eV)	Y	Y_E	Esp	^R ?7	Re	E _b	range
15	5.67e-1	2.60e-2	7.57e- -0	4.39e-2	4.37e-3	1.64e- -1	4.20e4-0
20	8.15e-1	3.19e-2	8.64e+0	4.13e-2	4.00e-3	2.13e + 1	5.05e4-0
25	1.01e-0	3.41e-2	9.32e+0	4.05e-2	3.40e-3	2.31e + 1	5.71e+0

Sputtering yield of Cu by Xe zl=54, ml = 131.30, z2=29. m2= 63.54. sbe=3.52 eV. rho= 8.95 g/cm**3 ef=0.50 eV. esb=0.00 eV. ea=1.00, kk0=kk0r=2. kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: trspvmcx, trspvlcs ne= 8, na= 1

MeV)	0 ^u
50	6.48e-3
100	8.69e-2
300	6.50e-1
500	1.17e-0
1000	2.13e-0
2000	3.30e-0
3000	4.09e-0
4000	4.51e-0

Sputtering yield of Cu by Xe ne= 8, na= 1

MeV)	(P
50	2.35e-4
100	2.79e-3
300	1.32e-2
500	1.80e-2
1000	2.19e-2
2000	2.32e-2
3000	2.23e-2
4000	1.97e-2

Particle reflection coefficient of Xe backscattered from Cu zl=54. ml = 131.30, z2=29, m2= 63.54. sbe=3.52 eV. rho= 8.95 g/cm**3 ef=0.50 eV. esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: trspvncx, trspvlcs ne= 7, na= 1

Bq(eV)	0°
50	2.77e-2
100	4.26e-3
300	2.20e-4
500	1.00e-4
2000	2.80e-4
3000	3.07e-4
4000	6.00e-4

Energy reflection coefficient of Xe backscattered from Cu ne=7, na=1

Eo(eV)	cP
50	2.40e-6
100	2.86e-6
300	1.54e-6
500	1.21e-6
2000	1.91e-6
3000	2.45e-6
4000	8.91e-7

Average depth (mean range) in \tilde{A} of Xe implanted in Cu ne= 8, na= 1

$B_0(eV)$	0°
50	2.66e + 0
100	4.17e+0
300	7.73e+0
500	1.01e+1
1000	1.42e+1
2000	2.03e+1
3000	2.49e+1
4000	2.86e+1

$\mathrm{D}\to\mathrm{Ga}$

$E_0(eV)$	0°	65°
30	1.58e-6	8.75e-7
50	2.54e-3	1.63e~3
70	7.80e-3	7.06e-3
100	1.55e-2	2.08e-2
200	3.13e-2	6.90e-2
500	4.45e-2	1.37e-1
1000	4.92e-2	1.65e-1
2000	4.52e-2	1.64e-1
5000	3.48e-2	1.38e-1
10000	2.38e-2	1.05e-1

Sputtered energy of Ga by D program: testvmcx ne=10, na= 2

$E_0(eV)$	0°	65°
30	2.28e-9	3.45e-9
50	4.39e-5	2.95e-5
70	1.64e-4	1.63e-4
100	3.48e-4	4.75e-4
200	5.99e-4	1.40e-3
500	5.60e-4	1.84e-3
1000	4.08e-4	1.52e-3
2000	2.37e-4 -	9.67e-4
5000	8.52e-5	4.60e-4
10000	3.41e-5	2.22e-4

Particle reflection coefficient of D backscattered from Ga $Z_1 = 1$, m1 = 2.01, $Z_2 = 31$, m2 = 69.72, sbe=2.82 eV, rho=5.91 g/cm**3 ef=0.98 eV, esb = 1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx ne=10, na= 2

$E_0(eV)$	0°	65°
30	5.93e-1	8.32e-1
50	5.68e-l	7.95e-1
70	5.48e-1	7.69e-1
100	5.29e-1	7.47e-1
200	4.91e-l	7.04e-1
500	4.27e-1	6.48e-1
1000	3.71e-1	6.03e-1
2000	3.04e-1	5.57e-1
5000	2.03e-1	4.76e-1
10000	1.27e-1	4.03e-1

Energy reflection coefficient of D backscattered from Ga $ne\!=\!10,\ na\!=\!2$

$B_{o}(eV)$	0°	65°
30	3.72e-1	6.80e-1
50	3.47e-1	6.30e-1
70	3.29e-1	5.96e-1
100	3.11e-1	5.63e-1
200	2.79e-1	5.10e-1
500	2.29e-1	4.46e-1
1000	1.88e-1	3.98e-1
2000	1.43e-1	3.49e-1
5000	8.20e-2	2.68e-1
10000	4.44e-2	2.00e-1

Average depth (mean range) in \ddot{A} of D implanted in Ga $ne\!=\!10,\ na\!=\!2$

$E_0(eV)$	0°	65°
30	2.42e4-1	2.31e+1
50	3.25e+1	3.09e+1
70	3.96e+1	3.74e+1
100	4.89e+1	4.64e+1
200	7.54e+1	7.04e+1
500	1.38e + 2	1.26e+2
1000	2.27e+2	2.03e+2
2000	3.85e+2	3.33e+2
5000	7.98e+2	6.50e+2
10000	1.43e+3	1.08e+3

D on Ga, Maxwellian velocity distribution, sheath potential 0 kT zl = 1, ml = 2.01, z2=31, m2 = 69.72, sb=2.82 eV. rho= 5.91 g/cm**3 ef=0.98 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx ne=10

kT(eV)	Y	YE	B sp	R A 7	RE	B _b	range
10	2.71e-4	1.76e-5	1.30e+0	7.53e-1	5.49e-1	1.46e + 1	1.86e+1
20	3.00e-3	1.53e-4	2.04e + 0	7.21e-1	5.03e-1	2.79e+1	2.79e + 1
30	7.39e-3	3.13e-4	2.55e+0	6.99e-1	4.77e-1	4.10e+1	3.54e + 1
50	1.83e-2	6.09e-4	3.32e+0	6.69e-1	4.42e-1	6.60e4-1	4.76e4-1
100	4.07e-2	9.38e-4	4.60e+0	6.34e-1	4.03e-1	1.27e-j-2	7.25e+1
200	6.73e-2	1.04e-3	6.16e+0	5.87e-1	3.57e-1	2.43e4-2	1.15e + 2
500	9.35e-2	8.54e-4	9.15e+0	5.24e-1	2.94e-1	5.62e + 2	2.19e + 2
1000	1.03e-1	5.86e-4	1.14e + 1	4.67e-1	2.42e-1	1.04e + 3	3.67e+2
2000	9.78e-2	3.32e-4	1.35e + 1	3.98e-1	1.86e-l	1.87e+3	6.21e+2
5000	8.22e-2	1.43e-4	1.74e+l	3.06e-1	1.19e-l	3.88e+3	1.27e+3

D on Ga, Maxwellian velocity distribution, sheath potential 3 kT ne=11 $\,$

kT(eV)	Y	YE	E sp	R;v	R _b	Bb	range
5	6.50e-5	2.23e-6	8.56e-l	6.39e-1	4.43e-1	1.66e + 1	2.15e + 1
7	6.93e-4	1.94e-5	9.81e-1	6.20e-1	4.02e-1	2.27eR1	2.60e+1
10	3.35e-3	9.02e-5	1.35e4-0	6.00e-1	3.82e-1	3.19e + 1	3.18e + 1
20	1.63e-2	3.95e-4	2.43e+0	5.64e-1	3.45e-1	6.12e4-1	4.81e+1
50	4.01e-2	7.06e-4	4.40e4-0	5.10e-1	2.97e-1	1.46e4-2	8.48e + 1
100	5.30e-2	6.79e-4	6.41e + 0	4.64e-1	2.58e-1	2.78e+2	1.35e+2
200	5.90e-2	4.94e-4	8.39e4-0	4.07e-1	2.16e-1	5.30e+2	2.21e+2
500	5.36e-2	2.28e-4	1.07e+l	3.20e-1	1.50e-l	1.18e+3	4.41e+2
1000	4.28e-2	1.14e-4	1.34e + 1	2.47e-1	1.04e-1	2.11e+3	7.65e+2
2000	3.40e-2	5.40e-5	1.59e+l	1.65e-l	5.98e-2	3.62e+3	1.34e+3
5000	1.72e-2	1.08e-5	1.57e + 1	7.35e-2	2.07e-2	7.07e+3	2.87e+3

$$T \rightarrow Ga$$

E ₀ (eV)	0°	65 ^u
50	8.73e-3	7.60e-3
100	2.85e-2	4.97e-2
200	5.00e-2	1.24e-1
500	6.84e-2	2.11e-1
1000	7.15e-2	2.46e-1
2000	6.81e-2	2.54e-1
5000	5.24e-2	2.00e-1
10000	3.56e-2	

Sputtered energy of Ga by T program: newtrim (Laszlo) ne= 8, na= 2

E _o (eV)	0°	65°
50	2.62e-4	2.48e-4
100	8.73e-4	1.60e-3
200	1.23e-3	3.29e-3
500	1.05e-3	3.64e-3
1000	7.22e-4	2.84e-3
2000	4.07e-4	1.84e-3
5000	1.76e-4	8.14e-4
10000	6.22e-5	

Particle reflection coefficient of T backscattered from Ga zl= 1, ml= 3.01, z2=31, m2= 69.72, sbe=2.97 eV, rho=5.91 g/cm**3 ef=0.90 eV. esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program: newtrim (Laszlo) ne= 8, na= 2

$E_0(eV)$	0°	65°
50	5.36e-1	7.81e-1
100	5.02e-1	7.30e-1
200	4.65e-1	6.88e-1
500	4.11e-1	6.31e-1
1000	3.61e-1	5.98e-1
2000	3.00e-1	5.44e-1
5000	2.08e-1	4.74e-1
10000	1.37e-l	

Energy reflection coefficient of T backscattered from Ga $ne=\ 8,\ na=\ 2$

$E_0(eV)$	0°	65°	
50	3.14e-1	6.08e-1	
100	2.85e-1	5.43e-1	
200	2.56e-1	4.90e-1	
500	2.17e-1	4.32e-1	
1000	1.82e-1	3.95e-1	
2000	1.42e-1	3.43e-1	
5000	8.66e-2	2.79e-1	
10000	4.90e-2		

Average depth (mean range) in \ddot{A} of T implanted in Ga ne= 8, na= 2

$E_0(eV)$	0°	65°
50	3.02e + 1	2.84e+1
100	4.60e+1	4.29e+1
200	7.17e + 1	6.61e+l
500	1.35e+2	1.23e+2
1000	2.26e+2	2.01e+2
2000	3.92e+2	3.39e+2
5000	8.45e+2	6.97e+2
10000	1.55e+3	

$T \to Ga$

T on Ga, Maxwellian velocity distribution, sheath potential 0 kT zl = 1. ml = 3.01, z2=31, m2= 69.72. sbe=2.97 eV, rho= 5.91 g/cm**3 ef=0.90 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program: newtrim(Laszlo) ne= 9

kT(eV)	Y	Y FR	Egp	R?sr	Re	Efe	range
10	1.11e-3	9.34e-5	1.69e4-0	7.29e-1	5.17e-1	1.42e+1	1.69e+l
20	7.80e-3	5.20e-4	2.67e + 0	6.98e-1	4.76e-1	2.73e+1	2.57e+1
50	3.46e-2	1.54e-3	4.34eR0	6.48e-1	4.22e-1	6.50e+1	4.47e+1
100	7.13e-2	2.03e-3	5.72e+0	6.07e-1	3.81e-1	1.26e+2	6.97eRl
200	1.08e-1	2.13e-3	7.88e4-0	5.73e-1	3.45e-1	2.41eR2	1.11e+2
500	1.42e-1	1.53e-3	1.08e + 1	5.11e-1	2.88e-1	5.66e+2	2.20e + 2
1000	1.58e-1	1.15e-3	1.46e+l	4.66e-1	2.44e-1	1.05e+3	3.75e4-2
2000	1.39e-1	6.18e-4	1.77e+l	4.04e-1	1.96e-l	1.92e+3	6.54e + 2
5000	1.18e-1	2.56e-4	2.16e + 1	3.14e-1	1.29e-1	4.07e + 3	1.38e+3

and in the t

T on Ga, Maxwellian velocity distribution, sheath potential 3 kT ne= 9 $\,$

kT(eV)	Y	Ye	Esp	RjV	Re	Еь	range
10	9.56e-3	3.68e-4	1.93e+0	5.70e-1	3.49e-1	3.06e+1	2.97e+1
20	3.07e-2	9.94e-4	3.23e+0	5.39e-1	3.21e-1	5.94e + 1	4.49eR1
50	6.50e-2	1.46e-3	5.60e + 0	4.84e-1	2.76e-1	1.43e+2	8.05e + 1
100	8.10e-2	1.24e-3	7.63e + 0	4.46e-1	2.45e-1	2.76eR2	1.33e+2
. 200	8.47e-2	8.85e-4	1.04e + 1	3.99e-1	2.12e-1	5.30e+2	2.22e+2
500	7.77e-2	3.98e-4	1.28e+1	3.18e-1	1.56e-l	1.23e + 3	4.55e+2
1000	6.48e-2	2.17e-4	1.67e + 1	2.49e-1	1.07e-l	2.16eR3	8.12e4-2
2000	4.91e-2	9.75e-5	1.99e+l	1.76e-1	6.65e-2	3.79e+3	1.46e + 3
5000	3.06e-2	2.81e-5	2.30e+1	8.45e-2	2.56e-2	7.58eR3	3.19e+3

T on Ga, Maxwellian velocity distribution, sheath potential 9 kT ne= 5 $\,$

kT(eV)	Y	Ye	Esp	Rw	Re	Еь	range
10	3.18e-2	9.61e-4	3.33e+0	5.15e-l	2.97e-1	6.35e + 1	4.85eR1
20	5.52e-2	1.34e-3	5.32e+0	4.75e-1	2.66e-1	1.23e+2	7.54e + 1
50	7.79e-2	1.17e-3	8.28e4-0	4.19e-1	2.25e-1	2.95e+2	1.43e+2
100	8.25e-2	7.50e-4	1.00e+1	3.69e-1	1.87e-l	5.58e4-2	2.40e+2
200	7.11e-2	4.15e-4	1.29e + 1	3.16e-1	1.52e-1	1.06e + 3	4.18eR2

Gei – y Gei

Sputtering yield of Ga by Ga zl=31, ml = 69.72. z2=31, m2= 69.72. sbe=2.97 eV. rho=5.91 g/cm**3 ef=2.47 eV. esb=2.97 eV. ca=1.00. kk0=kk0r=2. kdeel = kdee2=3. ipot=ipotr = 1 (KrC) program: newtrim (Laszlo). TPP 9/82 ne=12. na= 8

						-		
$E_0(eV)$	0°	30 ^u	45°	55°	60°	65°	70°	80 ^u
20	5.56e-4				4.94e-2			
50	4.60e-2				3.48e-1			
100	2.37e-1	5.25e-1	7.57e-l	8.28e-1	8.03e-1		6.18e-1	2.84e-1
150	4.43e-1	8.22e-1	1.12e-0	1.22e-0	1.19e-0		9.18e-1	
200	6.33e-1	1.07e-0	1.45e-0	1.56e-0	1.55e-0		1.20e-0	5.11e-1
300	9.46e-l	1.49e-0	1.98e-0	2.17e-0	2.16e-0		1.75e-0	
500	1.43e-0				3.19e-0			
900	2.08e-0	3.02e-0	3.94e-0	4.57e-0	4.716-0		4.28e-0	
1000	2.22e-0	3.14e-0	4.20e-0	4.84e-0	5.02e-0	4.97e-0	4.63e-0	2.37e-0
2000	3.10e-0				7.32e-0			
5000	4.07e-0				1.08e4-1			
10000	4.96e-0				1.41e+1			

-

Sputtered energy of Ga by Ga program: newtrim (Laszlo) ne=12. na= 8

$E_0 (eV)$	0°	30°	45°	55°	60°	65°	70°	80°
20	3.05e-5				9.85e-3			
50	2.13e-3				6.15e-2			
100	8.31e-3	3.53e-2	7.45e-2	1.01e-1	1.09erl		9.82e-2	4.68e-2
150	1.30e-2	4.43e-2	8.92e-2	1.21e-1	1.32e-1		1.21e-1	
200	1.59e-2	4.85e-2	9.64e-2	1.31e-1	1.45e-1		1.36e-1	6.10e-2
300	1.94e-2	5.23e-2	1.02e-1	1.40e-1	1.58e-1		1.59e-1	
500	2.21e-2				1.67e-1			
900	2.33e-2	5.43e-2	9.95e-2	1.44e-1	1.66e-l		1.96e-1	
1000	2.36e-2	5.30e-2	9.81e-2	1.41e-1	1.67e-l	1.86e-l	1.98e-1	1.24e-1
2000	2.23e-2				1.57e-l			
5000	1.73e-2				1.34e-1			
10000	1.49e-2				1.20e-1			

Particle reflection coefficient of backscattered Ga from Ga zl=31, ml = 69.72, z2=31, m2 = 69.72, sbe=2.97 eV, rho=5.91 g/cm**3 ef=2.47 eV, esb=2.97 eV, ca=1.00, kk0 = kk0r=2, kdeel = kdee2 = 3, ipot=ipotr = 1 (KrC) program: newtrim (Laszlo) ne=12, na= 8

Eq(eV)	0°	30 ^u	45°	55°	60°	65°	70°	80°
20	2.43e-5				1.14e-1			
50	3.46e-3				4.10e-1			
100	1.13e-2·	7.66e-2	2.08e-1	3.68e-1	4.73e-1		7.08e-1	9.19e-1
150	1.63e-2	8.10e-2	2.06e-1	3.54e-1	4.53e-1		6.96e-1	
200	1.92e-2	8.08e-2	1.96e-1	3.38e-1	4.32e-1		6.80e-1	9.28e-1
300	2.34e-2	7.91e-2	1.82e-1	3.11e-1	3.97e-1		6.39e-1	
500	2.43e-2				3.54e-1			
900	2.15e-2	6.48e-2	1.37e-1	2.39e-1	3.02e-1		5.09e-1	
1000	2.66e-2	6.42e-2	1.35e-l	2.33e-1	2.93e-1	3.81e-1	4.93e-1	8.37e-1
2000	2.05e-2				2.49e-1			
5000	1.71e-2				2.11e-1			
10000	1.16e-2				1.87e-1			

Energy reflection coefficient of Ga backscattered from Ga $ne\!=\!12,\ na\!=\!8$

...

Eo(eV)	0°	30°	45°	55°	60°	65°	70°	<u>80°</u>
20	3.37e-6				3.22e-2			
50	2.16e-4				1.41e-1			
100	6.01e-4	1.02e-2	4.67e-2	1.14e-1	1.72e-1		3.49e-1	6.00e-1
150	7.95e-4	9.89e-3	4.37e-2	1.07e-1	1.64e-1		3.52e-1	
200	8.77e-4	9.50e-3	4.03e-2	9.96e-2	1.53e-1		3.43e-1	6.55e-l
300	1.05e-3	8.61e-3	3.53e-2	8.79e-2	1.35e-1		3.16e-1	
500	9.41e-4				1.12e-1			
900	7.65e-4	5.72e-3	2.18e-2	5.54e-2	8.73e-2		2.24e-1	
1000	9.73e-4	6.00e-3	2.10e-2	5.36e-2	8.31e-2	1.34e-1	2.15e-1	5.84e-1
2000	6.36e-4				6.39e-2			
5000	6.81e-4				5.05e-2			
10000	2.77e-4				4.46e-2			

Average depth (mean range) in \ddot{A} of Ga implanted in Ga $ne\!=\!12,\ na\!=\!8$

$E_0(eV)$	0°	30°	45° '	55°	60°	65°	70°	80°
20	2.39e+0				7.67e-l			
50	4.24e+0				2.16e+0			
100	6.26e+0	5.52e+0	4.78e+0	4.21e- -0	3.89e+0		3.15e+0	2.09e+0
150	7.80e+0	6.95e4-0	6.08e + 0	5.44e-}-0	5.09e4-0		4.23e+0	
200	9.07e+0	8.12e4-0	7.13e+0	-6.42e + 0	6.01e+0		5.10e + 0	3.74e+0
300	1.12e+1	1.00e+1	8.84e+0	7.99e4-0	7.55e-}-0		6.51e-}-0	
500	1.46e+l				9.81e+0			
900	1.99e + 1	1.78e4-l	1.57e + 1	1.41e + 1	1.32e + 1		1.17e4-l	
1000	2.09e+1	1.88e+1	1.64e + 1	1.49e + 1	1.38e + 1	1.31e+1	1.22e + 1	1.05e + 1
2000	3.02e+1				2.02e+1			
5000	5.18e+1				3.34e+1			
10000	7.99e- -1				5.02e+1			

Ga on Ga, Maxwellian velocity distribution, sheath potential 0 kT zl = 31, ml = 69.72, z2 = 31, m2 = 69.72, sbe=2.97 eV. rho= 5.91 g/cm**3 ef=2.92 (2.47) eV, esb=2.97 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr=1 (KrC) program: testvmcx, newtrim(Laszlo) ne= 12

					_		
kT(eV)	Y	Ye	E sp	R _A r	R _E	Eb	range
2	2.99e-4	1.90e-4	2.54e + 0	6.95e-4	7.41e-4	4.27e + 0	1.53e-1
3	1.47e-3	8.26e-4	3.38e + 0	3.79e-3	3.38e-3	5.35e4-0	3.29e-1
5	8.53e-3	3.81e-3	4.46e4-0	1.91e-2	1.47e-2	7.67e + 0	6.74e-1
10	4.91e-2	1.55e-2	6.29e+0	7.73e-2	4.91e-2	1.27e + 1	1.26e4-0
20	1.77e-l	3.76e-2	8.48e4-0	1.66e-l	8.96e-2	2.16e + 1	2.24e + 0
50	5.77e-1	7.00e-2	1.22e + 1	2.54e-1	1.16e-l	4.58e + 1	4.42e + 0
100	1.10e-0	8.75e-2	1.59e + 1	2.75e-1	1.16e-l	8.40e + 1	6.83e + 0
200	1.90e-0	9.78e-2	2.05e+1	2.65e-1	1.01e-1	1.52e + 2	1.00e + 1
500	3.47e-0	9.96e-2	2.88e+1	2.31e-1	8.28e-2	3.61e + 2	1.63e+1
1000	4.98e-0	9.47e-2	3.82e + 1	2.05e-1	7.15e-2	6.99e- -2	2.36e+1
2000	6.67e-0	8.60e-2	5.10e + 1	1.88e-1	6.12e-2	1.29e + 3	3.50e+1
5000	9.45e-0	7.25e-2	7.56e4-1	1.58e-1	5.07e-2	3.16e + 3	5.89e + 1

Ga on Ga, Maxwellian velocity distribution, sheath potential 3 kT $ne\!=\!12$

kT(eV)	Y	Y _s	Esp	BjV	Re	Eb	range
2	1.02e-3	2.54e-4	2.49e + 0	8.79e-4	3.38e-4	3.85e+0	1.07e + 0
3	5.42e-3	1.15e-3	3.20e + 0	4.59e-3	1.55e-3	5.06e+0	1.52e+0
5	2.92e-2	4.85e-3	4.15e + 0	1.65e-2	4.73e-3	7.17e + 0	2.32e + 0
10	1.55e-l	1.73e-2	5.58e4-0	4.20e-2	9.64e-3	1.15e + 1	3.71e4-0
20	4.47e-1	3.28e-2	7.33e + 0	5.95e-2	1.07e-2	1.81e + 1	5.66e+0
50	1.16e-0	4.56e-2	9.83e+0	6.31e-2	8.67e-3	3.43eR1	9.32e + 0
100	1.93e-0	4.85e-2	1.26e + 1	5.89e-2	7.14e-3	6.05e+1	1.33e-H
200	2.90e-0	4.77e-2	1.64e-f-l	5.09e-2	5.54e-3	1.09e- -2	1.90e+1
500	4.27e-0	4.08e-2	2.39e + 1	4.20e-2	4.18e-3	2.49e + 2	3.18e + 1
1000	5.30e-0	3.63e-2	3.39e + 1	3.73e-2	4.22e-3	5.62e + 2	4.59e + 1
2000	6.07e-0	2.94e-2	4.78e- -1	2.49e-2	1.99e-3	7.88e + 2	7.28e + 1
5000	7.78e-0	2.10e-2	6.77e + 1	2.88e-2	2.78e-3	2.42e+3	1.36e + 2

Ga on Ga, Maxwellian velocity distribution, sheath potential 9 kT ne=11 $\,$

kT(eV)	Y	Ye	E sp	Rat	Be	Eb	range
1.4	1.25e-3	1.54e-4	1.90e + 0	4.93e-4	1.01e-4	3.15e + 0	1.75e+0
2	6.21e-3	7.25e-4	2.57e- -0	2.50e-3	4.47e-4	3.92e + 0	2.36e-f-0
5	1.17e-l	8.51e-3	4.00e+0	1.78e-2	2.36e-3	7.27e + 0	4.25e4-0
10	3.90e-1	1.91e-2	5.38e4-0	3.15e-2	3.26e-3	1.14e + 1	6.33e + 0
20	8.66e-1	2.82e-2	7.15e + 0	3.73e-2	3.13e-3	1.85eRl	9.15e + 0
50	1.79e-0	3.34e-2	1.03e + 1	3.83e-2	2.58e-3	3.71e + 1	1.48e+1
100	2.62e-0	3.17e-2	1.33eR1	3.36e-2	2.01e-3	6.57e + 1	2.13e + 1
200	3.58e-0	2.97e-2	1.83e + 1	2.90e-2	1.52e-3	1.15e+2	3.06e + 1
500	4.80e-0	2.36e-2	2.71e+1	2.40e-2	1.50e-3	3.43e + 2	5.31e + 1
1000	5.53e-0	1.89e-2	3.75e + 1	2.05e-2	1.23e-3	6.62e+2	7.81e+1
2000	6.41e-0	1.48e-2	5.07e+1	1.75e-2	1.37e-3	1.72e- -3	1.27e+2

 $\mathrm{Hg} \to \mathrm{Ga}$

 $Sputtering yield of Ga by Hg \\ zl = 80, ml = 200.59, z2=31, m2= 69.72, sbe=2.97 eV, rho=5.91 g/cm^{**3} \\ ef=2.10, esb=2.60, ca=1.00, kk0=kk0r=2, kdeel=kdee2 = 3, ipot=ipotr= 1 (KrG) \\ program: newtrim (Laszlo), TPP 9/82 \\ only low fluence! ne= 4, na= 1 \\$

E ₀ (eV)	0°
100	7.97e-2
200	3.20e-1
300	5.62e-1
400	7.90e-1

Bo(eV)	0°
100	2.17e-3
200	6.60e-3
300	9.58e-3
400	1.17e-2

Average depth (mean range) in \ddot{A} of Hg implanted in Ga only low fluence! ne= 4, na= 1

Ro(eV)	0°
100	1.02e+1
200	1.42e+1
300	1.70e+1
400	1.94e4-1

Mg ->Ge

Particle reflection coefficient of Mg backscattered from Ge zl = 12, ml = 24.00, z2=32, m2=72.59, rho=5.32 g/cm**3 ef=1.00 eV. esb = 1.00 eV. ca=1.00. kk0=2, kdeel = 3, ipot = 1 (KrC) program: trrange3 only low fluence! ne=2, na=1

$E_0(eV)$	0°
100000	3.55e-2
200000	1.94e-2

Energy reflection coefficient of Mg backscattered from Ge only low fluence! ne=2, na=1

$E_0(eV)$	0°
100000	6.72e-3
200000	3.44e-3

Average depth (mean range) in \ddot{A} of Mg implanted in Ge only low fluence! ne= 2, na= 1

Bo(eV)	0°
100000	1.21e+3
200000	2.30e+3

Al Ge

Particle reflection coefficient of Al backscattered from Ge zl = 13, ml = 27.00, z2=32, m2= 72.59, rho= 5.32 g/cm**3 ef=1.00 eV, esb = 1.00 eV, ca=1.00, kk0 = 2, kdeel=3, ipot = 1 (KrC) program: trrange3 only low fluence! ne= 2, na= 1

E _o (eV)	0°
100000	3.24e-2
200000	1.85e-2

Energy reflection coefficient of Al backscattered from Ge only low fluence! ne= 2, na= 1

$B_0(eV)$	0°
100000	5.60e-3
200000	3.02e-3

Average depth (mean range) in \ddot{A} of Al implanted in Ge only low fluence! ne= 2, na= 1

$E_0(eV)$	0°
100000	1.12e + 3
200000	2.14e + 3

.....

Si Ge

Particle reflection, coefficient of Si backscattered from Ge zl = 14, ml = 29.00) z2 = 32, m2 = 72.59. rho = 5.32 g/cm**3 ef=1.00 eV. esb = 1.00 eV. ea=1.00. kk0=2, kdeel=3, ipot = 1 (KrC) program: trrange3 only low fluence! ne= 2, na= 1

 B₀ (eV)
 0°

 100000
 3.02e-2

 200000
 1.74e-2

Energy reflection coefficient of Si backscattered from Ge only low fluence! ne= 2, na= 1

E ₀ (eV)	0°
100000	5.02e-3
200000	2.70e-3

Average depth (mean range) in \ddot{A} of Si implanted in Ge only low fluence! ne= 2, na= 1

E ₀ (eV)	0°
100000	1.04e+3
200000	1.99e+3

P Ge

Particle reflection coefficient of P backscattered from Ge zl = 15, ml = 31.00, z2=32, m2=72.59, rho=5.32 g/cm**3 ef=1.00 eV, esb = 1.00 eV, ca=1.00, kk0=2, kdeel=3, ipot = 1 (KrC) program: trrange3 only low fluence! ne= 2, na= 1

E ₀ (eV)	0°
100000	2.81e-2
200000	1.67e-2

Energy reflection coefficient of P backscattered from Ge only low fluence! ne= 2, na= 1

B _o (eV)	0°
100000	4.32e-3
200000	2.46e-3

Average depth (mean range) in Ä of P implanted in Ge only low fluence! ne= 2, na= 1

Bo(eV)	0°
100000	9.73e+2
200000	1.86e+3

$\mathrm{Ar}\to\mathrm{Ge}$

Sputtering yield of Ge by Ar 21=18, ml = 39.95. z2=29, m2= 63.54. sbe=3.88 eV. rho= 5.32 g/cm**3 ef=0.50 eV. esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr=1 (KrC) program: TPP 9/82 ne=12, na= 1

$B_0(eV)$	0°
50	4.42e-2
100	2.06e-1
200	4.88e-1
500	1.01e-0
1000	1.43e-0
2000	1.83e-0
5000	2.29e-0
10000	2.49e-0
20000	2.54e-0
50000	2.32e-0
100000	1.97e-0
200000	1.59e-0

Sputtered energy of Ge by Ar ne=12, na=1

$B_0(eV)$	0°
50	3.10e-3
100	1.04e-2
200	1.71e-2
500	2.17e-2
1000	2.08e-2
2000	1.81e-2
5000	1.37e-2
10000	1.04e-2
20000	7.61e-3
50000	4.16e-3
100000	2.36e-3
200000	1.23e-3

$$Ar \rightarrow Ge$$

ne=12., nu=		
$E_0(eV)$	0°	
50	2.44e-1	
100	1.93e-1	
200-	1.58e-1	
500	1.23e-1	
1000	1.02e-1	
2000	8.56e-2	
5000	7.11e-2	
10000	5.83e-2	
20000	4.29e-2	
50000	2.92e-2	
100000	1.91e-2	
200000	1.17e-2	

Energy reflection coefficient of Ar backscattered from Ge $ne\!=\!12,\ na\!=\!1$

Eo(eV)	Ö ⁷⁵	
50	2.72e-2	
100	2.22e-2	
200	1.80e-2	
500	1.38e-2	
1000	1.10e-2	
2000	9.52e-3	
5000	7.99e-3	
10000	6.38e-3	
20000	4.86e-3	
50000	3.42e-3	
100000	2.09e-3	
200000	1.29e-3	

Average depth (mean range) in \ddot{A} of Ar implanted in Ge $ne{=}12.,\ na{=}\ 1$

$E_0(eV)$	0°	
50	8.14e + 0	
100	1.05e+1	
200	1.37e4-1	
500	2.06e + 1	
1000	2.93e+1	
2000	4.32e+1	
5000	7.56e + 1	
10000	1.21e+2	
20000	2.03e+2	
50000	4.29e+2	
100000	8.00e+2	
200000	1.53e+3	

Bi -> Ge

Average depth (mean range) in \tilde{A} of Bi implanted in Ge zl=83, ml=209.00, z2=32, m2= 72.59, rho= 5.32 g/cm**3 ef=1.00 eV, esb=1.00 eV, ea=1.00, kk0=2, kdeel=3, ipot=1 (KrC) program: trrange3 only low fluence! ne= 2, na= 1

$E_0(eV)$	0°
200000	5.24e+2
400000	8.74e + 2

۹

$\mathrm{Xe} \to \mathrm{Zr}$

Sputtering yield of Zr by Xe 21 = 54, 1111= 131.30, 22=40, m2 = 91.22. sbe = 6.33 eV. $rho = 6.49 g/cm^{**}3$ ef=0.50 eV, esb = 0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr = 1 (KrC) program : IPP 9/82 ne= 8, na= 1

E ₀ (eV)	0°
50	9.70e-5
50	1.47e-4
50	1.27e-4
50	1.27e-4
100	1.13e-2
200	1.01e-1
500	4.33e-1
1000	8.46e-1

Sputtered energy of Zr by Xe ne= 8, na= 1

E ₀ (eV)	0°
50	4.10e-6
50	6.54e-6
50	5.75e-6
50	5.71e-6
100	4.32e-4
200	3.11e-3
500	9.16e-3
1000	1.29e-2

Particle reflection coefficient of Xe backscattered from Zr zl=54, ml=131.30, z2=40, m2=91.22, sb=6.33 eV, rho=6.49 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=l (KrC) program : ne= 8, na= 1

$E_0 (eV)$	0 ^u
50	7.60e-3
50	7.58e-3
50	6.70e-3
50	5.91e-3
100	5.25e-3
200	5.14e-3
500	4.49e-3
1000	4.27e-3

Energy reflection coefficient of Xe backscattered from Zr ne= 8, na= 1 $\,$

$E_0 (eV)$	o'
50	1.33e-4
50	1.32e-4
50	1.28e-4
50	1.30e-4
100	9.67e-5
200	7.31e-5
500	6.90e-5
1000	6.18e-5

Average depth (mean range) in \tilde{A} of Xe implanted in Zr ne= 7, na= 1

$E_0(eV)$	0°
50	5.43e+0
50	8.65e4-0
50	8.66e + 0
50	8.68e + 0
100	1.06e+l
200	1.34e-J-1
1000	2.50e + 1

 $D \rightarrow Nb$

Sputtering yield of Nb by D zl = 1, ml = 2.01, z2=41, m2= 92.91, sbe=7.59 eV. rho = 8.60 g/cm**3 ef=0.95 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3. ipot=ipotr=1 (KrC) program: testvmcx, TPP 9/82 ne= 7, na= 1

Bp(eV)	Ö
140	2.77e-4
200	1.69e-3
300	4.53e-3
500	8.70e-3
1000	1.34e-2
2000	1.44e-2
5000	1.23e-2

Sputtered energy of Zr by Xe program: testvmcx ne= 7, na= 1

Eq(eV)	Ö ³
140	2.65e-6
200	2.60e-5
300	7.56e-5
500	1.40e-4
1000	1.69e-4
2000	1.26e-4
5000	5.82e-5

Particle reflection coefficient of D backscattered from Nb zl=1, ml=2.01, z2=41, m2=92.91, sb=7.59 eV, rho=8.60 g/cm**3 ef=0.95 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx ne= 7, na= 1

$E_0(eV)$	0°
140	5.54e-1
200	5.34e-1
300	5.09e-1
500	4.75e-1
1000	4.20e-1
2000	3.56e-1
5000	2.54e-1

Energy reflection coefficient of D backscattered from Nb $ne=\ 7,\ na=\ 1$

$E_{o}(eV)$	0°
140	3.36e-1
200	3.18e-1
300	2.96e-1
500	2.68e-1
1000	2.25e-1
2000	1.78e-1
5000	1.11e-1

Average depth (mean range) in \ddot{A} of D implanted in Nb ne= 7, na= 1

E ₀ (eV)	0°
140	5.55e4-1
200	6.87e-pl
300	8.82e + 1
500	1.23e+2
1000	1.95e+2
2000	3.23e+2
5000	6.55e+2

Н -4-Мо

E ₀ (eV)	0°	15 ^u	25°	30°	45°	50°	60°	70°	75°	80 ⁰	85 ^u	87°
2000	5.99e-3	5.89e-3		7.06e-3	1.05e-2		1.75e-2	2.84e-2	3.87e-2	5.30e-2	5.16e-2	1.90e-2
50000	1.36e-3		1.94e-3			4.95e-3			1.91e-2	3.01e-2	6.63e-2	9.43e-2

$E_0(eV)$	88°	89°
50000	1.09e-1	6.30e-2

Sputtered energy of Mo by H program: TESTVMCX ne= 2, na=12

E _o (eV)	0 ^d	15°	30°	45°	60 ^u	70°	75°	80°	85°	87 ^u	88°	89 ^u
2000	3.25e-5	3.23e-5	3.74e-5	6.02e-5	9.92e-5	1.67e-4	2.46e-4	3.54e-4	4.16e-4	1.77e-4		
50000								2.99e-5	6.27e-5	8.93e-5	1.08e-4	7.12e-5

Particle reflection coefficient of H backscattered from Mo zl= 1, ml= 1.01, z2=42, m2= 95.94, sbe = 6.83 eV, rho = 10.21 g/cm**3 ef=0.95. 0.98 eV, esb=1.00 eV, ca=1.00, kk0 = kk0r=2, kdeel = 3, 4, kdee2 = 3, ipot=ipotr= 1 (KrC) program: TESTVMCX ne= 2, na=12

E _o (eV)	0°	15°	30°	45°	60°	70°	75°	80°	85°	87°	88°	89°
2000	3.37e-1	3.49e-1	3.84e-1	4.45e-1	5.37e-1	6.19e-1	6.69e-l	7.35e-1	8.63e-1	9.66e-l		
50000								4.15e-1	5.65e-l	6.59e-1	7.29e-1	8.91e-1

Energy reflection coefficient of H backscattered from Mo $ne=\ 2,\ na=1\ 2$

E ₀ (eV)	0°	15°	30°	45°	60°	70°	75 ⁶	80 ^u	85°	87°	88°	89 ^u
2000	1.59e-1	1.66e-l	1.92e-1	2.38e-1	3.21e-1	4.06e-1	4.68e-1	5.58e-1	7.53e-1	9.21e-1		
50000								1.54e-1	2.88e-1	4.02e-1	5.06e-1	7.84e-1

Average depth (mean range) in \ddot{A} of H implanted in Mo $ne=\ 2,\ na=12$

E ₀ (eV)	0°	15°	30°	45°	60 ^u	70°	75°	80°	85°	87 ^ŏ	88°	89°
2000	2.51e+2	2.49e+2	2.42e + 2	2.34e + 2	2.24e-f-2	2.19e + 2	2.17e + 2	2.14e + 2	2.14e + 2	2.14e+2		
50000								8.18e + 2	7.73e + 2	7.66e + 2	7.62e + 2	7.73e + 2

D -> Mo

Sputtering yield of Mo by D zl = 1. ml = 2.01, z2=42, m2= 95.94, sbe=6.83 eV, rho=10.21 g/cm**3 ef=0.98 eV, esb=1.00 eV, ca=1.00, kkO=kkOr=2, kdeel=3, 4, kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx, trspvlcs, newtrim (Laszlo), TPP 9/82 ne=12, na=10

Eo(eV)	0°	25°	50°	65°	75°	80°	85°	87 ^u	88°	89°
120	1.50e-4			1.34e-4						
130	3.35e-4			3.00e-4						
140	5.81e-4			5.63e-4						
150	8.72e-4			8.62e-4						
170	1.52e-3			1.62e-3						
200	2.86e-3			3.26e-3						
500	1.14e-2			2.42e-2						
1000	1.67e-2			4.59e-2						
2000	1.69e-2			6.51e-2						
5000	1.46e-2			6.30e-2						
50000	3.50e-3	4.70e-3	1.Ole-2		4.38e-2	6.84e-2	1.34e-1	1.82e-1	1.98e-1	1.16e-l
100000	2.50e-3	2.62e-3	4.80e-3		2.60e-2	4.59e-2	9.15e-2	1.41e-l	1.58e-l	1.60e-l

Sputtered energy of Mo by D program: testvmcx, trspvlcs, newtrim (Laszlo) ne=12, na= 7

$E_0(eV)$	0°	65°	80°	85°	87°	88°	89°
120	1.14e-6	1.21e-6					
130	3.16e-6	2.93e-6					
140	6.01e-6	6.39e-6					
150	1.00e-5	1.06e-5					
170	2.05e-5	2.38e-5					
200	4.35e-5	5.18e-5					
500	1.75e-4	3.80e-4					
1000	2.02e-4	5.58e-4					
2000	1.37e-4	5.87e-4					
5000	6.46e-5	3.15e-4					
50000			7.17e-5	1.61e-4	2.43e-4	2.53e-4	1.74e-4
100000			3.26e-5	7.83e-5	1.19e-4	1.24e-4	1.28e-4

$D \to Mo$

Particle reflection coefficient of D backscattered from Mo zl = 1, ml = 2.01, z2=42, m2= 95.94, sbe=6.83 eV. rbo = 10.21 g/cm**3 ef=0.98 eV, esb = 1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = 3, 4, kdee2=3, ipot=ipotr= 1 (KrC) program: testvmcx, trspvlcs, newtrim (Laszlo) ne=13, na= 7

$E_0(eV)$	0 ^ö	65°	80°	85°	87 ^u	88 ^u	89°
20	6.71e-1						
120	5.68e-1	7.76e-1					
130	5.65e-1	7.70e-1					
140	5.59e-1	7.65e-1					
150	5.56e-1	7.61e-l					
170	5.48e-1	7.52e-1					
200	5.41e-1	7.43e-1					
500	4.84e-1	6.83e-1					
1000	4.26e-1	6.39e-1					
2000	3.63e-1	5.89e-1					
5000	2.60e-1	5.19e-1					
50000			4.46e-1	5.96e-1	6.81e-1	7.44e-1	8.95e-1
100000			3.67e-1	5.34e-1	6.35e-1	6.92e-1	8.21e-1

Energy reflection coefficient of D backscattered from Mo $ne\!=\!13,\ na\!=7$

E ₀ (eV)	0°	65°	80°	85°	87°	88°	89°	
20	4.45e-1							
120	3.50e-1	6.05e-1						
130	3.46e-1	5.97e-1						
140	3.42e-1	5.90e-1						
150	3.38e-1	5.84e-1						
170	3.32e-1	5.73e-1						
200	3.24e-1	5.60e-1						
500	2.75e-1	4.90e-1						
1000	2.29e-1	4.38e-1						
2000	1.83e-1	3.85e-1						
5000	1.14e-1	3.10e-1						
50000			1.86e-l	3.26e-1	4.38e-1	5.38e-1	7.99e-1	
100000			1.16e-1	2.46e-1	3.58e-1	4.49e-1	6.52e-1	

Average depth (mean range) in of D implanted in Mo $ne\!=\!13,\ na\!=\ 7$

Bo (eV)	0°	65°	80°	85°	87°	88°	89°
20	1.59e + 1						
120	4.40e+1	4.19e+1					
130	4.62e + 1	4.39e+1					
140	4.82e-H	4.58e+1					
150	5.03e + 1	4.76e+1					
170	5.41e + 1	5.14e+1					
200	5.99e+1	5.66e- -1					
500	1.06e + 2	9.88e4-1					
1000	1.70e + 2	1.55e4-2					
2000	2.80e+2	2.50e+2					
5000	5.67e + 2	4.81e+2					
50000			1.10e + 3	1.05e+3	1.04e4-3	1.05e+3	1.06e+3
100000			1.55e+3	1.43e+3	1.42e+3	1.41e+3	1.41e4-3

D on Mo, Maxwellian velocity distribution, sheath potential 0 kT zl = 1, ml = 2.01, z2=42, m2= 95.94, sbe=6.89 eV, rho = 10.20 g/cm**3 ef=0.90 eV, esb = 1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr = 1 (KrC) program: newtrim (Laszlo) ne= 8

kT(eV)	Y	YE	E sp	RN	Re	Bfe	range
40	3.27e-4	1.52e-5	3.71e + 0	7.26e-1	5.09e-1	5.60e + 1	3.45e+1
50	7.49e-4	3.12e-5	4.16ed-0	7.14e-1	4.93e-1	6.92e+1	3.91e+1
100	4.57e-3	1.42e-4	6.23e + 0	6.71e-l	4.46e-1	1.33e+2	5.86e4-1
200	1.21e-2	2.83e-4	9.40e+0	6.31e-1	4.00e-1	2.54e+2	9.03e + 1
500	2.77e-2	3.80e-4	1.37e-f-l	5.66e-l	3.36e-1	5.95e+2	1.66e + 2
1000	3.57e-2	2.77e-4	1.56e+l	5.18e-1	2.87e-1	1.12e+3	2.73e + 2
2000	3.81e-2	2.09e-4	2.19e+1	4.53e-1	2.27e-1	2.00e4-3	4.49e-J-2
5000	3.73e-2	1.05e-4	2.82e+1	3.61e-1	1.55e-l	4.29e-f-3	9.09e+2

D on Mo, Maxw'ellian velocity distribution, sheath potential 3 kT ne= 9 $\,$

kT(eV)	Y	Ye	Bsp	RN	Re	Eb	range
20	1.86e-4	4.06e-6	2.19e+0	6.09e-1	3.93e-1	6.45e+l	3.90e+1
30	9.74e-4	2.07e-5	3.19e + 0	5.87e-1	3.70e-1	9.46e + 1	4.95e+1
50	4.51e-3	8.39e-5	4.65e+0	5.57e-1	3.40e-1	1.53e+2	6.72e + 1
100	1.23e-2	1.97e-4	8.00ed-0	5.14e-1	3.02e-1	2.94e+2	1.04e+2
200	1.77e-2	2.15e-4	1.22e+1	4.59e-1	2.57e-1	5.61e+2	1.66e+2
500	2.15e-2	1.49e-4	1.72e + 1	3.79e-1	1.92e-1	1.26e4-3	3.21e+2
1000	1.99e-2	8.92e-5	2.24e + 1	3.06e-1	1.40e-1	2.29e+3	5.44e+2
2000	1.54e-2	3.93e-5	2.55e4-1	2.16e-1	8.58e-2	3.97e4-3	9.46e+2
4000	1.05e-2	1.43e-5	2.73e+1	1.35e-1	4.52e-2	6.69eR3	1.66e+3

T -> Mo

Sputtering yield of Mo by T zl = 1, ml = 3.02. z2=42, m2 = 95.94. sbe = 6.89 eV, rho = 10.20 g/cm**3 ef=0.90 eV. esb = 1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3. ipot=ipotr=1 (KrC) program: newtrim, TPP 9/82 ne= 7, na= 2

$E_0(eV)$	0°	65°
100	9.32e-4	7.36e-4
170	6.67e-3	8.00e-3
300	1.59e-2	2.93e-2
500	2.20e-2	5.84e-2
1000	2.73e-2	9.33e-2
2000	2.90e-2	1.01e-1
5000	2.58e-2	9.56e-2

Sputtered energy of Mo by T program: newtrim ne= 7, na= 2

E ₀ (eV)	0°	65°
100	1.45e-5	1.28e-5
170	1.57e-4	2.00e-4
300	3.37e-4	7.16e-4
500	4.43e-4	1.18e-3
1000	4.31e-4	1.44e-3
2000	2.78e-4	1.09e-3
5000	1.32e-4	5.25e-4

$E_0 (eV)$	0°	65°
100	5.58e-1	7.77e-l
170	5.33e-1	7.40e-1
300	4.98e-1	7.08e-1
500	4.68e-1	6.83e-1
1000	4.20e-1	6.37e-1
2000	3.61e-1	5.94e-1
5000	2.68e-1	5.21e-1

L

Energy reflection coefficient of T backscattered from Mo $ne=\ 7,\ na=\ 2$

E ₀ (eV)	0°	65°
100	3.39e-1	6.07e-1
170	3.16e-1	5.58e-1
300	2.88e-1	5.20e-1
500	2.63e-1	4.89e-1
1000	2.27e-1	4.34e-1
2000	1.83e-1	3.99e-1
5000	1.21e-1	3.20e-1

Average depth (mean range) in of T implanted in Mo ne = 7, na= $\,2$

E ₀ (eV)	0°	65°
100	3.78e + 1	3.58e+1
170	5.21e + 1	4.89e+1
300	7.49e + 1	6.96e+1
500	1.05e + 2	9.68e+1
1000	1.70e+2	1.55e + 2
2000	2.88e + 2	2.56e+2
5000	5.95e+2	5.08e-f-2

$T \ -> \ Mo$

T on Mo. Maxwellian velocity distribution, sheath potential 0 kT zl = 1. ml = 2.01, z2=42. m2 = 95.94, sbe=6.89 eV. rbo=10.20 g/cm**3 ef=0.90 eV. esb = 1.00 eV. cas=1.00, kk0 = kk0r=2. kdeel = kdee2=3. ipot=ipotr=1 (KrC) program: newtrim (Laszlo) ne=10

kT(eV)	Y	YE	Rsn	RN	Rfi	Bb	range
30	5.42e-4	3.62e-5	4.02e-}-0	7.28e-1	5.12e-1	4.22e + 1	2.76e+1
40	1.49e-3	8.85e-5	4.77e+0	7.11e-1	4.92e-1	5.53e + 1	3.26e + 1
70	6.27e-3	2.88e-4	6.46e-f-0	6.81e-1	4.56e-1	9.42e + 1	4.57e+1
100	1.10e-2	4.18e-4	7.60e+0	6.58e-1	4.33e-1	1.32e+2	5.66e + 1
170	2.23e-2	6.64e-4	1.01e + 1	6.29e-1	4.01e-1	2.15e+2	7.87e + 1
300	3.81e-2	8.09e-4	1.28e-(-1	5.92e-1	3.64e-1	3.70e+2	1.15e+2
500	4.99e-2	8.12e-4	1.64e + 1	5.62e-1	3.38e-1	6.03e+2	1.67e-(-2
1000	5.75e-2	6.24e-4	2.17e-f-l	5.06e-l	2.83e-1	1.12e+3	2.82e-f-2
2000	6.42e-2	4.20e-4	2.60e-}-1	4.51e-1	2.31e-1	2.03e+3	4.73e+2
5000	5.52e-2	2.01e-4	3.63e+1	3.69e-1	1.68e-1	4.54e + 3	9.86e+2

T on Mo. Maxwellian velocity distribution, sheath potential 3 kT ne= $10\,$

kT(eV)	Y	Ye	E _{sp}	RN	Re	Rb	range
20	7.85e-4	2.65e-5	3.37e + 0	5.90e-1	3.73e-1	6.32e + 1	3.71e+1
40	7.49e-3	2.18e-4	5.81e+0	5.55e-l	3.39e-1	1.22e-}-2	5.64e + 1
70	1.79e-2	4.42e-4	8.61e-t-0	5.21e-1	3.09e-1	2.08e+2	8.06e+1
100	2.48e-2	5.30e-4	1.07e-f-l	5.00e-1	2.94e-1	2.95e+2	1.02e + 2
170	3.13e-2	5.00e-4	1.35e+1	4.65e-l	2.62e-1	4.78e + 2	1.48e+2
300	3.40e-2	4.07e-4	1.80e+1	4.22e-1	2.30e-1	8.18e + 2	2.24e4-2
500	3.44e-2	2.92e-4	. 2.12e-J-l	3.78e-1	1.96e-l	1.30e+3	3.31e- -2
1000	3.23e-2	1.66e-4	2.57e + 1	3.11e-1	1.47e-l	2.37e+3	5.75e+2
2000 '	2.51e-2	8.08e-5	3.21e- -1	2.27e-1	9.50e-2	4.18e-J-3	1.02e-)-3
5000	1.36e-2	2.Ole-5	3.71e + 1	1.25e-1	4.19e-1	8.39e+3	_2.22e+3

He -> Mo

Sputtering yield of Mo by He zl = 2, ml = 4.00, z2 = 42, m2 = 95.94, sbe = 6.83 eV, rho = 10.21 g/cm**3 ef=0.50 eV. esb = 0.00 eV, ca=1.00. kk0 = kk0r=2. kdeel = 5, kdee2 = 3. ipot=ipotr=1 (KrC) program: testvmcx. TPP 9/82 ne= 2, na = 9

ne=	2.	na =	9	

E _o (eV)	0 ^u	25 ^u	50°	75°	80°	85 ^u	87 ^u	88 ^u	89°
50000	2.64e-2	3.50e-2	6.95e-2	2.45e-1	3.75e-1	6.17e-l	6.56e-l	5.91e-l	9.49e-2
100000	1.67e-2	2.27e-2	3.97e-2	1.64e-l	2.40e-1	4.47e-1	6.04e-1	6.10e-1	3.65e-1

Sputtered energy of Mo by He program: testvmcx ne= 2. na= 5

$E_0(eV)$	80 ^u	85 ^u	87 ^u	88 ^u	89 ^u
50000	5.93e-4	1.12e-3	1.31e-3	1.27e-3	2.04e-4
100000	2.70e-4	5.08e-4	6.78e-4	7.90e-4	5.06e-4

Particle reflection coefficient of He backscattered from Mo zl = 2. ml = 4.00. z2 = 42. m2 = 95.94. sbe = 6.83 eV, rho = 10.21 g/cm**3 ef=0.50 eV. esb = 0.00 eV, ca=1.00. kk0 = kk0r=2. kdeel = 5. kdee2 = 3. ipot=ipotr=1 (KrC) program: testvmcx ne= 2, na= 5

E ₀ (eV)	80°	85°	87°	88°	89°
50000	4.85e-1	6.14e-1	6.98e-1	7.93e-1	9.73e-1
100000	4.15e-1	5.77e-1	6.61e-1	7.42e-1	8.88e-1

Energy reflection coefficient of He backscattered from Mo $ne=\ 2,\ na=\ 5$

E ₀ (eV)	80°	85°	87°	88°	89°
50000	2.41e-1	3.77e-1	4.94e-1	6.30e-1	9.47e-1
100000	1.70e-1	3.15e-1	4.23e-1	5.29e-1	7.88e-1

Average depth (mean range) in of He implanted in Mo ne= 2, na= 5 $\,$

Eo(eV)	80°	85°	87°	88°	89°
50000	6.57e+2	6.23e + 2	6.43e + 2	6.50e + 2	6.73e + 2
100000	9.82e + 2	9.31e + 2	9.08e + 2	9.18e + 2	9.29e + 2

He -> Mo

Sputtering yield of Mo (7 isotopes) by He zl = 2. ml = 4.00, z2=42. sbe = 6.83 eV. tho = 10.21 g/cm**3 ef=0.20 eV, esb=0.00 eV, ca=1.00, kk0 = kk0r=2, kdeel = kdee2 = 3, ipot=ipotr=1 (KrC) m2 = 91.91, 93.91, 94.91, 95.90, 96.91, 97.91, 99.91 c2=0.1483, 0.0925, 0.1592, 0.1668, 0.0956, 0.2413, 0.0963 a]pha=0.00program: trvmc95 ne=12, na = 1, n(m2) = 7

Eo(eV)	m2=91.91	93.91	94.91	95.90	96.91	97.91	99.91	nh
70	1.466e-4	7.796e-5	1.226e-4	1.176e-4	6.176e-5	1.432e-4	4.763e-5	850000000
70	1.470e-4	7.734e-5	1.224e-4	1.180e-4	6.169e-5	1.422e-4	4.737e-5	850000000
70	1.465e-4	7.712e-5	1.228e-4	1.176e-4	6.205e-5	1.419e-4	4.791e-5	600000000
100	9.730e-4	5.651e-4	9.390e-4	9.465e-4	5.251e-4	1.274e-3	4.730e-4	600000000
100	9.730e-4	5.660e-4	9.387e-4	9.466e-4	5.239e-4	1.274e-3	4.736e-4	190000000
100	9.699e-4	5.665e-4	9.394e-4	9.493e-4	5.219e-4	1.276e-3	4.721e-4	160000000
200	4.490e-3	2.711e-3	4.586e-3	4.722e-3	2.664e-3	6.620e-3	2.560e-3	350000000
500	1.018e-2	6.231e-3	1.064e-2	1.106e-2	6.279e-3	1.571e-2	6.168e-3	250000000
1000	1.347e-2	8.282e-3	1.415e-2	1.472e-2	8.379e-3	2.101e-2	8.275e-3	150000000
2000	1.535e-2	9.469e-3	1.619e-2	1.687e-2	9.610e-3	2.413e-2	9.514e-3	90000000
5000	1.519e-2	9.366e-3	1.604e-2	1.670e-2	9.542e-3	2.393e-2	9.451e-3	50000000
5000	1.518e-2	9.369e-3	1.603e-2	1.676e-2	9.546e-3	2.403e-2	9.493e-3	15000064

Sputtered energy of Mo (7 isotopes) by He ne=12, na= 1, n(m2)= 7

Eo(eV)	m2=91.91	93.91	94.91	95.90	96.91	97.91	99.91	nh
70	2.713e-6	1.348e-6	2.050e-6	1.897e-6	9.614e-7	2.156e-6	6.657e-7	850000000
70	2.714e-6	1.337e-6	2.046e-6	1.910e-6	9.611e-7	2.144e-6	6.634e-7	850000000
70	2.709e-6	1.333e-6	2.049e-6	1.902e-6	9.649e-7	2.133e-6	6.744e-7	600000000
100	2.767e-5	1.555e-5	2.538e-5	2.518e-5	1.375e-5	3.283e-5	1.181e-5	600000000
100	2.766e-5	1.559e-5	2.550e-5	2.515e-5	1.373e-5	3.285e-5	1.178e-5	190000000
100	2.746e-5	1.553e-5	2.541e-5	2.527e-5	1.369e-5	3.289e-5	1.177e-5	160000000
200	1.431e-4	8.493e-5	1.422e-4	1.449e-4	8.128e-5	2.000e-4	7.604e-5	350000000
500	2.500e-4	1.511e-4	2.560e-4	2.641e-4	1.491e-4	3.707e-4	1.436e-4	250000000
1000	2.389e-4	1.447e-4	2.459e-4	2.548e-4	1.439e-4	3.591e-4	1.399e-4	150000000
2000	1.825e-4	1.112e-4	1.887e-4	1.955e-4	1.107e-4	2.769e-4	1.083e-4	90000000
5000	9.999e-5	6.063e-5	1.035e-4	1.072e-4	6.139e-5	1.520e-4	5.911e-5	50000000
5000	9.963e-5	6.116e-5	1.035e-4	1.075e-4	6.100e-5	1.523e-4	5.950e-5	15000064

He -4-Mo

Particle reflection coefficient of He backscattered from Mo (7 isotopes) zl= 2, ml = 4.00, z2 = 42, sbe = 6.83 eV, rho = 10.21 g/cm**3 ef=0.20 eV, esb = 0.00 eV, ca=1.00. kk0 = kk0r=2, kdeel = kdee2=3, ipot=ipotr = 1 (KrC) m2 = 91.91, 93.91, 94.91, 95.90, 96.91, 97.91, 99.91 c2=0.1483, 0.0925, 0.1592, 0.1668, 0.0956, 0.2413, 0.0963 alpha=0.00 program: trvmc95 ne=12, na= 1

-

$E_0 (eV)$	0°	nh
70	5.9232e-1	850000000
70	5.9231e-1	850000000
70	5.9231e-1	600000000
100	5.7147e-l	600000000
100	5.7148e-1	190000000
100	5.7146e-l	160000000
200	5.3703e-1	350000000
500	4.9565e-1	250000000
1000	4.6152e-1	150000000
2000	4.2144e-1	90000000
5000	3.5541e-1	50000000
5000	3.5512e-1	15000064

Energy reflection coefficient of He backscattered from Mo (7 isotopes) ne=12, na= 1 $\,$

$E_0(eV)$	0°	nh
70	3.6532e-1	850000000
70	3.6532e-1	850000000
70	3.6533e-1	600000000
100	3.4733e-1	600000000
100	3.4735e-1	190000000
100	3.4733e-1	160000000
200	3.1877e-1	350000000
500	2.8680e-1	250000000
1000	2.6180e-1	150000000
2000	2.3298e-1	90000000
5000	1.8597e-1	50000000
5000	1.8583e-1	15000064

Average depth (mean range) in \ddot{A} of He implanted in Mo (7 isotopes) ne=12, na= 1

E ₀ (eV)	0°	nh
70	2.0181e+1	850000000
70	2.0180e4-1	850000000
70	2.0179e + 1	600000000
100	2.4804e + 1	600000000
100	2.4804e + 1	190000000
100	2.4805e + 1	160000000
200	3.7600e-f-l	350000000
500	6.7532e + 1	250000000
1000	1.0880e + 2	150000000
2000	1.8160e + 2	90000000
5000	3.7809e + 2	50000000
5000	3.7819e + 2	15000064

C -4- Mo

C on Mo, Maxwellian velocity distribution, sheath potential 9 kT zl = 6. ml = 12.01. z2=42. m2= 95.94. sbe=6.83 eV. rho = 10.21 g/cm**3 ef=0.98 eV. esb = 1.00 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3. ipot=ipotr=1 (KrC) program: trvmc only low fluence! ne= 4

kT(eV)	Y	YE	Egp	Rtv	R _E	Eb	range
5	1.19e-2	8.05e-4	3.71e+0	5.53e-1	2.65e-1	2.64e + 1	7.44e+0
10	7.12e-2	4.66e-3	7.21e + 0	4.85e-1	2.22e-1	5.03e + 1	1.07e + 1
20	1.80e-1	9.44e-3	1.15e-j-l	4.29e-1	1.88e-1	9.65e + 1	1.55e + 1
40	3.22e-1	1.18e-2	1.61e + 1	3.90e-1	1.64e-l	1.85e+2	2.31e+1

Mo 0

 $Sputtering yield of Mo by O) \\ zl= 8, ml = 16.00, z2=42, m2= 95.94, sbe=6.83 eV, rho=10.20 g/cm**3 \\ ef=0.95 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) \\ program: TPP 9/82 \\ only low fluence! \\ ne= 9, na= 1 \\$

$E_0(eV)$	0°	
20	2.80e-4	
30	3.60e-3	
40	1.22e-2	
50	2.15e-2	
70	5.48e-2	
100	1.07e-l	
200	2.28e-1	
500	4.51e-1	
1000	6.42e-1	

$$Ne \longrightarrow Mo$$

Sputtering yield of Mo (7 isotopes) by Ne zl = 10, ml = 20,18, z2 = 42, she = 6.83 eV. rho = 10.21 g/cm**3 ef=0.20 eV. esb = 0.00 eV. ca=1.00, kkO=kkOr=2, kdeel = kdee2 = 3. ipot=ipotr = 1 (KrC) m2= 91.91, 93.91. 94.91, 95.90, 96.91, 97.91, 99.91 c2 = 0.1483, 0.0925, 0.1592, 0.1668, 0.0956, 0.2413, 0.0963 elaber 0.00 alpha=0.00 program: trvmc95 ne= 2, na= 1, n(m2)= 7

					and the second			
$E_0(eV)$	m2=91.91	93.91	94.91	95.90	96.91	97.91	99.91	nh
100	1.499e-2	9.102e-3	1.546e-2	1.597e-2	9.033e-2	2.252e-2	8.754e-3	350000000
100	1.494e-2	9.083e-3	1.541e-2	1.592e-2	9.004e-3	2.245e-2	8.730e-3	350000000

Sputtered energy of Mo (7 isotopes) by Ne ne= 2, na= 1, n(m2)= 7

								-
Eq(eV)	m2 = 91.91	93.91	94.91	95.90	96.91	97.91	99.91	nh
100	1.162e-3	6.982e-4	1.178e-3	1.210e-3	6.809e-4	1.688e-3	6.487e-4	350000000
100	1.157e-3	6.951e-4	1.173e-3	1.205e-3	6.770e-4	1.680e-3	6.455e-4	350000000

Particle reflection coefficient of Ne backscattered from Mo (7 isotopes) zl = 10, ml= 20.18, z2=42, sbe=6.83 eV, rho=10.21 g/cm**3 ef=0.20 eV, esb = 0.00 eV, ca=1.00, kk0= kk0r=2, kdeel = kdee2 = 3, ipot=ipotr= 1 (KrC) m2= 91.91, 93.91, 94.91, 95.90, 96.91, 97.91, 99.91 c2=0.1483, 0.0925, 0.1592, 0.1668, 0.0956, 0.2413, 0.0963 alpha=0.00 program: trvmc95 ne= 2, na= 1

 O
 nh

 4.3782e-1
 35000000

 4.3782e-1
 35000000
 E₀ (eV) 100 100 350000000

Energy reflection coefficient of Ne backscattered from Mo (7 isotopes) ne= 2, na= 1 $\,$

E ₀ (eV)	06	nh		
100	1.5043e-1	350000000		
100	1.5043e-1	350000000		

Average depth (mean range) in \ddot{A} of Ne implanted in Mo (7 isotopes) ne= 2, na= 1

Eq(eV)	0°	nh
100	7.6080e + 0	350000000
100	7.6258e+0	350000000
$$Ar \rightarrow Mo$$

Sputtering yield of Mo (2 isotopes) by Ar zl = 18, ml = 39.95, z2=42, m2= 92.00, 100.00, sbe=6.83 eV. rho=10.21 g/cm**3 ef=0.50 eV, esb = 0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr = 1 (KrC) alpha=0.00

program: testvmcx, trvmc ne= 8, na= 1, n(m2) = 2

E _o (eV)	m2 = 92.00	100.00	92	100	nh
5000	1.096e-0	1.065e-0	0.5000	0.5000	2000000
5000	1.096e-0	1.066e-0	0.5000	0.5000	2000000
5000	1.094e-0	1.065e-0	0.5000	0.5000	1500000
5000	1.078e-0	1.079e-0	0.4930	0.5070	2000000
5000	1.079e-0	1.082e-0	0.4920	0.5080	2000000
5000	1.072e-0	1.086e-0	0.4900	0.5100	2000000
10000	1.243e-0	1.211e-0	0.5000	0.5000	1600000
10000	1.225e-0	1.225e-0	0.4935	0.5065	1700000

Sputtered energy of Mo (2 isotopes) by Ar ne= 8, na= 1, n(m2)= 2

$E_0(eV)$	m2 = 92.00	100.00	92	100	nh
5000	9.773e-3	9.226e-3	0.5000	0.5000	2000000
5000	9.786e-3	9.239e-3	0.5000	0.5000	2000000
5000	9.753e-3	9.253e-3	0.5000	0.5000	1500000
5000	9.638e-3	9.362e-3	0.4930	0.5070	2000000
5000	9.643e-3	9.395e-3	0.4920	0.5080	2000000
5000	9.576e-3	9.431e-3	0.4900	0.5100	2000000
10000	7.501e-3	7.061e-3	0.5000	0.5000	1600000
10000	7.366e-3	7.134e-3	0.4935	0.5065	1700000

Particle reflection coefficient of Ar backscattered from Mo (2 isotopes) zl = 18, ml = 39.95, z2=42, m2 = 92.00, 100.00, sbe=6.83 eV, rho = 10.21 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) alpha=0.00 ev, esb=0.00 eV, alpha=0.00 program: testvmcx, trvmc ne= 8, na= 1

.

$E_0(ev)$	0 -	92	100	nn
5000	1.2234e-1	0.5000	0.5000	2000000
5000	1.2257e-1	0.5000	0.5000	2000000
5000	1.2208e-1	0.5000	0.5000	1500000
5000	1.2281e-1	0.4930	0.5070	2000000
5000	1.2308e-1	0.4920	0.5080	2000000
5000	1.2240e-1	0.4900	0.5100	2000000
10000	1.0202e-1	0.5000	0.5000	1600000
10000	1.0170e-l	0.4935	0.5065	1700000

Energy reflection ne= 8, na= 1 coefficient of Ar backscattered from Mo (2 isotopes)

$E_0(eV)$	0°	92	100	nh
5000	1.9446e-2	0.5000	0.5000	2000000
5000	1.9386e-2	0.5000	0.5000	2000000
5000	1.9323e-2	0.5000	0.5000	1500000
5000	1.9436e-2	0.4930	0.5070	2000000
5000	1.9469e-2	0.4920	0.5080	2000000
5000	1.9393e-2	0.4900	0.5100	2000000
10000	1.6201e-2	0.5000	0,5000	1600000
10000	1.6227e-2	0.4935	0.5065	1700000

Average depth (mean range) in of Ar implanted in Mo (2 isotopes) ne= 8, na= 1 $\,$

E ₀ (eV)	0 ^b	92	100	nh
5000	4.7541e4-1	0.5000	0.5000	2000000
5000	4.7528e + 1	0.5000	0.5000	2000000
5000	4.7615e + 1	0.5000	0.5000	1500000
5000	4.7580e + 1	0.4930	0.5070	2000000
5000	4.7609e + 1	0.4920	0.5080	2000000
5000	4.7609e + 1	0.4900	0.5100	2000000
10000	7.5684e + 1	0.5000	0.5000	1600000
10000	7.5765e + 1	0.4935	0.5065	1700000

$$Ar \rightarrow Mo$$

Sputtering yield of Mo (7 isotopes) by Ar zl = 18. ml= 39.95. z2=42. sbe = 6.83 eV. rho=10.21 g/cm**3 ef=0.20 eV. esb = 0.00 eV. ca=1.00. kk0 = kk0r = 2. kdeel = kdee2 = 3. ipot = ipotr = 1 (KrC) m2 = 91.91. 93.91. 94.91. 95.90, 96.91, 97.91, 99.91 c2 = 0.1483. 0.0925, 0.1592. 0.1668. 0.0956. 0.2413. 0.0963 a]pha=0.00, rd=50.00 program: trvmc95 ne = 20, na= 4. n(m2)= 7

	$m^2 = 01.01$	03.01	0/ 01	95.90	96.91	97.91	00.01	nh	comment
$E_0(eV)$	1112 - 91.91	93.91	94.91	95.90	90.91	97.91	99.91	1111 5000000000	comment
50	1.113e-3	6.586e-4	1.105e-3	1.130e-3	6.305e-4	1.551e-3	5.8/1e-4	500000000	
70	4.954e-3	2.987e-3	5.056e-3	5.205e-3	2.934e-3	7.276e-3	2.803e-3	300000000	
70	4.961e-3	2.988e-3	5.055e-3	5.211e-3	2.936e-3	7.278e-3	2.802e-3	500000000	
100	1.363e-2	8 311e-3	1.415e-2	1.465e-2	8.297e-3	2.068e-2	8.064e-3	200000000	
100	1.363e-2	8.308e-3	1.413e-2	1.463e-2	8.296e-3	2.068e-2	8.065e-3	350000000	
200	4.522e-2	2.780e-2	4.748e-2	4.938e-2	2.808e-2	7.047e-2	2.770e-2	100000000	
200	4.522e-2	2.781e-2	4.751e-2	4.942e-2	2.811e-2	7.042e-2	2.771e-2	210000000	
500	1.127e-l	6.958e-2	1.191e-l	1.241e-1	7.074e-2	1.776e-1	7.013e-2	80000000	
1000	1.772e-1	1.096e-1	1.877e-1	1.958e-l	1.117e-1	2.806e-1	1.110e-1	50000000	
2000	2.479e-1	1.534e-1	2.630e-1	2.744e-1	1.568e-1	3.942e-1	1.560e-l	25000064	
5000	3.358e-1	2.083e-1	3.570e-1	3.725e-1	2.129e-1	5.358e-1	2.122e-1	10000000	
5000	3.362e-1	2.083e-1	3.572e-1	3.729e-1	2.131e-1	5.360e-1	2.126e-1	15000064	
10000	3.836e-1	2.377e-1	4.070e-1	4.259e-1	2.431e-1	6.119e-1	2.427e-1	8000000	
20000	3.985e~1	2.470e-1	4.241e-1	4.427e-1	2.528e-1	6.368e-1	2.525e-1	9000064	
20000	4.005e-1	2.483e-1	4.262e-1	4.454e-1	2.544e-1	6.401e-1	2.536e-1	9000064	rd=60.00 Ä
100	1.571e-2	9.564e-3	1.625e-2	1.684e-2	9.542e-3	2.378e-2	9.264e-3	350000000	alpha= 15°
100	2 173e-2	1 321e-2	2 246e-2	2 322e-2	1.315e-2	3.276e-2	1.275e-2	350000000	alpha=30°
100	2.005. 2	1 8320 2	3 1140 2	3 2240 2	1 8260 2	1 5560 2	1 775e-2	400000000	alpha=60°
100	5.0056-2	1.0520-2	5.1140-2	5.2240-2	1.0200-2	4.5500-2	1.,,50-2		
100	1 477 0	0.007.2	1 5 2 5 - 2	1 500 - 2	0.011-2	2 248 2 2	97740 2	240000000	zbl
100	1.4/7e-2	9.00/e-3	1.555e-2	1.388e-2	9.011e-3	2.2480-2	0.//403	240000000	
5000	-3.743e-1	2.321e-1	3.980e-1	4.155e-l	2.378e-1	5.979e-1	2.370e-1	10000000	201

-

Sputtered energy of Mo (7 isotopes) by Ar ne=20. na=4. n(m2)=7

Eo(eV)	m2=91 .91	93.91	94.91	95.90	96.91	97.91	99.91	nh	comment
50	9.598e-5	5.629e-5	9.446e-5	9.605e-5	5.344e-5	1.310e-4	4.917e-5	500000000	
70	4.123e-4	2.469e-4	4.163e-4	4.272e-4	2.400e-4	5.940e-4	2.273e-4	300000000	
70	4.125e-4	2.470e-4	4.165e-4	4.279e-4	2.403e-4	5.936e-4	2.273e-4	500000000	
100	1.027e-3	6.234e-4	1.058e-3	1.091e-3	6.166e-4	1.531e-3	5.940e-4	200000000	
100	1.028e-3	6.226e-4	1.056e-3	1.091e-3	6.161e-4	1.531e-3	5.938e-4	350000000	
200	2.500e-3	1.529e-3	2.606e-3	2.702e-3	1.533e-3	3.834e-3	1.500e-3	100000000	
200	2.500e-3	1.529e-3	2.605e-3	2.704e-3	1.533e-3	3.835e-3	1.500e-3	210000000	
500	3.737e-3	2.294e-3	3.912e-3	4.068e-3	2.314e-3	5.794e-3	2.278e-3	80000000	
1000	3.956e-3	2.434e-3	4.152e-3	4.320e-3	2.456e-3	6.157e-3	2.423e-3	50000000	
2000	3.710e-3	2.283e-3	3.896e-3	4.049e-3	2.310e-3	5.781e-3	2.275e-3	25000064	
5000	2.985e-3	1.835e-3	3.131e-3	3.260e-3	1.853e-3	4.649e-3	1.831e-3	10000000	
5000	2.986e-3	1.834e-3	3.135e-3	3.265e-3	1.857e-3	4.644e-3	1.830e-3	15000064	
10000	2.322e-3	1.421e-3	2.427e-3	2.530e-3	1.435e-3	3.604e-3	1.417e-3	8000000	
20000	1.651e-3	1.013e-3	1.734e-3	1.800e-3	1.019e-3	2.562e-3	9.997e-4	9000064	
20000	1.660e-3	1.018e-3	1.739e-3	1.808e-3	1.031e-3	2.569e-3	1.009e-3	9000064	rd=60.00 Ä
100	1.294e-3	7.833e-4	1.327e-3	1.373e-3	7.754e-4	1.927e-3	7.467e-4	350000000	alpha= 15°
100	2.166e-3	1.310e-3	2.223e-3	2.292e-3	1.295e-3	3.219e-3	1.248e-3	350000000	alpha=30°
100	4.992e-3	3.028e-3	5.132e-3	5.298e-3	2.993e-3	7.447e-3	2.887e-3	400000000	alpha=60°
100	1.148e-3	6.959e-4	1.183e-3	1.219e-3	6.905e-4	1.718e-3	6.666e-4	240000000	zbl
5000	3.501e-3	1.876e-3	3.189e-3	3.319e-3	1.891e-3	4.746e-3	1.868e-3	10000000	zbl

Ar Mo

Particle reflection coefficient of Ar backscattered from. Mo (7 isotopes) zl = 18, ml = 39.95, z2=42, sbe=6.83 eV. rho = 10.21 g/cm**3 ef=0.20 eV. esb=0.00 eV. ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) m2 = 91.91. 93.91, 94.91, 95.90, 96.91, 97.91, 99.91 c2 = 0.1483, 0.0925, 0.1592, 0.1668, 0.0956, 0.2413, 0.0963 alpha=0.00. rd=50.00 program: trvmc95 ne=20. na= 4, n(m2)= 7

Eo(eV)	0°	nh	comment
50	4.082e-1	500000000	
70	3.711e-l	300000000	
70	3.711e-l	500000000	
100	3.337e-1	200000000	
100	3.338e-1	350000000	
200	2.725e-1	100000000	
200	2.727e-1	210000000	
500	2.140e-1	80000000	
1000	1.819e-l	50000000	
2000	1.565e-l	25000064	
5000	1.284e-1	10000000	
5000	1.283e-1	15000064	
10000	1.088e-1	8000000	
20000	8.981e-2	9000064	
20000	8.988e-2	9000064	rd = 60.00 Ä
100	3.584e-1	350000000	alpha=15°
100	4.326e-1	350000000	alpha=30°
100	7.666e-1	400000000	alpha=60°
100	3.834e-1	240000000	zbl
5000	1.232e-1	10000000	zbl

Energy reflection coefficient of Ar backscattered from Mo (7 isotopes) ne=20, na= 4, n(m2)= 7

Bo(eV)	0°	nh	comment
50	7.077e-2	500000000	
70	6.549e-2	300000000	
70	6.550e-2	500000000	
100	5.937e-2	200000000	
100	5.938e-2	350000000	
200	4.806e-2	100000000	
200	4.810e-2	210000000	
500	3.660e-2	80000000	
1000	3.055e-2	50000000	
2000	2.612e-2	25000064	
5000	2.163e-2	10000000	
5000	2.163e-2	15000064	
10000	1.871e-2	8000000	
20000	1.581e-2	9000064	
20000	1.585e-2	9000064	rd = 60.00 Ä
100	7.092e-2	350000000	alpha=15°
100	1.112e-1	350000000	alpha=30°
100	4.006e-1	400000000	alpha=60°
100	7.006e-2	240000000	zbl
5000	2.169e-2	10000000	zbl

Average depth (mean range) in \ddot{A} of Ar implanted in Mo (7 isotopes) ne=20, na= 4, n(m2)= 7

E _o (eV)	0°	nh	comment
50	3.963e+0	500000000	
70	4.675e4-0	300000000	
70	4.675e4-0	500000000	
100	5.569e+0	200000000	
100	5.569e4-0	350000000	
200	7.874e+0	100000000	
200	7.873e + 0	210000000	
500	1.268e+1	80000000	
1000	1.853e + 1	50000000	
2000	2.766e + 1	25000064	
5000	4.901e+1	10000000	
5000	4.899e + 1	15000064	
10000	7.877e + 1	8000000	
20000	1.323e+2	9000064	
20000	1.324e+2	9000064	rd=60.00 Ä
100	5.501e + 0	350000000	alpha=15°
100	5.322e4-0	350000000	alpha=30°
100	4.654e+0	400000000	alpha=60°
			-
100	4.243e+0	240000000	zbl
5000	4.397e + 1	10000000	zbl

Kr —y Mo

Sputtering yield of Mo by Kr zl = 36, ml = 83.80, z2 = 42, m2 = 95.94. sbe = 6.89 eV, rho=10.20 g/cm**3 ef=0.30 eV. esb = 0.00 eV. ca=1.00, kk0 = kk0r=2, kdeel = kdee2 = 3, ipot=ipotr = 1 (KrC) program: trspvmc, trvmc ne= 6, na= 2

Eo(eV)	0°	45 ^u
50	9.15e-4	
53		3.40e-2
100	3.20e-2	
500	6.36e-1	
1000	1.19e-0	
5000	2.69e-0	

Sputtered energy of Mo by Kr ne= 6. na= 2

Bo(eV)	0°	45°
50	5.54e-5	
53		4.86e-3
100	1.67e-3	
500	1.63e-2	
1000	2.08e-2	
5000	1.95e-2	

Particle reflection coefficient of Kr backscattered from Mo zl=36. ml= 83.80. z2=42. m2= 95.94, sbe=6.89 eV. rho=10.20 g/cm**3 ef=0.30 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: trspvmc, trvmc ne= 6, na= 2

E ₀ (eV)	0°	45°
50	1.44e-1	
53		4.52e-1
100	1.23e-1	
500	8.89e-2	
1000	6.92e-2	
5000	4.19e-2	

Energy reflection coefficient of Kr backscattered from Mo $ne=\ 6,\ na=\ 2$

$E_0(eV)$	0°	45°
50	6.90e-3	
53		1.05e-l
100	5.89e-3	
500	3.97e-3	
1000	3.26e-3	
5000	2.37e-3	

Average depth (mean range) in \ddot{A} of Kr implanted in Mo ne= 6, na= 2

E ₀ (eV)	0°	45°
50	3.33e+0	
53		2.65e + 0
100	4.85e+0	
500	1.08e4-1	
1000	1.52e + 1	
5000	3.61e + 1	

Mo -> Mo

Sputtering yield of Mo by Mo zl = 42, ml = 95.94, z2=42, m2 = 95.94, sbe=6.89, 6.83 eV. rho = 10.21 g/cm**3 ef=6.39, 6.78 eV. esb = 6.89, 6.83 eV. ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=l (KrC) program: newtrim (Laszlo), testvmcx, TPP 9/82 ne=28, na=14

Bq(eV)	0°	10°	20°	30°	40°	45°	50°	55 ^u	57.5 ⁰	60°	62.5°	65°
15												2.04e-4
17												3.88e-4
18												5.49e-4
20												6.49e-4
25	6.90e-6											4.04e-3
30	2.61e-5											1.15e-2
35	7.30e-5											
40	7.56e-5											
42	1.27e-4											
45	2.45e-4											
48	4.44e-4											
50	6.36e-4											
65	3.87e-3											
80	1.04e-2											
100	2.59e-2											
200	1.51e-l											
250	2.46e-1											
300	3.15e-1	3.61e-1	4.84e-1	6.50e-l	8.68e-1		1.04e-0	1.07e-0	1.07e-0	1.07e-0	1.04e-0	9.92e-1
350	3.90e-1	4.51e-1	5.71e-1	7.83e-1	9.94e-1	1.10e-0	1.19e-0	1.23e-0	1.23e-0	1.23e-0	1.19e-0	1.16e-0
500	6.14e-1											1.53e-0
1000	1.12e-0	1.20e-0	1.44e-0	1.77e-0	2.17e-0	2.41e-0	2.60e-0	2.73e-0	2.81e-0	2.82e-0	2.80e-0	2.71e-0
2000	1.76e-0	1.87e-0	2.21e-0	2.53e-0	3.28e-0		3.88e-0	4.22e-0	4.26e-0	4.42e-0	4.36e-0	4.38e-0
5000	2.88e-0											
10000	3.42e-0											
20000	3.96e-0											
45000	4.87e-0											
50000	4.88e-0											
100000	4.11e-0											

Eq(eV)	70°	80°
300	8.53e-1	3.99e-1
350	9.84e-1	4.55e-1
1000		1.18e-0
2000	4.11e-0	2.21e-0

Sputtered energy of Mo by Mo program: newtrim (Laszlo), testvmcx ne=27, na=14

c-2/, na-1+												
E ₀ (eV)	0°	10°	20 ^u	30°	40°	45 ^u	50°	55 ^u	57.5°	60 ^u	62.5°	65°
15												3.40e-5
17												6.70e-5
18												9.49e-5
20												1.26e-4
25	3.37e-7											8.11e-4
30	1.32e-6											2.45e-3
35	3.78e-6											
40	4.75e-6											
42	7.68e-6											
45	1.55e-5											
48	2.76e-5											
50	3.89e-5											
65	2.25e-4											
80	5.51e-4											
100	1.27e-3											
200	5.76e-3											
250	8.21e-3											
300	9.82e-3	1.23e-2	2.15e-2	3.66e-2	6.36e-2		9.80e-2	1.12e-1	1.20e-1	1.25e-1	1.26e-1	1.29e-1
350	1.10e-2	1.45e-2	2.30e-2	4.03e-2	6.77e-2	8.51e-2	1.02e-1	1.19e-1	1.26e-1	1.33e-1	1.37e-1	1.38e-1
500	1.47e-2											1.51e-1
1000	1.89e-2	2.17e-2	3.18e-2	4.94e-2	7.78e-2	9.88e-2	1.17e-1	1.36e-1	1.52e-1	1.56e-1	1.67e-1	1.75e-1
2000	1.99e-2	2.41e-2	3.17e-2	4.56e-2	7.59e-2		1.13e-1	1.39e-1	1.49e-1	1.57e-1	1.6/e-1	1./9e-1
5000	2.04e-2											
10000	1.60e-2											
20000	1.39e-2											
50000	1.07e-2											
100000	5.69e-3											

E . (eV)	70 ^u	80°
300	1.20e-1	6.03e-2
350	1.29e-l	6.45e-1
1000		9.86e-2
2000	1.94e-1	1.32e-1

Mo -> Mo

Particle reflection coefficient of Mo backscattered from Mo z1=42, m1= 95.94, z2=42. m2= 95.94, sbe=6.89, 6.83 eV, rho=10.21 g/cm**3 ef=6.39. 6.78 eV, esb=6.89. 6.83 eV. ca=1.00, kk0=kk0r=2, kdee1=kdee2=3, ipot=ipotr = 1 (KrC) program: newtrim (Laszlo), testvmcx ne=28, na=14

Eq(eV)	0°	10°	20°	30°	40°	45°	50°	55°	57.5°	60°	62.5°	65°
15												6.12e-5
17												3.62e-4
18												7.06e-4
20												1.88e-3
25												1.14e-2
30												3.33e-2
35	3.04e-7											
40	8.33e-6											
42	1.15e-5											
45	2.28e-5											
48	4.46e-5											
50	6.97e-5											1 (7)
50	2.87e-4											1.67e-1
65	3.12e-4											2 (2)
80	9.97e-4											3.62e-1
100	2.12e-3											4.466-1
200	1.07e-2											5.41e-1
265	1.04e-2			7.45.0	1 40 1		2.47.1	2.22.1	2 77 1	4 20 - 1	4 (7 - 1	5 28 . 1
300	1.24e-2	1.98e-2	3.37e-2	7.45e-2	1.40e-1	1.07.1	2.4/e-1	3.33e-1	3.//e-l	4.296-1	4.676-1	5.386-1
350	1.36e-2	1.96e-2	3.70e-2	7.22e-2	1.40e-1	1.866-1	2.51e-1	3.24e-1	3.6/e-1	4.166-1	4.708-1	5.296-1
500	2.02e-2		1.06	6.05.0	1 1 2 . 1	1 5 1 - 1	2.05 - 1	2 (8 - 1	2 80 - 1	2 416 1	2 0 1 0 1	J.15e-1
1000	2.40e-2	2.60e-2	4.06e-2	6.85e-2	1.15e-1	1.516-1	2.05e-1	2.080-1	2.896-1	2 950 1	3 250 1	3 79 0 1
2000	2.85e-2	5.05e-2	5.65e-2	0.350-2	1.07e-1		1.950-1	2.136-1	2.316-1	2.950-1	5.250-1	3 120 1
5000	2.04e-2											2 780 1
10000	2.20e-2											2.780-1
20000	1.6/e-2											2.386-1
50000	8.80e-3											2.20e-1
100000												2.200-1

$E_0 (eV)$	70°	80°
300	6.63e-1	9.07e-1
350	6.59e-1	9.07e-1
1000		8.72e-1
2000	4.88e-1	8.20e-1

Energy reflection coefficient of Mo backscattered from Mo ne=29, na=14

_E ₀ (eV)	0°	10 ^u	20°	30 ^u	40°	45 ^u	50°	55°	57.5°	60°	62.5°	65°
15												1.35e-5
17												8.03e-5
18												1.57e-4
20												4.31e-4
25												2.78e-3
30	3.00e-9											8.83e-3
35	1.85e-8											
40	5.66e-7											
42	6.67e-7											
45	1.51e-6											
48	2.97e-6											
50	5.05e-6											
50	2.36e-5											5.40e-2
65	2.15e-5											
80	6.66e-5											1.29e-1
100	1.21e-4											1.68e-1
. 200	6.24e-4											2.25e-1
265	5.67e-4											
300	6.36e-4	1.22e-3	2.87e-3	9.32e-3	2.42e-2		6.30e-2	1.01e-1	1.22e-1	1.52e-1	1.89e-1	2.26e-1
350	6.85e-4	1.16e-3	3.05e-3	8.25e-3	2.49e-2	3.79e-2	6.15e-2	9.63e-2	1.20e-1	1.46e-l	1.81e-1	2.21e-1
500	9.14e-4											2.13e-1
500	1.11e-3											
1000	9.35e-4	1.64e-3	2.81e-3	7.20e-3	1.61e-2	2.65e-2	4.45e-2	6.70e-2	8.12e-2	1.04e-1	1.33e-1	1.67e-1
2000	1.07e-3	1.14e-3	2.05e-3	5.24e-3	1.41e-2		3.77e-2	4.81e-2	6.45e-2	7.94e-2	1.02e-1	1.33e-1
5000	8.24e-4											9.42e-2
10000	8.85e-4											8.24e-2
20000	5.31e-4											6.47e-2
50000	4.91e-4											6.17e-2
100000												6.09e-2

Eq(eV)	70°	80°
300	3.31e-1	6.05e-1
350	3.27e-1	6.16e-l
1000		6.15e-1
2000	2.06e-1	5.64e-1

Average depth (mean range) in A of Mo implanted in Mo zl=42, ml = 95.94. z2=42. m2 = 95.94. sbe=6.89, 6.83 eV. rho = 10.21 g/cm**3 ef=6.39. 6.78 eV, esb=6.89. 6.83 eV. ca=1.00. kk0 = kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program: newtrim (Laszlo), testvmcx ne=28. na=14

E ₀ (eV)	0°	10°	20°	30°	40°	45 ^b	50°	55°	57.5°	60 ^u	62.5°	65°
15												3.09e-1
17												3.33e-1
18												3.45e-1
20												3.60e-1
25	1.67e+0											4.22e-1
30	1.92e4-0											5.05e-1
35	2.13e+0											
40	1.92e + 0											
42	2.00e+0											
45	2.11e + 0											
48	2.22e+0											
50	2.33e+0											
50	2.88e + 0											8.00e-1
65	3.16e+0											
80	3.67e+0											1.38e+0
100	4.19e+0											1.82e+0
200	6.14e + 0											3.40e+0
265	6.92e-f-0											
300	7.60e+0	7.50e+0	7.22e+0	6.81e+0	6.26e+0		5.58e4-0	5.32e+0	5.10e+0	4.89e+0	4.77e4-0	4.48e4-0
350	8.32e + 0	8.20e+0	7.99e + 0	7.37e4-0	6.84e+0	6.45e+0	6.15e4-0	5.75e + 0	5.69e4-0	5.36e+0	5.17e4-0	5.01e+0
500	9.97e + 0											6.08e4-0
1000	1.45e + 1	1.39e+1	1.36e+1	1.27e + 1	1.17e+l	1.14e+1	1.06e + 1	1.03e + 1	9.71e+0	9.60e+0	9.34e+0	8.95e+0
2000	2.07e + 1	1.99e+l	1.96e4-1	1.85e + 1	1.67e + 1		1.53e4-1	1.41e + 1	1.41e4-1	1.35e+1	1.30e+1	1.25e + 1
5000	3.41e+1											2.05e-H
10000	4.99e+1											3.00e+1
20000	7.53e+1											4.58e+1
50000	1.40e+2											8.29e + 1
100000	2.40e4-2											_1.35e+2 _

Eq (eV)	7Ö ⁷⁵	8Ö 73
300	4.09e+0	2.86e+0
350	4.62e+0	3.26e+0
1000		6.88e+0
2000	1,16e + 1	9.99e+0

Mo -> Mo

Mo on Mo, Maxwellian velocity distribution, sheath potential 0 kT zl=42, ml= 95.94, z2=42, m2= 95.94, sbe=6.89, 6.83 eV, rho = 10.20 g/cm**3 ef=6.39, 6.78 eV, csb=6.89, 6.83 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr=1 (KrC) program: newtrim (Laszlo), testvmcx ne=12

kT(eV)	Y	Y _s	E sp	^B N	RE	R _b	range
5	4.52e-4	2.70e-4	5.96e-}-0	9.49e-4	9.60e-4	1.01e+l	3.11e-1
7	1.68e-3	9.30e-4	7.78e + 0	3.94e-3	3.48e-3	1.24e + 1	4.75e-1
10	5.73e-3	2.77e-3	9.69e- -0	1.31e-2	1.06e-2	1.63e+1	6.82e-1
20	3.89e-2	1.29e-2	1.33e + 1	6.02e-2	3.94e-2	2.63e+1	1.26e-f-0
50	2.01e-1	4.17e-2	2.08e-f-l	1.64e-1	8.67e-2	5.27e+1	2.57e-f-0
100	4.90e-1	6.56e-2	2.67e + 1	2.27e-1	1.04e-1	9.16e + 1	4.24e+0
200	9.48e-1	7.58e-2	3.14e + 1	2.62e-1	1.11e-1	1.66e + 2	6.60e + 0
500	1.87e-0	9.43e-2	5.13e- -1	2.63e-1	8.87e-2	3.44e-}-2	1.16e+l
1000	3.00e-0	9.74e-2	6.47e4-1	2.16e-1	8.32e-2	7.67e+2	1.55e + 1
2000	4.23e-0	1.18e-1	1.13e+2	2.29e-1	7.18e-2	1.26e + 3	2.40e+1
5000	6.15e-0	8.80e-2	1.35e + 2	2.06e-1	8.81e-2	4.05e+3	3.76e + 1
10000	8.54e-0	7.72e-2	1.76e + 2	1.55e-l	4.41e-2	5.54e+3	5.63e-)-l

Mo on Mo, Maxwellian velocity distribution, sheath potential 3 kT ne= 13 $\,$

kT(eV)	Y	Υ£?	Esp	R _N	R_{F}	Bfe	range
4	5.91e-4	1.47e-4	4.96e- -0	4.64e-4	1.87e-4	8.06e+0	1.11e+0
5	1.60e-3	3.75e-4	5.86e + 0	1.34e-3	4.95e-4	9.27e+0	1.35e+0
7	5.67e-3	1.21e-3	7.49e+0	4.46e-3	1.49e-3	1.17e+1	1.76e-f-0
10	1.97e-2	3.50e-3	8.88e + 0	1.16e-2	3.48e-3	1.50e + 1	2.27e4-0
20	1.14e-1	1.37e-2	1.21e4-1	3.34e-2	7.91e-3	2.36e + 1	3.61e+0
50	4.69e-1	3.17e-2	1.69e+l	5.56e-2	9.56e-3	4.30e + 1	6.23e+0
100	9.48e-1	4.10e-2	2.16e- -1	5.94e-2	8.20e-3	6.90e + 1	9.05e4-0
200	1.57e-0	4.61e-2	2.95e + 1	5.54e-2	5.29e-3	9.58e4-1	1.31e + 1
500	2.60e-0	3.68e-2	3.52e4-1	4.50e-2	3.80e-3	2.11e+2	2.04e + 1
1000	3.69e-0	3.63e-2	4.93e + 1	4.73e-2	4.84e-3	5.13e-}-2	3.08e-f-l
2000	4.40e-0	3.44e-2	7.81e + 1	4.29e-2	3.83e-3	8.96e+2	4.72e-H
5000	5.65e-0	2.47e-2	1.08e+2	2.26e-2	1.28e-3	1.41e+3	7.97e+1
10000	6.23e-0	1.85e-2	1.47e + 2	2.33e-2	2.98e-3	6.34e+3	1.26e+2

Mo on Mo, Maxwellian velocity distribution, sheath potential 9 kT $ne=\,15$

kT(eV)	Y	Y e	Esp	Rv	Rjg	E&	range
2.4	3.27e-4	4.18e-5	3.38e+0	9.20e-5	1.95e-5	5.59e4-0	1.57e + 0
3	9.41e-4	1.16e-4	4.07e + 0	3.37e-4	7.17e-5	7.03e4-0	1.87e+0
4	3.47e-3	4.12e-4	5.22e-f-0	1.43e-3	2.61e-4	8.03e+0	2.30e+0
5	8.61e-3	9.54e-4	6.10e+0	3.02e-3	5.21e-4	9.50e-}-0	2.68e+0
7	3.01e-2	2.86e-3	7.32e+0	7.37e-3	1.11e-3	1.16e-f-l	3.32e-{-0
10	8.06e-2	6.23e-3	8.51e+0	1.44e-2	1.90e-3	1.45e+l	4.13e+0
20	2.93e-1	1.52e-2	1.14e + 1	2.56e-2	2.77e-3	2.38e+1	6.16e-f-0
30	5.00e-1	2.06e-2	1.36e4-1	3.19e-2	2.96e-3	3.06e4-1	7.66e- -0
50	8.46e-1	2.60e-2	1.69e + 1	3.50e-2	2.77e-3	4.35e- -1	9.97e+0
100	1.47e-0	2.98e-2	2.23e+1	3.70e-2	2.44e-3	7.27e + 1	1.43e+1
200	2.21e-0	3.00e-2	2.99e + 1	3.32e-2	2.25e-3	1.49e+2	2.05e+1
500	3.28e-0	2.66e-2	4.45e + 1	2.85e-2	1.72e-3	3.32e+2	3.38e- -1
1000	4.11e-0	2.31e-2	6.17e-J-l	2.50e-2	1.49e-3	6.56e + 2	5.06e + 1
2000	4.80e-0	1.80e-2	8.23e+1	1.63e-2	4.95e-4	6.66e4-2	7.61e+1
5000	5.41e-0	1.37e-2	1.38e4-2	9.06e-3	8.90e-4	5.36e+3	1.48e+2

Xe -> Mo

Sputtering yield of Mo (2 isotopes) by Xe zl=54, ml = 131.30, z2=42, m2= 92.00. 100.00, sbe=6.83 eV, rho=10.21 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kkO=kkOr=2, kdeel = kdee2=3. ipot=ipotr=l (KrC) alpha=0.00

program: trvmc ne= 4, na= 1, n(m2)= 2

1	$\mathbf{E}_{(\mathbf{a}\mathbf{V})}$	$m^2 = 0.2, 0.0$	100.00	c2(02)	$c^{2}(100)$
	$E_0(ev)$	112 - 92.00	100.00	02(92)	02(100)
	5000	1.457e-0	1.419e-0	0.5000	0.5000
	5000	1.437e-0	1.438e-0	0.4935	0=5065
	10000	1.917e-0	1.871e-0	0.5000	0.5000
	10000	1.894e-0	1.896e-0	0.4940	0.5060

Sputtered energy of Mo (2 isotopes) by Xe ne= 4, na= 1. n(m2)= 2

E ₀ (eV)	m2 = 92.00	100.00	c2(92)	c2(100)
5000	9.875e-3	9.406e-3	0.5000	0.5000
5000	9.759e-3	9.563e-3	0.4935	0.5065
10000	8.936e-3	8.500e-3	0.5000	0.5000
10000	8.847e-3	8.628e-3	0.4940	0.5060

Particle reflection coefficient of Xe backscattered from Mo (2 isotopes) zl=54, ml = 131.30, z2=42, m2 = 92.00, 100.00, sbe=6.83 eV, rho=10.21 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) alpha=0.00

program: trvmc ne= 4, na= 1

$E_0(eV)$	0°	c2(92)	c2(100)
5000	6.6469e-3	0.5000	0.5000
5000	6.5269e-3	0.4935	0.5065
10000	5.4627e-3	0.5000	0.5000
10000	5.4736e-3	0.4940	0.5060

Energy reflection coefficient of Xe backscattered from Mo (2 isotopes) ne= 4, na= 1 $\,$

$E_0(eV)$	0°	c2(92)	c2(100)
5000	1.0724e-4	0.5000	0.5000
5000	1.1108e-4	0.4935	0.5065
10000	9.6071e-5	0.5000	0.5000
10000	9.7227e-5	0.4940	0.5060

Average depth (mean range) in \ddot{A} of Xe implanted in Mo (2 isotopes) ne= 4, na= 1

E ₀ (eV)	0 °	c2(92)	c2(100)
5000	3.3742e + 1	0.5000	0.5000
5000	3.3737e + 1	0.4935	0.5065
10000	4.8992e4-1	0.5000	0.5000
10000	4.8991e + 1	0.4940	0.5060

$Xe \rightarrow Mo$

Sputtering yield of Mo (7 isotopes) by Xe zl = 54, ml = 131.30. z2=42, sbe=6.83 eV, rho = 10.21 g/cm**3 ef=0.20 eV, esb = 0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) m2= 91.91, 93.91, 94.91, 95.90, 96.91, 97.91, 99.91 c2= 0.1483, 0.0925, 0.1592, 0.1668, 0.0956, 0.2413, 0.0963 alpha=0.00 program: trvmc95ne= 2, na= 1, n(m2) = 7

E_0(eV)	m2=91.91	93.91	94.91	95.90	96.91	97.91	99.91	nh
100	1.838e-3	1.120e-3	1.901e-3	1.969e-3	1.114e-3	2.777e-3	1.082e-3	1500000000
100	1.837e-3	1.118e-3	1.894e-3	1.968e-3	1.113e-3	2.781e-3	1.083e-3	40000000

Sputtered energy of Mo (7 isotopes) by Xe ne= 2, na= 1, n(m2)= 7

$E_{0}(eV)^{-}$	m2=91.91	93.91	94.91	95.90	96.91	97.91	99.91	nh
100	7.508e-5	4.579e-5	7.770e-5	8.056e-5	4.556e-5	1.137e-5	4.432e-5	1500000000
100	7.511e-5	4.570e-5	7.748e-5	8.057e-5	4.562e-5	1.138e-5	4.443e-5	40000000

Particle reflection coefficient of Xe backscattered from Mo (7 isotopes) z1=54, ml = 131.30, z2=42, sbe = 6.83 eV, rho = 10.21 g/cm**3 ef=0.20 eV, esb = 0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr=1 (KrC) m2= 91.91, 93.91, 94.91, 95.90, 96.91, 97.91, 99.91 c2=0.1483, 0.0925, 0.1592, 0.1668, 0.0956, 0.2413, 0.0963 alpha=0.00 program. true 25 program: trvmc95 ne= 2, na= 1

E ₀ (eV)	0°	nh
100	9.5655e-3	1500000000
100	9.5666e-3	400000000

Energy reflection coefficient of Xe backscattered from Mo (7 isotopes) ne=2, na=1

$E_0(eV)$	0°	nh
100	1.6728e-4	1500000000
100	1.6738e-4	400000000

Average depth (mean range) in \ddot{A} of Xe implanted in Mo (7 isotopes) ne= 2, na= 1

Eq(eV)	0°	<u>nh</u>
100	4.8206e+0	1500000000
100	4.8206e+0	40000000

Hg ->Mo

Sputtering yield of Mo by Hg z1=80, ml = 200.59, z2=42, m2= 95.94, sbe=6.83 eV, rho=:10.20 g/cm**3 ef=0.95 eV, esb = 1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: IPP 9/82 only low fluence! ne=12, na= 1

Ep(eV)	0 ^s
50	3.70e-5
100	5.30e-3
200	7.52e-2
500	4.13e-1
1000	9.39e-1
2000	1.62e-0
5000	2.73e-0
10000	3.74e-0
20000	4.72e-0
50000	5.89e-0
100000	6.74e-0
200000	7.09e-0

$Rn \rightarrow Mo$

Sputtering yield of Mo (7 isotopes) by Rn zl = 86, ml = 222.00, z2=42, sbe = 6.83 eV. rho = 10.21 g/cm**3 ef=0.20 eV, esb = 0.00 eV, eca=1.00, kk0=kk0r=2. kdeel = kdee2=3, ipot=ipotr=1 (KrC) m2= 91.91, 93.91, 94.91, 95.90, 96.91, 97.91, 99.91 c2=0.1483, 0.0925, 0.1592, 0.1668, 0.0956, 0.2413, 0.0963 alpha=0.00program: trvmc95 ne= 4, na= 1, n(m2) = 7

E _o (eV)	m2=91.91	93.91	94.91	95.90	96.91	97.91	99.91	nh
100	6.991e-4	4.259e-4	7.237e-4	7.484e-4	4.244e-4	1.057e-4	4.118e-4	1500000000
100	7.002e-4	4.270e-4	7.238e-4	7.496e-4	4.242e-4	1.056e-4	4.107e-4	900000000
100	6.983e-4	4.256e-4	7.244e-4	7.509e-4	4.239e-4	1.054e-4	4.137e-4	350000000
5000	4.320e-1	2.679e-1	4.588e-1	4.795e-1	2.742e-1	6.890e-1	2.733e-1	10000000

Sputtered energy of Mo (7 isotopes) by Rn ne= 4, na= 1. n(m2)=7

E ₀ (eV)	m2=91.91	93.91	94.91	95.90	96.91	97.91	99.91	nh
100	2.515e-5	1.533e-5	2.610e-5	2.698e-5	1.533e-5	3.817e-5	1.488e-5	1500000000
100	2.518e-5	1.540e-5	2.608e-5	2.704e-5	1.528e-5	3.814e-5	1.483e-5	90000000
100	2.510e-5	1.529e-5	2.603e-5	2.706e-5	1.532e-5	3.802e-5	1.494e-5	350000000
5000	2.692e-3	1.662e-3	2.843e-3	2.960e-3	1.684e-3	4.231e-3	1.672e-3	10000000

Particle reflection coefficient of Rn backscattered from Mo (7 isotopes) zl = 86, ml=222.00, z2=42, sbe = 6.83 eV, rho = 10.21 g/cm**3 ef=0.20 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) m2= 91.91, 93.91, 94.91, 95.90, 96.91, 97.91, 99.91 c2=0.1483, 0.0925, 0.1592, 0.1668, 0.0956, 0.2413, 0.0963 alpha=0.00 program: trvmc95 ne= 4, na= 1

E₀ (eV) 0° nh 100 2.9659e-5 1500000000

Energy reflection coefficient of Rn backscattered from Mo (7 isotopes) ne= 4, na= 1 $\,$

$E_0(eV)$	0°	nh
100	2.0536e-7	1500000000
100	2.0395e-7	900000000
100	2.0724e-7	350000000
5000	9.4885e-7	10000000

Average depth (mean range) in \ddot{A} of Rn implanted in Mo (7 isotopes) $ne=-4,\ na=-1$

$E_0(eV)$	0°	nh
100	6.5227e + 0	1500000000
100	6.5227e+0	900000000
100	6.5225e+0	350000000
5000	3.8657e + 1	10000000

He -> Pd

•

$E_{o}(eV)$	" 30 ^s
500	1.42e-1
1000	1.81e-1
1500	2.00e-1

Sputtered energy of Pd by He ne=3, na=1

Eo(eV)	30°
500	2.44e-3
1000	2.11e-3
1500	1.73e-3

Particle reflection coefficient He backscattered from Pd zl=2, ml=4.00. z2=46, m2=106.40, sb=3.91 eV, rho=11.96 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr=1 (KrC) program : trspvmcx ne= 3, na= 1

$E_0 (eV)$	3Ö ⁷³
500	5.22e-1
1000	4.83e-1
1500	4.52e-1

Energy reflection coefficient He backscattered from Pd ne= 3, na= 1

$B_{o}(eV)$	30°
500	2.99e-1
1000	2.68e-1
1500	2.46e-1

Average depth (mean range) in \tilde{A} of He implanted in Pd ne= 3, na= 1

Eq(eV)	30°
500	5.63e + 1
1000	8.68e+1
1500	1.13e+2

Xe -4- Pel

Sputtering yield of Pd by Xe zl=54. ml = 131.30, z2=46, 1X12=106.40, sbe=3.91 eV, rho = 11.96 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program : trspvmcx ne= 3, na= 1

E ₀ (eV)	30°
500	1.95e-0
1000	3.24e-0
1500	4.08e-0

Sputtered energy of Pd by Xe ne= 3, na= 1

E ₀ (eV)	30°	Ι.
500	6.04e-2	
1000	6.43e-2	
1500	6.22e-2	

Particle reflection coefficient Xe backscattered from Pd zl=54, ml = 131.30, z2=46, m2 = 106.40, sbe=3.91 eV, rho = 11.96 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr=1 (KrC) program : trspvmcx ne= 3, na= 1

30 /3
7.42e-2
6.84e-2
5.34e-2

5 2 2 2
5.556-5
4.32e-3
3.43e-3

Average depth (mean range) in \ddot{A} of Xe implanted in Pd ne= 3, na= 1

E ₀ (eV)	30°
500	8.74e+0
1000	1.20e + 1
1500	1.48e + 1

$\mathrm{D}\to\mathrm{Ag}$

Sputtering yield of Ag by D zl = 1. ml = 2.01. z2 = 47. m2 = 107.87, rho = 10.47 g/cm**3 ef=0.95 eV, esb = 1.00 eV. ca=1.00, kk0 = kk0r=2. kdeel = kdee2 = 3. ipot=ipotr=1 (KrC) program: testvmcx ne= 6. na= 3. n(sbe)= 5

[sbe	2.66 eV	2.76 eV	2.87 eV	2.91 eV	2.95 eV	2.76 eV	2.95 eV	2.76 eV	2.87 eV	2.95 eV
I	$E_0(eV)$	0°	0°	0°	0°	0°	50°	50°	70°	7Ö ⁷⁵	70°
I	50	2.51e-4	1.45e-4	1.02e-4	5.11e-5	3.81e-5					
I	55	6.54e-4	4.46e-4	2.99e-4	2.43e-4	2.06e-4					
I	60	1.25e-3	9.58e-4	6.69e-4	5.92e-4	5.24e-4	9.07e-4	4.78e-4	3.75e-4	2.59e-4	1.99e-4
I	70	2.91e-3	2.33e-3	1.89e-3	1.67e-3	1.54e-3					
I	80	4.92e-3	4.13e-3	3.45e-3	3.23e-3	2.99e-3					
I	100	9.39e-3	8.28e-3	7.25e-3	6.79e-3	6.59e-3					

Sputtered energy of Ag by D ne= 6, na= $3 \cdot n(sbe) = 5$

sbe	2.66 eV	2.76 eV	2.87 eV	2.91 eV	2.95 eV	2.76 eV	2.95 eV	2.76 eV	2.87 eV	2.95 eV
$E_0(eV)$	0°	0 ^u	0°	0°	0°	50°	50°	70°	70°	70°
50	1.60e-6	7.87e-7	4.59e-7	2.10e-7	1.45e-7					
55	5.46e-6	3.35e-6	2.02e-6	1.59e-6	1.25e-6					
60	1.26e-5	8.69e-6	5.66e-6	4.87e-6	4.20e-6	8.73e-6	4.04e-6	3.54e-6	2.24e-6	1.57e-6
70	3.42e-5	2.66e-5	2.07e-5	1.80e-5	1.72e-5					
80	6.47e-5	5.29e-5	4.26e-5	3.95e-5	3.67e-5					
100	1.35e-4	1.17e-4	1.03e-4	9.44e-5	9.09e-5					

Particle reflection coefficient of D backscattered from Ag zl= 1, ml = 2.01, z2=47. m2=107.87, rho=10.47 g/cm**3 ef=0.95 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx ne= 6. na= 3, n(sbe)= 5

sbe	2.66 eV	2.76 eV	2.87 eV	2.91 eV	2.95 eV	2.76 eV	2.95 eV	2.76 eV	2.87 eV	2.95 eV
$E_0(eV)$	0°	0°	0°	0 ^u	0 ^u	50°	50°	70°	70 °	70°
50	6.26e-1	6.26e-1	6.37e-1	6.26e-1	6.26e-l					
55	6.22e-1	6.21e-1	6.21e-1	6.21e-1	6.21e-1					
60	6.17e-1	6.17e-1	6.17e-1	6.17e-1	6.17e-1	7.29e-1	7.29e-1	8.68e-1	8.68e-1	8.68e-l
70	6.09e-1	6.09e-1	6.10e-1	6.09e-1	6.09e-1					
80	6.02e-1	6.02e-1	6.02e-1	6.03e-1	6.02e-1					
100	5.91e-1	5.91e-l	5.91e-1	5.90e-1	5.91e-1					

Energy reflection coefficient ne= 6. na= 3, n(sbe)= 5 of D backscattered from Ag

sbe	2.66 eV	2.76 eV	2.87 eV	2.91 eV	2.95 eV	2.76 eV	2.95 eV	2.76 eV	2.87 eV	2.95 eV
Eo(eV)	0°	0°	0°	0°	0°	50°	50°	70°	70°	70°
50	4.08e-1	4.08e-1	4.14e-1	4.08e-1	4.08e-1					
55	4.03e-1	4.03e-1	4.03e-1	4.03e-1	4.03e-1					
60	3.99e-1	3.98e-1	3.99e-1	3.99e-1	3.99e-1	5.35e-1	5.35e-1	7.41e-1	7.41e-1	7.41e-1
70	3.90e-1	3.90e-1	3.91e-1	3.90e-1	3.90e-1					
80	3.83e-1	3.83e-1	3.83e-1	3.84e-1	3.83e-1					
100	3.72e-1	3.72e-1	3.72e-1	3.71e-1	3.72e-1					

Average depth (mean range) in \ddot{A} of D implanted in Ag ne= 6, na= 3, $n(sbe) = \ 5$

sbe	2.66 eV	2.76 eV	2.87 eV	2.91 eV	2.95 eV	2.76 eV	2.95 eV	2.76 eV	2.87 eV	2.95 eV
Eo(eV)	0°	0°	0°	0°	0°	50°	50°	70°	70°	70°
50	3.00e+1	3.00e+1	2.23e+1	3.00e4-1	3.00e4-1					
55	3.16e+1	3.16e4-1	3.16e + 1	3.16e4-1	3.16e + 1					
60	3.32e4-1	3.31e+1	3.31e + 1	3.31e- -1	3.31e+1	3.23e+1	3.23e + 1	3.18e + 1	3.17e + 1	3.17e+1
70	3.62e + 1	3.61e+1	3.61e+1	3.61e + 1	3.61e-H					
80	3.89e + 1	3.89e-f-l	3.89e+1	3.89e+1	3.89e+1					
100	4.41e + 1	4.41e+1	4.41e+1	4.41e+1	4.41e+1					

$$He \longrightarrow Ag$$

Sputtering yield of Ag by He zl = 2, ml = 4.00, z2=47, m2 = 107.87, sbe=2.97 eV, rho=10.47 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kk0 = kk0r=1, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: ne= 8, na= 2

E ₀ (eV)	0°	75°
50	8.62e-3	
100	4.43e-2	
300	1.20e-l	
500	1.51e-l	
1000	1.82e-1	
2000	1.70e-l	4.64e-1
4000	2.00e-1	
10000	1.52e-1	

Sputtered energy of Ag by He ne= 6, na= 1

Bo(eV)	Ö ⁷³
50	2.05e-4
100	1.17e-3
300	2.27e-3
500	2.21e-3
1000	1.71e-3
4000	7.58e-4

Particle reflection coefficient of He backscattered from Ag zl=2, ml=4.00, z2=47, m2=107.87, sb=2.97 eV, rho=10.47 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kkO=kkOr=l, kdeel=kdee2=3, ipot=ipotr=l (KrC) program: ne= 6, na= 1

Ep(eV)	Ö ³
50	6.10e-1
100	5.68e-1
300	5.07e-1
500	4.79e-1
1000	4.33e-1
4000	3.32e-1

Energy reflection coefficient of He backscattered from Ag ne= 6, na= 1 $\,$

$E_0 (eV)$	cT ⁰
50	3.75e-1
100	3.36e-1
300	2.82e-1
500	2.62e-1
1000	2.28e-1
4000	1.57e-l

Average depth (mean range) in \ddot{A} of He implanted in Ag ne= 6, na= 1

Bo(eV)	0°	
50	1.80e + 1	
100	2.61e + 1	
300	4.88e+1	
500	6.58e + 1	
1000	1.03e+2	
4000	2.72e + 2	

$\mathrm{Na} \to \mathrm{Ag}$

Sputtering yield of Ag by Na zl = 11, ml = 22.99. z2 = 47, m2 = 107.87, sbe = 2.97 eV. rho = 10.47 g/cm**3 ef= eV, esb = eV. ca=1.00, kk0 = kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program: TPP 9/82 only low fluence! ne= 1, na= 7

E ₀ (eV)	0°	15 ^u	30 ^u	40°	50°	60°	70°
30000	2.34e-0	2.74e-0	3.33e-0	4.11e-0	5.22e-0	7.08e-0	9.42e-0

Sputtered energy of Ag by Na

program: only low fluence! ne= 1, na= 7

_					1 C			
	E ₀ (eV)	0°	15°	30°	40°	50°	60°	70°
	30000	4.15e-3	4.92e-3	6.85e-3	9.60e-3	1.41e-2	2.14e-2	3.24e-2

Particle reflection coefficient of Na backscattered from Ag zl = 11, ml = 22.99, z2=47, m2 = 107.87, sbe=2.97 eV, rho = 10.47 g/cm**3 ef= eV, esb= eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program: only low fluence! ne= 1, na= 7

$B_0(eV)$	0°	15°	30°	40°	50°	60°	70°
30000	1.21e-1	1.35e-l	1.64e-1	2.05e-1	2.57e-1	3.40e-I	4.41e-1

Energy reflection coefficient of Na backscattered from Ag ne= 1, na= 7 $\,$

-	-						
E ₀ (eV)	0°	15°	30°	40°	50°	60°	70°
30000	3.25e-2	3.69e-2	4.91e-2	6.97e-2	9.70e-2	1.49e-1	2.26e-1

Average depth (mean range) in \ddot{A} of Na implanted in Ag ne= 1, na= 7

$B_0(eV)$	0°	15°	30°	40°	50°	60°	70°
30000	2.80e+2	2.72e+2	2.56e+2	2.40e+2	2.28e+2	2.10e+2	1.93e+2

$$Ar \rightarrow Ag$$

Sputtering yield of Ag by Ar zl = 18, ml = 39.95. z2=47, m2 = 107.87, sbe = 2.97 eV, rho = 10.47 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kkO=kkOr=l, kdeel = kdee2=3, ipot=ipotr=l (KrC) program: trspvmcx, trspvlcs ne = 7, na = 1

$E_0 (eV)$	0°
50	1.27e-1
100	4.37e-1
300	1.28e-0
500	1.83e-0
1000	2.64e-0
2500	4.03e-0
4000	4.22e-0

Sputtered energy of Ag by Ar ne= 7, na= 1

$E_0(eV)$	0°
50	9.64e-3
100	2.39e-2
300	3.68e-2
500	3.82e-2
1000	3.49e-2
2500	3.19e-2
4000	2.38e-2

Bo(eV)	0°
50	4.19e-1
100	3.48e-1
300	2.61e-1
500	2.35e-1
1000	2.00e-1
2500	1.83e-1
4000	1.44e-l

Energy reflection coefficient of Ar backscattered from Ag $ne=\ 7,\ na=\ 1$

E _o (eV)	0°
50	8.62e-2
100	7.08e-2
300	5.07e-2
500	4.41e-2
1000	3.68e-2
2500	3.53e-2
4000	2.48e-2

Average depth (mean range) in \ddot{A} of Ar implanted in Ag ne= 7, na= 1

Bo(eV)	0 °
50	4.46e+0
100	6.23e+0
300	1.07e + 1
500	1.38ed-1
1000	2.00e + 1
2500	3.42e+1
4000	4.41e+1

$$\mathbf{K} \to \mathbf{A}\mathbf{g}$$

Sputtering yield of Ag by K zl = 19. ml= 39.10. z2=47. m2 = 107.87. sbe=2.97 eV. rho = 10.47 g/cm**3 ef= eV. esb= eV. ca=1.00. kk0 = kk0r=2. kdeel = kdee2 = 3. ipot=ipotr=1 (KrC) program: TPP 9/82 only low fluence! ne= 1, na= 8

							-	
E ₀ (eV)	0°	15°	30°	40 ^u	50°	60°	70°	80°
30000	4.76e-0	4.99e-0	6.52e-0	8.05e-0	1.03e+1	1.34e + 1	1.68e+l	1.79e + 1

Sputtered energy of Ag by K

program: only low fluence! ne= 1. na= 8

E ₀ (eV)	0°	15°	30°	40°	50°	60°	70°	80°
30000	8.42e-3	9.33e-3	1.55e-2	2.27e-2	3.44e-2	5.00e-2	7.27e-2	9.49e-2

Particle reflection coefficient of K backscattered from Ag zl = 19, ml = 39.10, z2=47, m2=107.87. sbe=2.97 eV. rho = 10.47 g/cm**3 ef = eV. esb = eV, ca=1.00, kk0 = kk0r=2, kdeel = kdee2=3, ipot=ipotr = 1 (KrC) program: only low fluence! ne= 1, na= 8

Ro(eV)	0°	15°	30°	40°	50°	60°	70°	80°
30000	8.21e-2	8.83e-2	1.20e-1	1.52e-1	2.12e-1	2.90e-1	3.95e-1	5.66e-l

Energy reflection ne = 1, na = 7coefficient of K backscattered from Ag

$B_0(eV)$	0°	15°	30°	40°	50°	60°	70 ⁰	80°
30000	1.43e-2	1.63e-2	2.74e-2	3.83e-2	6.59e-2	1.06e-l	1.80e-1	3.41e-1

Average depth (mean range) in Ä of K implanted in Ag ne= 1, na= 8

E₀(eV) 70° 0° 15° 30° 40° 50° 60° 30000 1.72e+2 1.69e+2 1.58e+2 1.49e+2 1.35e+2 1.25e+2 1.13e+2 1.05e+2

80°

 $Xe \rightarrow Ag$

Sputtering yield of Ag by Xe zl=54, 1111=131.30, z2=47, m2 = 107.87, sbe=2.97 eV. rho=10.47 g/cm**3 ef=0.50 eV. esb=0.00 eV, ca=1.00, kk0=kk0r=1, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: trspvmcx, trspvlcs ne= 6, na= 1

Eq(eV)	0°
50	2.75e-2
100	2.06e-1
300	1.05e-0
500	1.71e-0
1000	2.85e-0
4000	5.79e-0

Sputtered energy of Ag by Xe ne= 6, na= 1

Bo(eV)	0°
50	1.15e-3
100	6.95e-3
300	2.11e-2
500	2.63e-2
1000	2.91e-2
4000	2.59e-2

Particle reflection coefficient of Xe backscattered from Ag zl=54, ml = 131.30, z2=47, m2=107.87, sb=2.97 eV, rho = 10.47 g/cm**3 ef=0.50 eV, esb = 0.00 eV, ea=1.00, kkO=kkOr=1. kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: trspwncx, trspvlcs ne= 6, na= 1

$E_0(eV)$	0 °
50	4.29e-2
100	2.83e-2
300	1.97e-2
500	1.95e-2
1000	1.60e-2
4000	1.30e-2

Energy reflection coefficient of Xe backscattered from Ag ne= 6, na= 1 $\hfill \hfill \hfill$

$E_0(eV)$	0°
50	5.51e-4
100	5.07e-4
300	3.45e-4
500	3.88e-4
1000	2.89e-4
4000	2.37e-4

Average depth (mean range) in \ddot{A} of Xe implanted in Ag ne= 6, na= 1

Eo(eV)	0°
50	3.63e+0
100	5.26e+0
300	8.99e4-0
500	1.14e + 1
1000	1.57e + 1
4000	3.08e + 1

H -> In

Sputtering yield of Tn by TT zl = 1. ml = 1.01. z2 = 49. m2 = 114.82, sbe=2.49 eV. rho = 7.31 g/cm**3 ef=0.95 eV, esb=1.00 eV. ca=1.00. kk0 = kk0r=2, kdeel = kdee2 = 3, ipot=ipotr = 1 (KrC) program: TESTVMCX, TPP 9/82 ' ne= 1, na=10

Eo(eV)	0°	15°	30°	45°	60°	70°	75°	80°	85°	87°
2000	1.65e-2	1.79e-2	2.24e-2	2.94e-2	5.41e-2	7.68e-2	1.04e-1	1.33e-1	1.42e-1	9.06e-2

Sputtered energy of Tn by H program: testvmcx ne= 1, na=10

E ₀ (eV) 0 ^u	15°	30 ^u	45 ^u	60 ^u	70 [°]	75°	80°	85°	87 ^u
200	0 5.16e-5	5.90e-5	6.64e-5	9.36e-5	1.82e-4	2.67e-4	3.59e-4	5.18e-4	6.52e-4	4.71e-4

Particle reflection coefficient of H backscattered from Tn zl=1, ml=1.01. z2=49. m2=114.82. sb=2.49 eV. rho=7.31 g/cm**3 ef=0.95 eV, esb=1.00 eV. ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr = l (KrC) program: testvmcx ne=1, na=10

 0 (eV)
 0 °
 15 °
 30 °
 45 °
 60 °
 70 °

 2000
 3.60e-1
 3.71e-1
 4.07e-1
 4.69e-1
 5.55e-1
 6.28e-1
 Eo(eV) 75° 80° 85° 87° 9.16e-1 6.74e-1 7.35e-1 8.28e-1

Energy reflection coefficient of H backscattered from Tn $ne=\ 1,\ na=10$

E ₀ (eV)	0°	15°	30°	45°	60°	70°	75°	80°	85°	87°
2000	1.74e-1	1.83e-1	2.08e-1	2.56e-1	3.33e-1	4.15e-1	4.74e-1	5.58e-1	6.99e-l	8.42e-1

Average depth (mean range) in \ddot{A} of H implanted in In $ne=\ 1,\ na=10$

E ₀ (eV)	0°	15°	30°	45°	60°	70°	75 °	80°	85°	87°
2000	4.02e + 2	3.97e + 2	3.89e + 2	3.75e+2	3.67e + 2	3.56e4-2	3.47e + 2	3.49e + 2	3.47e+2	3.49e+2

$$D \ {\longrightarrow} In$$

Sputtering yield of Tn by D zl = 1, ml = 2.01, z2=49, m2 = 114.82, sbe=2.52 eV. rho=7.31 g/cm**3 ef=0.90 eV. esb=1.00 eV. ea=1.00, kk0 = kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: newtrim (Laszlo), TPP 9/82 ne= 7, na= 2

E _o (eV)	0°	65°
100	6.98e-3	7.79e-3
200	2.10e-2	3.60e-2
500	3.71e-2	9.42e-2
1000	4.29e-2	1.27e-l
2000	4.20e-2	1.38e-1
5000	3.67e-2	1.36e-1
10000	2.81e-2	1.10e-1

Sputtered energy of Tn by D program: newtrim (Laszlo) ne= 7, na= 2

E ₀ (eV)	0°	65°
100	9.77e-5	1.17e-4
200	2.89e-4	5.01e-4
500	3.89e-4	9.72e-4
1000	2.93e-4	9.44e-4
2000	1.93e-4	7.11e-4
5000	8.29e-5	3.64e-4
10000	3.45e-5	1.92e-4

Particle reflection coefficient of D backscattered from Tn zl=1; ml=2.01, z2=49, m2=114.82, sb=2.52 eV. rho=7.31 g/cm**3 ef=0.90 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program: newtrim (Laszlo) ne=7, na=2

E ₀ (eV)	0°	65 ⁶
100	5.90e-1	7.68e-1
200	5.57e-1	7.40e-1
500	5.01e-1	6.96e-1
1000	4.53e-1	6.55e-1
2000	3.89e-1	6.09e-1
5000	2.89e-1	5.31e-1
10000	2.05e-l	4.67e-1

Energy reflection coefficient of D backscattered from Tn ne= 7, na= 2 $\,$

E ₀ (eV)	0°	65°
100	3.69e-1	5.91e-1
200	3.38e-1	5.52e-1
500	2.89e-1	4.98e-1
1000	2.49e-1	4.53e-1
2000	2.01e-1	4.04e-1
5000	1.33e-l	3.24e-1
10000	8 25e-2	2.61e-1

Average depth (mean range) in \ddot{A} of D implanted in Tn ne= 7, na= 2

E ₀ (eV)	0 [°]	65°
100	6.90e + 1	6.56e-}-l
200	1.02e- -2	9.65e+1
500	1.76e+2	1.65e+2
1000	2.78e-f-2	2.57e+2
2000	4.51e + 2	4.06e+2
5000	8.92e+2	7.64e+2
10000	1.55e+3	1.27e+3

$D \to \mathrm{In}$

D on Tn, Maxwellian velocity distribution, sheath potential 0 kT zl = 1, ml = 2.01, z2 = 49, m2 = 114.82, sbe=2.52 eV, rho=7.31 g/cm**3 ef=0.90 eV, esb = 1.00 eV, ca=1.00, kk0 = kk0r=2, kdeel = kdee2 = 3, ipot=ipotr=l (KrC) program: testvmcx, newtrim (Laszlo) ne=8

kT(eV)	Y	YE	Esp	R _A r	RE	E _b	range
20	9.93e-4	3.60e-5	1.45e-f-0	7.41e-1	5.34e-1	2.88e+1	4.05e + 1
50	9.15e-3	2.37e-4	2.59e + 0	7.04e-1	4.85e-1	6.90e+1	6.68e+l
100	2.44e-2	4.52e-4	3.70e+0	6.77e-1	4.48e-1	1.32e+2	1.00e + 2
200	4.62e-2	6.19e-4	5.37e+0	6.37e-1	4.04e-1	2.55e+2	1.51e+2
500	7.50e-2	5.35e-4	7.11e-f-0	5.82e-1	3.48e-1	5.96e4-2	2.69e + 2
1000	8.71e-2	4.04e-4	9.21e + 0	5.31e-1	3.00e-1	1.12e + 3	4.34e + 2
2000	9.03e-2	2.69e-4	1.19e + 1	4.74e-1	2.44e-1	2.06e + 3	7.22e + 2
5000	8.23e-2	1.25e-4	1.52e + 1	3.83e-1	1.70e-1	4.45e+3	1.43e+3

D on In, Maxwellian velocity distribution, sheath potential 3 kT $ne\!=\!9$

						1	
kT(eV)	Y	Ye	Esp	Bjv	Re	Eb	range
10	6.86e-4	1.25e-5	9.14e-1	6.48e-l	4.32e-1	3.34e+1	4.65e + 1
20	7.38e-3	1.25e-4	1.70e + 0	6.18e-1	4.00e-1	6.46e + 1	6.78e+1
50	2.63e-2	3.59e-4	3.42e-f-0	5.76e-1	3.57e-1	1.55e+2	1.14e-t-2
100	3.91e-2	4.02e-4	5.15e-}-0	5.35e-1	3.20e-1	2.99e + 2	1.75e + 2
200	5.15e-2	3.65e-4	7.06e-j-0	4.88e-1	2.79e-1	5.69e + 2	2.75e + 2
500	5.31e-2	2.01e-4	9.44e- -0	4.04e-1	2.11e-1	1.31e+3	5.17e + 2
1000	4.91e-2	1.13e-4	1.15e+l	3.28e-1	1.55e-l	2.36e+3	8.63e4-2
2000	3.48e-2	5.12e-5	1.48e+l	2.45e-1	1.03e-1	4.20e+3	1.47e+3
5000	2.40e-2	1.44e-5	1.50e-f-l	1.33e-1	4.39e-2	8.24e+3	3.09e + 3

T -> In

Sputtering yield of In by T zl = 1, ml = 3.01, z2=49, m2 = 114.82, sbe=2.52 eV, rho=7.31 g/cm**3 ef=0.90 eV, esb = 1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr=1 (KrC) program: newtrim (Laszlo), TPP 9/82 ne= 8, na= 2

E ₀ (eV)	0°	65 ^u
50	3.48e-3	
100	1.74e-2	2.38e-2
200	3.91e-2	7.84e-2
500	6.03e-2	1.63e-1
1000	6.99e-2	2.06e-1
2000	7.12e-2	2.27e-1
5000	6.33e-2	2.12e-1
10000	4.95e-2	

Sputtered energy of In by T program: newtrim (Laszlo) ne= 8, na= 2

Eq(eV)	0°	65 ^u
50	6.17e-5	
100	3.70e-4	5.30e-4
200	7.14e-4	1.51e-3
500	7.48e-4	2.05e-3
1000	5.94e-4	1.83e-3
2000	3.80e-4	1.33e-3
5000	1.76e-4	6.87e-4
10000	7.57e-5	

Eq(eV)	0°	65°
50	6.02e-1	
100	5.72e-1	7.61e-l
200	5.45e-l	7.29e-l
500	4.97e-1	6.88e-1
1000	4.49e-1	6.52e-1
2000	3.92e-1	6.08e-1
5000	2.99e-1	5.39e-1
10000	2.18e-1	

Energy reflection coefficient of T backscattered from In ne= 8, na= 2 $\,$

E ₀ (eV)	0°	65°
50	3.80e-1	
100	3.52e-1	5.80e-1
200	3.26e-1	5.40e-1
500	2.86e-1	4.94e-1
1000	2.49e-1	4.55e-1
2000	2.06e-1	4.09e-1
5000	1.41e-l	3.40e-1
10000	9.21e-2	

Average depth (mean range) in $\ddot{\rm A}$ of T implanted in In ne= 8, na= 2

$E_0(eV)$	0°	65°]
50	4.51e4-1		
100	6.62e+1	6.30e4-1	
200	9.93e+1	9.39e+1	
500	1.76e4-2	1.64e+2	
1000	2.81e+2	2.59e+2	
2000	4.60e+2	4.23e+2	
5000	9.38e+2	8.18e+2	
10000	1.67e + 3		

$T \ \text{->} \ In$

T on In, Maxwellian velocity distribution, sheath potential 0 kT zl = 1. ml= 3.01. z2 = 49, m2 = 114.82, sbe=2.52 eV. rho = 7.31 g/cm**3 ef=0.90 eV. esb = 1.00 eV. ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr = 1 (KrC) program: newtrim (Laszlo) ne=8

kT(eV)	Y	Υ E	Esp	R _A r	R _b	Eb	range
20	3.70e-3	1.73e-4	1.87e + 0	7.27e-1	5.18e-1	2.85e + 1	3.84e+1
50	2.18e-2	7.17e-4	3.30e + 0	6.92e-1	4.73e-1	6.85e+1	6.42e + 1
100	4.98e-2	1.09e-3	4.39e4-0	6.65e-1	4.38e-1	1.32e4-2	9.73e + 1
200	8.17e-2	1.26e-3	6.19e4-0	6.32e-1	4.04e-1	2.57e + 2	1.48e+2
500	1.24e-l	1.05e-3	8.49e-f-0	5.81e-1	3.56e-1	6.13e+2	2.71e4-2
1000	1.42e-1	7.89e-4	1.11e+1	5.33e-1	3.05e-1	1.14e + 3	4.52e+2
2000	1.48e-1	5.22e-4	1.40e+1	4.78e-1	2.59e-1	2.14e+3	7.55e+2
5000	1.21e-1	2.20e-4	1.81e + 1	3.95e-1	1.79e-1	4.53e + 3	1.57e + 3

T on In, Maxwellian velocity distribution, sheath potential 3 kT $ne\!=\!8$

kT(eV)	Y	YE	Esp	R?7	Rfi?	B _b	range
20	1.97e-2	4.62e-4	2.35e + 0	6.03e-1	3.86e-1	6.40e + 1	6.52e + 1
50	5.10e-2	8.68e-4	4.26e + 0	5.67e-1	3.49e-1	1.54e + 2	1.11e+2
100	7.03e-2	8.96e-4	6.37e + 0	5.30e-1	3.16e-1	2.98e+2	1.73e+2
200	8.40e-2	6.75e-4	8.04e + 0	4.84e-1	2.81e-1	5.81e+2	2.74e+2
500	8.35e-2	3.70e-4	1.11e + 1	4.10e-1	2.19e-1	1.33e+3	5.33e+2
1000	7.61e-2	2.06e-4	1.35e + 1	3.42e-1	1.68e-l	2.15e+3	9.13e4-2
2000	5.98e-2	1.07e-4	1.78e+1	2.58e-1	1.14e-1	4.40e+3	1.59e+3
5000	3.51e-2	3.09e-5	2.20e + 1	1.46e-1	5.13e-2	8.79e + 3	3.41e + 3

T on In, Maxwellian velocity distribution, sheath potential 9 kT $ne\!=\!6$

kT(eV)	Y	Ye	Esp	R _N	RE	E&	range
10	2.13e-2	4.69e-4	2.42e + 0	∎5.84e-1	3.64e-1	6.84e + 1	6.93e + 1
20	4.30e-2	7.90e-4	4.04e + 0	5.50e-1	3.34e-1	1.33e+2	1.04e + 2
50	6.74e-2	7.99e-4	6.51e + 0	5.05e-1	2.93e-1	3.19e4-2	1.85e+2
100	7.55e-2	5.85e-4	8.51e4-0	4.55e-1	2.59e-1	6.26e + 2	2.97e + 2
200	7.60e-2	3.75e-4	1.09e + 1	3.95e-1	2.10e-1	1.17e4-3	4.89e + 2
500	7.10e-2	1.92e-4	1.48e+1	3.19e-1	1.53e-1	2.63e4-3	9.99e + 2

$\mathrm{In} \to \mathrm{In}$

Sputtering yield of Tn by Tn zl=49. ml = 114.82, z2=49, m2 = 114.82, sbe=2.52 eV, rho=7.31 g/cm**3 ef=2.02 eV, esb=2.52 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: newtrim (Laszlo), TPP 9/82 ne= 9, na= 8

E ₀ (eV)	0°	30°	45 ^u	55°	60°	65°	70°	80°
20	1.31e-3				7.76e-2			
50	6.65e-2				4.49e-1			
100	2.97e-1	6.00e-1	8.66e-1	9.76e-1	9.64e-1		7.96e-1	4.29e-1
200	7.49e-1	1.22e-0	1.63e-0	1.79e-0	1.79e-0	1.70e-0	1.50e-0	7.54e-1
500	1.76e-0				3.57e-0			
1000	2.76e-0	3.78e-0	4.85e-0	5.48e-0	5.63e-0	5.61e-0	5.29e-0	3.04e-0
2000	4.00e-0				8.44e-0			
5000	5.89e-0				1.34e+1			
10000	7.18e-0				1.78e+1			

Sputtering yield of Tn by Tn program: newtrim (Laszlo) ne= 9, na= 8

0°	30°	45°	55°	60 ^u	65°	70°	80°
7.21e-5				1.55e-2			
2.87e-3				7.44e-2			
9.76e-3	3.68e-2	7.77e-2	1.09e-1	1.20e-1		1.19e-l	6.89e-2
1.79e-2	5.07e-2	9.82e-2	1.36e-1	1.52e-1	1.61e-l	1.57e-l	8.70e-2
2.58e-2				1.73e-1			
2.76e-2	5.99e-2	1.07e-1	1.51e-1	1.75e-l	1.96e-l	2.08e-1	1.49e-1
2.75e-2				1.69e-l			
2.43e-2				1.57e-l			
2.06e-2				1.41e-1			
	0° 7.21e-5 2.87e-3 9.76e-3 1.79e-2 2.58e-2 2.76e-2 2.75e-2 2.43e-2 2.06e-2	0° 30° 7.21e-5 2.87e-3 9.76e-3 3.68e-2 1.79e-2 5.07e-2 2.76e-2 5.99e-2 2.75e-2 2.43e-2 2.06e-2 2	0° 30° 45° 7.21e-5 2.87e-3 9.76e-3 3.68e-2 9.76e-3 3.68e-2 7.77e-2 1.79e-2 5.07e-2 9.82e-2 2.76e-2 5.99e-2 1.07e-1 2.75e-2 2.48e-2 2.48e-2 2.48e-2 2.48e-2 1.07e-1	0° 30° 45° 55° 7.21e-5 9.76e-3 3.68e-2 7.77e-2 1.09e-1 1.79e-2 5.07e-2 9.82e-2 1.36e-1 2.76e-2 5.99e-2 1.07e-1 1.51e-1 2.75e-2 2.43e-2	0° 30° 45° 55° 60° 7.21e-5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Particle reflection coefficient of Tn backscattered from In z1=49, ml = 114.82, z2=49, m2 = 114.82, sbe = 2.52 eV, $rho=7.31 g/cm^{**}3$ ef=2.02 eV, esb=2.52 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program: newtrim (Laszlo) ne= 9, na= 8

$E_0(eV)$	0°	30°	45°	55°	60°	65°	70°	<u>80°</u>
20	5.76e-5				1.24e-1			
50	3.90e-3				3.69e-1			
100	1.32e-2	7.25e-2	1.86e-l	3.25e-1	4.21e-1		6.47e-1	8.79e-1
200	2.11e-2	8.03e-2	1.86e-2	3.09e-1	3.94e-1	4.96e-1	6.18e-1	8.88e-1
500	3.02e-2				3.39e-1			
1000	2.98e-2	7.39e-2	1.43e-1	2.39e-1	2.92e-1	3.83e-1	4.84e-1	7.99e-1
2000	2.75e-2				2.65e-1			
5000	2.57e-2				2.31e-1			
10000	1.87e-2				2.01e-1			

Energy reflection coefficient of In backscattered from In ne= 9, na= 8 $\,$

E ₀ (eV)	0°	30°	45°	55°	60°	65°	70°	80°
20	4.85e-6				3.55e-2			
50	2.12e-4				1.22e-1			
100	6.56e-4	8.85e-3	3.81e-2	9.35e-2	1.43e-1		3.02e-1	5.48e-1
200	9.20e-4	8.54e-3	3.53e-2	8.40e-2	1.28e-1	1.96e-l	2.91e-1	5.92e-1
500	1.11e-3				9.98e-2			
1000	1.13e-3	6.08e-3	2.05e-2	5.26e-2	8.01e-2	1.27e-l	1.99e-1	5.23e-1
2000	9.73e-4				6.74e-2			
5000	6.69e-4				5.16e-2			
10000	5.60e-4				4.94e-2			

Average depth (mean range) in $\ddot{\rm A}$ of Tn implanted in In ne= 9, na= 8

$B_0(eV)$	0°	30°	45°	55°	60°	65°	70°	80°
20	3.58e+0				1.44e- -0			
50	5.83e+0				3.27e-}-0			
100	8.19e-}-0	7.28e+0	6.37e+0	5.69e+0	5.31e + 0		4.46e+0	3.24e+0
200	1.14e4-1	1.02e+1	9.04e+0	8.22e+0	7.72e4-0	7.22e+0	6.68e-J-0	5.21e- -0
500	1.73e + 1				1.19e + 1			
1000	2.39e-f-l	2.16e+1	1.89e-H	1.70e+1	1.63e+1	1.51e+1	1.45e + 1	1.24e + 1
2000	3.29e + 1				2.27e + 1			
5000	5.19e+l				3.51e + 1			
10000	7.67e + 1				5.11e+1			

In -> In

In on In. Maxwellian velocity distribution, sheath potential 0 kT z1=49, ml = 114.82, z2=49, m2 = 114.82. sbe=2.52 eV, rho= 7.31 g/cm**3 ef=2.02 eV. esb=2.52 eV. ca=1.00. kk0=kk0r=2. kdeel = kdee2 = 3, ipot=ipotr=1 (KrC) program: testvmcx, newtrim (Laszlo) ne= 12

kT(eV) Y	Ye 3.45e-4	Esp 2 34e \pm 0	R _N	Re	Еь	range
2 5 0 1 0 4	3.45e-4	$2.34e \pm 0$	0.00 1			U
2 5.916-4		2.54010	9.82e-4	9.47e-4	3.86e+0	5.14e-1
3 2.68e-3	1.38e-3	3.08e + 0	5.09e-3	4.26e-3	5.01e+0	7.73e-1
5 1.34e-2	5.75e-3	4.28e+0	2.13e-2	1.56e-2	7.30e+0	1.28e+0
10 6.98e-2	2.05e-2	5.87e+0	7.75e-2	4.67e-2	1.21e4-l	2.06e-f-0
20 2.26e-1	4.44e-2	7.87e+0	1.58e-1	8.11e-2	2.05e4-1	3.31e4-0
50 6.75e-1	7.61e-2	1.13e+1	2.35e-1	1.02e-1	4.35e+1	5.87e-)-0
100 1.28e-0	9.52e-2	1.49e+1	2.52e-1	1.01e-1	7.98e+1	8.59e+0
200 2.22e-0	1.04e-1	1.89e+1	2.52e-1	9.11e-2	1.45e+2	1.22e+1
500 4.04e-0	1.10e-1	2.75e+1	2.29e-1	8.04e-2	3.55e- -2	1.86e-f-l
1000 6.07e-0	1.06e-l	3.50e + 1	2.19e-1	6.88e-2	6.35e+2	2.59e+1
2000 8.48e-0	1.02e-1	4.68e+1	1.89e-1	5.89e-2	1.21e+3	3.44e + 1
5000 1.25e + 1	9.19e-2	7.39e-J-l	1.59e-1	4.31e-2	2.73e+3	5.86e+1

In on In, Maxwellian velocity distribution, sheath potential 3 kT $n\!e\!=\!12$

kT(eV)	Y	Ye	Esp	R;v	Re	Еь	range
- 1.4	4.41e-4	1.02e-4	1.62e- -0	2.15e-4	8.75e-5	2.85e-}-0	1.39e + 0
2	2.02e-3	4.47e-4	2.21e+0	1.16e-3	4.23e-4	3.64e+0	1.84e + 0
3	9.22e-3	1.85e-3	3.01e+0	5.11e-3	1.58e-3	4.64e4-0	2.45e- -0
5	4.25e-2	6.48e-3	3.81e+0	1.64e-2	4.27e-3	6.50e+0	3.48e + 0
10	1.91e-1	1.93e-2	5.05e+0	3.96e-2	8.25e-3	1.04e + 1	5.19e + 0
20	5.23e-1	3.43e-2	6.56e + 0	5.71e-2	9.38e-3	1.64e+1	7.44e + 0
50	1.33e-0	4.87e-2	9.20e-}-0	6.66e-2	8.18e-3	3.08e+1	1.15e+1
100	2.24e-0	5.3'6e-2	1.19e4-1	6.63e-2	7.16e-3	5.39e- -1	1.58e + 1
200	3.42e-0	5.32e-2	1.55e + 1	6.41e-2	5.97e-3	9.30e+1	2.18e+1
500	5.58e-0	5.04e-2	2.26e + 1	5.12e-2	4.54e-3	2.22e+2	3.41e + 1
1000	7.62e-0	4.55e-2	3.02e + 1	4.89e-2	4.96e-3	5.14e-)-2	4.80e + 1
2000	9.22e-0	3.76e-2	4.05e + 1	4.07e-2	3.23e-3	7.88e+2	6.81e-}-l

In on In, Maxwellian velocity distribution, sheath potential 9 kT ne= $1\,2$

kT(eV)	Y	ΥE	E sp	Rtv	Re	Еь	range
1.1	8.29e-4	9.79e-5	1.43e+0	2.01e-4	4.00e-5	2.41e4-0	2.34e+0
1.4	2.44e-3	2.94e-4	1.85e + 0	7.26e-4	1.39e-4	2.94e+0	2.75e+0
2	1.12e-2	1.20e-3	2.36e- -0	2.63e-3	4.15e-4	3.48e+0	3.53e+0
5	1.49e-1	9.77e-3	3.61e+0	1.77e-2	2.06e-3	6.40e+0	5.82e-{-0
10	4.60e-1	2.07e-2	4.94e+0	3.21e-2	2.90e-3	9.96e+0	8.24e+0
20	9.99e-1	3.00e-2	6.59e-}-0	4.05e-2	3.13e-3	1.70e- -1	1.13e- -1
50	2.11e-0	3.64e-2	9.48e + 0	4.53e-2	2.88e-3	3.49e-f-l	1.74e+1
100	3.28e-0	3.88e-2	1.30e4-1	4.09e-2	2.32e-3	6.25e4-1	2.39e + 1
200	4.73e-0	3.73e-2	1.74e+1	4.09e-2	2.44e-3	1.32e + 2	3.32e + 1
500	6.92e-0	3.28e-2	2.60e+1	3.69e-2	1.55e-3	2.31e+2	5.20e-)-l
1000	8.48e-0	2.50e-2	3.23e + 1	2.39e-2	1.54e-3	7.08e+2	7.80e + 1
2000	1.01e + 1	2.07e-2	4.47e + 1	4.38e-2	2.24e-3	1.12e-J-3	1.17e+2

Cs -4 Cs

Sputtering yield of Cs by Cs zl=55, ml = 132.91, z2=55, m2=132.91, sbe = 0.82 eV, rho = 1.899 g/cm**3 ef=0.77 eV, esb=0.82 eV, iwc=2, inel=3. ipot=1 (KrC) program: tridyn (idrel=1) ne= 9, na= 6

		-					
	$E_0(eV)$	0°	10 [°]	20°	30 ^u	40°	50°
Г	100	7.68e-1					
	500	3.05e-0					
	1000	4.74e-0					
	2000	6.94e-0					
	4000	2.14e+1	2.19e+1	2.30e+1	2.48e + 1	2.67e + 1	2.81e+1
	8000	2.82e + 1					
	20000	1.62e+1					
	40000	1.91e + 1					
	80000	1.99e+1					

Sputtered energy of Cs by Cs ne= 9, na= 6

Bo(eV)	0°	10°	20 ^u	30°	40°	50 ^u
100	1.69e-2					
500	2.93e-2 3.10e-2					
2000	3.07e-2					
4000	4.69e-2	5.00e-2	6.13e-2	8.21e-2	1.14e-l	1.56e-l
8000	3.70e-2					
40000	1.88e-2 1.68e-2					
80000	1.13e-2					

Particle reflection coefficient of Cs backscattered from Cs zl=55, ml = 132.91, z2=55, m2 = 132.91, sb=0.82 eV, rho = 1.899 g/cm**3 ef=0.77 eV, esb=0.82 eV, iwc=2, inel=3, ipot=1 (KrC) program: tridyn (idrel=1) ne-9, na= 6

$B_{o}(eV)$	0°	10°	20°	30°	40°	50°
$ \begin{array}{r} 100 \\ 500 \\ 1000 \\ 2000 \\ 4000 \\ 8000 \\ 20000 \\ 40000 \\ 80000 \\ \end{array} $	2.17e-2 3.24e-2 3.25e-2 3.10e-2 2.99e-2 2.56e-2 1.83e-2 1.60e-2 1.40e-2	3.39e-2	4.52e-2	7.21e-2	1.14e-l	1.85e-l

Energy reflection coefficient of Cs backscattered from Cs ne= 9, na= 6

$B_0(eV)$	0°	10°	20°	30°	40°	50 ^u
$ \begin{array}{r} 100 \\ 500 \\ 1000 \\ 2000 \\ 4000 \\ 8000 \\ 20000 \\ 40000 \\ 80000 \\ \end{array} $	9.25e-4 1.15e-3 1.13e-3 1.05e-3 9.28e-4 7.95e-4 6.67e-4 6.06e-4 4.60e-4	1.18e-3	2.44e-3	5.58e-3	1.36e-2	3.25e-2

Average depth (mean range) in \ddot{A} of Cs implanted in Cs ne= 9, na= 6

100 4	1 51e±l					50
1000 1	3.30e + 1 1.10e + 2					
$\begin{array}{cccc} 2000 & 1 \\ 4000 & 1 \\ 8000 & 2 \\ 20000 & 4 \\ 40000 & 7 \end{array}$	1.47e+2 1.88e+2 2.72e+2 4.83e+2 7.15e+2	1.86e+2	1.79e4-2	1.69e+2	1.56e+2	1.42e+2

Cs -> Cs

Sputtering yield of Cs by Cs zl=55. ml = 132.91. z2=55. m2=132.91. sbe = 0.82 eV, rho = 1.899 g/cm**3 ef=0.77 eV. esb = 0.82 eV. iwc = 2. inel=3. ipot = 3 (ZBL) program: tridyn (idrel=1) ne= 5. na= 1

E ₀ (eV)	0°
4000	8.25e + 0
5000	8.76e + 0
20000	1.37e + 1
40000	1.52e+1
80000	1.61e + 1

Sputtered energy of Cs by Cs ne= 5, na= 1

E _o (eV)	0°	
4000	2.46e-2	
5000	2.30e-2	
20000	1.79e-2	
40000	1.37e-2	
80000	1.00e-3	

Sputtering yield of Sm by Kr zl = 36, ml = 83.80. z2 = 62. m2 = 150.35. sbe=2.16 eV. rho = 7.54 g/cm**3 ef=0.50 eV. esb = 0.00 eV. ca=1.00. kk0=kk0r=2, kdeel = kdee2=3 jipot=ipotr=1 (KrC) program : IPP 9/82 ne=16. na= 1

Ro(eV)	0°	comment
50	1.62e-1	
100	4.82e-1	
200	1.01e-0	
200	9.97e-l	
200	1.01e-0	
200	1.35e-0	kdeel = kdee2=2 (OR)
200	7.73e-1	kdeel = kdee2 = l (LS)
500	1.98e-0	
1000	2.80e-0	
2000	4.15e-0	
5000	5.47e-0	
10000	7.08e-0	
20000	7.99e-0	
50000	8.65e-0	
100000	8.55e-0	
200000	7.92e-0	

Sputtered energy of Sm by Kr program :

$R_0(eV)$	0°	comment
50	9.24e-3	
100	1.98e-2	
200	2.85e-2	
200	2.81e-2	
200	2.85e-2	
200	3.85e-2	kdeel=kdee2=2 (OR)
200	2.19e-2	kdeel = kdee2 = l (LS)
500	3.13e-2	
1000	3.42e-2	
2000	3.18e-2	
5000	2.67e-2	
10000	2.23e-2	
20000	1.70e-2	
50000	1.16e-2	
100000	7.82e-3	
200000	4.97e-3	

$Kr \longrightarrow Sm$

Particle reflection coefficient of Kr backscattered from Sm zl=36, ml = 83.80, z2 = 62, m2=150.35, sbe=2.16 eV. rho=7.54 g/cm**3 ef=0.50 eV. esb = 0.00 eV. ca=1.00, kk0=kk0r=2. kdeel = kdee2 = 3. ipot=ipotr = 1 (KrC) program : TPP 9/82 ne=16. na= 1 ٣

E _o (eV)	0°	comment
50	2.38e-1	
100	2.01e-1	
200	1.81e-1	
200	1.74e-l	
200	1.74e-1	
200	1.97e-l	kdeel = kdee2 = 2 (OR)
200	1.62e-1	kdeel = kdee2 = l (LS)
500	1.46e-l	
1000	1.28e-1	
2000	1.19e-1	
5000	9.66e-2	
10000	8.41e-2	
20000	7.55e-2	
50000	5.72e-2	
100000	4.02e-2	
200000	3.09e-2	

Energy reflection coefficient of Kr backscattered from ne=16, na=-1

$E_0(eV)$	0°	comment
50	2.53e-2	
100	2.13e-2	
200	1.92e-2	
200	1.80e-2	
200	1.76e-2	
200	2.14e-2	kdeel =kdee2=2 (OR)
200	1.64e-2	kdeel = kdee2 = l (LS)
500	1.46e-2	
10-00	1.29e-2	
2000	1.16e-2	
5000	9.70e-3	
10000	8.62e-3	
20000	7.86e-3	
50000	6.06e-3	
100000	4.64e-3	
200000	3.30e-3	

Average depth (mean range) in \ddot{A} of Kr implanted in $ne{=}15.\ na{=}\ 1$

Eo(eV)	0°	comment
50	1.07e-f-l	
100	1.33e + 1	
200	1.68e + 1	
200	1.70e + 1	
200	1.68e4-1	
200	1.76e + 1	kdeel = kdee2 = 2 (OR)
200	1.63e+1	kdeel = kdee2 = l (LS)
500	2.39e-}-1	
1000	2.83e + 1	
2000	4.36e + 1	
5000	6.55e + 1	
10000	1.00e + 2	
20000	1.53e + 2	
50000	2.81e+2	
100000	4.70e + 2	

$$\mathrm{H} \to \mathrm{Ta}$$

Sputtering yield of Ta by H zl = 1, ml = 1.01, z2=73, m2=180.95, sbe=8.10 eV, rho=16.60 g/cm**3 ef=0.98 eV, esb = 1.00 eV, ca=1.00, kk0=kk0r=2. kdeel = 4, kdee2=3. ipot=ipotr=1 (KrC) program: testvmcx, TPP 9/82 ne= 1, na= 8

E ₀ (eV)	0°	30°	50°	70°	80°	85°	87°	88 ^u
25000	1.95e-3	3.63e-3	7.48e-3	1.93e-2	3.68e-2	6.69e-2	8.30e-2	7.81e-1

Sputtered energy of Ta by H program: testvmcx ne= 1, na= 4

Eo(eV)	80°	85°	87°	88 ^u
25000	4.55e-5	9.12e-5	1.30e-4	1.23e-4

Particle reflection coefficient of PI backscattered from Ta zl=1, ml=1.01, z2=73, m2=180.95, sb=8.10 eV, rho=16.60 g/cm**3 ef=0.98 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel=4, kdee2=3, ipqt=ipotr=1 (KrC) program: testvmcx ne=1, na=4

	and the second	· · · · · · · · · · · · · · · · · · ·	the second s
Eo(ey) " 80°	85° 87– '	88 ^p -	a start
25000 ' 5,70e1	6.86e-1	8v21e-1	

coefficient of H backscattered from Ta

E ₀ (eV)	80°	85°	87°	88°
25000	3.35e-l	4.80e-1	5.86e-l	6.86e-l

Average depth (mean range) in \ddot{A} of H implanted in Ta ne= 1, na= 4

$E_0(eV)$	80°	85°	87°	88°
25000	8.61e+2	8.53e+2	8.50e+2	8.45e+2

$$\mathbf{H} \to \mathbf{W}$$

Sputtering yield of W by H zl = 1, ml= 1.01, z2 = 74, m2=183.65, esb = 8.68 eV. rho=19.29 g/cm**3 ef=0.95 eV. esb = 1.00 eV. ca=1.00, kk0=kk0r=2; kdeel = kdee2=3. ipot=ipotr=1 (KrC) program: testvmcx. trvmc ne=11. na=12

E (eV)	0°	15°	30°	45 ^u	55 ^u	60°	65°	70°	75°	80°	85 ^u	87 ^u
500	1.18e-5	1.43e-5	1.23e-5	1.65e-5	1.88e-5		2.03e-5		1.17e-5	6.44e-6	8.94e-7	
550	4.25e-5	4.28e-5	5.43e-5	5.53e-5	6.10e-5		5.80e-5		4.15e-5	2.39e-5	3.99e-6	
600	8.88e-5	9.04e-5	9.68e-5	1.21e-4	1.34e-4		1.31e-4		9.76e-5	5.70e-5	1.20e-5	
700	2.42e-4	2.55e-4	2.85e-4	3.04e-4	3.43e-4		3.39e-4		2.82e-4	1.87e-4	3.85e-5	
800	4.18e-4	4.62e-4	5.22e-4	5.70e-4	6.28e-4		6.86e-4		5.85e-4	3.86e-4	1.02e-4	
900	6.72e-4	6.70e-4	7.36e-4	8.36e-4	9.57e-4		1.02e-3		9.32e-4	6.94e-4	2.12e-4	
1000	8.64e-4	9.04e-4	9.91e-4	1.09e-3	1.24e-3		1.49e-3		1.44e-3	1.14e-3	3.91e-4	
2000	2.42e-3	2.41e-3	2.82e-3	3.70e-3		4.90e-3		7.16e-3	9.77e-3	1.23e-2	1.18e-2	4.48e-3
5000	3.32e-3											
10000	3.15e-3											
20000	2.50e-3											

Sputtered energy of W by H ne=11. na=12

E_0 (eV)	0°	15°	30°	45°	55°	60°	65°	70°	75°	80°	85°	87°
500	1.85e-8	2.14e-8	2.08e-8	2.63e-8	2.96e-8		3.46e-8		1.92e-8	9.19e-9	1.35e-9	
550	8.45e-8	9.95e-8	1.20e-7	1.26e-7	1.37e-7		1.38e-7		9.42e-8	5.16e-8	8.59e-9	
600	2.37e-7	2.42e-7	2.47e-7	3.26e-7	3.64e-7		3.70e-7		2.77e-7	1.53e-7	3.07e-8	
700	7.82e-7	8.33e-7	9.38e-7	1.03e-6	1.17e-6		1.21e-6		1.00e-6	6.37e-7	1.25e-7	
800	1.53e-6	1.67e-6	1.94e-6	2.28e-6	2.37e-6		2.67e-6		2.35e-6	1 51e-6	4.02e-7	
900	2.66e-6	2.67e-6	2.95e-6	3.46e-6	3.96e-6		4.32e-6		3.90e-6	2.95e-6	9.06e-7	
1000	3.55e-6	3.68e-6	4.08e-6	4.67e-6	5.37e-6		6.44e-6		6.22e-6	5.10e-6	1.66e-6	
2000	1.0le-5	9.89e-6	1.17e-5	1.49e-5		2.12e-5		3.03e-5	4.31e-5	5.60e-5	6.16e-5 .	2.55e-5
5000	9.74e-6											
10000	5.94e-6											
20000	2.97e-6											

.

H -> W

Particle reflection coefficient of TJ backscattered from W zl=1. ml = 1.01. z2=74, m2=183.65, esb=8.68 eV. rho=19.29 g/cm**3 ef=0.95 eV. esb=1.00 eV. ca=1.00, kk0=kk0r=2, kdeel = kdee2=3 i pot=ipotr = 1 (KrC)program: testvmcx. trvmc ne=17. na=12

E ₀ (eV)	0°	15 ^u	30°	45°	55°	60°	65°	70°	75°	80°	85°	87°
10	7.58e-1	7.67e-1	7.93e-1	8.40e-1	8.80e-1		9.22e-1		9.59e-1	9.72e-1	9.80e-1	
20	7.17e-1	7.29e-1	7.52e-1	8.05e-1	8.51e-l		9.04e-1		9.57e-1	9.77e-1	9.88e-1	
50	6.68e-1	6.77e-l	7.05e-1	7.51e-1	7.97e-1		8.59e-1		9.37e-1	9.73e-1	9.93e-1	
100	6.32e-1	6.41e-1	6.67e-1	7.15e-1	7.56e-l		8.17e-1		9.06e-1	9.58e-1	9.93e-1	
200	5.94e-1	6.05e-1	6.29e-1	6.75e-1	7.19e-1		7.75e-1		8.61e-1	9.29e-1	9.90e-1	
300	5.71e-1	5.80e-1	6.09e-1	6.55e-1	6.97e-1		7.54e-1		8.35e-1	9.04e-1	9.85e-1	
500	5.39e-1	5.49e-1	5.77e-1	6.25e-1	6.68e-1		7.24e-1		8.03e-1	8.69e-1	9.72e-1	
550	5.32e-1	5.42e-1	5.71e-l	6.19e-1	6.62e-1		7.18e-1		7.97e-l	8.63e-1	9.69e-1	
600	5.27e-1	5.36e-1	5.64e-1	6.14e-1	6.57e-1		7.13e-1		7.92e-1	8.57e-1	9.65e-1	
700	5.15e-1	5.25e-1	5.55e-1	6.04e-1	6.48e-1		7.04e-1		7.82e-1	8.46e-1	9.58e-1	
800	5.05e-1	5.15e-1	5.45e-1	5.95e-1	6.40e-1		6.96e-1		7.74e-1	8.37e-1	9.51e-1	
900	4.95e-1	5.06e-1	5.36e-1	5.86e-1	6.32e-1		6.89e-1		7.66e-l	8.28e-1	9.45e-1	
1000	4.87e-1	4.97e-1	5.27e-1	5.78e-1	6.25e-1		6.83e-1		7.60e-1	8.21e-1	9.38e-1	
2000	4.25e-1	4.36e-1	4.68e-1	5.24e-1		6.04e-1		6.72e-1	7.18e-1	7.74e-1	8.86e-1	9.70e-1
5000	3.23e-1											
10000	2.40e-1											
20000	1.55e-l											

Energy reflection coefficient of H backscattered from W $ne{=}17._na{=}12$

$E_0(eV)$	0°	15°	30 ^u	45°	55°	60°	65°	70°	75°	80°	85 ^u	87°
10	5.64E-1	5.77E-1	6.15E-1	6.83E-1	7.45E-1		8.13 E-1		8.80E-1	9.05E-1	9.21E-1	
20	5.13E-1	5.27E-1	5.62E-1	6.34E-1	7.04E-1		' 7.90E-1		8.84E-1	9.23E-1	9.47E-1	
50	4.51E-1	4.63E-1	4.97E-1	5.59E-1	6.25E-1		7.21E-1		8.53E-1	9.20E-1	9.62E-1	
100	4.10E-1	4.19E-1	4.50E-1	5.09E-1	5.67E-1		6.56E-1		8.01E-1	8.95E-1	9.65E-1	
200	3.70E-1	3.81E-1	4.08E-1	4.62E-1	5.16E-1		5.96E-1		7.30E-1	8.45E-1	9.60E-1	
300	3.47E-1	3.55E-1	3.84E-1	4.37E-1	4.89E-1		5.64E-1		6.90E-1	8.05E-1	9.51E-1	
500	3.16E-1	3.25E-1	3.53E-1	4.04E-1	4.54E-1		5.25 E-1		6.42 E-1	7.50E-1	9.29E-1	
550	3.10E-1	3.19E-1	3.47E-1	3.98E-1	4.48E-1		5.19E-1		6.33E-1	7.39 E-1	9.23E-1	
600	3.05E-1	3.14E-1	3.41E-1	3.92E-1	4.42E-1		5.12E-1		6.25E-1	7.30E-1	9.17E-1	
700	2.95E-1	3.04E-1	3.32E-1	3.82E-1	4.32E-1		5.01E-1		6.12E-1	7.13E-1	9.05E-1	
800	2.86E-1	2.95E-1	3.23E-1	3.73E-1	4.23E-1		4.92E-1		6.01E-1	6.99E-1	8.93E-1	
900	2.78E-1	2.87E-1	3.14E-1	3.64E-1	4.14E-1		4.83E-1		5.91E-1	6.87E-1	8.82E-1	
1000	2.71E-1	2.80E-1	3.07E-1	3.57E-1	4.07E-1		4.76E-1		5.82E-1	6.76E-1	8.71E-1	
2000	2.21e-1	2.30e-1	2.56e-1	3.06e-1		3.87e-1		4.68e-1	5.27e-1	6.09e-1	7.88e-1	9.30e-1
5000	1.50e-1											
10000	9.88e-2											
20000	5.54e-2											

Average depth (mean range) in \ddot{A} of H implanted in W ne=17. na=12

Eo(eV)	0°	15°		45°	55°	60°	65°	70°	75°	80°	85°	87°
10	1.30E4-1	1.29E+1	1.29E+1	1.28E4-1	1.27E4-1		1.27E+1		1.25E+1	1.25E+1	1.25E+1	
20	1.82E+1	1.82E-J-1	1.82E+1	1.80E+1	1.79E+1		1.77E+1		1.76E + 1	1.77E4-1	1.76E+1	
50	2.86E+1	2.86E+1	2.85E+1	2.83E-I-1	2.80E+1		2.80E4-1		2.77E+1	2.76E4-1	2.75E + 1	
100	4.09E+1	4.06E-H	4.04E + 1	4.01E+1	3.97E-J-1		3.93E4-1		3.90E-H	3.90E+1	3.90E4-1	
200	5.85E+1	5.81E4-1	5.76E+1	5.70E+1	5.62E + 1		5.61E+1		5.57E4-1	5.52E+1	5.51E-J-1	
300	7.27E-f-1	7.27E+1	7.16E4-1	7.08E+1	7.01E4-1		6.94E4-1		6.85E+1	6.86E4-1	6.85E+1	
500	9.63E+1	9.59E+1	9.49E+1	9.33E+1	9.23E+1		9.12E + 1		9.04E+1	9.00E+1	9.00E4-1	
550	1.02E4-2	1.01E+2	1.00E+2	9.84E+1	9.73E4-1		9.61E4-1		9.51E-H	949E+1	9.49E + 1	
600	1.07E + 2	1.06E+2	1.05E+2	1.03E + 2	1.02E+2		1.01E + 2		9.98E+1	9.94E+1	9.93E4-1	
700	1.17E + 2	1.16E4-2	1.15E+2	1.13E4-2	1.11E-J-2		1.10E+2		1.09E-J-2	1.08E-J-2	1.08E+2	
800	1.26E+2	1.26E+2	1.24E4-2	1.22E + 2	1.20E+2		1.18E4-2		1.17E+2	1.17E+2	1.17E + 2	
900	1.36E+2	1.35E+2	1.33E4-2	1.30E-J-2	1.29E4-2		1.27E+2		1.25E+2	1.25E-I-2	1.25E4-2	
1000	1.44E+2	1.44E+2	1.42E+2	1.39E4-2	1.37E-}-2		1.35E4-2		1.33E+2	1.33E+2	1.32E+2	
2000	2.22e+2	2.21e-f-2	2.17e+2	2.11e+2		2.05e+2		2.01e+2	2.00e+2	1.99e-f-2	1.98e+2	1.98e+2
5000	4.12e+2											
10000	6.81e+2											
20000	1.16e+3											

$H \rightarrow W$

H on W. Maxwellian velocity distribution, sheath potential 3 kT zl = 1. ml= 1.01. z2=74. m2 = 183.85. sbe=8.68 eV. rho = 19.30 g/cm**3 ef=0.98 eV. esb = 1.00 eV. ca=1.00. kkO=kkOr=2. kdeel = kdee2=3. ipot=ipotr=l (KrC) program: testvmcx ne=7

kT(eV)	Y	Υ E	Esp	Bat	R_E	Rb	range	
50	1.00e-6		9.63e-1	6.04e-1		1.59e+2	6.17e + 1	1
70	1.15e-5		1.78e+0	5.84e-1		2.19e+2	7.46e4-l	
100	7.50e-5		2.77e4-0	5.63e-1		3.05e + 2	9.16e + 1	
150	4.96e-4		3.77e + 0	5.35e-1		4.44e + 2	1.16e+2	
200	1.07e-3		4.95e+0	5.15e-1		5.78e + 2	1.38e+2	
300	1.90e-3		6.99e + 0	4.81e-1		8.35e+2	1.78e+2	
500	2.99e-3		1.01e + 1	4.34e-1		1.32e+3	2.48e+2	

$$D \rightarrow W$$

Sputtering yield of W by D z1 = 1, m1= 2.01, z2=74, m2 = 183.85, esb = 8.68 eV. rho = 19.30 g/cm**3 ef=0.98 eV. esb = 1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: trspvmcx ne=22. na=9

Eo(eV)	0°	15 ^u	30°	45°	55 ^u	65°	75°	80 ^u	85 ^u
250	2.34e-5	2.33e-5	2.50e-5	3.08e-5	3.00e-5	2.64e-5	1.43e-5	5.19e-6	2.86e-6
260	5.05e-5								
270	7.63e-5	8.21e-5	8.33e-5	1.00e-4	9.70e-5	9.17e-5	5.54e-5	2.16e-5	3.40e-6
290	1.62e-4					1.82e-4			
300	2.08e-4	2.21e-4	2.37e-4	2.82e-4	2.73e-4	2.32e-4	1.53e-4	7.83e-5	9.13e-6
300	2.33e-4					2.36e-4			
310	2.87e-4					3.11e-4			
320	3.55e-4					4.14e-4			
350	5.98e-4	6.04e-4	6.83e-4	7.34e-4	7.85e-4	7.52e-4	4.75e-4	2.60e-4	4.13e-5
350						7.49e-4			
400	1.11e-3	1.16e-3	1.18e-3	1.33e-3	1.53e-3	1.39e-3	9.83e-4	5.91e-4	9.55e-5
400	1.09e-3					1.39e-3			
500	2.20e-3	2.32e-3	2.49e-3	2.74e-3	2.93e-3	3.08e-3	2.50e-3	1.72e-3	3.56e-4
500	2.37e-3					2.94e-3			
600	3.39e-3	3.31e-3	3.42e-3	4.11e-3	4.55e-3	4.76e-3	4.73e-3	3.78e-3	1.12e-3
700	4.22e-3	4.14e-3	4.84e-3	5.23e-3	6.38e-3	7.10e-3	7.42e-3	6.92e-3	2.52e-3
700						6.80e-3			
1000	6.55e-3	7.11e-3	7.78e-3	9.22e-3	1.07e-2	1.26e-2	1.82e-2	2.04e-2	1.15e-2
1000	6.22e-3					1.33e-2			
2000	9.54e-3					2.66e-2			
5000	1.05e-2					3.85e-2			
10000						3.60e-2			

Sputtered energy of W by D ne=22, na=9

B ₀ (eV)	0°	15°	30°	45°	55°	65°	75°	80°	85°
250	6.43e-8	6.37e-8	6.80e-8	8.51e-8	8.95e-8	8.06e-8	3.89e-8	1.41e-8	4.10e-9
260	1.61e-7								
270	2.80e-7	3.12e-7	3.24e-7	4.06e-7	3.95e-7	3.79e-7	2.21e-7	7.90e-8	1.06e-8
290	7.66e-7					9.10e-7			
300	1.04e-6	1.11e-6	1.20e-6	1.47e-6	1.44e-6	1.27e-6	8.06e-7	3.90e-7	4.63e-8
300	1.17e-6					1.26e-6			
310	1.55e-6					1.75e-6			
320	1.99e-6					2.51e-6			
350	3.89e-6	3.98e-6	4.56e-6	5.02e-6	5.41e-6	5.12e-6	3.23e-6	1.75e-6	2.64e-7
350						5.13e-6			
400	8.04e-6	8.70e-6	8.56e-6	1.02e-5	1.21e-5	1.10e-5	7.77e-6	4.66e-6	7.04e-7
400	7.99e-6					1.12e-5			
500	1.87e-5	1.96e-5	2.18e-5	2.41e-5	2.66e-5	2.76e-5	2.25e-5	1.55e-5	3.04e-6
500	2.00e-5					2.66e-5			
600	3.03e-5	2.88e-5	3.12e-5	3.75e-5	4.14e-5	4.39e-5	4.36e-5	3.54e-5	1.03e-5
700	3.77e-5	3.78e-5	4.23e-5	4.93e-5	5.80e-5	6.48e-5	7.03e-5	6.41e-5	2.45e-5
700						6.28e-5			
1000	5.60e-5	6.18e-5	6.73e-5	8.18e-5	9.43e-1	1.14e-4	1.63e-4	1.86e-4	1.25e-4
1000	5.40e-5					1.18e-4			
2000	6.78e-5					1.85e-4			
5000	4.48e-5					1.71e-4			
10000						1.12e-4			

D > W

Particle reflection coefficient of D backscattered from W zl=1. ml=2.01, z2=74. m2=183.85. esb=8.68 eV. rho=19.30 g/cm**3 ef=0.98 eV. esb=1.00 eV. ca=1.00. kk0=kk0r=2. kdeel=kdee2=3. ipot=ipotr=1 (KrC) program: trspvmcx ne=28. na=9

E ₀ (eV)	0°	15 ^u	30°	45°	55 ^u	65 ^u	75 ^u	80°	85°
10	7.61E-1	7.70E-1	7.98E-1	8.42E-1	8.82E-1	9.23E-1	9.60E-1	9.73E-1	9.80E-1
20	7.24 E-1	7.33E-1	7.60E-1	8.10E-1	8.53E-1	9.06E-1	9.58E-1	9.78E-1	9.88E-1
50	6.79E-1	6.87E-1	7.14 E-1	7.58E-1	8.05E-1	8.64E-1	9.39E-1	9.74E-1	9.93 E-1
100	6.49E-1	6.54E-1	6.81E-1	7.27E-1	7.63E-1	8.23E-1	9.09E-1	9.60E-1	9.93E-1
200	6.12E-1	6.24E-1	6.43E-1	6.90E-1	7.31E-1	7.86E-1	8.69 E-1	9.32E-1	9.90E-1
200	6.14e-1								
250	6.02E-1	6.11E-1	6.37E-1	6.80E-1	7.21E-1	7.74 E-1	8.55 E-1	9.20E-1	9.88E-1
260	6.01e-1								
270	5.98E-1	6.07E-1	6.33E-1	6.77E-1	7.17E-1	7.70E-1	8.50E-1	9.15E-1	9.87E-1
290	5.95e-1					7.66e-l			
300	5.92E-1	6.01E-1	6.28E-1	6.72E-1	7.12E-1	7.64 E-1	8.44E-1	9.09E-1	9.86E-1
300	5.93e-1					7.65e-l			
310	5.91e-1					7.63e-1			
320	5.89e-1					7.61e-1			
350	5.84E-1	5.93E-1	6.20E-1	6.64E-1	7.04E-1	7.57E-1	8.34E-1	9.00E-1	9.83E-1
350						7.57e-1			
400	5.77E-1	5.85E-1	6.12E-1	6.57E-1	6.97E-1	7.50E-1	8.27E-1	8.91E-1	9.80E-1
400	5.78e-1					7.50e-1			
500	5.64E-1	5.73E-1	6.00E-1	6.45E-1	6.86E-1	7.38 E-1	8.14E-1	8.77E-1	9.74E-1
500	5.58e-1					7.39e-1			
600	5.53E-1	5.61 E-1	5.88 E-1	6.36E-1	6.78E-1	7.29E-1	8.03E-1	8.65E-1	9.67E-1
700	5.43E-1	5.50E-1	5.79E-1	6.25E-1	6.68E-1	7.22E-1	7.94 E-I	8.55E-1	9.61E-1
700						7.23e-1			
1000	5.17E-1	5.28E-1	5.57E-1	6.05E-1	6.46E-1	7.03E-1	7.74E-1	8.33E-1	9.42E-1
1000	5.12e-1					7.01e-1			
2000	4.57e-1					6.61e-l			
5000	3.64e-1					5.94e-1			
10000	2.71e-1					5.37e-1			

P

11

Energy reflection coefficient of D backscattered from W $ne\,{=}\,28,\ na\,{=}9$

E ₀ (eV)	0°	15°	30°	45°	55°	65°	75°	80°	85°
10	5.71E-1	5.85E-1	6.24E-1	6.90E-1	7.52E-1	8.20E-1	8.85E-1	9.11E-1	9.25E-1
20	5.25E-1	5.36E-1	5.74E-1	6.44E-1	7.12E-1	7.98E-1	8.90E-1	9.28E-1	9.51E-1
50	4.69E-1	4.79E-1	5.12E-1	5.73E-1	6.40E-1	7.33 E-1	8.61E-1	9.26E-1	9.67E-1
100	4.33E-1	4.42E-1	4.71E-1	5.30E-1	5.83E-1	6.72E-1	8.12E-1	9.04E-1	9.70 E-1
200	3.94E-1	4.06E-1	4.31E-1	4.85E-1	5.39 E-1	6.16E-1	7.47E-1	8.56E-1	9.66E-1
200	3.95e-1								
250	3.84E-1	3.93E-1	4.21E-1	4.73E-1	5.25E-1	6.00E-1	7.26E-1	8.37E-1	9.62E-1
260	3.82e-1								
270	3.79E-1	3.89E-1	4.17E-1	4.69E-1	5.20E-1	5.94E-1	7.19E-1	8.29E-1	9.60E-1
290	3.76e-1					5.89e-1			
300	3.74E-1	3.83E-1	4.12E-1	4.63E-1	5.14E-1	5.87E-1	7.09E-1	8.19E-1	9.57E-1
300	3.74e-1					5.87e-1			
310	3.72e-1					5.84e-1			
320	3.71e-1					5.82e-1			
350	3.66E-1	3.75E-1	4.03E-1	4.54E-1	5.04E-1	5.76E-1	6.95E-1	8.04E-1	9.52E-1
350						5.76e-1			
400	3.59E-1	3.67E-1	3.96E-1	4.47E-1	4.96E-1	5.67E-1	6.84E-1	7.90E-1	9.47E-1
400	3.59e-1					5.68e-1			
500	3.46E-1	3.56E-1	3.83E-1	4.33E-1	4.84E-1	5.52E-1	6.65E-1	7.67E-1	9.37E-1
500	3.45e-1					5.53e-1			
600	3.36E-1	3.44E-1	3.73E-1	4.23E-1	4.73E-1	5.41E-1	6.49E-1	7.49E-1	9.25 E-1
700	3.27E-1	3.35E-1	3.64 E-1	4.13E-1	4.62E-1	5.32E-1	6.37E-1	7.34E-1	9.14E-1
700						5.32e-1			
1000	3.04E-1	3.14E-1	3.42E-1	3.92E-1	4.38E-1	5.08E-1	6.09E-1	7.00E-1	8.83E-1
1000	3.03e-1					5.07e-1			
2000	2.55e-1					4.60e-1			
5000	1.83e-1					3.87e-1			
10000	1.21e-1					3.26e-1			
D -> W

Average depth (mean range) in \ddot{A} of D implanted in W $ne\,{=}\,28\,,\ na\,{=}\,9$

Bo(eV)	0°	15°	30°	45°	55°	65 ^ö	75°	80°	85°
10	1.33E4-1	1.33E+1	1.33E+1	1.32E4-1	1.32E+1	1.31E4-1	1.30E+1	1.30E + 1	1.29E4-1
20	1.90E+1	1.89E+1	1.89E+1	1.87E+1	1.86E+1	1.86E+1	1.84E+1	1.84E+1	1.82E+1
50	3.04E4-1	3.01E+1	3.00E+1	2.96E+1	2.94E + 1	2.95E4-1	2.94E + 1	2.89E + 1	2.91E + 1
100	4.37E+1	4.32E + 1	4.31E4-1	4.23E+1	4.21E + 1	4.20E+1	4.18E + 1	4.15E + 1	4.19E4-1
200	6.30E + 1	6.28E4-1	6.25E+1	6.15E+1	6.12E+1	6.03E+1	6.04E+1	5.94E + 1	5.98E + 1
200	6.28e4-1								
250	7.11E+1	7.09E4-1	7.03E+1	6.95E+1	6.89E+1	6.83E4-1	6.78E+1	6.77E + 1	6.76E + 1
260	7.27e4-1								
270	7.42e + 1	7.40e+1	7.35e + 1	7.25e + 1	7.19e + 1	7.13e+1	7.07e+1	7.05e + 1	7.03e+1
290	7.73e+1					7.41e+1			
300	7.88E+1	7.85E+1	7.78E+1	7.69E+1	7.62E4-1	7.55E+1	7.49E + 1	7.48E + 1	7.45E + 1
300	7.87e + 1					7.55e+1			
310	8.01e + 1					7.68e+l			
320	8.16e+1					7.82e+1			
350	8.58E+1	8.56E4-1	8.49E + 1	8.38E+1	8.31E + 1	8.23E+1	8.17E + 1	8.14E + 1	8.12E + 1
350						8.23e+1			
400	9.28E+1	9.25E4-1	9.16E+1	9.03E4-1	8.94E + 1	8.88E+1	8.79E+1	8.76E4-1	8.75E+1
400	9.27e + 1					8.85e+1			
500	1.06E+2	1.05E4-2	1.04E+2	1.03E4-2	1.02E+2	1.01E+2	9.98E+1	9.96E4-1	9.94E+1
500	1.02e + 2					1.00e+2			
600	1.18E+2	1.17E+2	1.16E+2	1.14E+2	1.13E+2	1.12E-J-2	1.11E+2	1.11E+2	1.10E+2
700	1.29E+2	1.29E+2	1.27E4-2	1.25E+2	1.24E+2	1.22E+2	1.21E+2	1.21E4-2	1.21E+2
700						1.22e+2			
1000	1.61E+2	1.60E+2	1.58E+2	1.56E4-2	1.53E+2	1.52E+2	1.50E+2	1.50E+2	1.49E4-2
1000	1.57e + 2					1.51e+2			
2000	2.48e+2					2.33e+2			
5000	4.75e+2					4.28e+2			
10000	8.02e+2					6.84eJ-2			

D on W, Maxwellian velocity distribution, sheath potential 0 kT zl= 1, ml = 2.01, z2=74, m2 = 183.85, sbe=8.68 eV, rho = 19.30 g/cm**3 ef=0.98 eV, esb = 1.00 eV, ca=1.00, kk0 = kk0r=2, kdeel = kdee2=3, ipot=ipotr=l(KrC) program: testvmcx ne= 8

kT(eV)	Y	YE	E sp	۲ 7V	RE	Eb	range
70	8.28e-5	2.18e-6	3.68e+0	7.44e-1	5.32e-1	1.00e+2	5.09e + 1
100	3.54e-4	7.92e-6	4.48e+0	7.26e-1	5.10e-1	1.40e+2	6.16e4-l
140	9.57e-4	1.92e-5	5.61e4-0	7.09e-1	4.89e-1	1.93e+2	7.42e+1
200	2.13e-3	3.78e-5	7.09e4-0	6.91e-l	4.67e-1	2.70e+2	9.06e + 1
300	4.42e-3	6.50e-5	8.83e4-0	6.69e-1	4.40e-1	3.96e+2	1.15e4-2
500	8.58e-3	9.84e-5	1.15e + 1	6.39e-1	4.07e-1	6.36e+2	1.57e+2
1000	1.56e-2	1.22e-4	1.57e4-l	5.91e-1	3.55e-1	1.20e + 3	2.46e + 2
2000	2.15e-2	1.11e-4	2.07e+1	5.36e-1	2.98e-1	2.22e + 3	3.95e+2

D on W, Maxwellian velocity distribution, sheath potential 3 kT $n\!e\!=\!13$

kT(eV)	Y	YE	E _{sp}	R _N	R _E	E _b	range
36	2.67e-5	3.02e-7	2.04e+0	6.46e-l	4.31e-1	1.21e+2	5.84e + 1
40	5.35e-5		2.54e+0	6.33e-1		1.36e+2	5.87e+1
45	1.06e-4		2.53e+0	6.28e-1		1.49e + 2	6.28e+1
50	2.41e-4		2.82e+0	6.21e-1		1.65e-f-2	6.68e + 1
60	4.78e-4		3.52e+0	6.13e-1		1.97e4-2	7.41e+1
75	1.06e-3		4.04e+0	6.02e-1		2.43e+2	8.47e+1
100	2.57e-3		5.12e+0	5.86e-1		3.19e4-2	1.00e + 2
140	4.54e-3		6.84e+0	5.66e-l		4.37e+2	1.24e+2
200	6.67e-3		9.08e+0	5.44e-1		6.11e+2	1.54e + 2
300	9.26e-3		1.19e + 1	5.13e-1		8.88e + 2	2.01e + 2
500	1.15e-2		1.58e + 1	4.71e-1		1.42e+3	2.83e+2
1000	1.21e-2		2.20e-H	4.03e-1		2.61e+3	4.62e + 2
2000	1.23e-2	3.47e-5	2.82e+1	3.24e-1	1.52e-1	_4.68e+3	7.74e+2

T -» W

Sputtering yield of W by T zl= 1, ml= 3.02. z2=74, m2=]83.85, esb=8.68 eV, rho=19.29 g/cm**3 ef=0.98 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: trspvmcx ne=17, na=9

Bo(eV)	0 ^u	15 ^u	30°	45 ^u	55°	65°	75°	80°	85°
160	9.83E-6	7.83E-6	8.08E-6	1.26E-5	1.26E-5	9.53E-6	2.89E-6		
170	3.77E-5	4.08E-5	4.54E-5	5.05E-5	4.47E-5	3.87E-5	1.62E-5	6.08E-6	
170	3.65e-5								
180	9.81E-5	1.00E-4	1.05E-4	1.16E-4	1.14E-4	8.79E-5	4.71E-5	1.98E-5	1.93E-6
200	3.03E-4	3.07E-4	3.23E-4	3.59E-4	3.55E-4	2.99E-4	1.64E-4	7.18E-5	9.69E-6
250	1.23E-3	1.29E-3	1.28E-3	1.46E-3	1.45E-3	1.34E-3	7.91E-4	4.24E-4	5.49E-5
300	2.41E-3	2.48E-3	2.71E-3	2.85E-3	2.91E-3	2.91E-3	1.91E-3	1.07E-3	1.52E-4
300	2.35e-3					2.87e-3			
400	4.89E-3	4.91E-3	5.17E-3	5.90E-3	6.64E-3	6.73E-3	5.97E-3	3.98E-3	9.08E-4
500	7.22E-3	7.54E-3	8.13E-3	9.01E-3	1.02E-2	1.13E-2	1.17E-2	9.68E-3	2.94E-3
500	7.45e-3					1.12e-2			
700	1.11E-2	1.08E-2	1.25E-2	1.46E-2	1.69E-2	2.04E-2	2.67E-2	2.70E-2	1.25E-2
700						2.04e-2			
1000	1.49E-2	1.50E-2	1.67E-2	1.98E-2	2.41E-2	3.19E-2	4.67E-2	5.34E-2	3.08E-2
1000	1.45e-2					3.17e-2			
2000	1.85e-2					5.28e-2			
5000	2.00e-2					6.52e-2			

Sputtered energy of W by T ne=17, na=9

E ₀ (eV)	0°	15°	30°	45°	55°	65°	75°	80°	85 ⁶
160	2.14e-8	1.91e-8	2.14e-8	3.48e-8	3.57e-8	2.86e-8	7.69e-9		
170	1.47e-7	1.68e-7	1.80e-7	2.25e-7	2.02e-7	1.67e-7	6.90e-8	2.49e-8	
170	1.39e-7								
180	4.98e-7	5.24e-7	5.47e-7	6.38e-7	6.45e-7	5.04e-7	2.51e-7	1.02e-7	8.41e-9
200	2.18e-6	2.24e-6	2.39e-6	2.72e-6	2.72e-6	2.30e-6	1.21e-6	5.03e-7	6.64e-8
250	1.26E-5	1.34E-5	1.32E-5	1.59E-5	1.61E-5	1.46E-5	8.50E-6	4.57E-6	5.78E-7
300	2.90E-5	2.98E-5	3.31E-5	3.55E-5	3.70 E-5	3.73 E-5	2.45E-5	1.36E-5	1.86E-6
300	2.87e-5					3.68e-5			
400	6.61E-5	6.67E-5	6.87E-5	8.21E-5	9.16E-5	9.50E-4	8.34E-5	5.42E-5	1.25 E-5
500	9.71E-4	1.03E-4	1.12E-4	1.27E-4	1.44E-4	1.62E-4	1.65E-4	1.39E-4	4.47E-5
500	9.63e-5					1.60e-4			
700	1.47E-4	1.51E-4	1.67E-4	1.97E-4	2.27E-4	2.68E-4	3.53E-4	3.91E-4	2.04E-4
700						2.70e-4			
1000	1.72E-4	1.76E-4	1.96E-4	2.32E-4	2.85E-4	3.80E-4	5.85E-4	7.24E-4	4.93E-4
1000	1.77e-4					3.75e-4			
2000	1.58e-4					4.74e-4			
5000	1.03e-4					3.46e-4			

$$\mathrm{T} \to \mathrm{W}$$

Particle reflection coefficient of T backscattered from W zl = 1, ml = 3.02, z2=74, m2=183.85. esb=8.68 eV. rho = 19.29 g/cm**3 ef=0.98 eV, esb = 1.00 eV. ca=1.00, kk0 = kk0r=2. kdeel = kdee2=3. ipot=ipotr=1 (KrC) program: trspvmcx ne=22. na=9

					-				
$E_0 (eV)$	0°	15°	30°	45 °	55°	65°	75°	80 °	85°
10	7.51E-1	7.60E-1	7.89E-1	8.37E-1	8.78E-1	9.19E-1	9.58E-1	9.71E-1	9.79 E-1
2.0	7.15E-1	7.25E-1	7.53E-1	8.03E-1	8.48E-1	9.02E-1	9.57E-1	9.77E-1	9.88E-1
50	6.69E-1	6.79E-1	7.07E-1	7.53E-1	7.98E-1	8.60E-1	9.37E-1	9.73E-1	9.93E-1
100	6.40E-1	6.50E-1	6.75E-1	7.18E-1	7.63E-1	8.20E-1	9.06E-1	9.59E-1	9.93E-1
140	6.25E-1	6.34E-1	6.59E-1	7.04E-1	7.46E-1	8.02E-1	8.88E-1	9.47E-1	9.92E-1
160	6.19E-1	6.28E-1	6.54E-1	6.98E-1	7.39E-1	7.95E-1	8.80E-1	9.42E-1	9.92E-1
170	6.16E-1	6.25E-1	6.51E-1	6.95E-1	7.36E-1	7.91E-1	8.77E-1	9.39E-1	9.91E-1
170	6.16e-l								
180	6.14E-1	6.22E-1	6.48E-1	6.92E-1	7.33E-1	7.89E-1	8.73E-1	9.36E-1	9.91E-1
200	6.09E-1	6.18E-1	6.44E-1	6.88E-1	7.28E-1	7.83E-1	8.67E-1	9.31E-1	9.90E-1
250	5.99E-1	6.07E-1	6.34E-1	6.78E-1	7.18E-1	7.72E-1	8.53 E-1	9.19E-1	9.88E-1
300	5.90E-1	5.99E-1	6.26E-1	6.69E-1	7.09E-1	7.63E-1	8.42E-1	9.08E-1	9.85E-1
300	5 90e-1					7 63e-1			
400	5.75E-1	5 84E-1	6 11E-1	6 56E-1	6 97E-1	7 49E-1	8 26E-1	8 90E-1	9 80E-1
500	5.63E-1	5.72E-1	5 99E-1	6.45E-1	6.85E-1	7 39E-1	8 13E-1	8 76E-1	9 74E-1
500	5.63e-1	5.721-1	5.772 1	0.1021	0.0521	7 38e-1	0.152 1	0.702 1	<i></i>
700	5.43E-1	5.53E-1	5.82E-1	6 30E-1	6.68E-1	7 22E-1	7.96E-1	8 55E-1	9.60E-1
700	5.456-1	5.551-1	5.022 1	0.502 1	0.002 1	7 23e-1	1.902 1	0.002 1	2.002 1
1000	5 20E 1	5 30E 1	5 50E 1	6 07E 1	6 50E 1	7.03E1	7 76E-1	8 34E-1	9.42E-1
1000	5 18 0 1	5.501-1	5.576-1	0.0715-1	0.501-1	7.05 8.1		0.070-1	2.120-1
2000	J.180-1					6 669 1			
2000	4.696-1					0.000-1			
5000	5.86e-l					0.000-1			

Energy	reflection	coefficient	of T	backscattered	from	W
ne = 22,	na=9					

Eq(eV)	0°	15°	30°	45°	55°	65°	75°	80°	85°
10	5.57E-1	5.70E-1	6.11 E-1	6.80E-1	7.43E-1	8.12E-1	8.81E-1	9.06E-1	9.22E-1
20	5.12E-1	5.25E-1	5.64E-1	6.35E-1	7.04 E-1	7.92E-1	8.87E-1	9.26E-1	9.50 E-1
50	4.58E-1	4.70E-1	5.05E-1	5.68E-1	6.32E-1	7.27E-1	8.58E-1	9.25E-1	9.67E-1
100	4.25E-1	4.35E-1	4.67E-1	5.21E-1	5.82E-1	6.67E-1	8.09E-1	9.03E-1	9.71E-1
140	4.09E-1	4.18E-1	4.48E-1	5.03E-1	5.59E-1	6.41E-1	7.81E-1	8.84E-1	9.70 E-1
160	4.03E-1	4.12E-1	4.42E-1	4.96E-1	5.50E-1	6.31E-1	7.68E-1	8.74E-1	9.69E-1
170	4.00E-1	4.09E-1	4.39E-1	4.92E-1	5.47E-1	6.27E-1	7.63E-1	8.70E-1	9.69E-1
170	4.00e-1								
180	3.97E-1	4.07E-1	4.36E-1	4.89E-1	5.43E-1	6.22E-1	7.57E-1	8.66E-1	9.68E-1
200	3.92E-1	4.02E-1	4.31E-1	4.84E-1	5.37E-1	6.15E-1	7.47E-1	8.57E-1	9.67E-1
250	3.82E-1	3.91E-1	4.21E-1	4.72E-1	5.24E-1	5.99E-1	7.27E-1	8.37E-1	9.63E-1
300	3.74E-1	3.83E-1	4.12E-1	4.63E-1	5.14E-1	5.88 E-1	7.10E-1	8.20E-1	9.59E-1
300	3.74e-1					5.87e-1			
400	3.59E-1	3.69E-1	3.98E-1	4.48E-1	4.99E-1	5.69E-1	6.86E-1	7.92E-1	9.49E-1
500	3.49E-1	3.58E-1	3.86E-1	4.37E-1	4.85E-1	5.56E-1	6.67E-1	7.70E-1	9.38E-1
500	3.49e-1					5.56e-1			
700	3.31E-1	3.41E-1	3.69E-1	4.21E-1	4.67E-1	5.36E-1	6.42E-1	7.36E-1	9.16E-1
700						5.36e-1			
1000	3.11E-1	3.21E-1	3.48E-1	3.98E-1	4.48E-1	5.15E-1	6.16E-1	7.07E-1	8.87E-1
1000	3.10e-1					5.15e-1			
2000	2.67e-1					4.72e-1			
5000	2.02e-1					4.04e-1			

Average	depth	(mean	range)	in	Ä	of	Т	implanted	in	W
ne=22.	na=9									

E ₀ (eV)	0°	15°	30°	45°	55°	65°	75°	80°	85°
10	1.29E+1	1.28E4-1	1.28E4-1	1.28E+1	1.26E + 1	1.26E+1	1.25E+1	1.24E+1	1.24E + 1
20	1.83E+1	1.83E+1	1.82E+1	1.82E + 1	1.79E+1	1.79E+1	1.78E-J-1	1.78E+1	1.77E-J-1
50	2.95E + 1	2.95E+1	2.93E+1	2.91E+1	2.89E4-1	2.86E+1	2.86E + 1	2.84E + 1	2.82E4-1
100	4.27E4-1	4.28E+1	4.23E-H	4.20E+1	4.15E-J-1	4.12E + 1	4.09E-H	4.08E + 1	4.07E4-1
140	5.13E+1	5.12E+1	5.08E+1	5.03E+1	5.00E4-1	4.96E-J-1	4.92E-J-1	4.87E+1	4.93E + 1
160	5.53E+1	5.51E+1	5.47E+1	5.41E-J-1	5.36E+1	5.33E+1	5.29E+1	5.28E4-1	5.29E + 1
170	5.71E+1	5.70E+1	5.66E+1	5.59E+1	5.55E+1	5.50E+1	5.46E+1	5.45E4-1	5.37E4-1
170	5.71e-}-l								
180	5 90E + 1	5.88E+1	5.84E+1	5.77E+1	5.73E + 1	5.67E + 1	5.64E + 1	5.62E+1	5.60E + 1
200	6.26E+1	6.24E4-1	6.19E+1	6.13E4-1	6.07E + 1	6.02E+1	5.98E + 1	5.97E+1	5.95E + 1
250	7.10B+1	7.09E+1	7.03E+1	6.95E-J-1	6.88E + 1	6.82E+1	6.76E4-1	6.75E+1	6.72E+1
300	7.89E + 1	7.86E+1	7.79E4-1	7.69E4-1	7.62E + 1	7.55E+1	7.50E4-1	7.48E + 1	7.44E + 1
300	7 89e + 1					7.55e+1			
400	9.33E+1	9.31E+1	9.21E+1	9.10E+1	8.99E+1	8.92E+1	8.84E + 1	8.84E + 1	8.81E + 1
500	1.07E+2	1.06E+2	1.05E+2	1.04E+2	1.03E+2	1.02E+2	1.01E4-2	1.01E + 2	9.96E+1
500	1.07e+2					1.02e+2			
700	1.31E4-2	1.30E-J-2	1.29E4-2	1.28E+2	1.26E+2	1.24E + 2	1.23E+2	1.23E-J-2	1.24E+2
700						1.25e+2			
1000	1.64E+2	1.64E+2	1.62E+2	1.60E+2	1.57E+2	1.55E4-2	1.53E+2	1.53E+2	1.54E+2
1000	1.64e+2					1.55e+2			
2000	2.59e+2					2.44e+2			
5000	5.05e+2					4.55e- -2			
2000	2102012								

$$\mathrm{T} \to \mathrm{W}$$

T on W, Maxwellian velocity distribution, sheath potential 0 kT zl = 1. ml= 3.02. z2=74. m2 = 183.85. sbe=8.68 eV. rho = 19.30 g/cm**3 ef=0.98 eV. esb = 1.00 eV. ca=1.00. kk0=kk0r=2, kdeel = kdee2=3. ipot=ipotr=1 (KrC) program: testvmcx ne= 10

		-					
kT(eV)	Y	Y E	Esp	RN	R_{F}	E&	range
40	5.90e-5	2.31e-6	3.13e+0	7.65e-l	5.63e-1	5.89e + 1	3.73e+1
50	1.64e-4	6.30e-6	3.84e+0	7.55e-l	5.50e-1	7.28e + 1	4.20e+1
60	3.22e-4	1.17e-5	4.37e+0	7.47e-1	5.39e-1	8.65e + 1	4.63e + 1
80	8.55e-4	2.73e-5	5.11e+0	7.34e-1	5.23e-1	1.14e+2	5.41e+1
100	1.63e-3	4.96e-5	6.09e + 0	7.22e-1	5.09e-1	1.41e + 2	6.14e+1
200	6.54e-3	1.49e-4	9.10e + 0	6.89e-1	4.70e-1	2.73e + 2	9.13e + 1
300	1.16e-2	2.19e-4	1.13e + 1	6.68e-1	4.45e-1	4.00e + 2	1.17e + 2
500	1.93e-2	2.75e-4	1.43e+1	6.41e-1	4.15e-1	6.47e+2	1.61e+2
1000	3.06e-2	2.97e-4	1.94e + 1	5.96e-1	3.66e-1	1.23e+3	2.57e+2
2000	3.99e-2	2.48e-4	2.49e+1	5.47e-1	3.14e-1	2.29e + 3	4.19e + 2

T on W. Maxwellian velocity distribution, sheath potential 3 kT $ne\!=\!13$

kT(eV)	Y	Yb	Esp	R A-	Rb	Еь	range
24	3.64e-5	6.56e-7	2.17e + 0	6.59e-1	4.48e-1	8.15e + 1	4.64e + 1
30	1.77e-4		2.56e + 0	6.41e-1		1.02e+2	4.94eR1
36	4.11e-4		2.89e4-0	6.33e-1		1.21e+2	5.48e + 1
50	1.70e-3		4.24e+0	6.18e-1		1.66e + 2	6.67e + 1
60	2.57e-3	4.14e-5	4.83e + 0	6.16e-1	4.02e-1	1.96e + 2	7.75e-f-l
70	4.22e-3		5.55e+0	6.03e-1		2.29e+2	8.16e + 1
100	7.43e-3		7.38e+0	5.85e-1		3.22e+2	1.02e+2
200	1.48e-2		1.21e + 1	5.46e-1		6.21e+2	1.59e-f-2
300	1.91e-2	1.94e-4	1.52e + 1	5.24e-1	3.15e-1	9.02e + 2	2.11e+2
400	2.03e-2		1.78e + 1	4.98e-1		1.18e + 3	2.53e + 2
600	2.26e-2	1.61e-4	2.14e + 1	4.66e-l	2.65e-1	1.71e+3	3.41e+2
1000	2.33e-2	1.21e-4	2.60e + 1	4.17e-1	2.25e-1	2.70e+3	4.94e+2
2000	2.04e-2	6.91e-5	3.39e + 1	3.41e-1	1.67e-1	4.91e+3	8.37e+2

He -4 W

Sputtering yield of W by He zl= 2, ml = 4.00. z2=74, m2 = 183.85, esb=8.68 eV. rho = 19.29 g/cm**3 ef=0.20 eV. esb = 0.00 eV, ca=1.00, kk0 = kk0r=2. kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: trvmc ne=20, na=9

Eq(eV)	0°	15°	30°	45°	55°	65°	75°	80°	85 ^u
125	8.26E-6	9.32E-6	1.12E-5	1.11E-5	9.05E-6	4.44E-6	2.00E-6		
130	3.21E-5	3.56E-5	3.51E-5	3.27E-5	2.86E-5	1.57E-5	3.40E-6		
140	1.32E-4	1.36E-4	1.43E-4	1.45E-4	1.16E-4	7.19E-5	1.94E-5	3.74E-6	
150	3.10E-4	3.22E-4	3.19E-4	3.16E-4	2.87E-4	1.95E-4	6.19E-5	1.25E-5	
170	9.50E-4	9.41E-4	1.01E-3	1.01E-3	8.69E-4	6.13E-4	2.32E-4	6.15E-5	
200	2.33E-3	2.44E-3	2.50E-3	2.63E-3	2.27E-3	1.86E-3	7.62E-4	2.31E-4	2.15E-6
250	5.42E-3	5.27E-3	5.76E-3	5.92E-3	6.10E-3	4.86E-3	2.49E-3	9.07E-4	1.58E-5
300	8.61E-3	8.63E-3	9.41E-3	1.02E-2	9.96E-3	9.35E-3	5.74E-3	2.52E-3	7.76E-5
350	1.21E-2	1.17E-2	1.28E-2	1.42E-2	1.49E-2	1.45E-2	1.02E-2	5.80E-3	2.41E-4
400	1.47E-2	1.49E-2	1.63E-2	1.87E-2	1.97E-2	2.09E-2	1.79E-2	9.86E-3	5.58E-4
500	2.03E-2	2.10E-2	2.27E-2	2.63E-2	2.90E-2	3.34E-2	3.32E-2	2.32E-2	2.01E-3
600	2.42E-2	2.57E-2	2.80E-2	3.30E-2	3.79E-2	4.67E-2	5.19E-2	4.08E-2	4.95E-3
700	2.88E-2	3.04E-2	3.31E-2	3.88E-2	4.58E-2	5.82E-2	6.78E-2	5.84E-2	9.14E-3
1000	3.78E-2	3.97E-2	4.32E-2	5.49E-2	6.78E-2	8.93E-2	1.15E-1	1.06E-1	2.63E-2
1400	4.57E-2	4.70E-2	5.31E-2	7.02E-2	8.85E-2	1.18E-1	1.59E-1	1.57E-1	5.54E-2
2000	5.15E-2	5.43E-2	6.31E-2	8.25E-2	1.07E-1	1.47E-1	2.01E-1	2.11E-1	1.01E-1
5000	5.91E-2	6.36E-2	7.64E-2	1.03E-1	1.39E-1	1.89E-1	2.84B-1	3.31E-1	2.67E-1
10000	5.63E-2	6.28E-2	7.47E-2	1.04E-1	1.36E-1	1.96E-1	3.07E-1	3.81E-1	3.93E-1
20000	4.78E-2	5.24E-2	6.44E-2	9.04E-2	1.22E-1	1.77E-1	2.90E-1	3.92E-1	4.79E-1
50000	3.23E-2	3.48E-2	4.49E-2	6.46E-2	8.69E-2	1.27E-1	2.26E-1	3.25E-1	4.94E-1

Sputtered energy of W by He ne=20, na=9

E ₀ (eV)	0°	15°	30°	45°	55 0	65°	75°	80°	85°
125	2.08e-8	2.68e-8	3.18e-8	3.61e-8	3.06e-8	1.40e-8	6.54e-9		
130	1.27e-7	1.51e-7	1.51e-7	1.44e-7	1.30e-7	6.83e-8	1.25e-8		
140	8.49e-7	8.78e-7	9.35e-7	9.63e-7	7.76e-7	4.76e-7	1.17e-7	2.09e-8	
150	2.53e-6	2.69e-6	2.71e-6	2.69e-6	2.49e-6	1.69e-6	4.74e-7	9.04e-8	
170	1.03E-5	1.02E-5	1.10E-5	1.14E-5	9.98E-6	6.82E-6	2.45E-6	6.30E-7	
200	3.17E-5	3.35E-5	3.46E-5	3.71E-5	3.17E-5	2.65E-5	1.05E-5	3.05E-6	3.11E-8
250	8.64E-5	8.36E-5	9.33E-5	1.01E-4	9.90E-4	8.17E-5	4.18E-5	1.47E-5	2.45E-7
300	1.46E-4	1.48E-4	1.62E-4	1.81E-4	1.79E-4	1.68E-4	1.02E-4	4.41E-5	1.34E-6
350	2.10E-4	2.03E-4	2.28E-4	2.49E-4	2.68E-4	2.66E-4	1.89E-4	1.07E-4	4.68E-6
400	2.53E-4	2.60E-4	2.83E-4	3.31E-4	3.59E-4	3.80E-4	3.31E-4	1.86E-4	1.18E-5
500	3.46E-4	3.57E-4	3.96E-4	4.49E-4	5.08E-4	5.92E-4	6.19E-4	4.61E-4	4.58E-5
600	3.96E-4	4.24E-4	4.75E-4	■ 5.52E-4	6.34E-4	7.82E-4	9.41E-4	8.11E-4	1.15E-4
700	4.56E-4	4.81E-4	5.28E-4	6.20E-4	7.35E-4	9.48E-4	1.20E-3	1.15E-3	2.15E-4
1000	5.38E-4	5.61E-4	6.15E-4	7.64E-4	9.64E-4	1.29E-3	1.86E-3	1.91E-3	5.80E-4
1400	5.63E-4	5.80E-4	6.50E-4	8.57E-4	1.09E-3	1.52E-3	2.27E-3	2.50E-3	1.10E-3
2000	5.35E-4	5.54E-4	6.44E-4	8.32E-4	1.11E-3	1.60E-3	2.42E-3	2.82E-3	1.70E-3
5000	3.57E-4	3.77E-4	4.47E-4	6.34E-4	8.76E-4	1.25E-3	2.00E-3	2.57E-3	2.55E-3
10000	2.09E-4	2.32E-4	2.88E-4	4.06E-4	5.61E-4	8.55E-4	1.45E-3	1.90E-3	2.34E-3
20Ö00	1.04E-4	1.19E-4	1.56E-4	2.26E-4	3.15E-4	4.89E-4	8.64E-4	1.23E-3	1.73E-3
50000	3.28E-5	3.71E-5	5.19E-5	8.46E-5	1.25E-4	1.86E-4	3.60E-4	5.48E-4	9.08E-4

He -> W

Particle reflection coefficient of He backscattered from W zl = 2. ml= 4.00. z2 = 74. m2 = 183.85. esb = 8.68 eV. rho = 19.29 g/cm**3 ef=0.20 eV. esb = 0.00 eV. ca=1.00. kk0 = kk0r=2. kdeel = kdee2 = 3. ipot=ipotr = 1 (KrC) program: trvmc ne = 24. na=9

$E_0(eV)$	0 ^u	15 ^u	30 ^u	45 ^u	55°	65°	75°	80°	85°
10	8.09E-1	8.21E-1	8.48E-1	8.93E-1	9.30E-1	9.70E-1	9.96E-1	1.00E + 0	1.00E+0
20	7.49E-1	7.59E-1	7.93E-1	8.47E-1	8.95E-1	9.48E-1	9.91E-1	9.99E-1	1.00E + 0
50	6.80E-1	6.88E-1	7.19E-1	7.75E-1	8.31E-1	8.99E-1	9.74E-1	9.96E-1	1.00E+0
100	6.37E-1	6.47E-1	6.76E-1	7.28E-1	7.79E-1	8.50E-1	9.46E-1	9.88E-1	1.00E+0
125	6.24E-1	6.34E-1	6.63E-1	7.14E-1	7.64E-1	8.34E-1	9.34E-1	9.84E-1	1.00E+0
130	6.22E-1	6.31E-1	6.61E-1	7.12E-1	7.62E-1	8.31E-1	9.32E-1	9.83E-1	1.00E4-0
140	6.18E-1	6.27E-1	6.57E-1	7.07E-1	7.57E-1	8.26E-1	9.28E-1	9.80E-1	1.00E+0
150	6.14E-1	6.24E-1	6.52E-1	7.04E-1	7.53E-1	8.21E-1	9.23E-1	9.78E-1	1.00E+0
170	6.07E-1	6.18E-1	6.46E-1	6.96E-1	7.45E-1	8.12E-1	9.15E-1	9.74E-1	1.00E+0
200	5.98E-1	6.07E-1	6.36E-1	6.86E-1	7.35E-1	8.01E-1	9.04E-1	9.68E-1	1.00E4-0
250	5.88E-1	5.97E-1	6.26E-1	6.76E-1	7.22E-1	7.87E-1	8.89E-1	9.58E-1	9.99E-1
300	5.78E-1	5.87E-1	6.17E-1	6.65E-1	7.13E-1	7.75E-1	8.74E-1	9.49E-1	9.99E-1
350	5.71E-1	5.82E-1	6.10E-1	6.58E-1	7.03E-1	7.65E-1	8.64E-1	9.39E-1	9.98E-1
400	5.64E-1	5.73E-1	6.01E-1	6.51E-1	6.97E-1	7.57E-1	8.52E-1	9.31E-1	9.97E-1
500	5.51E-1	5.63E-1	5.90E-1	6.38E-1	6.85E-1	7.45E-1	8.37E-1	9.15E-1	9.95E-1
600	5.43E-1	5.54E-1	5.83E-1	6.33E-1	6.75E-1	7.35E-1	8.23E-1	9.02E-1	9.93E-1
700	5.35E-1	5.43E-1	5.75E-1	6.25E-1	6.67E-1	7.25E-1	8.14E-1	8.90E-1	9.90E-1
1000	5.14E-1	5.23E-1	5.55E-1	6.02E-1	6.49E-1	7.07E-1	7.91E-1	8.62E-1	9.80E-1
1400	4.92E-1	5.02E-1	5.33E-1	5.86E-1	6.30E-1	6.89E-1	7.69E-1	8.38E-1	9.64E-1
2000	4.68E-1	4.80E-1	5.09E-1	5.61E-1	6.11E-1	6.71E-1	7.52E-1	8.14E-1	9.41E-1
5000	3.94E-1	4.06E-1	4.42E-1	4.98E-1	5.50E-1	6.18E-1	7.00E-1	7.57E-1	8.66E-1
10000	3.26E-1	3.41E-1	3.76E-1	4.37E-1	4.94E-1	5.67E-1	6.55E-1	7.17E-1	8.16E-1
20000	2.49E-1	2.63E-1	3.02E-1	3.67E-1	4.31E-1	5.08E-1	6.10E-1	6.75E-1	7.69E-1
50000	1.43E-1	1.54E-1	1.92E-1	2.59E-1	3.28E-1	4.20E-1	5.39E-1	6.12E-1	7.18E-1

Energy refle ne = 24, na=	ction coeffic 9	ient of He	backscatter	ed from W	T				
$E_0(eV)$	0°	15°	30°	45°	55°	65°	75°	80°	85°
10	5.95E-1	6.14E-1	6.58E-1	7.35E-1	8.03E-1	8.86E-1	9.62E-1	9.84E-1	9.95E-1
20	5.28E-1	5.43E-1	5.90E-1	6.74E-1	7.53E-1	8.51E-1	9.50E-1	9.81E-1	9.94E-1
50	4.52E-1	4.63E-1	5.03E-1	5.81E-1	6.63E-1	7.76E-1	9.17E-1	9.72E-1	9.93E-1
100	4.07E-1	4.19E-1	4.54E-1	5.21E-1	5.94E-1	7.02E-1	8.68E-1	9.53E-1	9.92E-1
125	3.94E-1	4.05E-1	4.39E-1	5.04E-1	5.73E-1	6.78E-1	8.47E-1	9.44E-1	9.91E-1
130	3.92E-1	4.03E-1	4.37E-1	5.01E-1	5.69E-1	6.74E-1	8.44E-1	9.42E-1	9.91E-1
140	3.88E-1	3.99E-1	4.32E-1	4.95E-1	5.63E-1	6.66E-1	8.36E-1	9.38E-1	9.90E-1
150	3.85E-1	3.95E-1	4.28 E-1	4.91E-1	5.57E-1	6.59E-1	8.29 E-1	9.34E-1	9.90E-1
170	3.78E-1	3.89E-1	4.21E-1	4.82E-1	5.47E-1	6.46E-1	8.16E-1	9.26E-1	9.90E-1
200	3.70E-1	3.80E-1	4.12E-1	4.72E-1	5.34E-1	6.31E-1	7.98E-1	9.15E-1	9.89E-1
250	3.60E-1	3.69E-1	4.00E-1	4.58E-1	5.18E-1	6.10E-1	7.73 E-1	8.97E-1	9.87E-1
300	3.51E-1	3.60E-1	3.91E-1	4.47E-1	5.06E-1	5.93E-1	7.51E-1	8.80E-1	9.85E-1
350	3.43E-1	3.54E-1	3.83 E-1	4.39E-1	4.95E-1	5.81E-1	7.35E-1	8.65E-1	9.83E-1
400	3.37E-1	3.46E-1	3.76E-1	4.30E-1	4.88E-1	5.70E-1	7.18E-1	8.51E-1	9.81E-1
500	3.27E-1	3.37E-1	3.65E-1	4.18E-1	4.74E-1	5.54 E-1	6.94E-1	8.25E-1	9.76E-1
600	3.18E-1	3.29E-1	3.57E-1	4.12E-1	4.62E-1	5.41E-1	6.74E-1	8.03E-1	9.71E-1
700	3.12E-1	3.20E-1	3.50E-1	4.04E-1	4.53E-1	5.30E-1	6.60E-1	7.85E-1	9.65E-1
1000	2.95E-1	3.03E-1	3.33E-1	3.83E-1	4.34E-1	5.07E-1	6.27E-1	7.42E-1	9.45E-1
1400	2.77E-1	2.86E-1	3.14E-1	3.66E-1	4.15E-1	4.86E-1	5.99E-1	7.05E-1	9.17E-1
2000	2.58E-1	2.68E-1	2.94E-1	3.44E-1	3.96E-1	4.66E-1	5.74E-1	6.69E-1	8.79E-1
5000	2.02E-1	2.11E-1	2.39E-1	2.88E-1	3.37E-1	4.08E-1	5.11E-1	5.91E-1	7.63E-1
10000	1.55E-1	1.64E-1	1.88E-1	2.37E-1	2.86E-1	3.57E-1	4.59E-1	5.41E-1	6.85E-1
20000	1.07E-1	1.14E-1	1.38E-1	1.81E-1	2.29E-1	2.98E-1	4.04E-1	4.85E-1	6.19E-1
50000	5.14E-2	5.62E-2	7.27E-2	1.07E-1	1.48E-1	2.13E-1	3.19E-1	4.02E-1	5.38E-1

Average depth (mean range) in \ddot{A} of He implanted in W ne=24. na=9

$E_0(eV)$	0°	15°	30°	45°	55°	65°	75°	80°	85°
10	9.20E + 0	9.20E+0	9.10E4-0	9.10E + 0	9.00E4-0	9.00E + 0	8.70E-J-0	8.80E + 0	8.70E + 0
20	1.24E+1	1.24E+1	1.23E+1	1.23E+1	1.22E + 1	1.21E4-1	1.19E + 1	1.17E + 1	1.22E + 1
50	1.90E+1	1.92E+1	1.90E + 1	1.88E+1	1.86E+1	1.85E+1	1.83E-J-1	1.81E+1	1.62E + 1
100	2.69E4-1	2.69E4-1	2.67E + 1	2.65E4-1	2.61E + 1	2.61E+1	2.60E + 1	2.53E+1	2.55E + 1
125	3.02E + 1	3.02E+1	2.99E + 1	2.96E-H	2.93E4-1	2.91E + 1	2.88E + 1	2.85E+1	2.72E + 1
130	3.09E4-1	3.08E+1	3.05E+1	3.02E+1	2.99E + 1	2.96E4-1	2.94E-H	2.93E + 1	3.06E + 1
140	3.21E-J-1	3.20E+1	3.17E+1	3.13E+1	3.11E + 1	3.08E+1	3.05E + 1	3.03E+1	3.25E + 1
150	3.32E + 1	3.31E+1	3.29E+1	3.24E+1	3.22E + 1	3.19E+1	3.16E + 1	3.14E + 1	3.05E+1
170	3.55E+1	3.54E+1	3.51E+1	3.46E4-1	3.43E+1	3.40E+1	3.37E + 1	3.34E4-1	3.65E-J-1
200	3.85E4-1	3.84E+1	3.81E+1	3.75E4-1	3.72E4-1	3.69E+1	3.66E + 1	3.64E + 1	3.59E+1
250	4.35E + 1	4.34E+1	4.29E + 1	4.24E+1	4.18E+1	4.15E+1	4.12E + 1	4.10E + 1	4.04E + 1
300	4.81E + 1	4.77E-J-1	4.74E4-1	4.66E4-1	4.62E-J-1	4.58E+1	4.53E + 1	4.51E+1	4.45E + 1
350	5.22E + 1	5.20E+1	5.14E+1	5.09E-H	5.00E+1	4.96E+1	4.94E+1	4.89E+1	4.79E + 1
400	5.62E + 1	5.58E+1	5.54E+1	5.46E+1	5.39E-J-1	5.32E+1	5.28E4-1	5.28E4-1	5.24E + 1
500	6.36E+1	6.34E + 1	6.26E + 1	6.20E+1	6.10E + 1	6.05E+1	5.95E + 1	5.93E-H	5.89E+1
600	7.06E + 1	7.03E+1	6.94E + 1	6.84E4-1	6.74E+1	6.71E+1	6.59E-H	6.57E + 1	6.57E+1
700	7.71E4-1	7.69E+1	7.59E-J-1	7.47E-H	7.39E + 1	7.29E+1	7.22E+1	7.19E + 1	7.17E+1
1000	9.53E+1	9.47E-J-1	9.34E+1	9.17E+1	9.07E + 1	8.93E+1	8.81E + 1	8.76E-J-1	8.84E+1
1400	1.16E+2	1.16E+2	1.15E+2	1.12E + 2	1.11E+2	1.09E + 2	1.07E+2	1.08E+2	1.07E+2
2000	1.46E-J-2	1.46E+2	1.43E+2	1.40E+2	1.37E + 2	1.35E+2	1.34E+2	1.33E+2	1.33E+2
5000	2.69E+2	2.67E-J-2	2.63E + 2	2.55E + 2	2.49E + 2	2.44E + 2	2.39E+2	2.37E+2	2.37E + 2
10000	4.44E + 2	4.40E+2	4.29E + 2	4.12E+2	4.02E+2	3.89E + 2	3.81E + 2	3.79E + 2	3.75E + 2
20000	7.54E + 2	7.45E+2	7.20E + 2	6.87E+2	6.59E+2	6.33E-J-2	6.15E4-2	6.06E+2	6.01E + 2
50000	1.58E + 3	1.55E+3	1.47E + 3	1.37E+3	1.28E+3	1.21E + 3	1.15E+3	1.12E + 3	1.11E + 3

$$\mathbf{C} \to \mathbf{W}$$

Sputtering yield of W by C z1 = 6. ml= 12.01. z2=74, m2 = 183.85, sbe=8.68 eV. rho=19.30 g/cm**3 ef=3.95 eV. esb=4.00 eV, ca=1.00. kk0 = kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program : testvmcx only low fluence! ne=11. na= 1

$E_0(eV)$	0°	comment
55	4.77e-5	ef=0.95. esb = 1.00 eV
60	2.68e-4	ef=0.95. esb = 1.00 eV
70	2.25e-3	
100	1.23e-2	
200	6.24e-2	
500	1.66e-l	
1000	2.67e-1	
2000	3.68E-!	
5000	4.54e-1	
10000	5.02e-1	
40000	4.06e-l	ef=1.00. $esb=1.00 eV$

Sputtered energy of W by C only low fluence! ne=11, na= 1

E ₀ (eV)	0°	comment
55	5.49e-7	ef=0.95. esb=1.00 eV
60	4.59e-6	ef=0.95. esb = 1.00 eV
70	6.75e-5	
100	5.02e-4	
200	2.69e-3	
500	5.36e-3	
1000	6.08e-3	
2000	5.76E-3	
5000	4.16e-3	
10000	2.78e-3	
40000	8.53e-4	ef=1.00. esb=1.00 eV

$$c \rightarrow w$$

Particle reflection coefficient of C backscattered from W zl = 6. ml = 12.01. z2 = 74, m2 = 183.85, sbe=8.68 eV. rho=19.30 g/cm**3 ef=3.95 eV, esb = 4.00 eV, ca=1.00, kk0 = kk0r=2. kdeel = kdee2 = 3, ipot=ipotr = 1 (KrC) program : testvmcx only low fluence! ne=11. na = 1

$E_0 (eV)$	0°	comment
55	6.23e-1	ef=0.95. esb = 1.00 eV
60	6.16e-l	ef=0.95. esb = 1.00 eV
70	5.81e-1	
100	5.61e-1	
200	5.25e-1	
500	4.77e-1	
1000	4.52e-1	
2000	4.22E-1	
5000	3.65e-1	
10000	3.27e-1	
40000	2.16e-1	ef=1.00, esb=1.00 eV

Energy reflection only low fluence! coefficient of C backscattered from W

ne=11,	na=	1

E ₀ (eV)	0°	comment				
55	3.55e-l	ef=0.95, esb = 1.00 eV				
60	3.50e-1	ef=0.95, esb = 1.00 eV				
70	3.28e-1					
100	3.10e-1					
200	2.79e-1					
500	2.40e-1					
1000	2.23e-1					
2000	2.02E-1					
5000	1.68e-1					
10000	1.45e-l					
40000	8.68e-2	ef=1.00, $esb=1.00 eV$				

Average depth (mean range) in \ddot{A} of C implanted in W only low fluence! ne=11. na= 1

	_	
E ₀ (eV)	0°	comment
55	9.11e+0	ef=0.95, esb = 1.00 eV
60	9.50e + 0	ef=0.95, esb = 1.00 eV
70	1.01e+1	
100	1.21e + 1	
200	1.72e+1	
500	2.82e + 1	
1000	4.14e+1	
2000	6.12E+1	
5000	1.10e+2	
10000	1.73e+2	
40000	5.00e4-2	ef=1.00, $esb=1.00 eV$

C on W, Maxwellian velocity distribution, sheath potential 9 kT zl=6, ml=12.01, z2=74, m2=183.85, sbe=8.68 eV, rho=19.29 g/cm^{**3} ef=0.98 eV, esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr= 1 (KrC) program: trvmc only low fluence! ne= 4

kT(eV)	Y	Y_E	E s p	Rat	R_E	Еь	range
5	2.45e-4	8.40e-6	1.88e+0	6.50e-1	3.83e-1	3.24e+1	9.23e+0
10	1.59e-2	7.08e-4	4.90e+0	5.92e-1	3.33e-1	6.19e + 1	1.29e-H
20	7.19e-2	3.10e-3	9.49e4-0	5.45e-1	2.94e-1	1.19e+2	1.82e+1
40	1.61e-1	5.52e-3	1.51e + 1	5.07e-1	2.62e-1	2.28e + 2	2.61e + 1

Sputtering yield of W by N zl = 7. ml = 14.01. z2=74, m2 = 183.85. sbe=8.68 eV. rho = 19.29 g/cm**3 ef=0.98 eV. esb = 1.00 eV, ca=1.00, kk0 = kk0r=2. kdeel = kdee2 = 3. ipot=ipotr=1 (KrG) program: trvmc rrom

ne = 22,	na=9

Eo(eV)	0°	15°	30°	45°	55 ^u	65°	75 ^u	80°	85°
47	9.30e-6	7.00e-6							
48	1.82E-5	1.60E-5	1.20E-5	5.70E-6	2.30E-6				
50	5.70E-5	5.25E-5	3.93E-5	2.11E-5	1.07E-5	2.85E-6			
52	1.35E-4	1.28E-4	9.18E-5	5.06E-5	2.86E-5	9.30E-6			
55	3.60E-4	3.30E-4	2.56E-4	1.52E-4	8.47E-5	2.75E-5	3.08E-6		
60	9.73E-4	9.57E-4	7.55E-4	4.74E-4	2.76E-4	1.08E-4	1.52E-5	2.20E-6	
70	3.26E-3	3.26E-3	2.84E-3	2.02E-3	1.31E-3	5.87E-4	1.08E-4	1.98E-5	1.50E-6
80	7.00E-3	6.70E-3	6.06E-3	4.61E-3	3.18E-3	1.61E-3	3.52E-4	7.13E-5	6.20E-6
90	1.17E-2	1.14E-2	1.06E-2	8.58E-3	6.13E-3	3.36E-3	8.56E-4	2.12E-4	1.76E-5
100	1.72E-2	1.70E-2	1.60E-2	1.30E-2	1.03E-2	6.07E-3	1.78E-3	4.90E-4	4.29E-5
120	2.77E-2	2.79E-2	2.82E-2	2.53E-2	2.17E-2	1.43E-2	5.43E-3	1.70E-3	1.23E-4
140	3.99E-2	4.07E-2	4.14E-2	4.06E-2	3.50E-2	2.65E-2	1.14E-2	3.67E-3	2.47E-4
200	7.57E-2	8.00E-2	8.32E-2	8.70E-2	9.07E-2	7.77E-2	4.11E-2	1.50E-2	8.58E-4
300	1.32E-1	1.35E-1	1.48E-1	1.71E-1	1.85E-1	1.80E-1	1.15E-1	4.56E-2	2.65E-3
500	2.13E-1	2.21E-1	2.52E-1	3.10E-1	3.51E-1	3.68E-1	2.66E-1	1.26E-1	8.67E-3
1000	3.39E-1	3.58E-1	4.22E-1	5.35E-1	6.24E-1	6.89E-1	5.80E-1	3.49E-1	4.00E-2
2000	4.69e-1								
3000	5.40e-1								
5000	6.05e-1								
10000	6.54e-1								
20000	6.18e-1								
50000	5.30e-1								

.

Sputtered energy of W by N ne=22, na=9

E ₀ (eV)	0°	15°	30°	45°	55°	65°	75 0	80°	85°
47	9.95e-8	7.47e-8							
48	2.19e-7	2.10e-7	1.92e-7	8.93e-8	4.20e-8				
50	8.42e-7	8.26e-7	6.77e-7	3.68e-7	1.82e-7	4.76e-8			
52	2.44E-6	2.31E-6	1.73E-6	1.00E-6	5.63e-7	1.87E-7			
55	7.80E-6	7.08E-6	5.73E-6	3.39E-6	1.85E-6	5.84E-7	6.31E-8		
60	2.61E-5	2.56E-5	2.10E-5	1.33E-5	7.59 E-6	2.81E-6	3.75E-7	5.17E-8	
70	1.16E-4	1.16E-4	1.03 E-4	7.42E-5	4.59E-5	1.97E-5	3.52E-6	6.60E-7	5.65E-8
80	2.85E-4	2.74E-4	2.52E-4	1.93E-4	1.32E-4	6.64E-5	1.39E-5	2.82E-6	3.05E-7
90	5.22E-4	5.06E-4	4.88E-4	3.93E-4	2.86E-4	1.56E-4	3.69E-5	9.32E-6	8.21E-7
100	7.88E-4	7.97E-4	7.61E-4	·6.10E-4	5.13E-4	3.05E-4	8.38E-5	2.38E-5	2.27E-6
120	1.35E-3	1.35E-3	1.40E-3	1.30E-3	1.13E-3	7.54 E-4	2.93E-4	9.69E-5	7.37E-6
140	1.92E-3	1.98E-3	2.10E-3	2.11E-3	1.89E-3	1.47E-3	6.53E-4	2.27E-4	1.59E-5
200	3.56E-3	3.78E-3	4.01E-3	4.41E-3	4.74E-3	4.30E-3	2.61E-3	1.04E-3	6.16E-5
300	5.49E-3	5.78E-3	6.39E-3	7.63E-3	8.72E-3	9.35E-3	7.08E-3	3.12E-3	1.94 E-4
500	7.36E-3	7.71E-3	8.78E-3	1.15E-2	1.38E-2	1.63E-2	1.42E-2	7.70E-3	5.65E-4
1000	8.26E-3	8.76E-3	1.04E-2	1.40E-2	1.77E-2	2.21E-2	2.24E-2	1.55E-2	2.06E-3
2000	7.47e-3								
3000	6.94e-3								
5000	5.74e-3								
10000	3.92e-3								
20000	2.42e-3								
50000	1.06e-3								

$$\mathbf{N} \to \mathbf{W}$$

Particle reflection coefficient of N backscattered from W z1= 7. ml= 14.01. z2=74. m2 = 183.85. sbe = 8.68 eV. rho=19.29 g/cm**3 ef=0.98 eV. esb=1.00 eV. ca=1.00. kk0 = kk0r=2. kdeel = kdee2 = 3. ipot=ipotr = 1 (KrC) program: trvmc ne=25. na=9

Eq(eV)	0°	15°	30°	45°	55 ^u	65 ^u	75°	80 ^u	85°
10	7.68E-1	7.83E-1	8.14E-1	8.62E-1	9.01E-1	9.43E-1	9.74E-1	9.84E-1	9.88E-1
20	7.17E-1	7.34E-1	7.73E-1	8.36E-1	8.85E-1	9.39E-1	9.80E-1	9.91E-1	9.96E-1
40	6.52E-1	6.68E-1	7.13E-1	7.87E-1	8.50 E-1	9.19E-1	9.78 E-1	9.93E-1	9.99E-1
47	6.37e-1	6.53e-1							
48	6.35E-1	6.51E-1	6.95E-1	7.72E-1	8.38E-1	9.12E-1	9.76E-1	9.93E-1	9.99E-1
50	6.31E-1	6.47E-1	6.92E-1	7.68E-1	8.35E-1	9.10E-1	9.76E-1	9.93E-1	9.99E-1
52	6.28E-1	6.43E-1	6.88E-1	7.65E-1	8.32E-1	9.08E-1	9.75E-1	9.93E-1	9.99E-1
55	6.22E-1	6.38E-1	6.83E-1	7.60E-1	8.28E-1	9.05E-1	9.74E-1	9.93E-1	9.99E-1
60	6.14E-1	6.30E-1	6.75E-1	7.52E-1	8.21E-1	9.01E-1	9.73E-1	9.93E-1	9.99E-1
70	6.00E-1	6.15E-1	6.61E-1	7.39E-1	8.09E-1	8.92E-1	9.70E-1	9.92E-1	9.99E-1
80	5.90E-1	6.04E-1	6.49E-1	7.27E-1	7.98E-1	8.84E-1	9.67E-1	9.92E-1	9.99E-1
90	5.83E-1	5.96E-1	6.39E-1	7.15E-1	7.88E-1	8.76E-1	9.64E-1	9.91E-1	9.99E-1
100	5.68E-1	5.88E-1	6.31E-1	7.08E-1	7.78E-1	8.70E-1	9.61E-1	9.91E-1	9.99E-1
120	5.58E-1	5.72E-1	6.16E-1	6.89E-1	7.63E-1	8.58E-1	9.56E-1	9.89E-1	9.99E-1
140	5.45E-1	5.61E-1	6.04E-1	6.78E-1	7.48E-1	8.45E-1	9.50E-1	9.88E-1	9.99E-1
200	5.25E-1	5.35E-1	5.77E-1	6.48E-1	7.19E-1	8.15E-1	9.32E-1	9.82E-1	9.99E-1
300	4.99E-1	5.11E-1	5.52E-1	6.19E-1	6.85 E-1	7.77E-1	9.09E-1	9.73E-1	9.99E-1
500	4.72E-1	4.82E-1	5.18E-1	5.84E-1	6.48E-1	7.36E-1	8.70E-1	9.54E-1	9.98E-1
1000	4.38E-1	4.51E-1	4.84E-1	5.44E-1	6.09E-1	6.82E-1	8.10E-1	9.10E-1	9.94E-1
2000	4.11e-1								
3000	3.79e-1								
5000	3.55e-1								
10000	3.18e-1								
20000	2.67e-1								
50000	2.03e-1								

Energy	reflection	coefficient	of N	backscattered	from	W
ne = 25.	na=9					

E ₀ (eV)	0°	15°	30°	45°	55°	65°	75°	80°	85°
10	4.40E-1	4.60E-1	5.04E-1	5.78E-1	6.48E-1	7.32E-1	8.13E-1	8.43E-1	8.62E-1
20	4.14E-1	4.35E-1	4.86E-1	5.75E-1	6.55E-1	7.55E-1	8.58E-1	8.97E-1	9.21E-1
40	3.66E-1	3.85E-1	4.38E-1	5.35E-1	6.27E-1	7.43E-1	8.71E-1	9.22E-1	9.52E-1
47	3.55e-1	3.72e-1							
48	3.53E-1	3.71E-1	4.23E-1	5.20E-1	6.15E-1	7.35E-1	8.71E-1	9.26E-1	9.58 E-1
50	3.50E-1	3.68E-1	4.19E-1	5.17E-1	6.12E-1	7.33E-1	8.70 E-1	9.26E-1	9.59E-1
52	3.47E-1	3.65E-1	4.16E-1	5.13E-1	6.09E-1	7.31E-1	8.70E-1	9.26E-1	9.60E-1
55	3.43E-1	3.60E-1	4.12E-1	5.09E-1	6.04E-1	7.28E-1	8.69E-1	9.28E-1	9.61E-1
60	3.37E-1	3.54E-1	4.04E-1	5.01E-1	5.97E-1	7.23E-1	8.68E-1	9.28E-1	9.63E-1
70	3.26E-1	3.42E-1	3.92E-1	4.87E-1	5.84E-1	7.12E-1	8.65 E-1	9.29E-1	9.66E-1
80	3.18E-1	3.33 E-1	3.81E-1	4.75E-1	5.72E-1	7.03E-1	8.61E-1	9.29E-1	9.68E-1
90	3.11E-1	3.25E-1	3.72E-1	4.63E-1	5.61E-1	6.93E-1	8.57E-1	9.29E-1	9.70E-1
100	3.03E-1	3.18E-1	3.65E-1	4.55E-1	5.49E-1	6.85E-1	8.53E-1	9.28E-1	9.72E-1
120	2.92E-1	3.07E-1	3.51E-1	4.37E-1	5.32E-1	6.69E-1	8.44E-1	9.26E-1	9.74E-1
140	2.84E-1	2.97E-1	3.41 E-1	4.23E-1	5.16E-1	6.54 E-1	8.36E-1	9.24E-1	9.75E-1
200	2.68E-1	2.78E-1	3.17E-1	3.95E-1	4.81E-1	6.15E-1	8.10E-1	9.15E-1	9.77E-1
300	2.49E-1	2.59E-1	2.96E-1	3.65E-1	4.43E-1	5.69E-1	7.74E-1	8.98E-1	9.77E-1
500	2.29 E-1	2.38E-1	2.69E-1	3.33E-1	4.02E-1	5.17E-1	7.18E-1	8.66E-1	9.75E-1
1000	2.07E-1	2.16E-1	2.45E-1	3.00E-1	3.62E-1	4.53E-1	6.34E-1	7.95E-1	9.64E-1
2000	1.89e-l								
3000	1.72e-l								
5000	1.56e-l								
10000	1.36e-1								
20000	1.10e-1								
50000	7.70e-2								

$$N - W$$

Average depth (mean range) in Ä of N implanted in W zl = 7. ml= 14.01, z2=74, m2=183.85, sbe=8.68 eV, rho=19.29 g/cm**3 ef=0.98 eV. esb = 1.00 eV. ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: trvmc ne=25. na=9

$E_0(eV)$	0°	15°	30°	45 ^u	55°	65°	75°	80°	85 ^u
10	3.80E+0	3.80E+0	3.80E4-0	3.70E4-0	3.70E+0	3.60E + 0	3.50E4-0	3.50E+0	3.40E4-0
20	5.30E4-0	5.30E+0	5.20E + 0	5.20E+0	5.10E+0	5.00E + 0	4.90E+0	4.80E4-0	4.70E + 0
40	7.20E+0	7.20E+0	7.20E4-0	7.10E + 0	7.00E4-0	6.80E4-0	6.60E4-0	6.50E4-0	6.50E+0
47	7.81e+0	7.78e+0							
48	7.90E+0	7.90E+0	7.80E + 0	7.70E + 0	7.60E + 0	7.40E4-0	7.20E+0	7.10E+0	7.00E + 0
50	8.00E4-0	8.00E4-0	7.90E + 0	7.80E+0	7.70E + 0	7.60E4-0	7.40E4-0	7.20E4-0	6.90E4-0
52	8.20E+0	8.20E+0	8.10E+0	8.00E4-0	7.90E+0	7.70E + 0	7.40E+0	7.50E+0	7.30E4-0
55	8.40E4-0	8.40E4-0	8.30E4-0	8.20E+0	8.10E+0	7.90E+0	7.70E+0	7.60E4-0	7.30E + 0
60	8.70E4-0	8.70E4-0	8.60E4-0	8.50E+0	8.40E + 0	8.20E+0	8.00E+0	7.90E+0	7.50E+0
70	9.40E4-0	9.40E+0	9.30E4-0	9.10E+0	9.00E4-0	8.90E4-0	8.60E+0	8.40E+0	8.30E + 0
80	1.00E + 1	1.00E+1	9.90E + 0	9.70E+0	9.60E4-0	9.40E4-0	9.20E+0	9.00E+0	8.80E4-0
90	1.06E+1	1.06E+1	1.04E+1	1.02E+1	1.01E+1	1.00E + 1	9.70E+0	9.40E+0	9.40E + 0
100	1.12E4-1	1.11E4-1	1.10E + 1	1.08E+1	1.06E + 1	1.04E+1	1.02E + 1	1.00E + 1	9.70E4-0
120	1.22E+1	1.22E4-1	1.20E+1	1.18E+1	1.16E + 1	1.14E4-1	1.11E+1	1.09E + 1	1.08E + 1
140	1.32E+1	1.31E+1	1.30E+1	1.27E+1	1.24E+1	1.23E+1	1.19E+1	1.18E + 1	1.15E4-1
200	1.57E+1	1.57E+1	1.55E+1	1.51E+1	1.48E+1	1.45E+1	1.41E + 1	1.40E + 1	1.37E + 1
300	1.92E+1	1.91E+1	1.90E+1	1.84E+1	1.82E + 1	1.77E + 1	1.74E + 1	1.71E+1	1.63E + 1
500	2.50E + 1	2.50E+1	2.47E4-1	2.41E+1	2.34E + 1	2.32E+1	2.26E + 1	2.24E + 1	2.16E4-1
1000	3.67E+1	3.65E+1	3.57E+1	3.45E4-1	3.38E + 1	3.31E4-1	3.23E + 1	3.23E + 1	3.18E4-1
2000	5.41e + 1								
3000	6.88e+1								
5000	9.41e + 1								
10000	1.53e+2								
20000	2.53e4-2								
50000	5.15e4-2								

Sputtering yield of W by O zl = 8. ml= 16.00, z2 = 74, m2 = 183.85, sbe = 8.68 eV. rho=19.30 g/cm**3 ef=0.95 eV. esb = 1.00 eV. ca=1.00, kk0 = kk0r=2, kdeel = kdee2 = 3, ipot=ipotr = 1 (KrC) program: TPP 9/82 only low fluence!ne= 9, na= 1 -

$E_0(eV)$	0°
50	3.63e-4
100	2.17e-2
200	9.00e-2
300	1.52e-1
500	2.45e-1
1000	3.71e-1
2000	5.33e-1
5000	6.89e-1
6000	7.64e-1

Ne W

Sputtering yield of W by Ne zl = 10, ml= 20.18, z2=74, m2 = 183.85, sbe=8.68 eV. rho = 19.29 g/cm**3 ef=0.20 eV. esb=0.00 eV. ca=1.00, kk0=kk0r = 2, kdee l = kdee2 = 3. ipot=ipotr = 1 (KrC) program: trvmc ne=14, na=9

E ₀ (eV)	0°	15 ^u	30°	45°	55 °	65 ^u	75°	80°	85°
40	9.80E-6	7.70E-6	4.40E-6	1.80E-6	2.00E-6				
45	1.64E-4	1.37E-4	1.01E-4	4.66E-5	2.21E-5	4.88E-6			
50	7.38E-4	6.43E-4	4.83E-4	2.82E-4	1.44E-4	4.22E-5	2.52E-6		
60	3.61E-3	3.30E-3	2.74E-3	1.78E-3	1.09E-3	4.35E-4	5.33E-5	5.00E-6	
70	8.44E-3	8.11E-3	7.47E-3	5.27E-3	3.45E-3	1.69E-3	2.95E-4	4.46E-5	
80	1.58E-2	1.48E-2	1.41E-2	1.05E-2	7.52E-3	4.17E-3	9.51E-4	1.79E-4	
100	3.15E-2	3.13E-2	3.07E-2	2.59E-2	2.11E-2	1.40E-2	4.70E-3	8.37E-4	5.15E-6
140	6.97E-2	6.94E-2	7.15E-2	7.05E-2	6.58E-2	5.08E-2	2.06E-2	4.65E-3	3.58E-5
200	1.23E-1	1.29E-1	1.39E-1	1.50E-1	1.53E-1	1.33E-1	6.38E-2	1.72E-2	1.93E-4
300	2.02E-1	2.14E-1	2.38E-1	2.77E-1	2.91E-1	2.75E-1	1.46E-1	5.07E-2	8.85E-4
400	2.67E-1	2.82E-1	3.22E-1	3.88E-1	4.30E-1	4.11E-1	2.39E-1	9.32E-2	2.23E-3
500	3.24E-1	3.45E-1	4.00E-1	4.88E-1	5.41E-1	5.35E-1	3.37E-1	1.39E-1	4.54E-3
700	4.25E-1	4.44E-1	5.14E-1	6.38E-1	7.16E-1	7.37E-1	5.06E-1	2.38E-1	1.23E-2
1000	5.33E-1	5.62E-1	6.66E-1	8.18E-1	9.43E-1	9.76E-1	7.53E-1	3.99E-1	2.98E-2

Sputtered energy of W by Ne ne = 22, na = 9

E ₀ (eV)	0°	15°	30°	45°	55°	65°	75°	80°	85°
40	1.81e-7	1.58e-7	9.73e-8	4.89e-8	1.06e-7				
45	4.44e-6	3.82e-6	3.06e-6	1.41e-6	6.32e-7	1.37e-7			
50	2.59E-5	2.26E-5	1.79E-5	1.07E-5	5.34E-6	1.54E-6	1.21E-7		
60	1.63E-4	1.53E-4	1.29E-4	8.42E-5	5.03E-5	2.14E-5	2.91 E-6	3.16E-7	
70	4.42E-4	4.29E-4	4.09E-4	2.92E-4	1.97E-4	9.88E-5	1.85E-5	3.05E-6	
80	8.87E-4	8.80E-4	8.36E-4	6.35E-4	4.66E-4	2.66E-4	6.30E-5	1.30E-5	
100	1.91E-3	1.92E-3	1.95E-3	1.70E-3	1.48E-3	9.78E-4	3.65E-4	7.09E-5	3.81E-7
140	4.12E-3	4.20E-3	4.44E-3	4.68E-3	4.58E-3	3.83E-3	1.77E-3	4.35E-4	2.90E-6
200	6.81E-3	7.39E-3	8.15E-3	9.36E-3	1.02E-2	9.88E-3	5.63E-3	1.64E-3	1.62E-5
300	9.82E-3	1.04E-2	1.18E-2	1.51E-2	1.72E-2	1.84E-2	1.21E-2	4.53E-3	7.32E-5
400	1.15E-2	1.20E-2	1.41E-2	1.87E-2	2.22E-2	2.49E-2	1.74E-2	7.62E-3	1.79E-4
500	1.26E-2	1.35E-2	1.57E-2	2.08E-2	2.57E-2	2.96E-2	2.29E-2	1.06E-2	3.18E-4
700	1.38E-2	1.43E-2	1.72E-2	2.33E-2	2.85E-2	3.42E-2	2.92E-2	1.58E-2	7.77E-4
1000	1.42E-2	1.52E-2	1.79E-2	2.43E-2	3.15E-2	3.70E-2	3.56E-2	2.18E-2	1.61E-3

Particle reflection coefficient of Ne backscattered from W zl = 10. ml = 20.18. z2=74. m2 = 183.85. sbe=8.68 eV. rho = 19.29 g/cm**3 ef=0.20 eV. esb=0.00 eV. ca=1.00. kk0 = kk0r=2. kdeel = kdee2=3. ipot=ipotr = 1 (KrC) program: trvmc ne=17. na=9

E ₀ (eV)	0°	15°	30°	45°	55°	65°	75°	80°	85°
10	8.10E-1	8.24E-1	8.53E-1	8.97E-1	9.36E-1	9.74E-1	9.96E-1	1.00E-f-0	1.00E+0
20	7.44E-1	7.61E-1	7.98E-1	8.59E-1	9.09E-1	9.62E-1	9.95E-1	9.99E-1	1.00E4-0
30	6.97E-1	7.14E-1	7.58E-1	8.28E-1	8.86E-1	9.50E-1	9.93E-1	9.99E-1	1.00E + 0
40	6.62E-1	6.80E-1	7.26E-1	8.03E-1	8.67E-1	9.38E-1	9.90E-1	9.99E-1	1.00E4-0
45	6.48E-1	6.66E-1	7.13E-1	7.92E-1	8.59E-1	9.32E-1	9.89E-1	9.99 E-1	1.00E+0
50	6.36E-1	6.54E-1	7.01E-1	7.82E-1	8.50E-1	9.27E-1	9.88E-1	9.99E-1	1.00E + 0
60	6.16E-1	6.32E-1	6.80E-1	7.63E-1	8.36E-1	9.17E-1	9.85E-1	9.98E-1	1.00E+0
70	5.99E-1	6.15E-1	6.62E-1	7.48E-1	8.23E-1	9.08E-1	9.82E-1	9.98E-1	1.00E+0
80	5.85E-1	6.02E-1	6.46E-1	7.34E-1	8.10E-1	8.99E-1	9.79E-1	9.98E-1	1.00E + 0
100	5.61E-1	5.79E-1	6.25E-1	7.13E-1	7.88E-1	8.83E-1	9.74E-1	9.97E-1	1.00E-f-O
140	5.31E-1	5.44E-1	5.93E-1	6.76E-1	7.54 E-1	8.58 E-1	9.63E-1	9.94E-1	1.00E-f-O
200	5.02E-1	5.19E-1	5.65E-1	6.42E-1	7.17E-1	8.23E-1	9.46E-1	9.90E-1	1.00E-f-O
300	4.71E-1	4.87E-1	5.27E-1	6.07E-1	6.82E-1	7.86E-1	9.25E-1	9.82E-1	1.00E-f-O
400	4.54E-1	4.66E-1	5.15E-1	5.86E-1	6.58E-1	7.57E-1	9.05E-1	9.73E-1	1.00E-f-O
500	4.39E-1	4.56E-1	4.96E-1	5.60E-1	6.36E-1	7.38 E-1	8.80E-1	9.66 E-1	1.00E-f-O
700	4.22E-1	4.35E-1	4.72E-1	5.40E-1	6.05E-1	7.05E-1	8.54 E-1	9.48E-1	9.99E-1
1000	4.04E-1	4.15E-1	4.52E-1	5.16E-1	5.83E-1	6.75E-1	8.16E-1	9.23E-1	9.98E-1

Energy reflection coefficient of Ne backscattered from W $ne{=}17._~na{=}9$

E ₀ (eV)	0°	15°	30 ^u	45°	55 °	65°	75°	80°	85°
10	4.10E-1	4.32E-1	4.80E-1	5.68E-1	6.59E-1	7.76 E-1	8.97E-1	9.44E-1	9.77E-1
20	3.77E-1	3.98E-1	4.52E-1	5.48E-1	6.41E-1	7.64 E-1	8.97E-1	9.49E-1	9.83E-1
30	3.48E-1	3.69E-1	4.26E-1	5.26E-1	6.23E-1	7.51 E-1	8.93E-1	9.50E-1	9.85E-1
40	3.27E-1	3.47E-1	4.03E-1	5.07E-1	6.06E-1	7.37E-1	8.88E-1	9.49E-1	9.86 E-1
45	3.19E-1	3.38E-1	3.94E-1	4.97E-1	5.98E-1	7.31E-1	8.86E-1	9.49E-1	9.86E-1
50	3.11E-1	3.30E-1	3.85E-1	4.89E-1	5.90E-1	7.25E-1	8.83E-1	9.48E-1	9.86E-1
60	2.98E-1	3.16E-1	3.69E-1	4.73E-1	5.77E-1	7.13E-1	8.78E-1	9.47E-1	9.87E-1
70	2.87E-1	3.04E-1	3.55E-1	4.59E-1	5.63E-1	7.02E-1	8.73 E-1	9.45E-1	9.87E-1
80	2.79 E-1	2.95E-1	3. 43 E-1	4.46E-1	5.51E-1	6.92E-1	8.67E-1	9.43E-1	9.87E-1
100	2.63E-1	2.79E-1	3.27E-1	4.26E-1	5.28E-1	6.74E-1	8.57E-1	9.40E-1	9.87E-1
140	2.45E-1	2.57E-1	3.02E-1	3.94E-1	4.93 E-1	6.41E-1	8.39E-1	9.33E-1	9.86E-1
200	2.27E-1	2.39E-1	2.81E-1	3.62E-1	4.54E-1	6.02E-1	8.13E-1	9.22E-1	9.85E-1
300	2.08E-1	2.21E-1	2.56E-1	3.33E-1	4.19E-1	5.55E-1	7.80E-1	9.05E-1	9.84E-1
400	1.97E-1	2.08E-1	2.45E-1	3.12E-1	3.92E-1	5.25E-1	7.48E-1	8.87E-1	9.82 E-1
500	1.89E-1	1.99E-1	2.32E-1	2.96E-1	3.75E-1	4.98E-1	7018E-1	8.74E-1	9.80E-1
700	1.79 E-1	1.88E-1	2.18E-1	2.78E-1	3.45E-1	4.65E-1	6.80E-1	8.44E-1	9.77E-1
1000	1.67E-1	1.76E-1	2.06E-1	2.63E-1	3.26E-1	4.30E-1	6.28E-1	8.05E-1	9.71E-1

Average depth (mean range) in $\ddot{\rm A}$ of Ne implanted in W ne=17, na=9

								-	
$E_0 (eV)$	0 6	15°	30°	45°	55°	65°	75°	80 ^ö	85°
10	3.70E+0	3.60E+0	3.60E-J-0	3.60E + 0	3.50E4-0	3.40E4-0	3.30E+0	3.20E-f-0	2.90E + 0
20	4.70E+0	4.70E + 0	4.60E + 0	4.60E+0	4.50E-J-0	4.40E + 0	4.20E+0	4.10E+0	4.00E4-0
30	5.50E4-0	5.40E+0	5.40E + 0	5.30E4-0	5.20E4-0	5.10E4-0	4.90E+0	4.80E+0	4.50E-f-0
40	6.10E4-0	6.10E+0	6.10E + 0	6.00E+0	5.90E+0	5.70E+0	5.50E+0	5.30E+0	5.10E+0
45	6.40E4-0	6.40E4-0	6.40E4-0	6.30E4-0	6.20E4-0	6.00E-J-0	5.80E4-0	5.40E4-0	5.00E4-0
50	6.70E+0	6.70E+0	6.60E4-0	6.50E+0	6.40E4-0	6.30E-J-0	6.00B+0	6.00E + 0	5.70E+0
60	7.30E + 0	7.20E+0	7.20E + 0	7.00E+0	6.90E+0	6.80E + 0	6.50E-I-0	6.30E4-0	6.20E4-0
70	7.80E + 0	7.70E4-0	7.60E + 0	7.50E4-0	7.40E+0	7.20E + 0	6.90E4-0	6.70E + 0	5.60E + 0
80	8.20E+0	8.20E4-0	8.10E4-0	8.00E-f-0	7.80E4-0	7.60E4-0	7.30E-J-0	7.10E + 0	6.70E4-0
100	9.10E+0	9.00E+0	8.90E4-0	8.80E4-0	8.60E + 0	8.40E-f-0	8.10E4-0	7.90E-J-0	7.70E+0
140	1.06E + 1	1.05E+1	1.04E+1	1.02E+1	1.00E-f-1	9.80E4-0	9.30E+0	9.10E+0	8.30E + 0
200	1.26E + 1	1.25E+1	1.23E + 1	1.19E+1	1.16E-J-1	1.15E + 1	1.12E + 1	1.08E + 1	1.08E4-1
300	1.53E+1	1.51E+1	1.49E-J-1	1.44E4-1	1.40E+1	1.38E+1	1.36E+1	1.34E+1	1.22E+1
400	1.76E + 1	1.74E-J-1	1.71E+1	1.68E+1	1.62E4-1	1.59E+1	1.54E-f-l	1.52E+1	1.44E + 1
500	1.97E-J-1	1.96E+1	1.92E+1	1.87E-J-1	1.82E + 1	1.77E-J-1	1.72E + 1	1.70E4-1	1.63E + 1
700	2.35E + 1	2.34E+1	2.30E-J-1	2.22E+1	2.16E4-1	2.10E+1	2.07E + 1	1.99E4-1	1.90E4-1
1000	2.85E + 1	2.82E+1	2.74E4-1	2.65E + 1	2.58E-I-1	2.53E+1	2.47E + 1	2.43E-J-1	2.30E+1

$$\mathrm{Ar} \to \mathrm{W}$$

Sputtering yield of W by Ar zl = 18. ml = 39.95. z2=74. m2 = 183.85. sbe = 8.68 eV. rho = 19.29 g/cm**3 ef=0.20 eV. esb = 0.00 eV. ca=1.00. kk0=kk0r=2. kdeel = kdee2=3. ipot=ipotr=1 (KrG) program: trvmc ne=18. na=9

$E_0(eV)$	0°	15 ^u	30°	45 ^u	55°	65°	75°	80°	85°
28	9.03e-7								
29	2.97e-6								
30	1.03e-5	1.54e-5	1.89e-5	1.39e-5	6.10e-6	2.00e-6			
35	1.17e-4	1.16e-4	1.13e-4	7.32e-5	3.97e-5	2.08e-5	4.80e-6		
40	4.63e-4	4.26e-4	3.63e-4	2.59e-4	1.70e-4	9.82e-5	3.55e-5	8.10e-6	
45	1.26e-3	1.21e-3	1.01e-3	7.35e-4	5.69e-4	3.79e-4	1.47e-4	3.07e-5	
50	2.85e-3	2.74e-3	2.41e-3	1.83e-3	1.48e-3	1.04e-3	4.24e-4	8.66e-5	1.20e-6
55	5.23e-3	5.12e-3	4.44e-3	3.73e-3	3.16e-3	2.39e-3	9.13e-4	1.85e-4	
60	8.40e-3	8.23e-3	7.65e-3	6.36e-3	5.86e-3	4.35e-3	1.72e-3	3.40e-4	2.40e-6
70	1.75e-2	1.75e-2	1.63e-2	1.51e-2	1.41e-2	1.12e-2	4.05e-3	7.82e-4	9.60e-6
80	2.86e-2	2.90e-2	2.93e-2	2.82e-2	2.57e-2	2.10e-2	7.61e-3	1.51e-3	1.39e-5
100	5.60e-2	5.54e-2	5.93e-2	6.20e-2	5.85e-2	4.78e-2	1.82e-2	4.00e-3	4.54e-5
140	1.16e-l	1.19e-1	1.33e-1	1.50e-1	1.49e-1	1.22e-1	5.03e-2	1.22e-2	1.68e-4
200	2.01e-1	2.13e-1	2.50e-1	2.91e-1	2.98e-1	2.50e-1	1.11e-1	3.11e-2	5.67e-4
300	3.36e-1	3.59e-1	4.23e-1	5.08e-1	5.23e-1	4.56e-1	2.27e-1	7.70e-2	2.00e-3
500	5.62e-1	5.91e-1	7.03e-1	8.40e-1	8.99e-1	8.17e-1	4.63e-1	1.82e-1	8.08e-3
700	7.25e-1	7.78e-1	9.26e-1	1.11e-0	1.19e-0	1.13e-0	6.81e-1	3.04e-1	1.84e-2
1000	9.26e-l	9.93e-1	1.19e-0	1.42e-0	1.54e-0	1.52e-0	1.02e-0	4.98e-1	3.94e-2

-

Sputtered energy of W by Ar ne=18j na=9

$E_0(eV)$	0°	15°	30°	45°	55 ^u	65°	75°	80°	85°
28	3.16e-8								
29	1.11e-7								
30	4.34e-7	7.73e-7	1.19e-6	9.26e-7	4.44e-7	1.57e-7			
35	5.98E-6	6.60E-6	7.76E-6	5.60E-6	3.37E-6	2.05E-6	6.27E-7		
40	2.65E-5	2.68E-5	2.58E-5	2.16E-5	1.54E-5	1.01E-5	4.13E-6	9.58E-7	
45	7.98E-5	8.21E-5	7.56E-5	6.21E-5	5.39E-5	3.91E-5	1.65E-5	3.66E-6	
50	1.94E-4	1.97E-4	1.85E-4	1.59E-4	1.46E-4	1.08E-4	4.92E-5	1.06E-5	9.36E-8
55	3.72E-4	3.80E-4	3.63E-4	3.51E-4	3.24E-4	2.64E-4	1.13E-4	2.33E-5	
60	6.12E-4	6.36E-4	6.49E-4	6.19E-4	6.17E-4	4.90E-4	2.24 E-4	4.52E-5	2.79E-7
70	1.33E-3	1.40E-3	1.46E-3	1.51E-3	1.50E-3	1.34E-3	5.60E-4	1.11E-4	1.18E-6
80	2.27E-3	2.39E-3	2.64E-3	2.86E-3	2.84E-3	2.64E-3	1.10E-3	2.21E-4	1.56E-6
100	4.45E-3	4.54E-3	5.29E-3	6.30E-3	6.56E-3	6.12E-3	2.75E-3	6.06E-4	5.49E-6
140	8.70E-3	9.24E-3	1.11E-2	1.43E-2	1.61E-2	1.53E-2	7.50E-3	1.88E-3	1.98E-5
200	1.35E-2	1.47E-2	1.83E-2	2.47E-2	2.91E-2	2.91E-2	1.57E-2	4.53E-3	5.90E-5
300	1.88E-2	2.07E-2	2.59E-2	3.65E-2	4.37E-2	4.60E-2	2.79E-2	9.91E-3	1.75 E-4
500	2.40E-2	2.59E-2	3.28E-2	4.68E-2	5.82E-2	6.30E-2	4.44E-2	1.92E-2	6.11E-4
700	2.55E-2	2.83E-2	3.66E-2	5.18E-2	6.44E-2	7.35E-2	5.52E-2	2.73E-2	1.21 E-3
1000	2.64E-2	2.96E-2	3.80E-2	5.50E-2	6.84E-2	7.99E-2	6.70E-2	3.74E-2	2.32E-3

Particle reflection coefficient of Ar backscattered from W zl = 18. ml = 39.95. z2=74, m2 = 183.85. sbe=8.68 eV. rho = 19.29 g/cm**3 ef=0.20 eV, esb = 0.00 eV, ca=1.00, kk0 = kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: trvmc ne=18. na=9

E ₀ (eV)	0°	15°	30°	45°	55°	65°	75°	80°	85°
10	7.40E-1	7.60E-1	7.96E-1	8.56E-1	9.09E-1	9.62E-1	9.94E-1	9.99E-1	1.00E4-0
20	6.86E-1	7.07E-1	7.54E-1	8.27E-1	8.89E-]	9.53E-1	9.93E-1	9.99E-1	1.00E-f-0
30	6.41E-1	6.63E-1	7.15E-1	7.99E-1	8.68E-1	9.42E-1	9.92E-1	9.99E-1	1.00E4-0
35	6.22E-1	6.44E-1	6.99E-1	7.86E-1	8.59E-1	9.37E-1	9.91E-1	9.99E-1	1.00E+0
40	6.05E-1	6.27E-1	6.83E-1	7.74E-1	8.50E-1	9.31E-1	9.90E-1	9.99E-1	1.00E + 0
45	5.90E-1	6.12E-1	6.70E-1	7.64E-1	8.41E-1	9.26E-1	9.89E-1	9.99E-1	1.00E + 0
50	5.77E-1	5.99E-1	6.58E-1	7.53E-1	8.33E-1	9.21E-1	9.87E-1	9.99E-1	1.00E+0
55	5.65E-1	5.87E-1	6.45E-1	7.44E-1	8.26E-1	9.16E-1	9.86E-1	9.99E-1	1.00E + 0
60	5.56E-1	5.78E-1	6.35E-1	7.34E-1	8.18E-1	9.12E-1	9.85E-1	9.98E-1	1.00E+0
70	5.35E-1	5.56E-1	6.17E-1	7.19E-1	8.05E-1	9.03E-1	9.82E-1	9.98E-1	1.00E4-0
80	5.21E-1	5.42E-1	6.02E-1	7.04E-1	7.92E-1	8.94E-1	9.80E-1	9.98E-1	1.00E+0
100	4.97E-1	5.16E-1	5.73E-1	6.76E-1	7.70E-1	8.78E-1	9.74E-1	9.97E-1	1.00E-f-0
140	4.60E-1	4.80E-1	5.35E-1	6.40E-1	7.35 E-1	8.52E-1	9.65E-1	9.95E-1	1.00E-f-0
200	4.31E-1	4.44E-1	4.97E-1	5.99E-1	6.95E-1	8.19E-1	9.51E-1	9.92E-1	1.00E+0
300	3.93E-1	4.13E-1	4.63E-1	5.57E-1	6.49E-1	7.76E-1	9.27E-1	9.85E-1	1.00E-f-0
500	3.60E-1	3.71E-1	4.17E-1	5.08E-1	5.97E-1	7.24E-1	8.90E-1	9.71E-1	1.00E-f-0
700	3.38E-1	3.52E-1	3.98E-1	4.77E-1	5.63E-1	6.79E-1	8.63E-1	9.56E-1	9.99E-1
1000	3.17E-1	3.29E-1	3.81E-1	4.58E-1	5.36E-1	6.45E-1	8.23E-1	9.36E-1	9.99E-1

Energy	reflection	coefficient	of Ar	backscattered	from	W
ne = 18,	na=9					

$E_0(eV)$	0°	15°	30°	45°	55°	65°	75°	80°	85°
10	2.34E-1	2.57E-1	3.08E-1	4.07E-1	5.15E-1	6.62E-1	8.27E-1	9.00E-1	9.56E-1
20	2.27E-1	2.50E-1	3.05E-1	4.06E-1	5.11E-1	6.59E-1	8.34 E-1	9.11E-1	9.68E-1
30	2.15E-1	2.36E-1	2.92E-1	3.97E-1	5.02E-1	6.50E-1	8.32E-1	9.14E-1	9.72E-1
35	2.09E-1	2.30E-1	2.86E-1	3.92E-1	4.97E-1	6.46E-1	8.30 E-1	9.14E-1	9.74E-1
40	2.04E-1	2.24E-1	2.80E-1	3.86E-1	4.93E-1	6.41E-1	8.29E-1	9.15E-1	9.75E-1
45	1.99E-1	2.18E-1	2.74E-1	3.80E-1	4.88E-1	6.37E-1	8.27E-1	9.15E-1	9.75E-1
50	1.94E-1	2.13E-1	2.68E-1	3.75E-1	4.83E-1	6.32E-1	8.25E-1	9.14E-1	9.76E-1
55	1.90E-1	2.08E-1	2.62E-1	3.70E-1	4.78 E-1	6.28E-1	8.23E-1	9.14E-1	9.76E-1
60	1.86E-1	2.05E-1	2.58E-1	3.64E-1	4.74E-1	6.25E-1	8.21E-1	9.13E-1	9.77E-1
70	1.79 E-1	1.96E-1	2.49E-1	3.54E-1	4.63E-1	6.17E-1	8.16E-1	9.12E-1	9.77E-1
80	1.74E-1	1.90E-1	2.41E-1	3.45E-1	4.54E-1	6.07E-1	8.12E-1	9.11E-1	9.78E-1
100	1.64E-1	1.79E-1	2.28E-1	3.27E-1	4.39E-1	5.94E-1	8.03E-1	9.08E-1	9.78E-1
140	1.49E-1	1.64E-1	2.07E-1	3.03E-1	4.11E-1	5.68E-1	7.87E-1	9.02E-1	9.78E-1
200	1.38E-1	1.48E-1	1.88E-1	2.76E-1	3.76E-1	5.35E-1	7.67E-1	8.92E-1	9.78E-1
300	1.23E-1	1.35E-1	1.70E-1	2.46E-1	3.39E-1	4.93E-1	7.35 E-1	8.76E-1	9.76E-1
500	1.09E-1	1.18E-1	1.47E-1	2.15E-1	2.98E-1	4.41E-1	6.85E-1	8.50E-1	9.73E-1
700	1.01E-1	1.10E-1	1.38E-1	1.97E-1	2.73E-1	4.00E-1	6.50E-1	8.25E-1	9.70E-1
1000	9.39E-2	1.00E-1	1.29E-1	1.82E-1	2.52E-1	3.67E-1	6.01E-1	7.92E-1	9.64E-1

Average	depth	(mean	range)	in	Ä	of	Ar	implanted	in	V
$n_{0} - 18$	$n_0 = 0$									

E _o (eV)	0°	15°	30 ^u	45°	55 ^u	65°	75°	80°	85°
10	2.40E+0	2.40E4-0	2.30E4-0	2.30E+0	2.20E4-0	2.10E4-0	1.90E+0	1.70E + 0	1.40E4-0
20	3.30E + 0	3.20E+0	3.20E + 0	3.10E+0	3.00E4-0	2.90E + 0	2.60E+0	2.50E4-0	1.90E + 0
30	3.90E+0	3.80E4-0	3.80E+0	3.70E+0	3.60E-J-0	3.40E + 0	3.20E+0	3.10E4-0	2.70E+0
35	4.10E4-0	4.10E-J-0	4.00E+0	3.90E4-0	3.80E4-0	3.70E + 0	3.40E+0	3.20E-J-0	2.90E+0
40	4.30E+0	4.30E+0	4.30E + 0	4.20E+0	4.00E+0	3.90E-J-0	3.60E4-0	3.40E4-0	S.lOE-f-O
45	4.60E+0	4.50E4-0	4.50E-J-0	4.40E4-0	4.20E + 0	4.10E+0	3.80E-J-0	3.60E4-0	3.20E + 0
50	4.80E-f-0	4.70E-f-0	4.70E4-0	4.50E + 0	4.40E+0	4.20E-J-0	4.00E+0	3.70E4-0	3.10E4-0
55	4.90E+0	4.90E+0	4.80E + 0	4.70E+0	4.60E+0	4.40E + 0	4.10E + 0	3.90E4-0	3.60E+0
60	5.10E4-0	5.10E4-0	5.00E + 0	4.90E+0	4.80E4-0	4.60E-J-0	4.20E4-0	4.00E-J-0	3.20E+0
70	5.50E+0	5.40E+0	5.40E + 0	5.20E4-0	5.10E-J-0	4.90E + 0	4.60E4-0	4.30E+0	3.40E+0
80	5.80E+0	5.80E+0	5.70E4-0	5.50E4-0	5.40E + 0	5.20E-J-0	4.80E+0	4.50E4-0	4.10E+0
100	6.40E + 0	6.30E+0	6.30E + 0	6.10E+0	5.90E4-0	5.70E4-0	5.30E-J-0	4.90E + 0	4.40E + 0
140	7.40E-J-0	7.40E+0	7.20E-J-0	7.00E4-0	6.80E-J-0	6.50E + 0	6.20E4-0	5.80E+0	6.10E4-0
200	8.70E+0	8.60E+0	8.40E-J-0	8.20E-J-0	7.90E + 0	7.60E4-0	7.20E+0	6.80E+0	6.00E+0
300	1.05E-J-1	1.05E-J-1	1.02E+1	9.80E+0	9.50E+0	9.10E+0	8.60E4-0	8.20E+0	9.20E4-0
500	1.34E+1	1.33E-J-1	1.29E4-1	1.24E+1	1.19E-J-1	1.15E+1	1.09E4-1	1.06E4-1	9.70E+0
700	1.59E+1	1.57E-J-1	1.52E+1	1.46E+1	1.42E+1	1.35E4-1	1.29E-J-1	1.24E-H	1.14E-J-1
1000	1.89E4-1	1.88E+1	1.81E+1	1.74E+1	1.66E-J-1	1.59E-J-1	1.53E+1	1.48E+1	1.38E+1

$Ar \rightarrow W$

Sputtering yield of W by Ar zl = 18. ml = 39.95. z2=74, 1112=183.85. *sbe (eV)*, rho = 19.29 g/cm**3 ef = 0.20 eV, es = 0.00 eV, ea=1.00, kk0=kk0r=2. kdeel = kdee2 = 3, ipot=ipotr = 1 (KrC) program: trvmcOl ne= 2, na= 1. n(sbe)= 5

	. ,	
$E_0 (eV)$	25	30
sbe (eV)		
4.34	1.01e-3	4.21e-3
5.00	2.91e-4	1.82e-3
6.00	4.24e-5	4.37e-4
7.00	3.56e-6	9.12e-5
8.00		1.36e-5

Sputtered energy of W by Ar ne= 2, na= 1. n(sbe) = 5

nc- 2, na-	1. n(sbc) =	5
E ₀ (eV)	25	30
sbe (eV)		
4.34	6.81e-5	3.19e-4
5.00	1.76e-5	1.28e-4
6.00	2.13e-6	2.62e-5
7.00	1.51e-7	4.76e-6
8.00		6.21e-7

Particle reflection coefficient of Ar backscattered from W zl = 18, ml= 39.95, z2 = 74, m2=183.85. *sbe* (eV), rho = 19.29 g/cm**3 ef=0.20 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr = 1 (KrC) program: trvmcOl ne= 2, na= 1, n(sbe) = 5

E ₀ (eV)	25	30 ∎
sbe (eV)		
4.34	6.55e-l	6.32e-1
5.00	6.55e-l	6.33e-1
6.00	6.55e-l	6.34e-1
7.00	6.55e-l	6.34e-1
8.00		6.33e-1

Energy reflection coefficient of Ar backscattered from W ne=2, na=1, n(sbe)=5

E ₀ (eV)	25	30
sbe (eV)		
4.34	2.18e-1	2.12e-1
5.00	2.18e-1	2.12e-1
6.00	2.18e-1	2.12e-1
7.00	2.18e-1	2.12e-1
8.00		2.12e-1

Average depth (mean range) in \ddot{A} of Ar implanted in W ne= 2, na= 1, n(sbe)= 5

Eq(eV)	25	30
sbe (eV)		
4.34	3.50e+0	3.78e+0
5.00	3.50e+0	3.78e+0
6.00	3.50e+0	3.78e+0
7.00	3.50e+0	3.78e-f-0
8.00		3.78e+0

Sputtering yield of W by Ar zl = 18, ml = 39.95, z2 = 74, m2 = 183.85, sbe=8.68 eV, rho = 19.29 g/cm**3 ef=0.20 eV, esb=0.00 eV, eca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr = 1 (KrC) eo=25 eV, alpha=0 deg., Maxwellian target temperature tt (K) program: trvmcOl ne= 1, na= 1, n(tt)= 4

E ₀ (eV)	25
tt (K)	
9000	1.50e-5
15000	1.00e-4
25000	3.80e-4
50000	1.09e-3

W -» AV

Sputtering yield of W by W zl=s74. ml = 183.85. z2=74. m2 = 183.85, sbe=8.68 eV, rho = 19.30 g/cm**3 ef=8.60 eV. esb = 8.68 eV. ca=1.00, kk0=kk0r=2. kdeel = kdee2=3. ipot=ipotr=1 (KrC) program: trvmc. trspvmcx. testvmcx ne=58. na=16

$E_0 (eV)$	0°	10°	15°	20 ^u	30°	40°	45°	50 ^u	55°	60 ^u	65°	70°
9									4.60e-7		1.25e-6	
10									3.11E-6		6.44E-6	
12							5 69E-6		1.73E-5		2.99E-5	
12					2 98E-6		3.44E-5		7 10E-5		1.04E-4	
17					2.901-0		5.441-5		7.101-5		1.04E-4	(
17			2 50 5 6		2 20E 5		1 60 5 4		26154		2 225 4	
20			2.501-0		3.291-5		1.0914		2.011-4		2.80. 4	
20					1.265.4		4 105 4		(20E 4		2.806-4	
25	6.28E-/		1.46E-5		1.30E-4		4.18E-4		0.28E-4		8./3E-4	
23											5.41e-4	
25											8.70e-4	
27	1.40e-6		1.38e-5		9.02e-5		2.96e-4		5.53e-4		1.14e-3	
28											1.79e-3	
30	5.80E-6		4.91E-5		3.11E-4		8.89E-4		1.55E-3		2.63E-3	
30	5.50e-6	1.82e-5		8.59e-5	2.69e-4	5.87e-4		1.10e-3		2.09e-3	2.79e-3	3.43e-3
35	2.13E-5		1.14E-4		6.18E-4		1.93E-3		3.71E-3		6.34E-3	
35	2.30e-6											
36	1.10e-5										7.93e-3	
37	2.83e-5											
38	5.81e-5											
40	5.60E-5		2.39E-4		1.15E-3		4.02E-3		7.70E-3		1.25E-2	
40	1.43e-4										1.29e-2	
42	2.89e-4											
45	5.69e-4											
50	1.92E-4		7.04E-4		3.64E-3		1.23E-2		2.16E-2		3.08E-2	
50	1.77e-4	3.60e-4		1.20e-3	3.51e-3	8.85e-3		1.78e-2		2.79e-2	3.22e-2	3.54e-2
55	3.13e-4											
60	5.89E-4		1.85E-3		8.48E-3		2.64E-2		4.29E-2		5.59E-2	
60	5.42e-4										5.91e-2	
65	9.32e-4											
70	1.51E-3		4.16E-3		1.70E-2		4.71E-2		7.08E-2		8.55E-2	
70	1.41e-3										8.60e-2	
80	3.15E-3		7.97E-3		2.83E-2		7.25E-2		1.02E-1		1.18E-1	
80	2 996-3										1.22e-1	
100	9 54E-3		2 04E-2		6.03E-2		1.31E-1		1.71E-1		1.86E-1	
100	9.26e-3	1.42e-2		3. Ole-2	5.99e-2	1.06e-1		1.60e-1		1.88e-1	1.90e-1	1.80e-1
120	2.04E-2	1.120 2	3 92E-2		1.00E-1		1.96E-1		2.45E-1		2.54E-1	
140	3 58E-2		6 20E-2		1.43E-1		2.64E-1		3.20E-1		3.27E-1	
140	3.556-2		0.202 2								3.19e-1	
150	4 26e-2											
200	9.68E-2		144E-1		2 80E-1		4 56E-1		5.29E-1		5.20E-1	
200	9.16e-2				2.001 1						5.28e-1	
250	1.53e-1											
300	2 28E-1		2 99E-1		5.01E-1		7.38E-1		8.42E-1		7.94E-1	
300	2.17e-1		2.771-1		5.011-1				8.59e-1			
350	2.170-1	3 266-1		4 34e-1	5 98e-1	7.93e-1		9 52e-1	9 84e-1	9 79e-1	9.23e-1	8.15e-1
400	3 596-1	5.200-1		5 22e-1	5.900-1	8 98e-1		1.07e-0	1.12e-0	1.12e-0	1.06e-0	9.19e-1
450	5.590-1			5.220-1		5.700-1		1.070-0	1.27e-0			
500	4 97E-1		6.04E-1		8 85E-1		1.22E+0		1.36E+0		1.28E+0	
500	4.70 1		0.041-1		0.0JL-1				1 37e-0		1.29e-0	
200	9 4701	8 97 - 1		1.062.0	1 350 0	1 669 0		1 900-0	1.97e-0	1970-0	1.95e-0	1 72e-0
1000	1.07E.0	0.970-1	1.21E+0	1.000-0	1.55C-0	1.000-0	2 145:0	1.900-0	$2.38F\pm0$		2 29F4-0	
1000	1.0/E-0	1 11e=0	1.211.+0	1.316-0	1.60e-0	1.966-0	2.141.+0	2 29e-0	2.50110	2 35e-0	2 30e-(I	2.02e-0
2000	1.040-0	1.110-0		1.510-0	2 500 0	1.900-0		2.290-0		3.896-0	3.87e-0	2.020-0
2000	2 10 0	2 200 0		2 50 0	2.596-0	3 560 0		4 16e-0	4.41e-0	4.50e-0	4 49e-0	4.09e-0
2300	2.100-0	2.200-0		2.500-0	2.900-0	5.500-0		4.100-0	4.410-0	4.500-0	6.91e-0	4.090-0
10000	3.140-0										1.01e+1	
10000	4.300-0										1.010+1	
20000	5.666-0										1.430+1	
45000	0.92e-0										2 120 f 1	
50000	/.16e-0										2.120-1-1	
100000	7.87e-0										2.3304-1	

Bo(eV)	75 0	80 ^s	85°	87°	
9	1.88e-6	2.15e-6	2.31e-6		
10	1.03E-5	1.12E-5	1.14E-5		
12	3.71E-5	4.22E-5	3.98E-5		
15	1.13E-4	1,12e-4	1.11E-4		
20	3.47E-4	3.59E-4	3.52E-4		
25	1.19E-3	1.31E-3	1.39E-3		
27	1.81e-3	2.08e-3	2.27e-3		
30	3.78E-3	4.06E-3	4.21E-3		
30	3.94e-3	4.42e-3	4.39e-3		
35	8.31E-3	9.01E-3	9.26E-3		
40	1.54E-2	1.54E-2	1.65E-2		
50	3.40E-2	3.34E-2	3.23E-2		
50	3.68e-2	3.69e-2	3.32e-2	3.35e-2	
60	5.46E-2	5.36E-2	5.04E-2		
70	8.16E-2	7.49E-2	6.95E-2		
80	1.09E-1	9.68E-2	8.85E-2		
100	1.61E-1	1.38E-1	1.19E-1		
100		1.42e-1	1.23e-1		
120	2.09E-1	1.74E-1	1.45E-1		
140	2.53E-1	2.02E-1	1.64E-1		
200	3.73E-1	2.77E-1	2.00E-1		
300	5.52E-1	3.85E-1	2.39E-1		
350		4.44e-1	2.62e-1		
400		4.97e-1			
500	8.81E-1	5.72E-1	2.99E-1		
800	1.35e-0	8.47e-1	3.89e-1		
1000	1.62E+0	1.03E+0	4.30E-1		
1000		1.04e-0	4.41e-1		
2000	2.94e-0				
2500	3.48e-0	2.36e-0	7.89e-1		1

 $w \rightarrow w$

PP-

Sputtered energy of W by W 21=74, ml = 183.*85, z2=74, m2=183.85, sbe=8.68 eV, rho = 19.30 g/cm**3 ef=8.60 eV, esb = 8.68 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: trvmc, trspvmcx, testvmcx ne=58, na=16

E ₀ (eV)	0°	10 ^u	15 ^u	20°	30°	40 ^u	45°	50°	55°	60°	65° .	70°
9									4.52e-8		1.45e-7	
10									3.08e-7		7.89e-7	
12							5.68e-7		2.06E-6		4.07E-6	
15					2.31E-7		3.73E-6		9.18E-6		1.58E-5	
17											2.28e-5	
20			1.51E-7		2.76E-6		2.03E-5		3.78E-5		5.42E-5	
20											4.70e-5	
23											9.94e-5	
25	5.03E-8		1.04E-6		1.23E-5		5.22E-5		9.56E-5		1.56E-4	
25											1.59e-4	
27	6.37e-8		9.24e-7		8.40e-6		3.70e-5		8.66e-5		2.13e-4	
28											3.33e-4	
30	2.91E-7		3.44E-6	6.72	2.91E-5	6 00 5	1.17E-4	1.50 4	2.47E-4	2.44	4.96E-4	
30	1.29e-6	6.64e-6	5 5 4 F (6./3e-6	2.55e-5	6.90e-5	0 (CE 4	1.59e-4	C 17E 4	3.66e-4	5.35e-4	6.95e-4
35	1.06E-6		/./4E-6		5.97E-5		2.65E-4		0.1/E-4		1.25E-3	
35	2.30e-6										1 50 - 2	
30	1.10e-5										1.596-5	
37	2.836-5											
58	3.810-5		1 65 5 5		1 165 4		5 72 8 4		1 2 2 5 2		2 575 2	
40	2.79E-0		1.05E-5		1.10E-4		3.73E-4		1.55E-5		2.57E-3	
40	2 800 4										2.000-5	
42	5 690 4											
50	9.96E-6		5.05E-5		3 84F-4		1 83E-3		3 91E-3		6 58E-3	
50	9.502-0	2 368-5	5.0512-5	1 18e-4	3.72e-4	1 178-3	1.051-5	2 956-3	5.712-5	5 456-3	6.896-3	8 06e-3
55	9.000-0	2.300-5		1.180-4	5.720-4	1.176-5		2.950-5		5.450-5	0.890-5	8.000-5
60	3 15E-5		1 36E-4		931E-4		3 97E-3		7 83E-3		1.22E-2	
60	2 90e-5		1.501-4		<i></i>		5.572 5		1.052 5		1.222.2	
65	5.52e-5										1.270-2	
70	8.20E-5		3.08E-4		1.85E-3		7.18E-3		1.31E-2		1.85E-2	
70	7.83e-5		5.002 .		1.002.0						1.87e-2	
80	1 70E-4		5.84E-4		3.01E-3		1.09E-2		1.85E-2		2.55E-2	
80	1.64e-4										2.61e-2	
100	5.02E-4		1.42E-3		6.15E-3		1.90E-2		3.02E-2		3.94E-2	
100	4.78e-4	8.61e-4		2.40e-3	6.03e-3	1.36e-2		2.56e-2		3.62e-2	3.93e-2	4.04e-2
120	1.00E-3		2.58E-3		9.69E-3		2.72E-2		4.18E-2		5.20E-2	
140	1.67E-3		3.82E-3		1.32E-2		3.52E-2		5.24E-2		6.39E-2	
140	1.65e-3										6.21e-2	
150	1.91e-3											
200	4.03E-3		7.73E-3	10 C	2.25E-2		5.31E-2		7.62E-2		9.05E-2	
200	3.73e-3										8.98e-2	
250	6.12e-3											
300	8.09E-3		1.34E-2		3.33E-2		7.16E-2		1.02E-1		1.18E-1	
300	7.39e-3								1.03e-1			
350	9.48e-3	1.18e-2		2.00e-2	3.58e-2	6.08e-2		9.28e-2	1.09e-1	1.21e-1	1.21e-1	1.22e-1
400	1.10e-2			2.27e-2		6.60e-2		9.83e-2	1.14e-1	1.28e-1	1.35e-1	1.30e-1
450									1.22e-1			
500	1.41E-2		2.10E-2		4.47E-2		8.99E-2		1.25E-1		1.46E-1	
500	1.32e-2								1.23e-1		1.45e-1	
800	1.88e-2	2.17e-2		3.16e-2	5.05e-2	8.02e-2	1.017.5	1.16e-l	1.40e-1	1.55e-l	1.65e-1	1.65e-1
1000	2.15E-2		2.92E-2	2.42.2	5.46E-2	0.00	1.04E-1	1.04	1.44E-1	1.60	1.77B-1	1.72
1000	2.04e-2	2.39e-2		3.42e-2	5.26e-2	8.29e-2		1.21e-1		1.60e-l	1.75e-1	1.73e-1
2000	2.47e-2	2.02.2		2 82 - 2	5.69e-2	8 4 4 - 2		1.22.1	1.46-2	1.68e-1	1,8/e-1	1.08-1
2500	2.52e-2	2.83e-2		3.82e-2	3.64e-2	8.44e-2		1.23e-1	1.46e-1	1.70e-1	1.91e-1	1.986-1
5000	2.568-2										1.910-1	
10000	2.41e-2 2.05-2										1.880-1	
20000	2.05e-2					•					1./30-1	
45000	1.080-2										1.47e-1	
10000	1.000-2										1.27e-1	
100000	1.230-2										1.2/0-1	

Eg(eV)	75°	80 °	85°	87°
9	2.46e-7	2.83e-7	3.09e-7	
10	1.39e-6	1.56e-6	1.62e-6	
12	5.72E-6	6.87E-6	6.58E-6	
15	1.93E-5	1.97E-5	2.01E-5	
20	6.49E-5	7.05E-5	7.25E-5	
25	2.36E-4	2.68E-4	2.90E-4	
27	3.75e-4	4.49e-4	4.96e-4	
30	7.96E-4	8.86E-4	9.38E-4	
30	8.27e-4	9.94e-4	1.00e-3	
35	1.87E-3	2.06E-3	2.16E-3	
40	3.55E-3	3.71E-3	4.05E-3	
50	8.21E-3	8.37E-3	8.26E-3	
50	8.76e-3	9.30e-3	8.65e-3	8.61e-3
60	1.39E-2	1.37E-2	1.30E-2	
70	2.00E-2	1.90E-2	1.80E-2	
80	2.66E-2	2.44E-2	2.27E-2	
100	3.86E-2	3.41E-2	2.98E-2	
100		3.43e-2	3.05e-2	
120	4.81E-2	4.15E-2	3.49E-2	
140	5.61E-2	4.69E-2	3.78E-2	
200	7.48E-2	5.73E-2	4.06E-2	
300	9.48E-2	6.75E-2	3.98E-2	
350		7.21e-2	3.97e-2	
400		7.67e-2		
500	1.19E-1	7.94E-2	3.76E-2	
800	1.35e-1	9.02e-2	3.40e-2	
1000	1.53E-1	1.00E-1	3.40E-2	
1000		9.81e-2	3.49e-2	
2000	1.81e-1			
2500	1.90e-1	1.39e-1	4.19e-2	

 $W \rightarrow W$

Particle reflection coefficient of W backscattered from W 21=74, ml = 183.85, z2=74, m2 = 183.85, sbe=8.68 eV. rho = 19.30 g/cm**3 ef=8.60 eV, esb = 8.68 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: trvmc, trspvmcx, testvmcx ne=51, na=16

Bq(eV)	0°	10°	15 ^u	20°	30°	40°	45°	50 ^u	55°	60 "	65°	
15										00	1.00E-7	
17											2.63e-6	i I
20							3.60E-7		3.95E-6		4.73E-5	i I
20											4.87e-5	i I
25					2.40E-7		2.18E-5		1 78E-4		3.48e-4 9.39E-4	i l
25									1.782-4		8.85e-4	i l
27			3.00e-9		1.15e-6		6.87e-5		4.91e-4		2.17e-3	i I
28											2.95e-3	i l
30	1 40 7	2 00 - 7			5.70E-6	0 42- 5	2.44E-4		1.43E-3		5.14E-3	i l
30	1.40e-7	2.008-7	3 33E-7		4 46E-5	0.426-3	1 12 1 2	5.84e-4		2.76e-3	5.28e-3	8.45e-3
36			5.552 /		11102 0		1.15E-5		5.03E-3		1.47E-2	i l
40			3.80E-6		2.04E-4		3.12E-3		1.15E-2		3.03E-2	i l
40											3.06e-2	í I
50	2.10E-6	1 40 4	5.70E-5		1.19E-3		1.14E-2		3.31E-2		7.30E-2	í I
50	3.43e-6	1.60e-5		1.68e-4	1.18e-3	5.80e-3		2.02e-2		4.98e-2	7.24e-2	9.82e-2
55	1.95e-5		2 54E-4		3 50E-3		2 40 5 2		< 20E 2		1.005.1	í I
60	2.00e-5		2.512				2.401-2		0.28E-2		1.23E-1	í I
65	5.10e-5										1.240-1	í I
70	8.15E-5		6.55E-4		6.57E-3		3.86E-2		9.30E-2		1.76E-1	í I
70	7.10e-5										1.72e-1	í I
80	1.90E-4		1.26E-3		1.07E-2		5.45E-2		1.23E-1		2.27E-1	í I
100	2.2/e-4 6.89E-4		2 90E-3		191E-2		8 2 2 E 2		1.745.1		2.26e-1	i l
100	6.51e-4	1.54e-3	2.901-5	5.52e-3	1.91E-2 1.93e-2	5.33e-2	8.32E-2	1 246-1	1,74E-1	2 250 1	3.11E-1	4.010.1
120	1.39E-3		4.88E-3		2.73E-2		1.08E-1	1.240-1	2 16E-1	2.550-1	3.78E-1	4.016-1
140	2.25E-3		7.20E-3		3.49E-2		1.25E-1		2.47E-1		4.25E-1	i l
140	2.22e-3										4.24e-1	í I
150	2.75e-3		1 225 2		5 10F 0							í I
200	5.40E-3		1.32E-2		5.12E-2		1.60E-1		2.98E-1		4.95E-1	í I
250	7.88e-3										4.95e-1	í I
300	1.09E-2		2.12E-2		6.47E-2		1.77E-1		3 18E-1		5 17E-1	í I
300	8.20e-3								3.15e-1		0.1721	í I
350	1.29e-2	1.74e-2		3.45e-2	6.89e-2	1.39e-1		2.38e-1	3.28e-1	4.12e-1	5.27e-1	6.42e-1
400	1.44e-2			3.84e-2		1.36e-1		2.40e-1	3.11e-1	4.09e-1	5.18e-1	6.35e-1
450	176-2								3.11e-1			í I
500	1.76E-2		2 97E-2		7.41E-2		1 83E 1		3.20e-1		5.05e-1	í I
800	2.30e-2	2.83e-2	2.776-2	4.48e-2	7.84e-2	1.33e-1	1.051-1	2 326-1	3.15E-1 3.01e 1	3 850 1	5.0/E-1	6 10 1
1000	2.46E-2		3.71 E-2		7.74 E-2		1.70E-1	2.520-1	2.85E-1	5.850-1	4.720-1 4.58E-1	0.106-1
1000	2.35e-2	2.97e-2		4.41e-2	7.59e-2	1.30e-1		2.14e-1	2.002	3.70e-1	4.49e-1	5.87e-1
2000	2.79e-2				7.63e-2					3.23e-1	4.18e-1	í I
2500	2.74e-2	3.16e-2		4.46e-2	7.05e-2	1.17e-1		1.85e-1	2.44e-1	3.17e-1	3.93e-1	5.07e-1
5000	2.61e-2										3.65e-1	í I
20000	2.10e-2										2.89e-1	í I
45000	1.94e-2										2.506-1	í I
50000	1.67e-2										2.54e-1	í I
100000	1.40e-2										2.37e-1	
Bo(eV)	75°	80°	1 85°	870								
15	1.48E-0 2.18E-4	2.83E-0 3.54E-4	4.08E-0 4.61E-4									
2.5	2.83E-3	4.00E-3	4.90E-3									
27	5.86e-3	7.94e-3	9.56e-3									
30	1.23E-2	1.61E-2	1.90E-2									
30	1.23e-2	1.64e-2	1.91e-2									
35	3.07E-2	3.82E-2	4.48E-2									
50	1 25F-1	1.51E-1	0.00E-2 1.69E-1									
50	1.25e-1	1.50e-1	1.69e-1	1.76e-1								
60	2.05E-1	2.45E-1	2.75E-1									
70	2.86E-1	3.40E-1	3.81E-1									
80	3.62E-1	4.30E-1	4.79E-1									
100	4.91E-1	5.76E-1	6.33E-1									
120	5.83F-1	6.71E-1	7 34F-1		1 A							
140	6.43E-1	7.36E-1	7.99E-1									
200	7.25E-1	8.26E-1	8.94E-1									
300	7.60E-1	8.68E-1	9.39E-1									
350		8.72e-1	9.49e-1									
400	7 (25.1	8.78e-1	0.645.1		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -							
500	7.03E-1	8.85E-1 8.83e-1	9.04E-1 9.74e-1									
1000	7.27E-1	8.74E-1	9.76E-1									
1000		8.76e-1	9.76e-1									
2000	6.67e-1											
2500	6.34e-1	8.20e-1	9.69e-1		J							

$$\mathbf{W} \to \mathbf{W}$$

Energy reflection coefficient of W backscattered from W z1=74, ml = 183.85, z2=74, m2 = 183.85, sbe=\$.68 eV. rho = 19.30 g/cm**3 ef=\$.60 eV, esb = \$.68 eV, ca=1.00, kk0=kk0r=2. kdeel = kdee2 = 3, ipot=ipotr=1 (KrC) program: trvme, trspvmex, testvmex ne = 51, na=16

_E ₀ (eV)	0 ^b	10°	15 "	20°	30°	40°	45°		55°	60°	65°	70 ^u
15											3.19E-8	
17											6.80e-7	
20							6.18E-8		7.52E-7		9.56E-6	
20											9.79e-6	
23											7.13e-5	
25					3.04E-8		3.50E-6		3.08E-5		1.95E-4	
25											1.81e-4	
27					1.64e-7		1.13e-5		8.89e-5		4.70e-4	
28											6.47e-4	
30					6.93E-7		3.95E-5		2.71E-4		1.17E-3	
30	3.86e-7	3.18e-7			1.41e-6	1.35e-5		1.Ole-4		5.65e-4	1.20e-3	2.06e-3
35			2.52E-8		5.63E-6		1.92E-4		1.03E-3		3.62E-3	
36											4.48e-3	
40	1.00e-9		3.36E-7		2.58E-5		5.69E-4		2.48E-3		7.93E-3	
40											8.07e-3	
50	1.20E-7		5.19E-6		1.59E-4		2.19E-3		7.89E-3		2.10E-2	
50	1.28e-6	1.90e-6		1.81e-5	1.59e-4	9.96e-4		4.36e-3		1.29e-2	2.10e-2	3.06e-2
55	1.93e-5											
60	1.29E-6		2.33E-5		4.80E-4		4.81E-3		1.58E-2		3.78E-2	
60	1.69e-6										3.81e-2	
65	3.43e-6											
70	5.25E-6		6.30E-5		9.27E-4		8.00E-3		2.43E-2		5.65E-2	
70	4.26e-6										5.46e-2	
80	1.18E-5		1.21E-4		1.51E-3		1.16E-2		3.29E-2		7.55E-2	
80	1.41e-5										7.50e-2	
100	4.36E-5		2.64E-4		2.72E-3		1.79E-2		4.83E-2		1.08E-1	
100	4.09e-5	1.22e-4		5.95e-4	2.79e-3	1.00e-2		3.04e-2		7.39e-2	1.10e-1	1.53e-1
120	8.31E-5		4.37E-4		3.84E-3		2.34E-2		6.09E-2		1.35E-1	
140	1.31E-4		6.23E-4		4.86E-3		2.70E-2		7.07E-2		1.56E-1	
140	1.29e-4										1.56e-l	
150	1.54e-4											
200	2.85E-4		1.07E-3		6.82E-3		3.41E-2		8.69E-2		1.91E-1	
200	2.93e-4										1.90e-1	
250	3.62e-4											
300	5.36E-4		1.54E-3		8.07E-3		3.70E-2		9.25E-2		2.07E-1	
300	4.26e-4								9.05e-2			
350	6.04e-4	1.06e-3		3.02e-3	8.34e-3	2.32e-2		5.74e-2	9.54e-2	1.40e-1	2.11e-1	3.00e-1
400	6.91e-4			3.16e-3		2.27e-2		5.85e-2	8.79e-2	1.41e-1	2.06e-1	3.02e-1
450									8.87e-2			
500	8.09E-4		1.94E-3		8.24E-3		3.61E-2		8.80E-2		2.03E-1	
500	7.90e-4								9.02e-2		2.00e-1	
800	9.68e-4	1.48e-3		3.27e-3	8.35e-3	2.01e-2		5.34e-2	8.11e-2	1.24e-1	1.83e-1	2.79e-1
1000	1.03E-3		2.17E-3		7.77E-3		3.02E-2		7.32E-2		1.74E-1	
1000	9.97e-4	1.45e-3		2.98e-3	7.66e-3	1.87e-2		4.48e-2		1.17e-1	1.70e-1	2.71e-1
2000	1.06e-3				6.80e-3					9.39e-2	1.46e-1	
2500	1.04e-3	1.37e-3		2.84e-3	6.13e-3	1.48e-2		3.36e-2	5.46e-2	9.10e-2	1.34e-1	2.19e-1
5000	1.09e-3										1.16e-1	
10000	5.90e-4										8.34e-2	
20000	7.20e-4										6.96e-2	
45000	6.69e-4											
50000	6.20e-4										6.66e-2	
100000	4.91e-4										6.58e-2	

E ₀ (eV)	75°	80°	85°	87°
15	3.44E-7	6.26E-7	9.31E-7	
20	4.85E-5	8.22E-5	1.09E-4	
25	6.85E-4	1.01E-3	1.28E-3	
27	1.48e-3	2.11e-3	2.63e-3	
30	3.25E-3	4.51E-3	5.50E-3	
30	3.26e-3	4.60e-3	5.56e-3	
35	8.85E-3	1.16E-2	1.42E-2	
40	1.75E-2	2.24E-2	2.74E-2	
50	4.24E-2	5.45E-2	6.36E-2	
50	4.25e-2	5.38e-2	6.32e-2	6.64e-2
60	7.40E-2	9.45E-2	1.10E-1	
70	1.09E-1	1.37E-1	1.61E-1	
80	1.43E-1	1.82E-1	2.11E-1	
100	2.05E-1	2.60E-1	3.02E-1	
100		2.62e-1	3.01e-1	
120	2.56E-1	3.21E-1	3.75E-1	
140	2.96E-1	3.71E-1	4.32E-1	
200	3.63E-1	4.64E-1	5.46E-1	
300	4.07E-1	5.32E-1	6.41E-1	
350		5.49e-1	6.69e-1	
400		5.58e-1		
500	4.26E-1	5.80E-1	7.23E-1	
800	4.23e-1	5.95e-l	7.75e-1	
1000	4.04E-1	5.91E-1	7.90E-1	
1000		5.92e-1	7.91e-l	
2000	3.56e-1			
2500	3.39e-1	5.39e-1	8.19e-1	

$\mathbf{W} \xrightarrow{} \mathbf{W}$

Average depth (mean range) in Å of W implanted in W zl=74. ml = 183.85. z2=74. m2 = 183.85. sbe = 8.68 eV, rho=19.30 g/cm**3 ef=8.60 eV. esb=8.68 eV, ca=1.00. kkO=kkOr=2. kdeel=kdee2=3. ipot=ipotr=1 (KrC) program: trvmc, trspvmcx. testvmcx ne=52. na=16

E ₀ (eV)	0°	10 ^ö	15°	20 ^u	30°	40°	45°	50°	55°	60°	65°	70 ^u
9									4.00e-1		4.00e-1	
10	7.00E-1		7.00E-1		6.00E-1		5.00E-1		5.00E-1		4.00E-1	
12	9.00E-1		8.00E-1		7.00E-1		6.00E-1		6.00E-1		5.00E-1	
15	1.10E+0		1.00E+0		9.00E-1		8.00E-1		7.00E-1		6.00E-1	
17											4.08e-1	
20	1.30E + 0		1.30E+0		1.10E4-0		9.00E-1		8.00E-1		6.00E-1	
20											4.45e-1	
23											4.77e-1	
25	1.60E + 0		1.50E+0		1.30E+0		1.10E-J-0		9.00E-1		7.00E-1	
25											4.98e-1	
27	1.70e+0		1.60e + 0		1.40e+0		1.10e+0		9.00e-1		7.00e-1	
28											5.29e-1	
30	1.80E4-0		1.70E4-0		1.50E+0		1.20E4-0		9.00E-1		7.00E-1	
30	1.74e + 0	1.70e+0		1.60e4-0	1.43e+0	1.20e+0		9.36e-1		6.71e-1	5.51e-1	4.42e-1
35	2.00E4-0		1.90E4-0		1.70E+0		1.30E+0		1.00E4-0		8.00E-1	
36											6.13e-1	
40	2.20E4-0		2.10E4-0		1.80E+0		1.40E+0		1.10E4-0		8.00E-1	
40											6.57e-1	
50	2.50E4-0		2.40E+0		2.10E+0		1.60E+0		1.30E+0		9.00E-1	
50	2.50e+0	2.45e4-0		2.29e+0	2.04e + 0	1.70e+0		1.32e+0		9.37e-1	7.71e-l	6.02e-1
60	2.80E4-0		2.70E+0		2.30E+0		1.80E+0		1.40E + 0		1.00E4-0	
60	2.82e+0										8.94e-1	
65	2.95e+0											
70	3.10E+0		3.00E + 0		2.60E+0		2.00E+0		1.60E + 0		1.20E+0	
70	3.09e + 0										1.03e4-0	
80	3.40E + 0		3.20E+0		2.80E + 0		2.20E4-0		1.70E4-0		1.30E+0	
80	3.34e4-0										1.17e+0	
100	3.80E+0		3.60E+0		3.20E4-0		2.60E4-0		2.10E+0		1.60E4-0	
100	3.80e+0	3.71e+0		3.50e + 0	3.14e + 0	2.72e+0		2.26e+0		1.70e + 0	1.46e + 0	1.20e-f-0
120	4.20E4-0		4.00E4-0		3.60E4-0		2.90E + 0		2.40E + 0		1.90E+0	
140	4.60E4-0		4.40E4-0		3.90E4-0		3.20E+0		2.70E+0		2.20E+0	
140	4.56e+0										2.11e+0	
150	4.72e+0											
200	5.50E4-0		5.30E4-0		4.80E+0		4.10E4-0		3.50E+0		3.00E4-0	
200	5.49e4-0										2.94e+0	
250	6.10e+0											
300	6.70E + 0		6.50E4-0		6.00E4-0		5.20E+0		4.60E + 0		3.90E4-0	
300	6.66e4-0								4.57e + 0			
350	7.19e+0	7.12e+0		6.85e+0	6.44e+0	5.95e + 0		5.25e+0	5.05e+0	4.65e+0	4.40e + 0	3.89e4-0
400	7.71e + 0			7.30e+0		6.31e+0		5.82e4-0	5.49e+0	5.02e+0	4.69e + 0	4.22e4-0
450	0.405.0						<		5./5e+0		5 4054 0	
500	8.60E+0		8.40E+0		7.70E+0		0.80E4-0		0.10E4-0		5.40E4-0	
500	8.68e+0					0.07.0		0.16 6.0	6.04e+0	7.14 . 0	5.33e+0	6.95 . 0
800	1.07e+1	1.06e4-1		1.02e4-1	9.75e+0	8.9/e+0	0.505.0	8.16e-1-0	7.85e+0	7.14e+0	6.86e+0	6.25e + 0
1000	1.19E + 1	1.10-1.1	1.16E+1	1 15	1.08E+1	0.80-10	9.50E+0	0.140+0	8.60E+0	8 17.4 0	7.60E4-0	7 270 1 0
1000	1.2004-1	1.19e + 1		1.15e+1	1.08e+1	9.89e+0		9.140+0		0.1/04-0	1.070 1	7.27e+0
2000	1.65e+1	1.01-1.1		1.750.11	1.490+1	1.52011		1 20011	1 200 1	1.130+1	1.0/0+1	1.000 1
2500	1.830+1	1.81e + 1		1./30+1	1.050+1	1.550+1		1.390+1	1.300+1	1.240+1	1.100 ± 1	1.090 + 1
5000	2.566 + 1										2 250 1	
10000	5.62e+1										2.230+1	
45000	5.24e-J-1										5.1/e+1	
50000	0.200+1 8 880+1										5 250 ± 1	
10000	1 250 + 2										8 14e ± 1	
100000	1.550 + 2										0.140 + 1	

$E_0(eV)$	75°	80°	85°	87°
9	4.00e-1	4.00e-1	4.00e-1	
10	4.00E-1	4.00E-1	4.00E-1	
12	5.00E-1	4.00E-1	4.00E-1	
15	5.00E-1	5.00E-1	4.00E-1	
20	5.00E-1	5.00E-1	5.00E-1	
2.5	5.00E-1	5.00E-1	5.00E-1	
27	5.00e-1	5.00e-1	5.00e-1	
30	6.00E-1	5.00E-1	5.00E-1	
30	3.52e-1	2.88e-1	2.45e-1	1. Sec. 1. Sec. 1.
35	6.00E-1	5.00E-1	5.00E-1	
40	6.00E-1	5.00E-1	5.00E-1	
50	7.00E-1	6.00E-1	5.00E-1	
50	4.73e-1	3.80e-1	3.19e-1	3.06e-1
60	7.00E-1	6.00E-1	6.00E-1	
70	8.00E-1	7.00E-1	6.00E-1	
80	9.00E-1	7.00E-1	7.00E-1	
100	1.10E + 0	9.00E-1	8.00E-1	
100		7.68e-1	6.21e-1	
120	1.30E+0	1.10E4-0	9.00E-1	
140	1.60E+0	1.30E4-0	1.10E4-0	
200	2.20E4-0	1.80E+0	1.50E4-0	
300	3.10E+0	2.60E+0	2.10E + 0	
350		2.82e+0	2.19e + 0	
400		3.08e+0		
500	4.40E+0	3.80E4-0	3.00E4-0	
800	5.84e4-0	4.79e+0	4.12e+0	
1000	6.50E4-0	5.80E+0	4.60E + 0	
1000		5.63e+0	4.28e+0	
2000	9.27e+0			
2500	1.03e + 1	9.21e+0	7.87e+0	

$$W \rightarrow W$$

Sputtering yield of W by W zl = 74, ml = 183.85, z2 = 74, m2 = 183.85, sbe = 8.68 eV, rho = 19.29 g/cm**3 ef=8.63 eV, esb = 8.68 eV, ca=1.00, kk0 = kk0r=2. kdeel = kdee2=3, *ipot=ipotr=3('bl)* program: ecklc (CRAY-T3E) ne=19, na=2 P

•

$E_0(eV)$	0°	45 ^u
18		3.25e-7
19		9.11e-7
20		2.45e-6
25		6.66e-5
27	8.03e-7	1.52e-4
30	3.69e-6	4.20e-4
35	1.80e-5	1.43e-3
40	5.18e-5	3.39e-3
50	2.30e-4	1.13e-2
60	7.08e-4	2.41e-2
70	1.80e-3	4.17e-2
80	3.87e-3	6.37e-2
100	1.22e-2	1.16e-l
120	2.70e-2	1.76e-l
140	4.77e-2	2.38e-1
200	1.36e-l	4.32e-1
300	3.19e-1	7.34e-1
500	6.90e-1	1.26e-0
1000	1.45e-0	2.32e-0

Sputtered energy of W by W ne=19, na=2

Eo (eV)	0°	45 ^u	I
18		5.34e-8	1
19		1.41e-7	1
20		3.62e-7	
25		9.18e-6	
27	3.32e-8	2.13e-5	
30	1.60e-7	6.03e-5	
35	7.99e-7	2.10e-4	
40	2.44e-6	5.04e-4	
50	1.17e-5	1.71e-3	
60	3.85e-5	3.65e-3	
70	1.02e-4	6.27e-3	
80	2.23e-4	9.46e-3	
100	7.04e-4	1.68e-2	
120	1.51e-3	2.46e-2	
140	2.59e-3	3.24e-2	
200	6.52e-3	5.30e-2	Ľ
300	1.28e-2	7.73e-2	
500	2.14e-2	1.03e-1	
1000	3.02e-2	1.22e-1	

W -> W

Particle reflection coefficient of W backscattered from W zl=74. ml = 183.85, z2=74, m2 = 183.85, sbe=8.68 eV. rho = 19.29 g/cm**3 ef=8.63 eV, esb= 8.68 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, *ipot=ipotr=3(zbl)* program: ecklc (CRAY-T3E) ne=19. na=2

$E_0(eV)$	0°	45°
18		2.20e-8
19		1.14e-7
20		4.00e-7
25		4.01e-5
27		1.06e-4
30		3.10e-4
35		1.12e-3
40		2.90e-3
50	2.00e-8	1.07e-2
60	9.40e-7	2.54e-2
70	1.05e-5	4.52e-2
80	5.45e-5	6.71e-2
100	3.64e-4	1.11e-1
120	1.02e-3	1.50e-1
140	1.93e-3	1.80e-1
200	5.55e-3	2.33e-1
300	1.15e-2	2.60e-1
500	1.97e-2	2.58e-1
1000	2.81e-2	2.24e-1

Energy reflection coefficient of W backscattered from W . $ne{=}19,\ na{=}2$

$E_0 (eV)$	0°	45 ^u	
18		2.77e-9	
19		1.11e-8	
20		4.10e-8	
25		6.03e-6	
27		1.68e-5	
30		5.22e-5	
35		1.98e-4	
40		5.31e-4	
50		2.02e-3	
60	5.28e-8	4.97e-3	
70	6.21e-7	9.18e-3	
80	3.28e-6	1.40e-2	
100	2.41e-5	2.42e-2	
120	7.11e-5	3.34e-2	
140	1.32e-4	4.08e-2	
200	3.52e-4	5.38e-2	
300	6.59e-4	5.93e-2	
500	9.69e-4	5.61e-2	
1000	1.19e-3	4.41e-2	

Average depth (mean range) in \ddot{A} of W implanted in W ne=19, na=2

E ₀ (eV)	0°	45°
18		1.81e-l
19		1.89e-l
20		1.97e-l
25		2.48e-1
27	3.82e-1	2.71e-1
30	4.54e-1	3.06e-1
35	5.76e-l	3.65e-l
40	6.84e-1	4.19e-1
50	8.59e-1	5.13e-1
60	1.01e+0	6.00e-1
70	1.15e- -0	6.88e-1
80	1.30e+0	7.79e-1
100	1.58e+0	9.69e-1
120	1.83e + 0	1.16e + 0
140	2.06e+0	1.35e+0
200	2.68e+0	1.89e+0
300	3.54e+0	2.66e+0
500	4.92e-f-0	3.85e+0
1000	7.44e+0	5.92e + 0

W W

W on W, Maxwellian velocity distribution, sheath potential 0 kT z1=74, ml = 183.85, z2=74, m2 = 183.85, sbe=8.68 eV. rho = 19.30 g/cm**3 ef=8.60 eV. esb = 8.68 eV. ca=1.00. kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: trspvmcx ne=12

kT(eV)	Y	Yr	Esp	R _N	r _e	Еь	range
7	6.57e-4	3.84e-4	8.19e+0	1.08e-3	1.03e-3	1.33eR1	4.72e-1
12	4.54e-3	2.24e-3	1.18e4-1	8.28e-3	6.76e-3	1.96e + 1	7.91e-l
20	2.10e-2	8.11e-3	1.55e+1	3.09e-2	2.14e-2	2.77e + 1	1.18e + 0
30	5.38e-2	1.67e-2	1.84e + 1	6.41e-2	3.99e-2	3.74e + 1	1.59e4-0
50	1.39e-1	3.33e-2	2.39e+1	1.21e-l	6.61e-2	5.48e + 1	2.29e+0
70	2.34e-1	4.58e-2	2.74e + 1	1.57e-l	8.12e-2	7.23e + 1	2.91e+0
100	3.75e-1	5.83e-2	3.16e + 1	1.99e-l	9.47e-2	9.67e+1	3.73e+0
200	7.62e-1	7.77e-2	4.06e + 1	2.40e-1	9.82e-2	1.63e4-2	5.68e + 0
500	1.72e-0	9.91e-2	5.87e + 1	2.54e-1	9.19e-2	3.70e + 2	9.34e+0
1000	2.83e-0	1.07e-1	7.63e + 1	2.38e-1	8.21e-2	6.96e + 2	1.30e4-1
2000	4.29e-0	1.09e-1	1.03e+2	2.23e-1	7.55e-2	1.38e+3	1.78e+1
5000	7.05e-0	9.85e-2	1.43e+2	1.90e-1	5.91e-2	3.20e+3	2.78e + 1

W	on	W,	Maxwellian	velocity	distribution,	sheath	potential	3 kT	
ne	=21								

kT(eV)	Y	YE	E sp	R _A r	R _b	Eb	range
5	5.07e-4	1.22e-4	6.02e + 0	2.87e-4	1.17e-4	1.02e+1	1.27e+0
6	1.17e-3	2.74e-4	6.99e+0	7.27e-4	2.74e-4	1.13e + 1	1.46e+0
7	2.12e-3	4.90e-4	8.07e+0	1.28e-3	4.55e-4	1.24e + 1	1.65e4-0
10	8.31e-3	1.62e-3	9.76e+0	4.80e-3	1.58e-3	1.65e+l	2.11e + 0
14	2.42e-2	4.07e-3	1.18e + 1	1.16e-2	3.31e-3	2.00e+1	2.63e+0
. 20	6.13e-2	8.71e-3	1.42e + 1	2.09e-2	5.09e-3	2.44e+1	3.29e + 0
24	9.52e-2	1.20e-2	1.51e + 1	2.65e-2	6.13e-3	2.77e+1	3.64e + 0
30	1.48e-1	1.60e-2	1.62e + 1	3.42e-2	7.15e-3	3.13e + 1	4.16e4-0
36	2.03e-1	1.96e-2	1.74e + 1	3.90e-2	7.93e-3	3.67e+1	4.62e + 0
40	2.42e-1	2.24e-2	1.85e4-l	4.30e-2	8.37e-3	3.89e + 1	4.88e + 0
45	2.86e-1	2.44e-2	1.92e + 1	4.69e-2	8.99e-3	4.32e4-1	5.22e-f-0
50	3.37e-1	2.68e-2	2.00e+1	4.96e-2	9.27e-3	4.68e+1	5.50e+0
60	4.26e-1	3.04e-2	2.14e+l	5.12e-2	8.67e-3	5.08e+1	6.10e+0
70	5.22e-1	3.37e-2	2.27e + 1	5.58e-2	9.22e-3	5.80ed-1	6.55e4-0
75	5.69e-1	3.54e-2	2.33e+1	5.57e-2	8.66e-3	5.83e+1	6.86e+0
100	7.57e-l	3.82e-2	2.52e + 1	6.08e-2	9.02e-3	7.42e4-1	7.88e-}-0
200	1.46e-0	4.79e-2	3.30e + 1	6.34e-2	8.11e-3	1.28e4-2	1.09e + 1
400	2.37e-0	5.13e-2	4.33e+1	6.17e-2	6.46e-3	2.09e+2	1.51e+l
1000	3.89e-0	4.95e-2	6.36e + 1	5.50e-2	4.24e-3	3.86e4-2	2.36e+1
2000	5.42e-0	4.45e-2	8.24e+1	4.66e-2	4.31e-3	9.27e+2	3.36e4-1
5000	7.82e-0	3.78e-2	1.21e+2	4.00e-2	3.25e-3	2.04e+3	5.33e+1

W on $W,\ Maxwellian$ velocity distribution, sheath potential 9 kT $ne{=}20$

kT(eV)	Y	Y e	Esp	R _N	R _E	Ef,	range
3	2.72e-4	3.39e-5	4.12e+0	5.60e-5	1.28e-5	7.53e+0	1.75e+0
4	1.04e-3	1.28e-4	5.41e+0	2.76e-4	5.43e-5	8.65e4-0	2.14e+0
5	2.80e-3	3.33e-4	6.55e+0	9.53e-4	1.67e-4	9.61e+0	2.49e+0
7	1.16e-2	1.22e-3	8.05e+0	3.04e-3	4.75e-4	1.20e+1	3.06e4-0
10	3.95e-2	3.50e-3	9.74e+0	7.27e-3	1.03e-3	1.55e+l	3.76e+0
20	1.93e-1	1.19e-2	1.36e+1	1.88e-2	2.18e-3	2-56e4-1	5.51e+0
24	2.64e-1	1.43e-2	1.43e+1	2.43e-2	2.46e-3	2.67e4-1	6.03e+0
30	3.68e-1	1.76e-2	1.58e + 1	2.83e-2	2.67e-3	3.11e+l	6.72e+0
36	4.73e-1	2.06e-2	1.73e-J-l	3.07e-2	2.71e-3	3.50e4-1	7.35e-f-0
40	5.32e-1	2.18e-2	1.80e+1	3.16e=2	2.83e-3	3.94e+1	7.76e+0
45	6.16e-l	2.37e-2	1.90e+1	3.31e-2	2.81e-3	4.20e+1	8.22e+0
50	6.80e-1	2.47e-2	1.99e+l	3.61e-2	2.77e-3	4.23e+1	8.65e + 0
60	8.47e-1	2.74e-2	2.14e4-1	3.80e-2	3.00e-3	5.20e+1	9.41e+0
70	9.69e-1	2.89e-2	2.29e+1	3.96e-2	2.89e-3	5.61e+1	1.02e-H
75	1.03e-0	2.92e-2	2.33e+1	3.93e-2	2.89e-3	6.05e4-1	1.05e + 1
100	1.33e-0	3.25e-2	2.69e+1	4.14e-2	3.17e-3	8.43e+1	1.21e + 1
200	2.22e-0	3.52e-2	3.49e+1	3.78e-2	2.35e-3	1.37e+2	1.67e+1
500	3.74e-0	3.55e-2	5.23e4-1	4.00e-2	2.36e-3	3.25e+2	2.56e4-1
1000	5.22e-0	3.31e-2	6.99e + 1	3.28e-2	1.65e-3	5.53e+2	3.63e-H
2000	6.29e-0	2.70e-2	9.42e+1	2.75e-2	1.29e-3	1.03e-f-3	5.25e + 1

He -> Pt

Sputtering yield of Pt by He zl = 2. ml = 4.00. z2 = 78. m2 = 195.09. sbe=5.86 eV, rho=21.44 g/cm**3 ef=0.50 eV. esb = 0.00 eV. ca=1.00, kk0 = kk0r=2, kdeel = kdee2=3. ipot=ipotr=1 (KrC) program : trvmc95. trspvmcx ne= 4. na= 2

E ₀ (eV)	0°	30 ^u
500		4.49e-2
1000		7.35e-2
1500	7.59e-2	9.25e-2
3000	8.77e-2	

Sputtered energy of Pt by He ne=4, na=2

MeV)	0°	30°
500		7.00e-4
1000		8.54e-4
1500	7.16e-4	8.82e-4
3000	5.50e-4	

Particle reflection coefficient of He backscattered from Pt zl= 2. ml = 4.00, z2= 78, m2 = 195.09, sbe=5.86 eV. rho=21.44 g/cm**3 ef=0.50 eV. esb = 0.00 eV, ca=1.00. kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr= 1 (KrC) program : trvmc95. trspvmcx ne= 4, na= 2

Ro(eV)	0 ^ö	30°
500		5.99e-1
1000		5.60e-1
1500	4.95e-1	5.36e-1
3000	4.46e-1	

Energy reflection coefficient of He backscattered from Pt ne= $4,\ na=\ 2$

0°	30°
	3.75e-1
	3.38e-1
2.80e-1	3.14e-1
2.41e-l	
	0° 2.80e-1 2.41e-1

Average depth (mean range) in \tilde{A} of He implanted in Pt ne= 4, na= 2

Eq(eV)	0°	30°
500		6.02e+1
1000		9.01e+1
1500	1.15e+2	1.14e+2
3000	1.80e + 2	

Ne -> Pt

Sputtering yield of Pt by Ne zl = 10, ml = 20.18, z2 = 78, m2 = 195.09, sbe = 5.86 eV, rho = 21.44 g/cm**3 ef=0.50 eV. esb = 0.00 eV, ca=1.00, kk0 = kk0r=2, kdeel = kdee2=3. ipot=ipotr=1 (KrC) program : trvmc95 ne = 6, na = 1

$E_0 (eV)$	0 ^u
40	1.63e-3
200	2.61e-1
600	6.75e-1
3000	1.40e-0
5000	1.70e-0
9000	1.76e-0

Sputtered energy of Pt by Ne ne= 6, na= 2

Eq(eV)	0°
40	6.75e-5
200	1.30e-2
600	1.90e-2
3000	1.47e-2
5000	1.28e-2
9000	9.52e-3

Particle reflection coefficient of Ne backscattered from Pt z1 = 10, m1 = 20.18, z2 = 78, m2 = 195.09, sbe=5.86 eV, rho=21.44 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kk0 = kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program : trvmc95 ne= 6, na= 1

$B_0 (eV)$	Ö ⁷⁵
40	6.64e-1
200	5.07e-1
600	4.36e-1
3000	3.82e-1
5000	3.53e-1
9000	3.38e-1

Energy reflection coefficient of Ne backscattered from Pt ne= 6, na= 1 $\,$

E ₀ (eV)	0°
40	3.40e-1
200	2.34e-1
600	1.90e-1
3000	1.70e-1
5000	1.42e-1
9000	1.48e-1

Average depth (mean range) in \ddot{A} of Ne implanted in Pt ne= 6, na= 1

$B_0(eV)$	0°
40	5.71e+0
200	1.19e4-1
600	2.07e+1
3000	5.37e + 1
5000	6.84e + 1
9000	1.10e + 2

Xe -> Pt

Sputtering yield of Pt by Xe zl=54, ml = 131.30, z2=78, m2 = 195.09, sb=5.86 eV, rho=21.44 g/cm**3 ef=0.50 eV, esb=0.00 eV. ca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr=1 (KrC) program : trvmc95, trspvmcx ne= 8, na= 2

Eo(eV)	0°	30°
40	8.42e-4	
200	3.35e-1	
500		1.47e-0
600	1.33e-0	
1000		2.49e-0
1500		3.24e-0
3000	4.08e-0	
5000	5.25e-0	

Sputtered energy of Pt by Xe ne= 8, na= 2

Eo(eV)	0°	30°
40	5.16e-5	
200	1.53e-2	
500		6.13e-2
600	3.33e-2	
1000		6.86e-2
1500		6.87e-2
3000	3.83e-2	
5000	3.62e-2	

Particle reflection coefficient of Xe backscattered from Pt zl=54, ml = 131.30, z2=78, m2 = 195.09, sb=5.86 eV, rho=21.44 g/cm**3 ef=0.50 eV. esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program : trvmc95, trspvmcx ne= 8, na= 2

E _o (eV)	0°	30°
40	2.27e-1	
200	1.91e-l	
500		2.31e-1
600	1.54e-l	
1000		2.10e-1
1500		1.90e-1
3000	1.03e-1	
5000	9.15e-2	

Energy reflection coefficient of Xe backscattered from Pt $ne=\ 8,\ na=\ 2$

0°	30°
1.48e-2	
1.39e-2	
	3.14e-2
1.12e-2	
	2.61e-2
	2.37e-2
7.38e-3	
6.56e-3	
	0° 1.48e-2 1.39e-2 1.12e-2 7.38e-3 6.56e-3

Average depth (mean range) in \ddot{A} of Xe implanted in Pt ne= 8, na= 2

$E_0(eV)$	0 ^u	30°
40	2.43e+0	
200	5.60e+0	
500		8.00e+0
600	9.22e+0	
1000		1.08e+1
1500		1.29e4-1
3000	1.97e + 1	
5000	2.52e+1	

$$\mu \to Au$$

Particle reflection coefficient of p. backscattered from Au zl = 1. mix 0.11. z2=79. m2=196.97. sbe=3.80 eV. rho=19.31 g/cm**3 ef=0.50 eV. esb=0.00 eV. ca=1.00. kk0=kk0r=2. kdee2=3. ipot=ipotr=1 (KrC) 10 - 1000 eV : kdeel=3. 1000 - 20000 eV : kdeel = 4program: trvmc ne=8, na=1

$E_0(eV)$	0°
10	6.72e-1
100	4.83e-1
500	3.79e-1
1000	3.15e-1
1000	2.46e-1
5000	1.24e-1
10000	8.52e-2
20000	4.85e-2

Energy reflection coefficient of ${\it /j.}\ backscattered$ from Au ne= 8, na= 1

$E_0(eV)$	0 ^u
10	4.27e-1
100	2.43e-1
500	1.69e-l
1000	1.29e-1
1000	9.43e-2
5000	4.13e-2
10000	2.69e-2
20000	1.66e-2

Ax'erage depth (mean range) in \ddot{A} of ju.implanted in Au ne= 8, na= 1

0°
8.74e + 0
2.60e-H
6.00e + 1
8.80e+1
7.02e+1
2.01e + 2
3.40e + 2
6.06e + 2

Sputtering yield of Au by D zl = 1, ml = 2.01. z2=79, m2 = 196.97, sbe=3.80, 3.93 eV, rho = 19.31 g/cm**3 ef=0.98 (0.90) eV, esb = 1.00 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx, newtrim (Laszlo), TPP 9/82 ne=27. na= 8

Bo(eV)	0°	30 ^u	45°	60°	65°	75 ^u	80°	85°
120	8.40e-5				5.88e-5			
130	2.44e-4	2.68e-4	2.58e-4		1.89e-4	9.63e-5		
135	3.49e-4				2.86e-4			
140	4.92e-4		5.34e-4		4.11e-4	2.10e-4	8.94e-5	
150	7.96e-4	8.35e-4	8.74e-4	7.45e-4	6.86e-4	3.63e-4	1.71e-4	
155	9.27e-4							
160	1.14e-3				1.04e-3	5.78e-4	2.56e-4	
165	1.33e-3							
170		1.73e-3	1.63e-3	1.60e-3		8.27e-4	3.78e-4	
180	2.Ole-3					1.09e-3	5.76e-4	
190						1.48e-3	7.85e-4	
200	3.05e-3	3.27e-3	3.41e-3	3.34e-3	3.08e-3	1.89e-3	9.39e-4	
210							1.24e-3	
250	5.45e-3	6.16e-3	6.59e-3	6.96e-3		4.84e-3		
300	7.84e-3	8.68e-3	9.59e-3	1.10e-2	1.00e-2	8.81e-3	6.25e-3	1.47e-3
350				1.46e-2				
400	1.21e-2		1.60e-2			2.02e-2		
500	1.60e-2	1.67e-2	1.96e-2	2.49e-2		3.33e-2	3.25e-2	1.27e-2
700				3.76e-2				
750	2.15e-2	2.35e-2	2.79e-2			6.33e-2		
1000	2.51e-2	2.74e-2	3.43e-2	5.21e-2		8.49e-2	9.55e-2	5.98e-2
2000	2.91e-2				8.45e-2			
3000		3.73e-2	4.91e-2	7.34e-2		1.43e-1		
5000	2.98e-2							
10000	2.58e-2	3.14e-2	4.59e-2	6.81e-2		1.42e-1		
30000						1.03e-1		
kjoooo			•.	·		5.73e-2		
1845				7.54.				10

Sputtered energy of Au by D program: testvmcx, newtrim (Laszlo), TPP 9/82 ne=27, na= 8

B _o (eV)	0°	30°	45°	60°	65°	75°	80°	85°
120	2.46e-7				1.81e-7			
130	9.75e-7	1.09e-6	1.11e-6		8.04e-7	3.85e-7		
135	1.52e-6				1.34e-6			
140	2.39e-6		2.67e-6		2.10e-6	9.99e-7	4.17e-7	
150	4.32e-6	4.70e-6	5.17e-6	4.37e-6	3.96e-6	2.05e-6	9.17e-7	
155	5.25e-6							
160	6.81e-6				6.59e-6	3.60e-6	1.54e-6	
165	8.21e-6							
170		1.15e-5	1.10e-5	1.09e-5		5.46e-6	2.50e-6	
180	1.41e-5					7.68e-6	3.95e-6	
190						1.10e-5	5.80e-6	
200	2.27e-5	2.44e-5	2.62e-5	2.57e-5	2.46e-5	1.46e-5	7.18e-6	
210							1.0le-5	
250	4.54e-5	5.13e-5	5.62e-5	5.98e-5		4.16e-5		
300	6.60e-5	7.44e-5	8.31e-5	9.62e-5	9.35e-5	7.91e-5	5.48e-5	1.32e-5
350				1.30e-4				
400	1.02e-4		1.42e-4			1.79e-4		
500	1.28e-4	1.41e-4	1.65e-4	2.06e-4		2.72e-4	2.97e-4	1.34e-4
700				2.82e-4				
750	1.53e-4	1.69e-4	2.05e-4			4.83e-4		
1000	1.64e-4	1.81e-4	2.22e-4	3.33e-4		5.99e-4	7.14e-4	5.42e-4
2000	1.29e-4				3.95e-4			
3000		1.28e-4	1.77e-4	2.56e-4		5.57e-4		
5000	7.43e-5							
10000	3.75e-5	4.55e-5	7.27e-5	1.21e-4		2.66e-4		
30000						8.20e-5		
100000						2.40e-5		

$D\to {\rm Au}$

Particle reflection coefficient of D backscattered from Au zl = 1. ml= 2.01. z2 = 79. m2=196.97. sbe= 3.80 ± 3.93 eV. rho=19.31 g/cm**3 ef=0.98 (0.90) eV, esb=1.00 eV. ca=1.00. kk0=kk0r=2, kdeel=kdee2 = 3. ipot=ipotr= 1 (KrC) program: testvmcx. newtrim (Laszlo) ne=28, na= 8

E ₀ (eV)	0 ^u	30 ^u	45 ^u	60 ^u	65 ^u	75°	80°	85 ^u
100	6.50e-1				8.22e-1			
120	6.43e-1				8.13e-1			
130	6.39e-1	6.72e-1	7.15e-1		8.09e-1	8.90e-1		
135	6.38e-1				8.07e-1			
140	6.36e-1		7.11e-1		8.05e-1	8.86e-1	9.43e-1	
150	6.33e-1	6.66e-l	7.09e-1	7.73e-1	8.01e-1	8.82e-1	9.40e-1	
155	6.32e-1							
160	6.30e-1				7.98e-1	8.78e-1	9.38e-1	
165	6.29e-1							
170		6.61e-l	7.03e-1	7.66e-l		8.75e-1	9.35e-1	
180	6.25e-1					8.71e-1	9.32e-1	
190						8.68e-1	9.30e-1	
200	6.19e-1	6.51e-l	6.95e-1	7.59e-1	7.86e-1	8.66e-l	9.27e-1	
210							9.25e-1	
250	6.08e-1	6.42e-1	6.85e-1	7.48e-1		8.53e-1		
300	5.99e-1	6.36e-1	6.78e-1	7.40e-1	7.68e-1	8.42e-1	9.05e-1	9.82e-1
350				7.33e-1				
400	5.84e-1		6.59e-1			8.27e-1		
500	5.70e-1	6.10e-1	6.51e-1	7.18e-1		8.12e-1	8.73e-1	9.69e-1
700				6.98e-1				
750	5.49e-1	5.80e-1	6.27e-1			7.96e-1		
1000	5.24e-1	5.65e-l	6.11e-1	6.78e-1		7.84e-1	8.35e-1	9.36e-1
2000	4.69e-1				6.66e-l			
3000		4.73e-1	5.28e-1	6.06e-l		7.14e-1		
5000	3.75e-1							
10000	2.96e-1	3.43e-1	4.11e-1	5.04e-1		6.35e-1		
30000						5.21e-1		
100000						3.96e-1		

Energy	reflection	coefficient	of D	backscattered	from	Au
ne = 28,	n a= 8					

E ₀ (eV)	0°	30°	45°	60°	65°	75°	80°	<u>85°</u>
100	6.50e-1				8.22e-1			
120	6.43e-1				8.13e-1			
130	6.39e-1	6.72e-1	7.15e-l		8.09e-1	8.90e-1		
135	6.38e-1				8.07e-1			
140	6.36e-1		7.11e-1		8.05e-1	8.86e-l	9.43e-1	
150	6.33e-1	6.66e-l	7.09e-1	7.73e-1	8.01e-1	8.82e-1	9.40e-1	
155	6.32e-1							
160	6.30e-1				7.98e-1	8.78e-1	9.38e-1	
165	6.29e-l							
170		6.61e-1	7.03e-1	7.66e-l		8.75e-1	9.35e-1	
180	6.25e-l					8.71e-1	9.32e-1	
190						8.68e-1	9.30e-1	
200	6.19e-1	6.51e-1	6.95e-1	7.59e-1	7.86e-1	8.66e-l	9.27e-1	
210							9.25e-1	
250	6.08e-1	6.42e-1	6.85e-1	7.48e-1		8.53e-1		
300	5.99e-1	6.36e-1	6.78e-1	7.40e-1	7.68e-1	8.42e-1	9.05e-1	9.82e-1
350				7.33e-1				
400	5.84e-1		6.59e-1			8.27e-1		
500	5.70e-1	6.10e-1	6.51e-1	7.18e-1		8.12e-1	8.73e-1	9.69e-1
700				6.98e-1				
750	5.49e-1	5.80e-1	6.27e-1			7.96e-1		
1000	5.24e-1	5.65e-1	6.11e-1	6.78e-1		7.84e-1	8.35e-1	9.36e-1
2000	4.69e-1				6.66e-1			
3000		4.73e-1	5.28e-1	6.06e-l		7.14e-1		
5000	3.75e-1							
10000	2.96e-1	3.43e-1	4.11e-1	5.04e-1		6.35e-l		
30000						5.21e-1		
100000						3.96e-1		

$D \ -> \ Au$

Average depth (mean range) in A of D implanted in Au zl = 1, ml = 2.01. z2=79, m2 = 196.97, sbe=3.80. 3.93 eV, rho = 19.31 g/cm**3 ef=0.98 (0.90) eV, esb = 1.00 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2 = 3, ipot=ipotr=1 (KrC) program: testvmcx, newtrim (Laszlo) ne=28, na= 8

E ₀ (eV)	0°	30°	45°	60°	65°	75°	80 ^u	85 ^u
100	4.72e4-1				4.54e+1			
120	5.17e+l				5.00e + 1			
130	5.39e + 1	5.34e+1	5.29e + 1		5.21e + 1	5.18e+1		
135	5.50e4-1				5.31e + 1			
140	5.60e+1		5.49e + 1		5.42e+1	5.39e+1	5.37e+1	
150	5.81e-J-l	5.76e+1	5.70e4-1	5.64e + 1	5.62e+1	5.58e4-1	5.56e + 1	
155	5.91e+1							
160	6.01e+1				5.81e+1	5.77e+1	5.76e + 1	
165	6.11e + 1							
170		6.14e+1	6.08e+1	6.02e+1		5.96e+1	5.94e + 1	
180	6.41e + 1					6.15e+1	6.12e + 1	
190						6.31e+1	6.31e + 1	
200	6.77e+1	6.71e+1	6.64e + 1	6.57e+1	6.51e + 1	6.50e+1	6.48e + 1	
210							6.65e + 1	
250	7.67e+1	7.59e+1	7.48e4-1	7.41e+1		7.29e4-1		
300	8.48e + 1	8.36e+1	8.26e4-1	8.17e + 1	8.08e+1	8.05e+1	8.05e + 1	8.07e + 1
350				8.89e+1				
400	9.94e + 1		9.61e + 1			9.46e+1		
500	1.13e + 2	1.12e+2	1.10e + 2	1.08e4-2		1.07e + 2	1.06e4-2	1.07e+2
700				1.32e+2				
750	1.44e+2	1.42e-f-2	1.40e+2			1.36e + 2		
1000	1.70e + 2	1.68e + 2	1.66e+2	1.63e + 2		1.61e+2	1.60e+2	1.60e+2
2000	2.66e + 2				2.49e+2			
3000		3.42e + 2	3.34e+2	3.26e4-2		3.18e + 2		
5000	4.98e + 2							
10000	8.41e+2	8.06e+2	7.70e+2	7.34e+2		7.10e+2		
30000						1.17e + 3		
100000						2.44e+3		

•

He -> Au

E ₀ (eV)	0°	75 ^u	comment
100	5.46e-3		
300	4.98e-2		
500	7.42e-2		
1000	1.06e-l		
2000	1.70e-1	4.64e-1	ca= 1.09
4000	1.31e-1		
10000	1.52e-1		

Sputtered energy of Au by He program: trspvmcx. casepol. case ne= 7. na= 2

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
100 7.28e-5 300 7.63e-4 500 9.42e-4 1000 9.91e-4 2000 1.01e-3 3.60e-3 ca= 1.09 4000 5.26e-4 10000 3.02e-4	Eo(eV)	0°	75 ⁰	comment	1
	100 300 500 1000 2000 4000 100000 100000 10000 100000 100000 10	7.28e-5 7.63e-4 9.42e-4 9.91e-4 1.01e-3 5.26e-4 3.02e 4	3.60e-3	ca= 1.09	

Particle reflection coefficient of He backscattered from Au zl=2, ml=4.00, z2=79, m2=196.97, sb=3.80 eV. rho=19.30 g/cm**3 ef=3.80 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program: trspvmcx, cascpol, case ne=8, na=2

E ₀ (eV)	0°	75°	comment
50	6.79e-1		
100	6.41e-1		
300	5.79e-1		
500	5.60e-1		
1000	5.25e-1		
2000	4.93e-1	7.76e-1	ca=1.09
4000	4.35e-1		
10000	3.51e-1		

Energy reflection coefficient of He backscattered from Au $ne=-8,\ na=-2$

E ₀ (eV)	0°	75°	comment
50	4.56e-1		
100	4.14e-1		
300	3.56e-1		
500	3.33e-1		
1000	3.02e-1		
2000	2.94e-1	6.25e-l	ca=1.09
4000	2.31e-1		
10000	1.80e-1		

Average depth (mean range) in \tilde{A} of He implanted in Au ne= 8, na= 2

$E_0(eV)$	0°	75°	comment	
50	2.07e-H			
100	2.93e + 1			
300	5.15e+1			
500	6.87e + 1			
1000	1.02e + 2			
2000	1.26e + 2	1.18e-j-2	ca=1.09	
4000	2.44e-f-2			
10000	4.19e-}-2			

$He \longrightarrow Au$

E ₀ (eV)	KrC	Mol	ZBL	comment
4000	1.15e-1			kdeel=kdee2 = l (LS)
4000	1.58e-1			kdeel=kdee2=2 (OB)
4000		1.61e-1	1.59e-1	kdeel=kdee2=3
4000	1.09e-l			kdeel=kdee2=3, ca=0.8

Sputtered energy of Au by He ne= 4, na= 1, n(ipot)= 3

			1	
E _o (eV)	KrC	Mol	ZBL	comment
4000	4.34e-4			kdeel = kdee2 = l (LS)
4000	5.87e-4			kdeel=kdee2=2 (OR)
4000		6.17e-4	5.50e-4	kdeel=kdee2 = 3
4000	4.73e-4			kdeel=kdee2=3, ca=0.8

Particle reflection coefficient of He backscattered from Au zl = 2, ml = 4.00, z2=79, m2 = 196.97, sbe=3.80 eV, rho = 19.31 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2, ipot=ipotr (KrC) alpha=0.00 program: trspvmcx ne= 8, na= 1, n(ipot) = 3

Eq(eV)	KrC	Mol	ZBL	comment
50	6.45e-1			kdeel=kdee2 = l (LS)
50	7.15e-l			kdeel = kdee2=2 (OR)
50		7.38e-1	7.06e-l	kdeel=kdee2=3
50	6.27e-1			kdeel=kdee2=3, ca=0.8
4000	4.19e-1			kdeel=kdee2 = l (LS)
4000	4.28e-1			kdeel = kdee2=2 (OR)
4000		4.28e-1	4.39e-1	kdeel = kdee2=3
4000	4.00e-1			kdeel=kdee2=3, ca=0.8

Energy reflection coefficient of He backscattered from Au ne= 8, na= 1, n(ipot)= 3 $\,$

E ₀ (eV)	KrC	Mol	ZBL	comment
50	4.20e-1			kdeel=kdee2 = l (LS)
50	4.96e-1			kdeel=kdee2=2 (OR)
50		5.32e-1	4.96e-1	kdeel=kdee2=3
50	3.92e-1			kdeel = kdee2 = 3, ca=0.8
4000	2.21e-1			kdeel=kdee2 = l (LS)
4000	2.25e-1			kdeel=kdee2=2 (OR)
4000		2.36e-1	2.43e-1	kdeel=kdee2=3
4000	2.00e-1			kdeel=kdee2=3, ca=0.8

Average depth (mean range) in \tilde{A} of He implanted in Au ne= 8. na= 1, n(ipot)= 3

E ₀ (eV)	KrC	Mol	ZBL	comment
50	1.84e+1			kdeel = kdee2 = 1 (LS)
50	2.41e + 1			kdeel=kdee2 = 2 (OR)
50		1.59e+l	1.53e+1	kdeel=kdee2=3
50	2.79e+1			kdeel=kdee2=3, ca=0.8
4000	2.40e+2			kdeel=kdee2= 1 (LS)
4000	2.54e + 2			kdeel=kdee2 = 2 (OR)
4000		2.23e+2	2.18e+2	kdeel=kdee2=3
4000	2.90e + 2			kdeel = kdee2=3, ca=0.8

Ne -> Au

Sputtering yield of Au by Ne $z_1 = 10$, $m_1 = 20.18$, $z_2 = 79$, $m_2 = 196.97$, sbe=3.80 eV. rho = 19.30 g/cm**3 ef=3.80 eV, esb=0.00 eV, ca=1.09. kk0=kk0r=1, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program: casepol, case ne= 2, na= 2

E ₀ (eV)	0°	75 6
2000	2.73e-0	2.46e-0
10000		6.53e-0

Sputtered energy of Au by Ne ne= 2, na= 2

Bo(eV)	0°'	75°
2000	2.72e-2	4.90e-2
10000		3.93e-2

Particle reflection coefficient of Ne backscattered from Au zl = 10, ml = 20.18, z2=79, m2 = 196.97, sbe=3.80 eV, rho = 19.30 g/cm**3 ef=3.80 eV, esb=0.00 eV, ca=1.09, kkO=kkOr=1, kdeel = kdee2=3. ipot=ipotr=1 (KrC) program: casepol, case ne= 2, na= 2

$E_0 (eV)$	0 ^u	75°
2000	4.02e-1	8.08e-1
10000		6.67e-1

Energy reflection coefficient of Ne backscattered from Au ne= 2. na= 2 $\,$

$B_0(eV)$	0°	75°
2000	1.83e-1	6.33e-1
10000		4.71e-1
Sputtering yield of Au by Na zlssll, ml = 22.99, z2 = 79, m2 = 196.97, sbe=3.80 eV, rho = 19.30 g/cm**3 ef= eV, esb= eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) only low fluence! TPP9/82 ne= 1, na= 8

_									
Γ	$E_0(eV)$	0°	15 ^u	30°	40°	50°	60 ^u	70 ^u	80°
Γ	30000	2.20e-0	2.45e-0	3.03e-0	3.45e-0	4.42e-0	5.62e-0	7.42e-0	8.27e-0

Sputtered energy of Au by Na ne= 1, na= 8

Bo (eV)	0°	15°	30 ^u	40°	50°	60°	70°	80°
30000	4.12e-3	4.73e-3	6.50e-3	8.03e-3	1.13e-2	1.60e-2	2.38e-2	3.11e-2

Bq(eV)	0°	15°	30°	40°	50°	60°	70°	80°
30000	2.29e-1	2.33e-1	2.74e-1	3.06e-1	3.61e-1	4.32e-1	5.32e-1	6.71e-1

Energy reflection coefficient of Na backscattered from Au $ne=\ l,\ na=\ 8$

E _o (eV)	0°	15°	30°	40°	50°	60°	70°	80°
30000	8.13e-2	8.78e-2	1.08e-1	1.27e-1	1.65e-l	2.21e-1	3.08e-1	4.65e-1

Average depth (mean range) in \ddot{A} of Na implanted in Au ne= 1, na= 8

$B_{o}(eV)$	0°	15°	30°	40°	50°	60°	70°	80°
30000	2.39e+2	2.36e4-2	2.26e+2	2.17e + 2	2.07e + 2	1.99e+2	1.89e+2	1.84e + 2

$$Ar \rightarrow Au$$

Sputtering yield of Au by Ar zl = 18, ml = 39.95, z2=79, m2=196.97, sbe=3.80 eV. rho = 19.31 g/cm**3 ef=0.50 eV. sb = 0.00 eV. ca=1.00. kk0 = kk0r=2, kdeel = kdee2=3. ipot=ipotr = l (KrC) program: trspvmcx, trspvlcs. TPP 9/82 ne = 9, na = 1

E ₀ (eV)	0°
50	7.43e-2
100	2.86e-1
300	9.30e-1
500	1.38e-0
1000	2.10e-0
2000	3.03e-0
3000	3.72e-0
4000	3.68e-0
100000	4.03e-0

Sputtered energy of Au by Ar program: trspvmcx, trspvlcs ne= 8, na= 1

Eo(eV)	0°
50	5.84e-3
100	1.86e-2
300	3.31e-2
500	3.62e-2
1000	3.57e-2
2000	3.45e-2
3000	3.41e-2
4000	2.60e-2

Particle reflection coefficient of Ar backscattered from Au zl = 18, ml = 39.95, z2=79, m2 = 196.97, sbe=3.80 eV, rho = 19.31 g/cm**3ef=0.50 eV, esb = 0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr=1 (KrC) program: trspvmcx, trspvlcs ne= 8, na= 1

Eo (eV)"	cP
50	5.67e-1
100	4.89e-1
300	3.99e-1
500	3.66e-1
1000	3.35e-1
2000	3.01e-1
3000	2.84e-1
4000	2.74e-1

Energy reflection coefficient of Ar backscattered from Au ne= 8, na= 1 $\,$

Ro(eV)	0°
50	2.04e-1
100	1.71e-l
300	1.31e-1
500	1.16e-l
1000	1.03e-1
2000	9.50e-2
3000	8.88e-2
4000	8.12e-2

Average depth (mean range) in \ddot{A} of Ar implanted in Au ne= 8, na= 1

$E_0(eV)$	0°
50	5.16e + 0
100	6.96e + 0
300	1.15e + 1
500	1.46e + 1
1000	2.06e + 1
2000	3.07e + 1
3000	3.78e + 1
4000	4.38e+1

K -> Au

Sputtering yield of Au by K zl = 19, ml = 42.00, z2=79. m2 = 196.97, sbe=3.80 eV. rho = 19.30 g/cm**3 ef= eV, esb=2.00 eV. ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) IPP9/82 only low fluence! ne= 1. na= $\frac{8}{2}$

ne=	۱,	na=	8

Eq(eV)	0°	15°	30°	40 ^u	50°	60°	70°	80 ^u
30000	4.72e-0	5.11e-0	5.99e-0	7.31e-0	8.90e-0	1.11e + 1	1.33e4-1	1.30e+1

Sputtered energy of Au by K ne= 1, na= 8

$B_0(eV)$	0°	15°	30°	40 ^u	50 ^u	60°	70°	80°
30000	1.03e-2	1.15e-2	1.52e-2	2.06e-2	2.82e-2	3.88e-2	5.51e-2	6.62e-2

Particle reflection coefficient of K backscattered from Au zl = 19, ml = 42.00, z2=79, m2=196.97, sbe=3.80 eV, rho = 19.30 g/cm**3 ef= eV, esb = 2.00 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) only low fluence! ne= 1, na= 8

$E_0 (eV)$	0°	15°	30°	40°	50°	60°	70°	80°
30000	1.79e-l	1.94e-l	2.18e-1	2.60e-1	3.21e-1	3.86e-1	4.87e-1	6.41e-1

Energy reflection ne= 1, na= 8 coefficient of K backscattered from Au

Eq(eV)	0°	15°	30°	40°	50°	60°	70°	80°
30000	4.94e-2	5.55e-2	6.83e-2	9.13e-2	1.27e-1	1.75e-l	2.56e-1	4.24e-1

Average depth (mean range) in \ddot{A} of K implanted in Au ne= 1, na= 8

_E ₀ (eV)	0 ^ŏ	15°	30°	40°	50°	60°	70°	80°
30000	1.50e+2	1.48e+2	1.43e+2	1.36e+2	1.29e + 2	1.20e+2	1.16e+2	1.08e+2

$$\mathrm{Xe}\to\mathrm{Au}$$

Sputtering yield of Au by Xe zl=54. ml = 131.00, z2=79, m2 = 196.97, sbe=3.80 eV. rho = 19.30 g/cm**3 ef=0.50 eV. esb = 0.00 eV. ca=1.00, kk0 = kk0r=2, kdeel = kdee2=3, ipot=ipotr = l (KrC) program: trspvmcx, cascpol. trsptest, TPP 9/82 ne = 9, na= 2

$E_0 (eV)$	0°	75°	comment
50	2.70e-2		
100	2.16e-1		
300	1.07e-0		
500	1.71e-0		
1000	2.87e-0		
2000	4.49e-0		
2000	6.54e-0	4.29e-0	ca=1.09
3000	5.54e-0		
4000	5.95e-0		

Sputtered energy of Au by Xe program: trspvmcx. casepol, trsptest ne= 9, na= 2

 $E_0(eV)$ 75" comment 0 50 100 1.73e-3 1.73e-3 1.07e-2 3.11e-2 3.77e-2 4.14e-2 4.42e-2 6.89e-2 4.34e-2 3.75e-2 300 500 1000 2000 2000 3000 4000 1.67e-l ca=1.09

Particle reflection coefficient of Xe backscattered from Au zl = 54, ml = 131.00, z2=79, m2 = 196.97. sbe = 3.80 eV. rho = 19.30 g/cm**3 ef=0.50 eV. esb = 0.00 eV. ca=1.00, kk0 = kk0r=2, kdeel = kdee2 = 3. ipot=ipotr=1 (KrC) program: trspvmcx, cascpol, trsptest ne= 9. na= 2

$E_0(eV)$	0°	75°	comment
50	2.36e-1		
100	2.23e-1		
300	1.79e-1		
500	1.64e-1		
1000	1.38e-1		
2000	1.27e-l		
2000	1.49e-1	7.99e-1	ca=1.09
3000	1.07e-l		
4000	9.52e-2		

Energy reflection coefficient of Xe backscattered from Au ne= 9, na= 2 $\,$

$E_0(eV)$	0°	75°	comment	
50	1.73e-2			
100	1.66e-2			
300	1.33e-2			
500	1.21e-2			
1000	1.02e-2			
2000	9.71e-3			
2000	1.18e-2	4.72e-1	ca= 1.09	
3000	8.04e-3			
4000	6.69e-3			

Average depth (mean range) in \ddot{A} of Xe implanted in Au ne= 9, na= 2

E ₀ (eV)	0°	75°	comment
50	3.34e + 0		
100	4.75e+0		
300	7.76e+0		
500	9.73e + 0		
1000	1.32e+1		
2000	1.83e + 1		
2000	1.12e + 1	7.29e + 0	ca=1.09
3000	2.18e+1		
4000	2.56e + 1		

Au -> Au

Sputtering yield of Au by Au zl = 79, 1X11= 196.97, z2=79, m2 = 196.97, sbe=3.93 eV, rho = 19.30 g/cm**3 ef=3.43 eV, esb=3.93 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: newtrim (Laszlo) ne=24, na= 2

E ₀ (eV)	0°	65°
10		5.28e-5
12		5.31e-4
13		1.10e-3
14		1.98e-3
15		3.11e-3
20		1.61e-2
30	5.97e-4	6.51e-2
33	1.20e-3	
37	2.65e-3	
40	4.49e-3	1.28e-1
50	1.34e-2	
60	3.03e-2	
80	8.38e-2	
100	1.50e-1	
120	2.11e-1	
140	2.80e-1	
150	3.11e-1	
170	3.91e-1	
200	5.09e-1	
250	6.74e-1	
300	8.36e-1	
400	1.22e-0	
500	1.40e-0	
600	1.60e-0	2.74e-0

Sputtered energy of Au by Au ne=24, na=2

E ₀ (eV)	0°	65°	
10		1.09e-5	
12		1.03e-4	
13		2.07e-4	
14		3.74e-4	
15		6.07e-4	
20		3.33e-3	
30	3.46e-5	1.37e-2	
33	7.Ole-5		
. 37	1.51e-4		
40	2.52e-4	2.65e-2	
50	7.12e-4		
60	1.50e-3		
80	3.59e-3		
100	6.15e-3		
120	7.93e-3		
140	1.02e-2		
150	1.06e-2		
170	1.30e-2		
200	1.52e-2		
250	1.86e-2		
300	2.13e-2		
400	2.63e-2		
500	2.78e-2		
600	2.87e-2	1.89e-1	

$$Au \rightarrow Au$$

Particle reflection coefficient of Au backscattered from Au zl=79. ml = 196.97. z2 = 79. m2 = 196.97. sbe = 3.93 eV. rho = 19.30 g/cm**3 ef=3.43 eV, esb = 3.93 eV. ca=1.00. kk0 = kk0r=2. kdeel = kdee2 = 3. ipots=ipotr = 1 (KrC) program: newtrim (Laszlo) ne=24. na= 2

$R_0(eV)$	0°	65 ^u	
10		2.21e-4	
12		1.47e-3	
13		2.94e-3	
14		5.23e-3	
15		8.92e-3	
20		4.19e-2	
30	1.44e-5	1.55e-l	
33	2.86e-5		
37	1.09e-4		
40	1.89e-4	2.74e-1	
50	7.22e-4		
60	1.68e-3		
80	4.09e-3		1
100	7.34e-3		
120	9.22e-3		
140	1.05e-2		
150	1.33e-2		
170	1.57e-2		
200	1.90e-2		
250	2.18e-2		
300	2.59e-2		
400	2.45e-2		
500	2.48e-2		
600	2.86e-2	4.96e-1	

Energy reflection coefficient of Au backscattered from Au ne=24, na= $2\,$

Eo(eV)	0°	65°
10		5.30e-5
12		3.57e-4
13		7.09e-4
14		1.29e-3
15		2.22e-3
20		1.13e-2
30	7.91e-7	4.73e-2
33	1.92e-6	
37	6.14e-6	
40	1.09e-5	9.06e-2
50	4.28e-5	
60	1.04e-4	
80	2.55e-4	
100	4.48e-4	
120	4.47e-4	
140	5.23e-4	
150	6.71e-4	
170	8.79e-4	
200	9.23e-4	
250	9.22e-4	
300	9.99e~4	
400	8.09e-4	
500	9.82e-4	
600	1.44e-3	1.95e-l

Average depth (mean range) in \ddot{A} of Au implanted in Au $ne{=}24._\,na{=}~2$

$E_0(eV)$	0°	65°	
10		1.97e-1	
12		2.23e-1	
13		2.41e-1	
14		2.63e-1	
15		2.78e-1	
20		3.62e-1	
30	1.80e + 0	5.63e-1	
33	1.93e + 0		
37	2.25e + 0		
40	2.55e + 0	7.84e-1	
50	2.93e + 0		
60	3.27e+0		
80	3.85e + 0		
100	4.31e + 0		
120	4.74e + 0		
140	5.13e + 0		
150	5.31e + 0		
170	5.65e + 0		
200	6.10e + 0		
250	6.82e + 0		
300	7.53e + 0		
400	8.65e + 0		
500	9.42e4-0		
600	1.00e + 1	6.81e + 0	

Au -> Au

Backward sputtering, forward sputtering, transmission; backscattering zl=79. ml = 196.97, z2=79, m2 = 196.97, sbe=3.80 eV. rho = 19.31 g/cm**3 ef=3.75 eV. esb=0.00 eV. ca=1.00, kk0=kk0r=2. kdeel = kdee2=3. ipot=ipotr=1 (KrC) e0=2.3e-f-8 eV, dx = 1000 Å program: trvme95 na= 3

alpha(degree)	Y	YE	ΥT	yt _b	TN	T_{E}	R _N	Re
0	1.52e + 0	1.26e-5	1.61e+0	9.28e-5	1.00e-0	9.90e-1		
45	1.89e-J-0	6.69e-5	2.00e + 0	1.41e-4	1.00e-0	9.86e-1	9.99e-6	3.86e-6
70	3.93e4-0	2.12e-4	4.09e+0	2.77e-4	1.00e-0	9.71e+0	2.60e-4	1.59e-4

Kr ->Hg

Sputtered energy of Hg by Kr

Sputtering yield of Hg by Kr zl = 36. ml= 83.80. z2 = 80, m2 = 200.59, sbe=6.36 eV, rho = 13.60 g/cm**3 ef=0.50 eV, esb = 0.00 eV, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program : TPP 9/82

ne=13,	na=12

B _o (eV)	0°	10°	20°	30°	40°	45°	50°	60°	70°	75°	80°	85°
50	8.75e-3											
100	9.07e-2											
200	2.85e-1											
500	7.62e-1											
762	1.06e-0	1.10e-0	1.23e-0	1.43e-0	1.66e-0	1.77e-0	1.88e-0	1.99e-0	1.77e-0	1.42e-0	8.30e-1	1.45e-1
1000	1.27e-0											
2000	1.92e-0											
5000	2.88e-0											
10000	3.65e-0											
20000	4.33e-0											
50000	4.95e-0											
100000	4.92e-0											
200000	4.69e-0											

ne=13, na=	12						
_E ₀ (eV)	0°	10°	20°	30°	40°	45°	50°
50	6.92e-4						
100	6.52e-3						
200	1.56e-2						
500	2.59e-2						
762	2.87e-2	3.02e-2	3.72e-2	4.89e-2	6.68e-2	7.86e-2	9.10e-2
1000	2 030 2						

50	6.92e-4											
100	6.52e-3											
200	1.56e-2											
500	2.59e-2											
762	2.87e-2	3.02e-2	3.72e-2	4.89e-2	6.68e-2	7.86e-2	9.10e-2	1.15e-1	1.28e-1	1.15e-1	7.53e-2	1.11e-2
1000	2.93e-2											
2000	2.97e-2											
5000	2.68e-2											
10000	2.31e-2											
20000	1.88e-2											
50000	1.31e-2											
100000	8.76e-3											
200000	5.83e-3											

60°

70°

75° 80° 85°

Kr -> Hg

Particle reflection coefficient of Kr backscattered from Hg zl=36. ml = 83.80. z2=80. m2 = 200.59. sbe=6.36 eV. rho = 13.60 g/cm**3 ef=0.50 eV. esb=0.00 eV. ca=1.00. kkO=kkOr=2, kdeel = kdee2=3. ipot=:ipotr = 1 (KrC) program : ne=13. na=12

E ₀ (eV)	0 °	10 ^u	20 ^u	30°	40°	45°	50°	60 ^u	70°	75 ^u	80°	85°
50	3.49e-1											
100	3.09e-1											
200	2.65e-1											
500	2.22e-1											
762	2.02e-1	2.14e-1	2.29e-1	2.60e~1	3.13e-1	3.48e-1	3.85e-1	4.91e-1	6.50e-1	7.60e-1	8.90e-1	9.94e-1
1000	1.99e-l											
2000	1.74e-l											
5000	1.50e-l											
10000	1.33e-1											
20000	1.19e-l											
50000	9.58e-2											
100000	7.67e-2											
200000	5.52e-2											

Energy reflection ne=13, na=12coefficient of Kr backscattered from Hg

E ₀ (eV)	0°	10°	20°	30°	40°	45°	50°	60°	70°	75°	80°	85°
50	5.76e-2											
100	5.17e-2											
200	4.41e-2											
500	3.60e-2											
762	3.15e-2	3.49e-2	4.14e-2	5.38e-2	7.82e-2	9.71e-2	1.19e-1	1.96e-l	3.43e-1	4.74e-1	6.73e-1	9.15e-1
1000	3.14e-2											
2000	2.66e-2											
5000	2.28e-2											
10000	2.03e-2											
20000	1.83e-2											
50000	1.49e-2											
100000	1.17e-2											
200000	8.72e-3											

Average depth (mean range) in $\ddot{A}\ of\ Kr$ implanted in Hg ne=13, na=12

E _o (eV)	0°	10°	20°	30°	40°	45°	50°	60°	70°	75°	80°	85°
50	8.31e+0											
100	1.02e-f-l											
200	1.27e+1											
500	1.75e+1											
762	2.09e+1	2.07e+1	2.04e4-1	1.97e + 1	1.91e+l	1.86e4-1	1.82e + 1	1.73e + 1	1.65e + 1	1.60e- -1	1.54e+1	1.43e+1
1000	2.35e+1											
2000	3.17e-f-l											
5000	4.94e + 1											
10000	7.18e+1											
20000	1.09e+2											
50000	1.92e+2											
100000	3.18e-f-2											
200000	5.43e+2											

$$\mathrm{H} \to \mathrm{U}$$

Sputtering yield of U by H zl = 1, ml= 1.01, z2=92, m2=238.03, sbe=5.42 eV. rho = 19.07 g/cm**3 ef=0.95 eV, esb = 1.00 eV, ca=1.00, kk0 = kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program : testvmcx, TPP 9/82 ne= 1, na= 8

Bo(eV)	0°	30 ^u	45 ^u	60 ^u	70°	80°	85 ^u	87 ^u
2000	4.13e-3	5.01e-3	5.78e-3	8.53e-3	1.24e-2	2.20e-2	2.38e-2	1.35e-2

Sputtered energy of U by PT program : testvmcx ne= 1, na= 8

$B_{o}(eV)$	0°	30°	45 ^u	60 ^u	70 ^u	80 ^u	85 ^u	87°
2000	1.29e-5	1.62e-5	1.85e-5	2.71e-5	3.99e-5	7.36e-5	9.37e-5	5.75e-5

Particle reflection coefficient of H backscattered from U zl= 1, ml = 1.01, z2=92, m2=238.03, sb=5.42 eV, rho=19.07 g/cm**3 ef=0.95 eV, esb = 1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program : testvmcx ne= 1, na= 8

Bo(eV)	0°	30°	45°	60°	70°	80°	85°	87°
2000	4.55e-1	4.96e-1	5.49e-1	6.26e-1	6.91e-1	7.79e-1	8.72e-1	9.50e-1

Energy reflection coefficient of Pl backscattered from U ne= 1, na= $\,8\,$

Bo(eV)	0°	30°	45°	60°	70°	80°	85°	87°
2000	2.44e-1	2.79e-1	3.28e-1	4.08e-1	4.86e-1	6.13e-1	7.63e-1	8.95e-1

Average depth (mean range) in \ddot{A} of H implanted in U ne= 1, na= 8

,	-	-	-					
Bq(eV)	0°	30°	45°	· 60°	70°	80°	85°	87°
2000	2.81e+2	2.75e + 2	2.68e+2	2.61e+2	2.56e+2	2.54e-)-2	2.53e+2	2.53e+2

$\mathrm{He} \to \mathrm{U}$

Sputtering yield of U by He zl= 2, ml= 4.00. z2= 92. m2=238.03, sb=5.42 eV, rho=19.07 g/cm**3 ef=0.50 eV, esb = 0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=l (KrC) program : TPP 9/82 ne=12, na= 1

Bp(eV)	0 ^s	
200	5.40e-3	
300	1.63e-2	
500	2.27e-2	
1000	4.45e-2	
3000	6.40e-2	
5000	6.54e-2	
10000	5.94e-2	
30000	4.57e-2	
50000	3.12e-2	
75000	2.59e-2	
100000	2.09e-2	
200000	1.26e-2	

Ne ->U

Sputtering yield of U by Ne zl = 10, ml = 20.18, z2=92, m2=238.03, sbe=5.42 eV, rho=19.07 g/cm**3 ef=0.50 eV, esb=0.00 eV. ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program : TPP 9/82 ne=13, na= 1

D	$(-\mathbf{V})$	

$B_0(eV)$	0*
50	7.30e-3
100	7.56e-2
300	2.96e-1
500	4.26e-1
1000	6.46e-1
2000	8.72e-1
3000	9.97e-1
5000	1.17e-0
10000	1.28e-0
30000	1.34e-0
100000	9.68e-1
300000	5.84e-1
500000	5.12e-1

Ar -> U

Bo(eV)	0°
50	2.22e-2
100	1.37e-1
300	5.07e-1

100	1.5/6-1
300	5.07e-1
1000	1.19e-0
3000	2.00e-0
10000	2.77e-0
30000	3.08e-0
34300	3.05e-0
100000	2.77e-0
300000	2.10e-0
500000	1.54e-0

Kr >U

Sputtering yield of U by Kr zl = 36, ml= 83.80. z2 = 92, m2 = 238.03, sbe=5.42 eV. rho = 19.07 g/cm**3 ef=0.50 eV, esb = 0.00 eV, ca=1.00, kk0 = kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program : IPP 9/82 ne=12, na=15

E _o (eV)	0 °	15°	20°	30°	45°	50°	55°	60 ^u	65 ^u	70°	75°	80°
50	1.93e-2											
100	1.48e-1											
300	6.78e-1											
1000	1.70e-0											
3000	3.09e-0											
10000	4.67e-0											
17900	5.76e-0	5.88e-0	6.26e-0	6.97e-0	9.15e-0	1.01e-f-l	1.04e+1	1.11eH-1	1.21e+1	1.23e4-1	1.20e + 1	1.05e- -1
17930	5.47e-0											
30000	6.12e-0											
100000	6.37e-0											
300000	5.80e-0											
500000	4.93e-0											

Eo(eV)	82.5°	85°	87.5 ⁰
17900	8.78e + 0	5.96e+0	1.26e-0

Sputtered energy of U by Kr program : ne= 1, na=15

H ₀ (eV)	0°	15°	20°		45°	50°	55°	60°	65°	70°	75°	80°
17900	2.25e-2	2.48e-2	2.83e-2	3.61e-2	5.73e-2	6.64e-2	8.00e-2	8.98e-2	1.03e-1	1.13e-1	1.25e-l	1.27e-1

Bo(eV)	82.5°	85°	87.5 ⁰
17900	l.lle-1	7.55e-2	1.41e-2

program : ne= 1, na=15

$E_0 (eV)$	0°	15°	20°		45°	50°	55°	60°	65°	70°	75°	80°
17900	1.60e-l	1.71e-l	1.63e-1	1.93e-1	2.51e-1	2.94e-1	3.18e-l	3.87e-1	4.28e-1	4.97e-1	5.61e-l	6.57e-1

Bo(eV)	82.5°	85°	87.5°
17900	7.32e-1	8.47e-1	9.86e-1

Energy reflection coefficient of Kr backscattered from IT $ne=\ 1,\ na=15$

Bq(eV)	0°	15°			45°	50°	55°	60°	65°	70°	75 ^u	80°
17900	3.09e-2	3.13e-2	3.25e-2	4.23e-2	7.14e-2	8.80e-2	1.07e-l	1.42e-1	1.79e-l	2.27e-1	2.96e-l	4.07e-1

E ₀ (eV)	82.5°	85°	87.5°
17900	6.99e-1	8.05e-1	9.34e-1

Average depth (mean range) in Ä of Kr implanted in U n

ie=	Ι,	na=	15	
		_	_	

$E_0 (eV)$	0°	15°	20°		45°	50°	55°	60°	65°	70°	75°	80°
17900	8.13e + 1	8.29e+1	8.09e + 1	7.81e + 1	7.14e+1	6.90e+1	6.72e+1	6.58e-f-l	6.19e + 1	6.03e+1	5.91e+1	5.87e + 1

E ₀ (eV	7)	82.5°	85 ^ű	87.5°
1790	0 5	.70e + 1	5.51e+l	4.83e+1

Sputtering yield of U by Xe zl = 54. ml = 131.30. z2 = 92. m2=238.03. sbe=5.42 eV. rho = 19.07 g/cm**3 ef=0.50 eV. esb = 0.00 eV. ca=1.00. kk0 = kk0r=2. kdeel = kdee2=3. ipot=ipotr= 1 (KrC) program : TPP 9/82 ne=12. na= 1

$E_0(eV)$	0°
50	6.30e-3
70	3.26e-2
100	1.01e-l
200	3.72e-1
300	6.33e-1
1000	1.80e-0
3000	3.41e-0
10000	5.35e-0
30000	7.58e-0
100000	8.62e-0
300000	8.98e-0
500000	8.13e-0
500000	8.13e-0

 $Rn \rightarrow U$

Sputtering yield of U by Rn zl = 86. ml = 222.00. z2=92. m2=238.03. sbe=5.42 eV. rho=19.07 g/cm**3 ef=0.50 eV, esb = 0.00 eV. ca=1.00. kk0 = kk0r=2. kdeel = kdee2 = 3. ipot=ipotr = 1 (KrC) program : IPP 9/82 ne=12. na= 1

$R_0(eV)$	<u>0°</u>
50	9.00e-4
70	9.70e-3
100	4.05e-2
150	1.37e-1
200	2.47e-1
300	4.69e-1
1000	1.62e-0
3000	3.30e-0
10000	5.85e-0
30000	8.55e-0
100000	1.12e + 1
300000	1.25e+l

u->u

Sputtering yield of U by U zl=92, ml = 238.03, z2=92, m2=238.03, sbe=5.42 eV, rho = 19.07 g/cm**3 ef=5.37 eV. esb=5.42 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3. ipot=ipotr=1 (KrC) program : TPP 9/82 ne=ll, na= 1

E ₀ (eV)	0°	
70	1.32e-2	
100	4.84e-2	
150	1.38e-1	
200	2.58e-1	
300	4.60e-1	
500	8.84e-1	
1000	1.64e-0	
3000	3.35e-0	
10000	6.06e-0	
30000	8.50e-0	
100000	1.14e+l	

Sputtered energy of U by U program : trspvmc ne= 7, na= 1

	ca=1.00	ca=1. 15
Eq(eV)	0°	0°
70	7.78e-4	1.02e-3
100	2.28e-3	3.59e-3
200	9.19e-3	1.26e-2
500	1.95e-2	2.68e-2
1000	2.56e-2	3.40e-2
3000	2.84e-2	3.59e-2
10000	2.63e-2	2.90e-2

Particle reflection coefficient of U backscattered from U z1=92, ml = 238.03, z2=92, m2=238.03, sbe=5.42 eV, rho = 19.07 g/cm**3 ef=5.37 eV, esb=5.42 eV, ca=1.00, kkO=kkOr=2, kdeel = kdee2 = 3, ipot=ipotr=1 (KrC) program : trspvm ne= 7, na= 1

	ca=1.00	ca= 1.15
$E_0(eV)$	0°	0°
70	6.60e-4	1.42e-3
100	2.90e-3	5.40e-3
200	1.26e-2	1.54e-2
500	2.15e-2	2.62e-2
1000	2.66e-2	3.17e-2
3000	2.74e-2	3.30e-2
10000	2.23e-2	2.29e-2

Energy reflection ne = 7, na = 1coefficient of IJ backscattered from U

	ca=1.00	ca=1. 15
$E_0(eV)$	0°	0°
70	3.46e-5	1.18e-4
100	1.38e-4	3.09e-4
200	5.83e-4	8.48e-4
500	8.93e-4	1.19e-3
1000	1.15e-3	1.30e-3
3000	1.09e-3	1.25e-3
10000	7.81e-4	9.25e-4

Average depth (mean range) in \ddot{A} of U implanted in U ne= 7, na= 1

	ca=1.00	ca=1. 15
Bo(eV)	0°	0°
70	3.83e + 0	2.35e-)-0
100	4.61e+0	2.95e-f-0
200	6.46e+0	4.38e+0
500	9.93e + 0	7.18e-}-0
1000	1.38e+1	1.02e+1
3000	2.30e4-1	1.73e+1
10000	4.11e+1	3.28e+1

Compound targets

Sputtering yield of BeO by O zl = 8, ml = 16.00 z2 = 4 (0.50). 8 (0.50), m2 = 9.01, 16.00, sbe=6.33 eV, rho=3.01 g/cm**3 ef=6.30 eV, esb=6.33 eV. ca=1.00, kk0 = kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: trspvmcx, TPP 9/82 only low fluence ! ne=10, na=17 Be Eo(eV) $\frac{1}{2}$

0													
Č	Eo(eV)	0°	10°	20°	30°	40°	50°	55°	60°	62.5°	65°	67.5	70°
	100	1.23e-2											
	140	2.66e-2											
	200	5.03e-2	6.00e-2	1.01e-1	1.62e-1	2.52e-1	3.58e-1	3.95e-1	4.22e-1		3.96e-1		3.37e-1
	300	8.18e-2	9.59e-2	1.39e-1	2.19e-1	3.35e-1	4.75e-1	5.34e-1	5.82e-1	5.87e-1	5.78e-1		5.02e-1
	500	1.31e-1	1.44e-1	1.99e-l	2.87e-1	4.23e-1	6.24e-1		7.94e-1		8.36e-1		7.95e-1
	1000	1.92e-1	2.11e-1	2.66e-1	3.71e-1	5.38e-1	7.78e-1		1.07e-0		1.18e-0	1.24e-0	1.26e-0
	2000	2.40e-1											
	3000	2.54e-1	2.84e-1	3.36e-1	4.33e-1	6.12e-1	8.96e-1		1.29e-0		1.56e-0		1.81e-0
	5000	2.64e-1											
	10000	2.35e-1											

			-	-	
Bo(eV)	72.5°	75°	77.5°	80°	85°
200		2.40e-1		1.27e-l	6.18e-2
300		3.66e-1		1.82e-1	6.02e-2
500		5.90e-1		2.99e-1	6.81e-2
1000	1.20e-0	1.11e-0	9.21e-1	6.52e-1	1.05e-l
3000		1.98e-0		1.76e-0	4.68e-1
	Bo (eV) 200 300 500 1000 3000	Bo(eV) 72.5° 200 300 500 1.20e-0 3000 1.20e-0	Bo (eV) 72.5° 75° 200 2.40e-1 3.66e-1 300 3.66e-1 5.90e-1 1000 1.20e-0 1.11e-0 3000 1.98e-0 1.98e-0	Bo (eV) 72.5° 75° 77.5° 200 2.40e-1 3.00 3.66e-1 500 5.90e-1 9.21e-1 1000 1.20e-0 1.11e-0 9.21e-1 3000 1.98e-0 9.21e-1 1.98e-0	Bo (eV) 72.5° 75° 77.5° 80° 200 2.40e-1 1.27e-1 300 3.66e-1 1.82e-1 500 5.90e-1 2.99e-1 1000 1.20e-0 1.11e-0 9.21e-1 3000 1.98e-0 1.76e-0

\cap													
~	Bq (eV)	0°	10°	20°	30 ^u	40 ^u	50°	55°	60 ^u	62.5°	65 ^u	67.5°	70°
	100	5.77e-3											
	140	1.46e-2											
	200	2.89e-2	3.45e-2	6.70e-2	1.20e-1	2.05e-1	3.11e-1	3.55e-1	3.75e-1		3.61e-1		3.05e-1
	300	5.05e-2	6.61e-2	1.01e-1	1.70e-l	2.80e-1	4.23e-1	5.03e-1	5.22e-1	5.35e-1	5.30e-1		4.64e-1
	500	8.35e-2	9.99e-2	1.41e-1	2.35e-1	3.63e-1	5.48e-1		7.31e-1		7.77e-l		7.56e-l
	1000	1.35e-1	1.51e-l	1.96e-l	2.93e-1	4.52e-1	6.88e-1		9.70e-1		1.09e-0	1.14e-0	1.19e-0
	2000	1.81e-1											
	3000	1.96e-l	2.01e-1	2.57e-1	3.54e-1	5.09e-1	7.55e-1		1.16e-0		1.43e-0		1.70e-0
	5000	2.08e-1											
	10000	1.88e-1											

Ω.						
~	$E_0(eV)$	72.5°	75°	77.5°	80°	85°
	200		2.11e-1		1.15e-l	4.86e-2
	300		3.29e-1		1.62e-1	5.45e-2
	500		5.70e-1		2.72e-1	5.75e-2
	1000	1.16e-0	1.06e-0	8.84e-1	6.28e-1	9.22e-2
	3000		1.88e-0		1.70e-0	4.46e-1

0 -> BeO

	$B_0(eV)$	0°	10°	20°	30°	40°	50°	55°	60°	62.5°	65°	67.5°	70°
Г	100	2.42e-4											
	140	5.17e-4											
	200	8.67e-4	1.20e-3	3.08e-3	7.32e-3	1.63e-2	3.20e-2	4.22e-2	4.91e-2		5.39e-2		5.15e-2
	300	1.25e-3	1.84e-3	3.76e-3	8.19e-3	1.84e-2	3.50e-2	4.64e-2	5.46e-2	6.Ole-2	6.44e-2		6.32e-2
	500	1.73e-3	2.27e-3	3.96e-3	8.84e-3	1.80e-2	3.27e-2		5.61e-2		6.71e-2		7.34e-2
	1000	1.94e-3	2.44e-3	4.13e-3	8.12e-3	1.53e-2	2.88e-2		5.00e-2		6.23e-2	6.87e-2	7.45e-2
	2000	1.83e-3											
	3000	1.62e-3	1.75e-3	3.14e-3	5.54e-3	1.02e-2	1.94e-2		3.56e-2		4.68e-2		6.10e-2
	5000	1.38e-3											
	10000	9.05e-4											

Be						
DC	Bo(eV)	72.5°	75°	77.5°	80°	85°
	200		4.03e-2		2.12e-2	9.60e-3
	300		4.79e-2		2.59e-2	7.87e-3
	500		5.81e-2		3.29e-2	7.49e-3
	1000	7.29e-2	7.19e-2	6.25e-2	4.62e-2	7.34e-3
	3000		6.57e-2		6.28e-2	1.96e-2

Ο.													
Ŭ	$E_0 (eV)$	0°	10°	20 ^u	30°	40°	50°	55°	60°	62.5 ^U	65°	67.5 ⁰	70°
- [100	2.42e-4											
	140	5.17e-4											
	200	8.67e-4	1.20e-3	3,08e-3	7.32e-3	1.63e-2	3.20e-2	4.22e-2	4.91e-2		5.39e-2		5.15e-2
	300	1.25e-3	1.84e-3	3.76e-3	8.19e-3	1.84e-2	3.50e-2	4.64e-2	5.46e-2	6.01e-2	6.44e-2		6.32e-2
	500	1.73e-3	2.27e-3	3.96e-3	8.84e-3	1.80e-2	3.27e-2		5.61e-2		6.71e-2		7.34e-2
	1000	1.94e-3	2.44e-3	4.13e-3	8.12e-3	1.53e-2	2.88e-2		5.00e-2		6.23e-2	6.87e-2	7.45e-2
	2000	1.83e-3											
	3000	1.62e-3	1.75e-3	3.14e-3	5.54e-3	1.02e-2	1.94e-2		3.56e-2		4.68e-2		6.10e-2
	5000	1.38e-3											
	10000	9.05e-4											_

0			-			
Č	$E_0(eV)$	72.5°	75°	77.5°	80°	85°
	200		3.97e-2		2.28e-2	9.63e-3
	300		5.07e-2		2.63e-2	8.03e-3
	500		6.52e-1		3.54e-2	7.93e-3
	1000	7.97e-2	7.67e-2	6.97e-2	5.43e-2	8.87e-3
	3000		7.15e-2		7.21e-2	2.43e-2

0 -> BeO

Particle reflection coefficient of O backscattered from z1= 8, m1= 16.00 z2= 4 (0.50), 8 (0.50), m2= 9.01. 16.00. sbe = 6.33 eV, rho = 3.01 g/cm**3 ef = 6.30 eV, esb = 6.33 eV, ca=1.00, kk0=kk0r=2. kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: trspvmcx, TPP 9/82 only low fluence ! ne=10, na=17

Ro(eV)	0°	10°	20°	30°	40°	50°	55°	60°	62.5°	65°	67.5°	
100	4.70e-4											
140	1.04e-3											
200	1.33e-3	2.78e-3	7.98e-3	2.40e-2	5.98e-2	1.50e-l	2.28e-1	3.33e-1		4.64e-1		6.26e-1
300	2.17e-3	3.60e-3	8.90e-3	2.43e-2	5.76e-2	1.29e-1	1.92e-1	2.85e-1	3.52e-1	4.18e-1		5.79e-1
500	3.35e-3	4.10e-3	8.80e-3	2.04e-2	4.68e-2	1.03e-1		2.29e-1		3.42e-1		4.82e-1
1000	3.05e-3	2.80e-3	5.70e-3	1.54e-2	3.45e-2	7.77e-2		1.75e-l		2.46e-1	3.02e-1	3.66e-1
2000	1.60e-3											
3000	1.30e-3	2.40e-3	4.60e-3	9.20e-3	2.19e-2	5.05e-2		1.13e-1		1.76e-1		2.59e-1
5000	1.50e-3											
10000	6.00e-4											

Bo(eV)	72.5°	75 ^u	77.5°	80 ^u	85 ^u
200		7.84e-1		9.08e-1	9.70e-1
300		7.60e-1		9.12e-1	9.82e-1
500	4 5 2 0 1	6.89e-1	6 68 0 1	8.8/e-1 7.05 c 1	9.86e-1
3000	4.526-1	3.72e-1	0.086-1	5.77e-1	9.84e-1 9.22e-/

Energy reflection coefficient of O backscattered from only low fluence I ne=10, na=17 $\,$

Eq(eV)	0°	10°	20°	30°	40°	50°	55°	60°	62.5°		67.5°	
100	3.04e-5											
140	6.79e-5											
200	6.65e-5	2.05e-4	7.18e-4	2.97e-3	1.06e-2	3.74e-2	6.76e-2	1.19e-l		1.98e-1		3.21e-1
300	1.06e-4	1.98e-4	7.34e-4	2.58e-3	9.50e-3	2.96e-2	5.37e-2	9.73e-2	1.32e-1	1.76e-1		2.95e-1
500	1.10e-4	2.20e-4	6.41e-4	1.98e-3	6.80e-3	2.15e-2		7.12e-2		1.30e-1		2.33e-1
1000	1.00e-4	1.43e-4	3.83e-4	1.66e-3	4.77e-3	1.43e-2		4.72e-2		8.73e-2	1.18e-1	1.55e-l
2000	1.35e-4											
3000	4.39e-5	8.83e-5	2.54e-4	6.55e-4	2.48e-3	8.56e-3		2.81e-2		5.27e-2		9.43e-2
5000	7.74e-5											
10000	2.07e-5											
		the second se	A design of the second s			10.000						

Ro(eV)	72.5 ^U	75 ^u	77.5°	80°	85 ^u
200		4.67e-1		6.27e-l	7.33e-1
300		4.68e-1		6.66e-l	8.05e-1
500		4.21e-1		6.62e-1	8.57e-1
1000	2.20e-1	3.04e-1	4.32e-1	5.82e-1	8.88e-1
3000		1.75e-l		3.64e-1	8.13e-1

Average depth (mean range) in \ddot{A} of O implanted in only low fluence ? ne=10, na=17

R _e (eV)	0.0	10°	20°	30°	40°	50°	55°	60°	62.50	65°		
100	4.28e+0	10	20	50		50	55	00	02.5	05	07.5	70
140	5.51e+0											
200	7.18e+0	7.08e + 0	6.70e+0	6.14e+0	5.44e4-0	4.69e+0	4.29e+0	3.88e+0		$3.48e \pm 0$		$3.12e \pm 0$
300	9.66e+0	9.50e+0	9.08e+0	8.29e+0	7.35e+0	6.42e+0	5.87ed-0	5.37e4-0	5.15e4-0	4.87e+0		4.47e + 0
500	1.40e4-1	1.38e+1	1.32e + 1	1.22e+1	1.08e+1	9.39e+0		8.02e+0		7.29e+0		6.66e-f-0
1000	2.38e+1	2.33e4-1	2.23e+1	2.06e+1	1.85e + 1	1.60e+1		1.35e + 1		1.26e+1	1.19e+l	1.13e + 1
2000	4.14e+1											
3000	5.89e + 1	5.79e+1	5.51e-{-1	5.13e4-1	4.61e + 1	3.94e+1		3.30ed-1		2.98e+1		2.70e + 1
5000	9.25e+1											
10000	1.79e+2											

$Ro(eV) = 72.5^{\circ} = 75^{\circ} = 77.$	5° 80° 85°
200 2.67e4-0	2.09e + 0 1.60e+0
300 3.91e4-0	3.15e+0 2.61e+0
500 6.15e+0	5.21e4-0 4.03e+0
1000 1.07e+1 1.03e+1 9.70	e+0 9.08 $e+0$ 7.28 $e+0$

$H \rightarrow B_4 C$

Sputtering yield of B4C by H zl= 1. ml= 1.01, z2= 5 (0.8). 6 (0.2), m2= 10.81. 12.01. alpha=0.00 testvmcx: sbe=5.73. 7.42 eV. rho=2.51 g/cm**3. ef=1.00 eV trspvmc: sbe=5.90. 7.40 eV. rho=2.28 g/cm**3. ef=0.90 eV esb=1.00 eV. ca=1.00. kk0=kk0=2. kdeel = kdee2=3. ipot=ipotr=1 (KrC) program: testvmcx. IPP 9/82. trspvmc only low fluence ! ne=12. na= 1

$E_0(eV)$	В	С	B + C	comment
40	3.61e-4	5.35e-5	4.15e-4	
50	1.23e-3	2.19e-4	1.45e-3	
70	2.99e-3	6.41e-4	3.63e-3	
100	5.17e-3	1.32e-3	6.49e-3	
100	5.49e-3	1.09e-3	6.58e-3	trspvmc
200	7.61e-3	1.72e-3	9.33e-3	_
300	7.70e-3	1.93e-3	9.63e-3	trspvmc
333	7.93e-3	2.03e-3	9,96e-3	trspvmc
500	7.57e-3	1.83e-3	9.39e-3	
1000	6.40e-3	1.40e-3	7.80e-3	
1000	5.67e-3	1.47e-3	7.14e-3	trspvmc
2000	4.40e-3	1.06e-3	5.46e-3	trspvmc

Sputtered energy of B4C by H program: testvmcx. trspvmc only low fluence ! ne=12, na= 1

1e = 12,	na=	1	

			· · · ·	
Bo(eV)	В	С	B + C	comment
40	1.17e-5	1.37e-6	1.31e-5	
50	5.10e-5	7.62e-6	5.86e-5	
70	1.43e-4	2.80e-5	1.71e-4	
100	2.45e-4	5.89e-5	3.04e-4	
100	2.68e-4	4.60e-5	3.14e-4	trspvmc
200	3.10e-4	5.81e-5	3.68e-4	
300	2.56e-4	6.13e-5	3.17e-4	trspvmc
333	2.45e-4	6.24e-5	3.17e-4	trspvmc
500	1.85e-4	4.22e-5	2.27e-4	
1000	1.0le-4	2.05e-5	1.22e-4	
1000	8.82e-5	2.05e-5	1.09e-4	trspvmc
2000	4.33e-5	1.05e-5	5.38e-5	trspvmc

$H \rightarrow B_4C$

Particle reflection coefficient of H backscattered from B_4C zl = 1, ml = 1.01, z2 = 5 (0.8), 6 (0.2), m2 = 10.81, 12.01, alpha=0.00testvmcx: sbe=5.73, 7.42 eV, rho=2.51 g/cm**3. ef=1.00 eV trspvmc: sbe=5.90, 7.40 eV, rbo=2.28 g/cm**3, ef=0.90 eV esb=1.00 eV, ca=1.00, kk0=kk0=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx, trspvmc only low fluence ! ne=12, na=1

Eo(eV) 40 0° 3.43e-1 3.22e-1 2.93e-1 2.65e-1 2.63e-1 2.09e-1 1.76e-1 1.70e-1 1.38e-1 8.57e-2 8.43e-2 comment 50 70 100 100 200 300 trspvmc trspvmc 333 500 trspvmc 1000 1000 trspvmc 4.35e-2 2000 trspvmc

Energy reflection coefficient of H backscattered from B $_4$ C only low fluence ! ne=12, na= 1

E _o (eV)	0°	comment
40	1.57e-1	
50	1.44e-l	
70	1.28e-1	
100	1.12e-1	
100	1.11e-1	trspvmc
200	8.26e-2	
300	6.56e-2	trspvmc
333	6.25e-2	trspvmc
500	4.82e-2	
1000	2.68e-2	
1000	2.62e-2	trspvmc
2000	1.19e-2	trspvmc

Average depth (mean range) in \ddot{A} of H implanted in B $_4$ C only low fluence ! ne=12, na= 1

$E_0(eV)$	0°	comment
40	1.18e4-1	
50	1.40e + 1	
70	1.82e + 1	
100	2.43e + 1	
100	2.67e + 1	trspvmc
200	4.31e + 1	_
300	6.73e + 1	trspvmc
333	7.34e + 1	trspvmc
500	9.53e + 1	
1000	1.76e+2	
1000	1.94e+2	trspvmc
2000	3.58e+2	trspymc

$D \rightarrow B_4 C$

Sputtering yield of B4C by D zl = 1. ml = 2.01, z2 = 5 (0.8). 6 (0.2), m2 = 10.81, 12.01, sbe=5.73, 7.42 eV, rho = 2.51 g/cm**3 eff=1.00 eV, esb = 1.00 eV, ca=1.00, kk0 = kk0r=2, kdeel = kdee2 = 3, ipot=ipotr = 1 (KrC) program: testvmcx, IPP 9/82 only low fluence! ne=11, na= 2

	В	В	С	C	B + C	B + C
$E_0(eV)$	0°	85°	0°	85°	0°	85°
25	1.47e-4		1.90e-5		1.66e-4	
30	7.54e-4		1.02e-4		8.56e-4	
40	2.75e-3		5.28e-4		3.27e-3	
50	4.75e-3		9.73e-4		5.72e-3	
70	8.26e-3		2.07e-3		1.03e-2	
100	1.15e-2		2.71e-3		1.42e-2	
200	1.51e-2		3.50e-3		1.86e-2	
500	1.49e-2		3.67e-3		1.86e-2	
1000	1.34e-2		2.98e-3		1.63e-2	
8000	4.10e-3		1.20e-3		5.30e-3	
100000		3.06e-2		7.54e-3		3.81e-2

Sputtered energy of B4C by D program: testvmcx only low fluence! ne=11, na= 2

ne=n, na=	2					
	В	В	С	С	B 4- C	B + C
$E_{o}(eV)$	0°	85°	0°	85°	0°	85°
25	6.95e-6		6.72e-7		7.62e-6	
30	4.22e-5		5.13e-6		4.73e-5	
40	1.77e-4		3.04e-5		2.07e-4	
50	3.21e-4		5.82e-5		3.79e-4	
70	5.72e-4		1.39e-4		7.11e-4	
100	7.32e-4		1.50e-4		8.82e-4	
200	7.42e-4		1.55e-4		8.97e-4	
500	4.45e-4		1.04e-4		5.49e-4	
1000	2.46e-4		5.20e-5		2.98e-4	
8000	1.91e-5		2.96e-6		2.21e-5	
100000		5.26e-5		1.04e-5		6.30e-5

$D \rightarrow B_4 C$

Particle reflection coefficient of D backscattered from B4C zl = 1, ml = 2.01; z2 = 5 (0.8), 6 (0.2), m2 = 10.81. 12.01, sbe=5.73, 7.42 eV, rho=2.51 g/cm**3 efs=1.00 eV, cbs=1.00 eV, ca=1.00, kk0 = kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx only low fluence! ne=11, na=2

$E_0(eV)$	0°	85°
25	2.95e-1	
30	2.78e-1	
40	2.54e-1	
50	2.35e-1	
70	2.12e-1	
100	1.92e-1	
200	1.52e-1	
500	1.03e-1	
1000	6.68e-2	
8000	6.40e-3	
100000		2.91e-1

Energy reflection coefficient of D backscattered from B4C only low fluence! ne=ll, na= 2

$B_0(eV)$	0°	85°
25	1,09e-1	
30	1.02e-1	
40	9.17e-2	
50	8.39e-2	
70	7.42e-2	
100	6.59e-2	
200	5.03e-2	
500	3.20e-2	
1000	1.90e-2	
8000	1.28e-3	
100000		4.05e-2

Average depth (mean range) in \ddot{A} of D implanted in B4C only low fluence! ne=l1, na= 2

E ₀ (eV)	0°	85°
25	7.04e+0	
30	8.10e4-0	
40	1.02e+1	
50	1.22e+1	
70	1.61e + 1	
100	2.17e+l	
200	4.02e+1	
500	9.45e + 1	
1000	1.85e+2	
8000	1.29e+3	
100000		9.82e+2

Sputtering yield of B_4C by T) zl = 1, ml = 2.01, z2 = 5 (0.8), 6 (0.2). m2 = 10.81, 12.01, sbe = 5.98, 5.98 eV. rho = 2.52 g/cm**3 ef=0.90 eV. esb = 1.00 eV. ca=1.00, kk0=kk0r=2. kdeel = kdee2=3, ipot=ipotr = 1 (KrC) program: trspvmc only low fluence! ne= 3, na= 6 B Eo(eV) 0° 30° 45° 60° 75° 85°

Eo(eV)	0°	30°	45°	60°	75°	85°
100	1.14e-2	1.74e-2	3.19e-2	5.79e-2	6.04e-2	2.50e-3
300	1.46e-2					
500	1.60e-2	2.83e-2	5.35e-2	1.05e-1	2.02e-1	4.03e-2

С

$E_0(eV)$	0°	30°	45°	60°	75°	85°
100	2.59e-3	3.84e-3	7.24e-3	1.27e-2	1.43e-2	6.15e-4
300	3.60e-3					
500	3.66e-3	7.95e-3	1.27e-2	2.55e-2	5.39e-2	1.07e-2

B + C

Eo(eV)	0°	30°	45°	60°	75°	85°
100	1.40e-2	2.12e-2	3.91e-2	7.06e-2	7.47e-2	3.12e-3
300	1.82e-2					
500	1.97e-2	3.63e-2	6.62e-2	1.31e-1	2.56e-1	5.10e-2

Sputtered energy of $B_4 C$ by D only low fluence! ne= 3, na= 6 B

$E_0(eV)$	0°	30°	45°	60°	75°	85°
100	7.56e-4	1.20e-3	2.37e-3	5.00e-3	7.00e-3	3.89e-4
300	5.66e-4					
500	4.57e-4	8.15e-4	1,81e-3	4.42e-3	9.76e-3	3.06e-3

С

Bo(eV)	0°	30°	45°	60°	75°	85°
100	1.63e-4	2.49e-4	4.95e-4	1.04e-3	1.59e-3	8.50e-5
300	1.37e-4					
500	1.04e-4	2.41e-4	4.43e-4	1.15e-3	2.80e-3	7.48e-4

B + C

E ₀ (eV)	0°	30°	45°	60°	75°	85°
100	9.19e-4	1.45e-3	2.87e-3	6.04e-3	8.59e-3	3.12e-3
300	7.03e-4					
500	5.61e-4	1.06e-3	2.25e-3	5.57e-3	1.26e-2	3.81e-3

Particle reflection coefficient of D backscattered from B_4C zl= 1, ml= 2.01, z2= 5 (0.8), 6 (0.2), m2= 10.81, 12.01, sbe=5.98, 5.98 eV, rho=2.52 g/cm**3 ef=0.90 eV. esb=1.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr = 1 (KrC) program: trspvmc only low fluence! ne= 3, na= 6

E ₀ (eV)	0°	30°	45°	60°	75°	85°
100	1.92e-1	2.49e-1	3.40e-1	4.96e-1	8.18e-1	9.97e-1
300	1.28e-1					
500	1.04e-1	1.51e-l	2.14e-1	3.36e-1	5.55e-1	9.66e-l

Energy reflection coefficient of D backscattered from B4C only low fluence! ne= 3, na= 6

$E_0(eV)$	0°	30°	45°	60°	75°	85°
100	6.56e-2	9.85e-2	1.56e-l	2.85e-1	6.66e-l	9.58e-1
300	4.14e-2					
500	3.22e-2	5.27e-2	8.58e-2	1.61e-1	3.65e-1	9.17e-1

Average depth (mean range) in \tilde{A} of D implanted in B4C only low fluence! ne= 3, na= 6

$B_0(eV)$	0°	30°	45°	60°	75°	85°
100	2.16e+1	2.03e- -1	1.88e+l	1.74e + 1	1.61e + 1	1.46e+l
300	6.43e + 1					
500	9.38e + 1	8.73e+1	7.90e + 1	6.95e + 1	6.26e + 1	5.89e-H

He -4- B₄C

Sputtering yield of B4C by He z1 = 2, m1= 4.00, z2= 5 (0.8). 6 (0.2), m2= 10.81, 12.01, sbe=5.73, 7.42 eV, rho = 2.51 g/cm**3 ef=0.50 eV, esb = 0.00 eV, ca=1.00, kkO=kkOr=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: testymcx, TPP 9/82, trspvmc only low filence! ne=10. na= 5 B E_a (eV) = 0°

$E_0(eV)$	0°	30 ^u	60°	75 ^u	85°	comment
30	8.92e-4					
40	3.61e-3					
50	8.27e-3					
70	1.65e-2					
100	2.51e-2					
200	4.14e-2					
500	5.70e-2					
800	5.89e-2	1.09e-1	3.77e-1	6.38e-1	3.79e-2	sbe = 5.98, 5.98 eV
1000	5.76e-2					
2000	4.72e-2					

С

Eo(eV)	0°	30°	60°	75°	85°	comment
30	1.45e-4					
40	7.64e-4					
50	1.77e-3					
70	3.57e-3					
100	6.09e-3					
200	9.53e-3					
500	1.26e-2					
800	1.55e-2	2.63e-2	9.33e-2	1.60e-1	8.13e-3	sbe=5.98, 5.98 eV
1000	1.30e-2					
2000	1.216-2					

B + C

E _o (eV)	0°	30°	60 ^u	75°	85°	comment
30	1.04e-3					
40	4.37e-3					
50	1.00e-2					
70	2.01e-2					
100	3.12e-2					
200	5.09e-2					
500	6.96e-2					
800	7.44e-2	1.35e-1	4.70e-1	7.98e-1	4.60e-2	sbe=5.98, 5.98 eV
1000	7.06e-2					
2000	5.93e-2					

$He \ -> \ B_4C$

Sputtered energy of B₄C by He program: testvmcx. trspvmc only low fluence! ne=10. na= 5 B Eq(eV) 0° 30°

Eq(eV)	0°	30°	60°	75°	85°	comment
30	6.29e-5					
40	2.73e-4					
50	6.24e-4					
70	1.20e-3					
100	1.66e-3					
200	2.03e-3					and the second
500	1.63e-3					
800	1.35e-3	3.10e-3	1.58e-2	3.24e-2	2.63e-3	sbe=5.98. 5.98 eV
1000	1.18e-3					
2000	6.03e-4					

С

E ₀ (eV)	0°	30°	60°	75°	85°	comment
30	1.09e-5					
40	5.64e-5					
50	1.20e-4					
70	2.36e-4					
100	4.00e-4					
200	4.78e-4					
500	3.69e-4					
800	3.98e-4	7.38e-4	3.85e-3	7.82e-3	5.22e-4	sbe=5.98, 5.98 eV
1000	2.51e-4					
2000	1.59e-4					

B + C

E ₀ (eV)	0°	30°	60°	75°	85°	comment
30	7.38e-5					
40	3.29e-4					
50	7.44e-4					
70	1.44e-3					
100	2.06e-3					
200	2.51e-3					
500	2.00e-3					
800	1.75e-3	3.84e-3	1.97e-2	4.02e-2	3.15e-3	sbe = 5.98. 5.98 eV
1000	1.43e-3					
2000	7.62e-4					

He -» B_4C

Particle reflection coefficient of He backscattered from $B_4 C$ zl= 2, ml= 4.00, z2= 5 (0.8), 6 (0.2), m2 = 10.81, 12.01, sbe=5.73, 7.42 eV, rho=2.51 g/cm**3 ef=0.50 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: testvmcx, trspvmc only low fluencet ne=10, na= 5

$E_0(eV)$	0°	30°	60°	75°	85°
30	2.47e-1				
40	2.12e-1				
50	1.88e-l				
70	1.59e-l				
100	1.33e-l				
200	9.90e-2				
500	6.88e-2				
800	5.18e-2	8.40e-2	2.71e-1	5.16e-l	9.84e-1
1000	4.85e-2				
2000	2.88e-2				

Energy reflection coefficient of He backscattered from $B_4 C$ only low fluence! na=5B $F_{a}(2)$ $B_{a}(2)$ $B_{a}($

E _D (eV)	0°	30°	60°	75°	85°
30	5.45e-2				
40	4.64e-2				
50	4.11e-2				
70	3.42e-2				
100	2.86e-2				
200	2.07e-2				
500	1.40e-2				
800	1.07e-2	2.11e-2	1.13e-1	3.19e-1	9.45e-1
1000	9.93e-3				
2000	5.33e-3				

Average depth (mean range) in \tilde{A} of He implanted in B₄C only low fluence! ne=10, na= 5 B $r_{c} \in \mathbb{C}^{+}$

E _o (eV)	0°	30°	60°	75 ⁶	85°
30	4.41e+0				
40	5.48e+0				
50	6.48e+0				
70	8.43e4-0				
100	1.12e-H				
200	1.99e+l				
500	4.52e+1				
800	7.04e+1	6.27e+1	4.76e + 1	4.02e4-1	2.64e-f-l
1000	8.73e+1				
2000	1.74e+2				

Sputtering yield of B4C by C z1= 6, m1 = 12.01, z2= 5 (0.8), 6 (0.2), m2= 10.81. 12.01. sbe = 5.98, 5.98 eV. rho=2.52 g/cm**3 ef=2.00 eV. esb = 2.50 eV. ca=1.00, kk0 = kk0r = 2, kdeel = kdee2 = 3, ipot=ipotr = 1 (KrC) program: trspvmc only low fluence ! ne= 4, na= 4 B E_{e} (eV) 0 0 1 600 1 500

E . (eV)	0°	60°	70°	80°	comment
150 300 1000 3000	2.10e-1	1.34e-0	3.83e-1 8.30e-1 1.77e-0 2.24e-0	1.07e-0	sbe = 5.90, 7.40 eV, esb = 2.60 eV sbe=5.90. 7.40 eV, esb = 2.60 eV

С

$E_0 (eV)$	0°	60°	70°	80°	comment
150			8.92e-2		sbe=5.90. 7.40 eV. esb = 2.60 eV
300			2.11e-1		sbe=5.90. 7.40 eV. esb = 2.60 eV
1000	4.34e-2	3.36e-1	4.47e-1	2.64e-1	
3000			5.36e-	1	

в + с

[E ₀ (eV)	0°	60°	70°	80°	comment
	150 300 1000 2000	2.53e-2	1.68e-0	4.72e-1 1.04e-0 2.22e-0 2.78e-0	1.33e-0	sbe=5.90, 7.40 eV, esb=2.60 eV sbe=5.90, 7.40 eV, esb=2.60 eV

Sputtered energy of B4C by C only low fluence ! ne=4, na=4B Ro(eV) 0° (60)

Ro(eV)	0°	60°	70°	80°	comment
150			7.00e-2		sbe = 5.90, 7.40 eV, esb = 2.60 eV
300			9.73e-2		sbe=5.90, 7.40 eV, esb = 2.60 eV
1000	3.43e-3	6.47e-2	9.79e-2	7.45e-2	
3000			7.13e-	2	

С

Ro (eV)	0°	60°	70 ^u	80°	comment
150			1.51e-2		sbe=5.90, 7.40 eV, esb=2.60 eV
300			2.50e-2		sbe=5.90, 7.40 eV, esb = 2.60 eV
1000	7.06e-4	1.70e-2	2.55e-2	1.95e-2	
3000			1.94e-2		

в + С

Ro (eV)	0 ^ö	60°	70°	80°	comment
150 300 1000 2000	4.14e-3	8.17e-2	8.51e-2 1.08e-1 1.23e-1 9.07e-2	9.40e-2	sbe=5.90, 7.40 eV, esb=2.60 eV sbe=5.90, 7.40 eV, esb=2.60 eV

 $c \rightarrow b_4 c$

Particle reflection coefficient of C backscattered from B4C zl = 6, ml= 12.01, z2= 5 (0.8), 6 (0.2), m2= 10.81, 12.01, sbe=5.98, 5.98 eV, rho=2.52 g/cm**3 ef=2.00 eV, esb= 2.50 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3. ipot=ipotr=1 (KrC) program: trspvmc only low fluence ! ne= 4, na= 4

Eo(eV)	0 ^u	60°	70°	80°	comment
150			6.87e-1		esb=2.60 eV esb=2.60 eV
1000	4.90e-3	1.68e-l	3.36e-1	7.58e-1	030 = 2.00 0 V
3000			2.38e-1		

Energy reflection coefficient of C backscattered from B₄C only low fluence ! ne= 4, na= 4

Bo(eV)	0°	60°	70°	80°	comment	
150			3.82e-1		esb=2.60 eV	Ŀ.
300			2.75e-1		esb=2.60 eV	
1000	1.98e-4	4.76e-2	1.42e-1	5.57e-l		
3000			8.65e-2			

Average depth (mean range) in A of C implanted in B4C only low fluence I ne= 4, na= 4

-						
L	Eo(eV)	0°	60°	70°	80°	comment
Γ	150			3.83e+0		esb=2.60 eV
I	300			6.93e4-0		esb=2.60 eV
I	1000	3.11e4-1	1.79e4-l	1.49e+1	1.24e+1	
I	3000			4.10e + 1		

$$O \rightarrow B_4C$$

Sputtering yield of B4C by 0 z1 = 8, ml = 16.00, z2 = 5 (0.8), 6 (0.2), m2 = 10.81, 12.01, sbe = 5.90, 7.40 eV rho = 0.85, 1.62, 2.28, 2.52 g/cm**3, sbe(average) = 1.17, 1.28, 2.21, 5.98, 6.05 eV, alpha=0.00 ef=2.10 eV, esb = 2.60 eV, ca=1.00, kk0 = kk0r=2, kdeel = kdee2 = 3, ipot=ipotr = 1 (KrC) program: trspme only low fluence ! ne= 5, na = 1, n(rho) = 4 B rho (g/cm**3) = 0 ef = 1 - 0 eff= 1 -

rho (g/cm* *3)	0.85	0.85	1.62	2.28	2.28	2.28	2.52
sbe(eV)	1.17	2.21	1.28	1.17	2.21	6.05	5.98
$Ro(eV) 0^{u}$	0°	0°	0°	0°	0°	0°	
100							1.03e-2
150	4.12e-1	1.41e-1	5.90e-1	8.32e-1	3.03e-1	2.88e-2	
300	6.19e-1	2.51e-1	8.48e-1	1.29e-0	8.98e-2	5.32e-1	1.02e-1
1000	8.63e-1	4.48e-1	1.17e-0	1.68e-0	2.34e-1	8.48e-1	2.52e-1
3000	9.86e-1	5.52e-1	1.18e-0	1.79e-0	3.13e-1	9.60e-1	3.18e-1

С

rho(g/cm**3)	0.85	0.85	1.62	2.28	2.28	2.28	2.52
sbe(eV)	1.17	2.21	1.28	1.17	2.21	6.05	5.98
$Ro(eV) 0^{u}$	0°	0°	0°	0 ^u	0°	0°	-
100							2.31e-3
150	1.04e-1	3.37e-2	1.38e-1	1.94e-1	7.06e-2	6.12e-3	
300	1.39e-1	5.81e-2	2.26e-1	3.17e-1	2.14e-2	1.20e-l	2.46e-2
1000	1.98e-1	1.10e-1	2.93e-1	4.60e-1	5.02e-2	2.09e-1	5.61e-2
3000	2.76e-1	1.23e-1	3.02e-1	4.39e-1	6.55e-2	2.30e-1	7.04e-2

В + С

rho (g/cm* *3)	0.85	0.85	1.62	2.28	2.28	2.28	2.52
sbe(eV)	1.17	2.21	1.28	1.17	2.21	6.05	5.98
Ro(eV) 0°	0°	0°	0°	0°	0°	0°	
100							1.26e-2
150	5.16e-1	1.73e-1	7.28e-1	1.03e-0	3.73e-1	3.48e-2	
300	7.58e-1	3.09e-1	1.07e-0	1.61e-0	1.11e-1	6.51e-1	1.27e-l
1000	1.06e-0	5.58e-1	1.46e-0	2.14e-0	2.84e-1	1.06e-0	3.08e-1
3000	1.26e-0	6.45e-1	1.48e-0	2.23e-0	3.78e-1	1.19e-0	3.88e-1

Sputtered energy of B4C by O only low fluence ! ne= 5, na= 1, n(rho) = 4 B

rho(g/cm**3)	0.85	0.85	1.62	2.28	2.28	2.28	2.52
sbe(eV)	1.17	2.21	1.28	1.17	2.21	6.05	5.98
$Ro(eV) 0^{\circ}$	0°	0°	0°	0°	0°	0°	
100							3.96e-4
150	7.37e-3	3.42e-3	1.0le-2	1.36e-2	5.88e-3	9.71e-4	
300	7.85e-3	4.46e-3	9.38e-3	1.32e-2	8.49e-3	2.50e-3	2.69e-3
1000	5.72e-3	4.74e-3	6.52e-3	8.32e-3	6.63e-3	3.90e-3	4.14e-3
3000	5.13e-3	3.71e-3	4.16e-3	5.36e-3	4.36e-3	2.60e-3	2.70e-3

С

rho(g/ cm**3)	0.85	0.85	1.62	2.28	2.28	2.28	2.52
sbe(eV)	1.17	2.21	1.28	1.17	2.21	6.05	5.98
$R_0 (eV) 0^\circ$	0°	0 ^u	0°	0°	0°	0°	
100							8.62e-5
150	1.79e-3	8.20e-4	2.07e-3	2.89e-3	1.36e-3	2.04e-4	
300	1.53e-3	9.69e-4	2.48e-3	3.10e-3	1.82e-3	5.17e-4	6.04e-4
1000	1.27e-3	1.25e-3	1.58e-3	1.96e-3	1.66e-3	8.12e-4	8.59e-4
3000	9.54e-4	4.64e-4	8.75e-4	1.51e-3	1.09e-3	6.58e-4	6.01e-4

в + с

rho(g/cm**3)	0.85	0.85	1.62	2.28	2.28	2.28	2.52
sbe(eV)	1.17	2.21	1.28	1.17	2.21	6.05	5.98
Bo(eV) 0°	0°	0°	0°	0°	0°	0°	
100							4.78e-4
150	9.16e-3	4.24e-3	1.22e-2	1.65e-2	7.25e-3	1.18e-3	
300	9.38e-3	5.43e-3	1.19e-2	1.63e-2	1.03e-2	3.02e-3	3.29e-3
1000	6.98e-3	5.99e-3	8.09e-3	1.03e-2	8.30e-3	4.17e-3	4.99e-3
3000	6.08e-3	4.17e-3	5.03e-3	6.87e-3	5.45e-3	3.26e-3	3.30e-3

0 -> b₄c

Average depth (mean range) in \ddot{A} of O implanted in B4C zl = 8, ml= 16.00, z2= 5 (0.8). 6 (0.2), m2= 10.81, 12.01. sbe=5.90, 7.40 eV rho=0.85, 1.62, 2.28. 2.52 g/cm**3, sbe(average) = 1.17, 1.28, 2.21, 5.98. 6.05 eV, alpha=0.00 ef=2.10 eV, esb = 2.60 eV, ca=1.00. kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: trspvmc only low fluence ! ne= 5, na= 1, n(rho)= 4

rho(g/cm**3)	0.85	0.85	1.62	2.28	2.28	2.28	2.52
sbe(eV)	1.17	2.21	1.28	1.17	2.21	6.05	5.98
$E_{o}(eV) = 0^{\circ}$	0°	0°	0°	0°	0°	0°	
100							4.89e+0
150	2.23e + 1	2.19e+1	1.08e4-1	7.51e4-0	7.48e4-0	7.57e+0	
300	3.59e+1	3.45e + 1	1.75e + 1	1.24e+1	1.22e+1	1.24e+l	1.08e+1
1000	8.45e+1	8.21e + 1	4.18e+1	3.09e+1	2.97e4-1	3.07e + 1	2.71e+1
3000	2.12e + 1	1.95e+2	1.05e+2	7.62e + 1	7.36e+1	7.83e + 1	6.68e + 1

 B_4C Ne

Sputtering yield of B4C by Ne z1 = 10, m1 = 20.18, z2 = 5, 6, m2 = 10.81, 12.01, sbe=6.06 eV, rho=2.51 g/cm**3 ef=0.50 eV, esb = 0.00 eV, ca=1.00, kk0 = kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: TPP 9/82; total yield only! only low fluence ! ne = 7, na = 1 B + C B (eV) 0°

Bo(eV)	0°
100	8.10e-3
300	1.09e-1
500	1.98e-1
1000	3.34e-1
2000	4.46e-l
5000	5.40e-1
10000	5.41e-1

$$O \rightarrow B_2O_3$$

Sputtering yield of B_2O_3 by O zl = 8, ml = 16.00, z2 = 5 (0.4), 8 (0.6). m2 = 10.81. 16.00, sbe=5.90, 2.50 eV rho = 1.62 g/cm**3, sbe(average) = 1.28 eV, alpha=0.00 ef=2.10 eV, esb = 2.60 eV, ca=1.00, kk0 = kk0r=2, kdeel = kdee2 = 3, ipot=ipotr=1 (KrC) program: trspvmc only low fluence ! ne = 4, na = 1

$E_0(eV)$	В	0	B + 0
150	3.26e-1	4.27e-1	7.52e-1
300	4.51e-1	6.21e-1	1.07e-0
1000	6.72e-1	8.54e-1	1.53e-0
3000	6.29e-1	9.17e-1	1.55e-0

Sputtered energy of B2O3 by O only low fluence ! ne = 4, na = 1

$E_0(eV)$	В	0	B + O
150	5.97e-3	7.21e-3	1.32e-2
300	5.54e-3	7.09e-3	1.26e-2
1000	4.71e-3	4.62e-3	9.33e-3
3000	2.22e-3	2.74e-3	4.95e-3

Average depth (mean range) in \ddot{A} of O implanted in B2O3 only low fluence ! ne= 4, na= 1

Bo(eV)	gctrc
150	1.22e + 1
300	1.94e + 1
1000	4.60e + 1
3000	1.13e+2

$O \rightarrow B(OH)_3$

Sputtering yield of B(OH) $_3$ by 0 zl = 8, ml = 16.00, z2 = 5 (0.14), 8 (0.43), 1 (0.43), m2 = 10.81, 16.00, 1.01 sbe = 5.90, 2.50, 2.19 eV, sbe(average) = 1.22 eV, rho=0.85 g/cm**3. alpha=0.00 ef=2.10 eV, esb=2.60 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: trspvmc only low fluence ! ne= 4, na= 1

E ₀ (eV)	В	0	Н	B + O + H
150	5.95e-2	1.52e-1	1.89e-1	4.01e-1
300	9.29e-2	2.29e-1	3.62e-1	6.84e-1
1000	1.44e-1	4.07e-1	6.47e-1	1.20e-0
3000	1.32e-1	3.71e-1	7.74e-1	1.28e-0

Sputtered energy of B(OH)3 by O only low fluence ! ne= 4, na= 1

E ₀ (eV)	В	0	Н	B + 0 + H
150	1.40e-3	2.88e-3	3.63e-3	7.91e-3
300	1.46e-3	2.89e-3	4.92e-3	9.27e-3
1000	1.06e-3	2.82e-3	5.67e-3	9.55e-3
3000	1.10e-3	1.20e-3	5.02e-3	7.32e-3

Average depth (mean range) in \ddot{A} of O implanted in B(OH) $_3$ only low fluence ! . ne= 4, na= 1

E _o (eV)	_o ctrc
150	2.26e + 1
300	3.61e+1
1000	8.05e + 1
3000	1.97e+2

/*I* — S1O2

Particle reflection coefficient of p backscattered from SiO_2 zl = 1. ml = 0.11, z2=14, 8; m2 = 28.09, 16.00. sbe=4.70 eV, rho = 2.20 g/cm**3 ef=0.50 eV, esb = 0.00 eV. ca=1.00, kk0=kk0r=2, kdee2 = 3, ipot=ipotr=1 (KrC) 10 - 1000 eV : kdeel = 3, 1000 - 20000 eV : kdeel = 4 program: trvmc only low fluence ! ne= 8, na= 1

E ₀ (eV)	QCtrc
10	5.64e-1
100	3.02e-1
500	1.48e-1
1000	8.83e-2
1000	7.88e-2
5000	1.28e-2
10000	5.10e-3
20000	1.70e-3

Energy reflection coefficient of p backscattered from SiO $_2$ only low fluence ! ne= 8, na= 1

$E_0(eV)$	Q^{ctrc}
10	3.16e-1
100	1.25e-1
500	4.79e-2
1000	2.79e-2
1000	2.32e-2
5000	3.58e-3
10000	1.40e-3
20000	5.71e-4

Average depth (mean range) in $\ddot{\rm A}$ of p implanted in SiO $_2$ only low fluence ! ne= 8, na= 1

$B_0(eV)$	gctrc
10	8.03e4-0
100	3.11e+1
500	9.03e-J-1
1000	1.48e+2
1000	1.33e + 2
5000	4.50e + 2
10000	7.93e+2
20000	1.56e + 3

$E_0(eV)$	0°	30°	comment
500	6.79e-3		x=0.72. y=0.28
2000		6.06e-3	x=0.60. y=0.40

Eq (eV)	0°	30 ^u	comment
500	7.37e-3		x=0.72, y=0.28
2000		6.63e-3	x = 0.60. y = 0.40

$\Gamma i + C$.				
	$E_0(eV)$	0°	30°	comment
	500	1.42e-2		x=0.72, y=0.28
	2000		1.27e-2	x=0.60. y=0.40

Sputtered energy of $Ti_x C_y$ by H only low fluence ! ne= 2, na= 2 Ti

Eq(eV)	0°	30°	comment
500	9.28e-5		x=0.72, y=0.28
2000		4.10e-5	x=0.60, y=0.40

C.				
	Bo (eV)	0°	30°	comment
	500	2.23e-4		x=0.72, y=0.28
	2000		9.23e-5	x = 0.60, y = 0.40

Ti + C $E_{\circ}(eV)$ 500 Circle Circlecomment x=0.72, y=0.28x=0.60. y=0.400° 3.16e-4 30° 2000 1.33e-4

E ₀ (eV)	0°	30°	comment
500	3.79e-1		x=0.72, y=0.28
2000		2.25e-1	x=0.60, y=0.40

Energy reflection coefficient of H backscattered from Ti x Cy only low fluence ! ne= 2, na= 2

B ₀ (eV)	0°	30°	comment
500	1.92e-1		x=0.72, y=0.28
2000		9.11e-2	x = 0.60, y = 0.40

Average depth (mean range) in \ddot{A} of H implanted in Ti $_x$ C $_y$ only low fluence ~! ne= 2, na= 2

$E_0(eV)$	0°	30°	comment
500	9.84e + 1		x=0.72, y=0.28
2000		2.62e+2	x=0.60, y=0.40

Sputtering yield of WO 3 by 0 zl = 8, ml = 16.00, z2 = 74 (0.25), 8 (0.75), m2 = 183.85, 16.00. sbe = 6.28, 6.28 eV, rho = 6.47 g/cm**3 ef=2.50 eV, esb = 2.60 eV, ca=1.00. kk0 = kk0r=2, kdeel = kdee2 = 3, ipot=ipotr = 1 (KrC) program: trspvmc only low fluence 1 ne=11, na= 4 W Ro(cV) = 0° = 2.30° = 2.0° = 2.0°

Ro(eV)	0°	30°	60°	85°	comment
50	7.71e-5				sbe = 6.28, 6.28 eV
100	1.68e-3				sbe=6.28, 6.28 eV
200	7.79e-3				sbe = 6.28, 6.28 eV
300	1.30e-2				sbe=6.28, 6.28 eV
500	2.29e-2				sbe = 6.28, 6.28 eV
500	4.46e-2				sbe=8.68, 2.60 eV
1000	4.61e-2	8.06e-2	1.71e-l	2.38e-2	sbe = 6.28, 6.28 eV
1000	6.32e-2	8.75e-2	2.61e-1	3.58e-2	sbe = 8.68, 2.60 eV
2000	6.88e-2				sbe = 6.28, 6.28 eV
6000	8.87e-2	1.33e-1	3.26e-1	3.63e-1	sbe = 6.28, 6.28 eV
6000	1.17e-l	2.04e-1	4.87e-1	4.39e-1	sbe=8.68, 2.60 eV

0						
	Eo(eV)	0°	30°	60°	85°	comment
	50	3.99e-2				sbe=6.28, 6.28 eV
	100	1.18e-1				sbe=6.28, 6.28 eV
	200	2.33e-1				sbe=6.28, 6.28 eV
	300	3.03e-1				sbe=6.28, 6.28 eV
	500	4.05e-1				sbe=6.28, 6.28 eV
	500	5.79e-1				sbe=8.68, 2.60 eV
	1000	5.43e-1	7.50e-1	1.32e-0	1.88e-1	sbe=6.28, 6.28 eV
	1000	7.65e-l	9.86e-l	1.78e-0	2.44e-1	sbe = 8.68, 2.60 eV
	2000	6.21e-1				sbe = 6.28, 6.28 eV
	6000	6.70e-1	8.97e-1	1.74e-0	1.67e-0	sbe = 6.28, 6.28 eV
	6000	8.98e-1	1.24e-0	2.27e-0	1.88e-0	sbe = 8.68, 2.60 eV

w + 0

Ro(eV)	0°	30 ^u	60°	85°	comment
50	4.00e-2				
100	1.20e-1				
200	2.41e-1				
300	3.16e-1				
500	4.28e-1				
500	6.24e-1				sbe = 8.68, 2.60 eV
1000	5.89e-1	8.31e-1	1.49e-0	2.12e-1	
1000	8.28e-1	1.07e-0	2.04e-0	2.80e-1	sbe=8.68, 2.60 eV
2000	6.90e-1				
6000	7.59e-1	1.03e-0	2.07e-0	2.30e-0	
6000	1.02e-0	1.44e-0	2.76e-0	2.32e-0	sbe = 8.68, 2.60 eV

$$O - 4WO_3$$

Sputtered energy of WO 3 by O only low fluence ! ne=11, na= 4 W

Bo (eV)	0 ^u	30 ^u	60°	85°	comment
50	2.75e-6				sbe=6.28. 6.28 eV
100	8.06e-5				sbe=6.28. 6.28 eV
200	3.59e-4				sbe=6.28. 6.28 eV
300	4.52e-4				sbe=6.28, 6.28 eV
500	5.74e-4				sbe=6.28. 6.28 eV
500	9.92e-4				sbe=8.68. 2.60 eV
1000	8.91e-4	1.46e-3	4.78e-3	1.43e-3	sbe=6.28. 6.28 eV
1000	1.08e-3	1.61e-3	5.34e-3	1.77e-3	sbe=8.68. 2.60 eV
2000	1.00e-3				sbe=6.28. 6.28 eV
6000	6.27e-4	1.14e-3	3.16e-3	7.22e-3	sbe=6.28. 6.28 eV
6000	5.00e-4	1.98e-3	4.03e-3	8.53e-3	sbe=8.68. 2.60 eV

0	_					
ĩ	$B_0(eV)$	0°	30°	60 ^u	85°	comment
	50	6.29e-3				sbe=6.28. 6.28 eV
	100	1.33e-2				sbe=6.28, 6.28 eV
	200	1.89e-2				sbe=6.28. 6.28 eV
	300	2.05e-2				sbe=6.28. 6.28 eV
	500	2.21e-2				sbe=6.28, 6.28 eV
	500	2.54e-2				sbe=8.68j 2.60 eV
	1000	2.01e-2	3.22e-2	8.04e-2	1.60e-2	sbe=6.28. 6.28 eV
	1000	2.20e-2	3.48e-2	8.68e-2	1.52e-2	sbe=8.68. 2.60 eV
	2000	1.80e-2				sbe=6.28. 6.28 eV
	6000	1.34e-2	1.89e-2	4.72e-2	5.44e-2	sbe=6.28. 6.28 eV
	6000	1.26e-2	2.10e-2	4.93e-2	4.41e-2	sbe=8.68. 2.60 eV

W + O						
	$B_{o}(eV)$	0°	30 ^u	60 ^u	85 ^u	comment
	50	6.29e-3				
	100	1.34e-2				
	200	1.93e-2				
	300	2.10e-2				
	500	2.27e-2				
	500	2.64e-2				sbe=8.68. 2.60 eV
	1000	2.10e-2	3.37e-2	8.52e-2	1.74e-2	
	1000	2.31e-2	3.64e-2	9.21e-2	1.70e-2	sbe=8.68, 2.60 eV
	2000	1.90e-2				
	6000	1.40e-2	2.00e-2	5.04e-2	6.16e-2	
	6000	1.31e-2	2.30e-2	5.33e-2	5.26e-2	sbe=8.68. 2.60 eV

Particle reflection coefficient of O backscattered from WO $_3$ zl = 8, ml = 16.00, z2 = 74 (0.25), 8 (0.75), m2 = 183.85, 16.00, sbe=6.28, 6.28 eV, rho = 6.47 g/cm**3 ef=2.50 eV, esb = 2.60 eV, ea=1.00, kk0 = kk0r=2, kdeel = kdee2 = 3, ipot=ipotr=1 (KrC) program: trspvmc only low filence ! ne=11, na= 4

E ₀ (eV)	0°	30°	60°	85 ^u	comment
50	1.33e-1				
100	1.30e-1				
200	1.24e-1				
300	1.25e-1				
500	1.18e-1				
500	1.26e-1				sbe = 8.68, 2.60 eV
1000	1.10e-1	1.61e-l	3.24e-1	9.72e-1	
1000	1.06e-l	1.51e-l	3.51e-1	9.69e-l	sbe = 8.68, 2.60 eV
2000	1.11e-1				
6000	1.01e-l	1.29e-1	2.87e-1	7.73e-1	
6000	9.32e-2	1.22e-1	2.85e-1	7.69e-1	sbe = 8.68, 2.60 eV

Energy reflection coefficient of O backscattered from WO 3 only low fluence ! ne=11, na= 4

ne=n, nu=					
Eq(eV)	0°	30°	60°	85°	comment
50	5.30e-2				
100	4.87e-2				
200	4.34e-2				
300	4.37e-2				
500	3.97e-2				
500	4.49e-2				sbe = 8.68, 2.60 eV
1000	3.77e-2	5.72e-2	1.49e-1	8.97e-1	
1000	3.68e-2	5.49e-2	1.52e-1	8.97e-1	sbe = 8.68, 2.60 eV
2000	4.03e-2				
6000	3.53e-2	4.77e-2	1.27e-1	6.43e-1	
6000	3.11e-2	4.99e-2	1.37e-1	6.49e-1	sbe = 8.68, 2.60 eV

Average depth (mean range) in $\ddot{\rm A}$ of 0 implanted in WO 3 only low fluence ! ne=11, na= 4

E _o (eV)	0°	30°	60°	85°	comment
50	5.30e-{-0				
100	8.21e + 0				
. 200	1.25e + 1				
300	1.63e+1				
500	2.24e + 1				
500	2.20e + 1				sbe=8.68, 2.60 eV
1000	3.49e + 1	3.12e+1	2.38e+1	1.61e + 1	
1000	3.39e + 1	3.13e-J-l	2.28e- -1	1.59e+l	sbe=8.68. 2.60 eV
2000	5.61e + 1				
6000	1.36e + 2	1.15e + 2	8.40e + 1	5.62e+1	
6000	1.26e + 2	1.12e+2	8.07e + 1	5.43e-f-l	sbe=8.68, 2.60 eV
Ne -> W0 $_3$

Sputtering yield of WO 3 by Ne zl = 10, ml = 20.18. z2=74 (0.25), 8 (0.75), m2 = 183.85, 16.00, sbe=6.28. 6.28 eV, rho=6.47 g/cm**3, alpha=0.00 ef=0.20 eV, esb = 0.00 eV, ca=1.00, kk0=kk0r=2, kdeel =kdee2=3, ipot=ipotr=1 (KrC) program: trspvmc only low fluence !

ne=	5,	na =	1	

$E_0(eV)$	W	0	w 4-0
100	1.98e-3	1.15e-1	1.17e-1
200	8.51e-3	2.35e-1	2.44e-1
500	2.53e-2	4.58e-1	4.83e-1
1000	4.72e-2	5.89e-1	6.36e-1
5000	1.12e-1	8.36e-1	9.48e-1

Sputtered energy of WO 3 by Ne only low fluence ! ne= 5, na= 1

E ₀ (eV)	W	0	w + 0
100	1.09e-4	1.25e-2	1.26e-2
200	3.88e-4	1.88e-2	1.92e-2
500	8.86e-4	2.50e-2	2.59e-2
1000	1.04e-3	2.18e-2	2.28e-2
5000	1.04e-3	1.78e-2	1.88e-2

Particle reflection coefficient of Ne backscattered from WO 3 z1 = 10, ml= 20.18, z2=74 (0.25), 8 (0.75), m2 = 183.85, 16.00, sbe=6.28, 6.28 eV, rho=6.47 g/cm**3, alpha=0.00 ef=0.20 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr= 1 (KrC) program: trspvmc only low fluence ! ne= 5, na= 1

Eq(eV)	Ö ⁵
100	1.44e-1
200	1.27e-1
500	1.13e-1
1000	1.06e-1
5000	9 46e-2

Energy reflection coefficient of Ne backscattered from WO 3 only low fluence ' ne= 5, na= 1

E _o (eV)	0°	
100	4.54e-2	
200	3.91e-2	
500	3.34e-2	
1000	3.27e-2	
5000	3.16e-2	

Average depth (mean range) in \tilde{A} of Ne implanted in WO 3 only low fluence l ne= 5, na= 1

E ₀ (eV)	0 ^u
100	7.91ed-0
200	1.18e + 1
500	2.01e+1
1000	3.15e+1
5000	9.92e+1

$Kr \rightarrow W0_3$

Sputtering yield of WO 3 by Kr zl = 36, ml = 83.80. z2=74 (0.25), 8 (0.75). m2 = 183.85. 16.00, sbe=3.01, 3.01 eV, rho=6.47 g/cm**3, alpha=0.00 ef=0.20 eV, esb = 0.00 eV. ca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr = 1 (KrC) program: trspvmc only low fluence ne= 3, na= 1 !

Bq(eV)	w	0	w 4-0	comment
6000	4.81e-1	2.82e-0	3.30e-0	
10000	5.82e-1	3.26e-0	3.84e-0	
10000	3.38e-1	1.86e-0	2.20e-0	sbe=6.28, 6.28 eV

Sputtered energy of WO 3 by Kr only low fluence 1 ne= 3, na= 1

Eo(eV)	w	0	W 4- 0	comment
6000	1.96e-3	1.82e-2	2.02e-2	
10000	2.21e-3	1.62e-2	1.84e-2	
10000	2.05e-3	1.58e-2	1.79e-2	sbe=6.28, 6.28 eV

Particle reflection coefficient of Kr backscattered from WO3 zl = 36, ml= 83.80, z2 = 74 (0.25), 8 (0.75), m2=183.85, 16.00, sbe=3.01, 3.01 eV, rho=6.47 g/cm**3, alpha=0.00 ef=0.20 eV, esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) program: trspvmc only low fluence ! ne= 3, na= 1

Eq(eV)	0°	comment
6000	3.50e-2	
10000	4.94e-2	
10000	4.24e-2	sbe = 6.28, 6.28 eV

Energy reflection coefficient of Kr backscattered from WO 3 only low fluence ! ne= 3, na= 1

l	E ₀ (eV)	0°	comment	
	6000	3.02e-3		L
	10000	3.33e-3		
	10000	3.35e-3	sbe = 6.28, 6.28 eV	

Average depth (mean range) in \ddot{A} of Kr implanted in WO 3 only low fluence ! ne= 3, na= 1

06 $B_0(eV)$ comment 6000 6.29e4-1 7.68e4-1 8.46e4-1 10000 10000 sbe = 6.28, 6.28 eV

.

 $0 -> WO_4$

Sputtering yield of WO 4 by O zl = 8, mis 16.00, z2=74 (0.20), 8 (0.80). m2 = 183.85, 16.00, sbe = 8.68, 2.60 eV, rho = 6.47 g/cm**3, alpha=0.00 ef=2.50 eV, esb=2.60 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipot=ipotr=1 (KrC) program: trspvmc only low fluence I ne= 3, na= 1

E _o (eV)	W	0	w + 0
500	3.12e-2	6.69e-l	7.00e-2
1000	5.75e-2	8.71e-1	9.29e-2
6000	8.70e-2	9.22e-1	1.Ole-3

Sputtered energy of WO 4 by O only low fluence ! ne= 3, na= 1

$B_0(eV)$	W	0	w + 0
500	5.53e-4	2.45e-2	2.51e-2
1000	7.09e-4	2.30e-2	2.37e-2
6000	5.21e-4	1.16e-2	1.21e-2

program: trspvmc only low fluence ! ne- 3, na= 1

Bp(eV)	0°
500	1.05e-1
1000	1.03e-1
6000	7.29e-2

Energy reflection coefficient of O backscattered from WO 4 only low fluence ! ne= 3, na= 1

Bo(eV)	0 °
500	3.32e-2
1000	3.13e-2
6000	2.37e-2

Average depth (mean range) in \ddot{A} of 0 implanted in WO 4 only low fluence $\ !$ ne= 3, na= 1

B _o (eV)	0°
500	1.89e+1
1000	2.93e+1
6000	1.16e+2

Sputtering yield of $W_x O_y$ by O z1 = 8, m1= 16.00, z2 = 74 (x), 8 (y), m2 = 183.85, 16.00, sbe = 6.28, 6.28 eV, rho = 6.47 g/cm**3, alpha=0.00 ef=2.50 eV, esb=2.60 eV, ca=1.00, kk0 = kk0r=2, kdeel = kdee2 = 3, ipot=ipotr = 1 (KrC) program: trspvmc only low fluence ! ne = 5, na = 1, n(x) = 10 W

x	0.90	0.80	0.75	0.70	0.65	0.60	0.55	0.50	0.40	0.35
E ₀ (eV)										
100	2.31e-2	1.76e-2	1.60e-2							
200			5.38e-2	5.25e-2	4.22e-2					
500		1.69e-1			1.15e-1	1.00e-1	8.81e-2			
1000								1.33e-1	8.92e-2	
5000										1.43e-1

0

X	0.90	0.80	0.75	0.70	0.65	0.60	0.55	0.50	0.40	0.35
$E_0(eV)$										
100	2.89e-2	5.43e-2	6.76e-2							
200			1.35e-l	1.63e-1	1.83e-1					
500		2.00e-1			3.06e-1	3.35e-1	3.67e-1			
1000								4.90e-1	5.01e-1	
5000										6.29e-1

W +

x	0.90	0.80	0.75	0.70	0.65	0.60	0.55	0.50	0.40	0.35
Bo(eV)										
100	5.20e-2	7.19e-2	8.36e-2							
200			1.89e-1	2.16e-1	2.25e-1					
500		3.69e-1			4.21e-1	4.35e-1	4.55e-1			
1000								6.23e-1	5.90e-1	
5000										7.72e-1
	x Bo(eV) 100 200 500 1000 5000	x 0.90 Bo (eV)	x 0.90 0.80 Bo (eV) - - 100 5.20e-2 7.19e-2 200 - - 500 3.69e-1 - 1000 5000 -	x 0.90 0.80 0.75 Bo (eV) - -	x 0.90 0.80 0.75 0.70 Bo (eV)	x 0.90 0.80 0.75 0.70 0.65 Bo (eV)	x 0.90 0.80 0.75 0.70 0.65 0.60 Bo (eV)	x 0.90 0.80 0.75 0.70 0.65 0.60 0.55 Bo (eV)	x 0.90 0.80 0.75 0.70 0.65 0.60 0.55 0.50 Bo (eV)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Sputtered energy of $W_x O_y$ by O only low fluence ! ne= 5, na= 1, n(x) = 10 W

x	0.90	0.80	0.75	0.70	0.65	0.60	0.55	0.50	0.40	0.35
Bo (eV)										
100	1.33e-3	9.79e-4	8.69e-4							
200			2.40e-3	2.38e-3	1.91e-3					
500		5.50e-3			3.38e-3	3.06e-3	2.63e-3			
1000								2.90e-3	1.78e-3	
5000										1.23e-3

ο.											
Ĭ	х	0.90	0.80	0.75	0.70	0.65	0.60	0.55	0.50	0.40	0.35
	Ro(eV)										
- [100	4.66e-3	8.69e-3	1.07e-2							
	200			1.61e-2	1.93e-2	2.02e-2					
	500		1.65e-2			2.40e-2	2.60e-2	2.62e-2			-
	1000								2.61e-2	2.37e-2	
	5000										1.53e-2

w + 0

x	0.90	0.80	0.75	0.70	0.65	0.60	0.55	0.50	0.40	0.35
Eq(eV)										
100	5.99e-3	9.67e-3	1.16e-2							
200			1.85e-2	2.17e-2	2.21e-2					
500		2.20e-2			2.74e-2	2.91e-2	2.88e-2			
1000								2.90e-2	2.55e-2	
5000										1.65e-2

~

$$O \rightarrow WA_{y}$$

Particle reflection coefficient of O backscattered from $W_x O_y$ zl = 8. ml = 16.00. z2=74 (x). 8 (y). m2 = 183.85, 16.00. sbe = 6.28, 6.28 eV. rho=6.47 g/cm**3, alpha=0.00 ef=2.50 eV, esb=2.60 eV, ca=1.00, kk0=kk0r=2. kdeel = kdee2=3. ipot=ipotr=1 (KrC) program: trspvmc only low fluence ! ne= 5. na= 1. n(x) = 10

x	0.90	0.80	0.75	0.70	0.65	0.60	0.55	0.50	0.40	0.35
$E_{o}(eV)$										
100	4.16e-1	3.66e-l	3.42e-1							
200			3.36e-1	3.08e-1	2.91e-1					
500		3.44e-1			2.77e-1	2.56e-1	2.33e-1			
1000								2.16e-1	1.80e-1	
5000										1.35e-1

Energy reflection coefficient of O backscattered from W $_x$ O $_y$ only low fluence ! ne= 5, na= 1, n(x) = 10

x	0.90	0.80	0.75	0.70	0.65	0.60	0.55	0.50	0.40	0.35
$E_0(eV)$										
100	1.93e-1	1.64e-1	1.51e-l							
200			1.45e-1	1.31e-1	1.22e-1					
500		1.46e-1			1.14e-1	1.03e-1	9.13e-2			
1000								8.24e-2	6.49e-2	
5000										5.05e-2

Average depth (mean range) in \ddot{A} of 0 implanted in $W_x O_y$ only low fluence ! ne= 5. na= 1, n(x) = 10

x	0.90	0.80	0.75	0.70	0.65	0.60 ز	0.55	0.50	0.40	0.35
$B_{o}(eV)$										
100	2.78e + 1	2.38e+1	2.19e+1							
200			3.15e + 1	2.92e4-1	2.73e+1					
500		5.38e+1			4.53e+1	4.24e+1	3.91e + 1			
1000								5.45e + 1	4.81e+1	
5000										1.35e+2

Layered targets

Ar ->Li on Cu

Sputtering yield of Li on Cu by Ar zl = 18, miss 39.95 layer 1: z2 = 3. m2= 6.94, sbe = 1.68 eV, rho = 0.53 g/cm**3 layer 2: z2 = 29, m2= 63.54, sbes=3.52 eV. rho=8.95 g/cm**3 ef=0.50 eV. esb=0.00 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2 = 3, ipots=ipotr=1 (KrC) program: testvmcx e0= 6000 eV, alpha=0.00, dx(1) =thickness (in A) of layer 1 only low fluence ! ne=11, n(m2) = 2

dx (Ä)	Li	Cu	
0		3.77e-0	
1	2.16e-1	4.74e-0	
2	3.49e-1	4.31e-0	
4	1.13e-0	2.99e-0	
6	1.49e-0	1.44e-0	
8	1.58e-0	8.50e-1	
10	1.52e-0	4.76e-1	
12	1.60e-0	3.77e-1	
14	1.57e-0	2.55e-1	
20	1.53e-0	1.20e-1	
30	1.54e-0	4.73e-2	

Sputtered energy of Li on Cu by Ar only low fluence ! ne=ll, n(m2)= 2

dx (A)	Li	Cu
0		1.62e-2
1	1.95e-3	9.82e-3
2	3.09e-3	8.73e-3
4	4.12e-3	6.05e-3
6	5.43e-3	4.02e-3
8	6.42e-3	3.42e-3
10	6.97e-3	2.42e-3
12	7.79e-3	2.05e-3
14	8.19e-3	1.68e-3
20	8.85e-3	1.05e-3
30	8.91e-3	4.34e-4

$Ar \rightarrow Li \text{ on } Cu$

Particle reflection coefficient of Ar backscattered from Li on Cu zl = 18; ml = 39.95 layer 1: z2 = 3, m2 = 6.94. sbe=1.68 eV. rho = 0.53 g/cm**3 layer 2: z2 = 29, m2 = 63.54. sbe=3.52 eV. rho = 8.95 g/cm**3 ef=0.50 eV. esb = 0.00 eV. ea=1.00. kk0=kk0r=2. kdeel = kdee2 = 3. ipot=ipotr = 1 (KrC) program: testvmcx e0 = 6000 eV, alpha=0.00. dx(l) = thickness (in A) of layer 1 only low fluence ! ne=11, n(m2) = 2

dx (A)	0°
0	5.80e-2
1	3.72e-2
2	3.35e-2
4	3.83e-2
6	2.80e-2
8	2.68e-2
10	2.83e-2
12	2.92e-2
14	2.97e-2
20	2.42e-2
30	2.09e-2

Energy reflection coefficient of Ar backscattered from Li on Cu only low fluence ! ne=ll, n(m2)=2

dx (A)	0°
0	5.08e-3
1	2.79e-3
2	2.52e-3
4	2.68e-3
6	1.85e-3
8	2.16e-3
10	1.80e-3
12	1.51e-3
14	1.92e-3
20	9.27e-4
30	7.49e-4

Average depth (mean range) in \ddot{A} of Ar implanted in Li on Cu only low fluence ! ne=ll, $n(m2)\!=\!2$

dx (A)	0°
0	4.50e + 1
1	4.65effl
2	4.62effl
4	4.86effl
6	5.06eff1
8	5.14effl
10	5.50e + 1
12	5.57effl
14	5.75effl
20	6.33e + 1
30	7.24e + 1

Ar ->Li on Cu

Sputtering yield of Li on Cu by Ar $z_1 = 18$, $m_1 = 39.95$ layer 1: $z_2 = 3$, $m_2 = 6.94$. sbe=1.67 eV, ef=1.65 eV, rho = 4.60e-2 $atoms/A^{**3}$ layer 2: $z_2 = 29$, $m_2 = 63.54$, sbe=3.52 eV, ef=3.50 eV, rho = 8.48e-2 $atoms/A^{**3}$ ef=0.50 eV, esb = 0.00 eV, ca=1.00, kk0 = kk0r=2. kdee1 = kdee2=3, ipot=ipotr=1 (KrC) program: tridyn (version 3.3), idrel = 1 (static) e0 = 6000 eV, alpha=O.OO. dx(1) = thickness (in A) of layer 1 only low fluence ! ne=15, $n(m_2)= 2$

dx (A)	Li	Cu
0		4.01e-0
1.5	1.03e-0	2.89e-0
2	1.36e-0	2.64e-0
3	1.83e-0	2.29e-0
4	2.13e-0	1.98e-0
5	2.46e-0	1.82e-0
5	2.12e-0	1.64e-0
6	2.51e-0	1.51e-0
7.5	2.54e-0	1.19e-0
10	2.43e-0	8.30e-1
12.5	2.27e-0	5.68e-1
15	2.15e-0	4.31e-1
20	2.09e-0	2.54e-1
25	2.09e-0	1.71e-l
30	1.93e-0	1.14e-1

Sputtered energy of Li on Cu by Ar only low fluence ! ne = 15, n(m2)= 2

dx (Ä)	Li	Cu
0		1.77e-2
1.5	2.15e-3	1.27e-2
2	2.95e-3	1.07e-2
3	3.80e-3	1.13e-2
4	5.78e-3	9.55e-3
5	6.57e-3	8.85e-3
5	5.61e-3	8.66e-3
6	6.79e-3	8.28e-3
7.5	7.92e-3	6.75e-3
10	9.21e-3	5.27e-3
12.5	1.10e-2	4.18e-3
15	1.00e-2	2.72e-3
20	1.08e-2	2.38e-3
25	1.20e-2	1.82e-3
30	1.35e-2	9.79e-4

$\mathrm{Ar} \to \mathrm{Li} \text{ on } \mathrm{Cu}$

Particle reflection coefficient of Ar backscattered from Li on Cu zl = 18, ml = 39.95layer 1: z2 = 3, m2 = 6.94, sbe=1.67 eV. ef=1.65 eV. rho = 4.60e-2 $atoms/A^{**3}$ layer 2: z2 = 29, m2 = 63.54, sbe = 3.52 eV. ef=3.50 eV. rho = 8.48e-2 $atoms/A^{**3}$ ef=0.50 eV. esb = 0.00 eV. ea=1.00. kk0 = kk0r=2. kdeel = kdee2 = 3. ipot=ipotr = 1 (KrC) program: tridyn (version 3.3). idrel = 1 (static) e0 = 6000 eV. alpha = -0.0. dx(1) = thickness (in A) of layer 1 only low fluence !ne=15. n(m2) = 2

dx (Ä)	0°	
0	5.60e-3	
1.5	4.00e-3	
2	3.52e-3	
3	3.34e-3	
4	4.28e-3	
5	3.99e-3	
5	3.82e-3	
6	3.74e-3	
7.5	4.50e-3	
10	3.35e-3	
12.5	1.89e-3	
15	2.15e-3	
20	2.09e-3	
25	1.93e-3	
30	1.03e-3	

Energy reflection coefficient of Ar backscattered from Li on Cu only low fluence ! ne=15, $n(m\,2)\!=\,2$

,
0°
5.30e-2
5.20e-2
4.20e-2
5.20e-2
5.50e-2
5.70e-2
4.90e-2
5.70e-2
4.90e-2
4.70e-2
4.20e-2
4.10e-2
3.90e-2
5.10e-2
2.40e-2

Average depth (mean range) in \ddot{A} of Ar implanted in Li on Cu only low fluence ! ne=15. n(m2)=2

dx (Ä)	0°
0	4.40e + 1
1.5	4.71e + 1
2	4.69e4-1
3	4.69e + 1
4	4.98e4-1
5	4.79e + 1
5	4.93e + 1
6	4.95e + 1
7.5	5.31e + 1
10	5.41e4-1
12.5	5.62e + 1
15	5.94e + 1
20	6.23e + 1
25	6.66e-f-l
30	7.09e + 1

D -> Li on LiCu

Sputtering yield of Li on LiCu by D zl = 1. ml = 2.01, ef=0.20 eV. $dns0 = 1.00e-1 \text{ atoms/A}^{**3}$ layer 1: z2 = 3, m2 = 6.94. sb = 1.67 eV, ef=1.65 eV, $rho=4.60e-2 \text{ atoms/A}^{**3}$ layer 2: z2 = 3 (0.24), 29 (0.76), m2=6.94, 63.54, sb = 1.67, 3.52 eV, ef=1.65, 3.50 eV, rho=4.60e-2, 8.48e-2 atoms/A**3 ca=1.00, kk0=kk0r=2, kdee1 = kdee2 = 3, ipot=ipotr= 1 (KrC) program: tridyn (version 3.3), idrel=1 (static) alpha=0.00, dx(1) = thickness (in A) of layer 1 *only low fluence* ! ne = 4, na = 1, n(dx(1)) = 15, n(m2) = 2

E o	30 eV		100 eV		300 eV		1000 eV	l
dx (A)	Li	Cu	Li	Gu	Li	Cu	Li	Cu
0	4.62e-2	6.00e-5	5.66e-2	8.43e-3	4.63e-2	2.55e-2	3.18e-2	2.73e-2
1	6.29e-2	2.00e-5						
1.5			8.16e-2	4.00e-3	6.94e-2	1.93e-2	4.35e-2	2.18e-2
2	8.19e-2				8.16e-2	1.45e-2	4.75e-2	1.88e-2
3	8.94e-2		1.10e-1	1.77e-3	8.41e-2	1.11e-2	5.66e-2	1.45e-2
4	9.70e-2							
5			1.30e-1	1.67e-4	1.05e-l	5.00e-3	7.00e-2	1.16e-2
6	9.16e-2							
7.5					1.22e-1	3.27e-3	8.45e-2	5.75e-3
8	8.39e-2							
10	7.36e-2		1.43e-1		1.33e-1	6.00e-4	8.35e-2	3.88e-3
15	4.85e-2		1.41e-1		1.44e-1		8.78e-2	1.50e-3
20	3.48e-2		1.25e-1		1.50e-1		8.68e-2	7.50e-4
25	2.79e-2		1.17e-l		1.46e-l		8.56e-2	2.50e-4
30	2.36e-2		1.02e-1		1.41e-1		1.01e-1	

Sputtered energy of Li on LiC u by D only low fluence ? ne= 4, na= 1, n(dx(1)) = 15. n(m2)= 2

	30 eV		100 eV	1	300 eV	1	1000 eV	
Eq	30 6 4		100 01		500 01		1000 01	
dx (A)	Li	Cu	Li	Cu	Li	Cu	Li	Cu
0	5.05e-3	2.01e-6	3.94e-3	2.00e-4	1.97e-3	4.68e-4	6.61e-4	3.38e-4
1	7.51e-3	5.16e-7						
1.5			6.10e-3	8.67e-5	2.95e-3	3.36e-4	8.30e-4	2.04e-4
2	9.61e-3				3.23e-3	2.54e-4	1.08e-3	1.91e-4
3	1.01e-2		7.94e-3	2.79e-5	3.40e-3	1.70e-4	1.06e-3	1.50e-4
4	1.04e-2							
5			8.82e-3	2.21e-5	4.21e-3	7.97e-5	1.24e-3	1.06e-4
6	8.91e-3							
7.5					5.08e-3	3.30e-5	1.54e-3	4.28e-5
8	7.72e-3							
10	6.48e-3		9.01e-3		5.33e-3	3.93e-6	1.40e-3	3.07e-5
15	3.82e-3		8.21e-3		5.67e-3		1.85e-3	8.35e-6
20	2.33e-3		6.88e-3		5.64e-3		1.54e-3	3.57e-6
25	1.84e-3		6.51e-3		5.69e-3		1.90e-3	1.90e-6
30	1.56e-3		5.23e-3		5.41e-3		2.20e-3	

D ->Li on LiCu

Particle reflection coefficient of D backscattered from Li on LiCu zl= 1, ml= 2.01, ef=0.20 eV, dns0 = 1.00e-1 atoms/A**3 layer 1: z2= 3. m2= 6.94. sbe = 1.67 eV. ef=1.65 eV. rho = 4.60e-2 atoms/A**3 layer 2: z2=3 (0.24), 29 (0.76). m2 = 6.94. 63.54, sbe=1.67, 3.52 eV, ef=1.65, 3.50 eV. rho = 4.60e-2, 8.48e-2 atoms/A**3 ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr= 1 (KrC) program: tridyn (version 3.3), idrel = 1 (static) alpha=0.00, dx(1) = thickness (in A) of layer 1 only low fluence ! ne= 4, na= 1, n(dx(1)) = 15, n(m2)= 2

Eq	30 eV	100 eV	300 eV	1000 eV
dx (A)	0°	0°	0°	0°
0	5.19e-1	4.53e-1	4.10e-1	3.24e-1
1	4.92e-1			
1.5		4.43e-1	3.93e-1	3.35e-1
2	4.79e-1		4.03e-1	3.27e-1
3	4.65e-1	4.38e-1	4.00e-1	3.30e-1
4	4.56e-1			
5		4.32e-1	3.99e-1	3.25e-1
6	4.25e-1			
7.5			3.91e-1	3.35e-1
8	3.96e-1			
10	3.62e-1	4.11e-1	3.90e-1	3.28e-1
15	2.77e-1	3.83e-1	3.76e-1	3.24e-1
20	2.19e-1	3.48e-1	3.82e-1	3.22e-1
25	1.80e-1	3.18e-1	3.64e-1	3.20e-1
30	1.60e-1	2.84e-1	3.53e-1	3.13e-1

Energy reflection coefficient of D backscattered from Li on LiCu only low fluence ! ne= 4, na= 1, n(dx(1)) = 15, n(m2)= 2

Eo	30 eV	100 eV	300 eV	1000 eV
dx (Ä)	0°	0°	0°	0°
0	3.04e-1	2.57e-1	2.24e-1	1.61e-1
1	2.67e-1			
1.5		2.41e-1	2.13e-1	1.66e-l
2	2.45e-1		2.11e-1	1.64e-1
3	2.26e-1	2.31e-1	2.11e-1	1.62e-1
4	2.11e-1			
5		2.22e-1	2.09e-1	1.62e-1
6	1.77e-l			
7.5			2.01e-1	1.64e~l
8	1.52e-1			
10	1.27e-l	1.92e-1	1.96e-l	1.60e-1
15	8.15e-2	1.63e-1	1.83e-1	1.56e-l
20	5.75e-2	1.36e-1	1.80e-1	1.52e-1
25	4.56e-2	1.15e-l	1.65e-1	1.53e-1
30	4.09e-2	9.65e-2	1.56e-l	1.45e-l

Average depth (mean range) in \ddot{A} of D implanted in Li on LiCu only low fluence ?ne= 4, na= 1, n(dx(1)) = 15, n(m2) = 2

E o	30 eV	100 eV	300 eV	1000 eV
dx (Ä)	0°	0°	0°	0°
0	1.61e-f-l	3.64e4-1	8.04e + 1	2.00e + 2
1	1.64e + 1			
1.5		3.71e+1	7.95e + 1	2.00e + 2
2	1.68e4-1		8.01e + 1	2.01e+2
3	1.72e + 1	3.78e + 1	8.09e + 1	1.98e4-2
4	1.74e + 1			
5		3.94e+1	8.28e-f-l	2.04e + 2
6	1.79e4-1			
7.5			8.43e + 1	2.05e+2
8	1.83e4-1			
10	1.84e + 1	4.12e+1	8.59e + 1	2.04e + 2
15	1.94e + 1	4.24e + 1	8.89e + 1	2.10e + 2
20	2.07e + 1	4.40e + 1	9.18e + 1	2.10e + 2
25	2.24e-H	4.57e + 1	9.32e4-1	2.13e+2
30	2.41e + 1	4.72e + 1	9.57e+1	2.20e+2

$D \rightarrow Li \text{ on } LiCu$

Sputtering yield of Li on LiCu by D zl = 1. ml= 2.01. ef=0.20 eV. dns0 = 1.00e-1 atoms/A**3 layer 1: z2= 3, m2= 6.94. sbe=1.67 eV. ef=1.65 eV. rho=4.60e-2 atoms/A**3 layer 2: z2=3 (0.06), 29 (0.94). m2 = 6.94, 63.54. sbe=1.67. 3.52 eV. ef=1.65, 3.50 eV. rho=4.60e-2, 8.48e-2 atoms/A**3 ca=1.00. kkO=kkOr=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program: tridyn (version 3.3). idrel=1 (static) alpha=0.00. dx(1) = thickness (in A) of layer 1 only low fluence ! ne= 4, na= 1. n(dx(1)) = 16, n(m2)= 2

Bo 30 eV | 100 eV 300 eV 1000 eV L 1 dx (A) Li 1.32e-2 Cu 1.31e-2 Li Cu Li Cu Li Cu 6.50e-3 1.33e-2 1.23e-2 3.88e-2 5.05e-2 0 4.55e-2 1 4.65e-2 5.57e-2 6.45e-2 7.54e-2 5.66e-2 7.23e-2 3.57e-2 3.04e-2 1.5 7.57e-3 3.09e-2 2.83e-2 7.49e-2 2.35e-2 2.26e-2 1.90e-2 2 5.20e-3 4.03e-2 2.5 9.17e-2 9.15e-2 2.47e-3 5.11e-2 2.59e-2 3 4 1.01e-1 1.19e-l 5.00e-4 9.89e-2 5.99e-2 1.67e-2 1.05e-2 5 1.05e-1 6 7.5 1.12e-1 4.30e-3 7.49e-2 9.10e-3 9.49e-2 8.54e-2 5.64e-2 3.86e-2 2.83e-2 8 1.31e-1 1.50e-3 8.13e-2 6.10e-3 2.30e-3 10 1.52e-11.57e-1 1.43e-1 1.27e-1 1.40e-l 1.46e-l 9.14e-2 9.05e-2 9.42e-2 15 1.00e-4 8.00e-4 1.11e-4 20 25 1.48e-1 30 2.64e-2 1.14e-l 1.64e-l 1.05e-l

Sputtered energy of Li on LiCu by D only low fluence ? ne= 4. na= 1, n(dx(1)) = 16, n(m2)= 2

Bq	30 eV		100 eV		300 eV		1000 eV	
dx (A)	Li	Cu	Li	Cu	Li	Cu	Li	Cu
0	1.47e-3		9.94e-4	3.05e-4	5.47e-4	6.90e-4	1.68e-4	4.32e-4
1	6.14e-3							
1.5			4.90e-3	1.56e-4	1.89e-3	5.21e-4	3.62e-4	3.21e-4
2	9.43e-3		5.85e-3	8.65e-5	2.23e-3	3.55e-4	5.16e-4	2.61e-4
2.5					2.27e-3	3.49e-4		
3	1.08e-2		6.98e-3	3.54e-5	2.68e-3	2.79e-4	8.07e-4	2.27e-4
4	1.14e-2							
5			9.05e-3	4.68e-6	3.67e-3	1.49e-4	8.61e-4	1.43e-4
6	1.09e-2							
7.5					4.32e-3	5.25e-5	1.13e-3	8.24e-5
8	9.19e-3							
10	7.67e-3		9.96e-3		5.41e-3	8.10e-6	1.20e-3	6.49e-5
15	4.47e-3		9.80e-3		5.18e-3	6.66e-7	1.68e-3	1.57e-5
20	2.83e-3		8.80e-3		5.73e-3		2.00e-3	4.76e-5
2.5	1.87e-3		7.00e-3		5.88e-3		2.04e-3	1.43e-7
30	1.77e-3		6.12e-3		6.26e-3		2.25e-3	

D ->Li on LiCu

Particle reflection coefficient of D backscattered from Li on LiCu z1 = 1. ml = 2.01, ef=0.20 eV. dns0 = 1.00e-1 atoms/ A^{**3} layer 1: z2= 3. m2= 6.94, sbe=1.67 eV. ef=1.65 eV. rho = 4.60e-2 atoms/ A^{**3} layer 2: z2= 3 (0.06). 29 (0.94). m2=6.94, 63.54, sbe=1.67, 3.52 eV. ef=1.65, 3.50 eV. rho = 4.60e-2, 8.48e-2 atoms/ A^{**3} ca=1.00, kk0 = kk0r=2, kdeel=kdee2 = 3, ipot=ipotr= 1 (KrC) program: tridyn (version 3.3). idrel=1 (static) alpha=0.00, dx(1) = thickness (in A) of layer 1 only low fluence ! ne = 4. na= 1, n(dx(1)) = 16, n(m2) = 2

E o	30 eV	100 eV	300 eV	1000 eV
dx (A)	0°	0°	0°	0°
0	6.01e-1	5.16e-1	4.49e-1	3.61e-1
1	5.58e-1			
1.5		4.96e-1	4.41e-1	3.64e-1
2	5.49e-1	4.94e-1	4.46e-1	3.59e-1
2.5			4.43e-1	
3	5.34e-1	4.99e-1	4.44e-1	3.57e-1
4	5.26e-1			
5		4.83e-1	4.35e-1	3.53e-1
6	4.93e-1			
7.5			4.32e-1	3.63e-1
8	4.57e-1			
10	4.11e-1	4.60e-1	4.34e-1	3.56e-1
15	3.12e-1	4.31e-1	4.27e-1	3.49e-1
20	2.34e-1	3.99e-1	4.16e-1	3.50e-1
25	1.89e-1	3.57e-1	4.02e-1	3.54e-1
30	1.64e-1	3.24e-1	3.96e-1	3.56e-1

Energy reflection coefficient of D backscattered from Li on LiCu only low fluence ! ne= 4, na= 1, n(dx(1)) = 16, n(m2)= 2

E o	30 e V	100 eV	300 eV	1000 eV
dx (A)	0°	0°	0°	0°
0	3.74e-1	3.06e-1	2.50e-1	1.87e-1
1	3.20e-1			
1.5		2.81e-1	2.42e-1	1.84e-1
2	2.98e-1	2.76e-1	2.45e-1	1.85e-1
2.5			2.42e-1	
3	2.74e-1	2.75e-1	2.41e-1	1.79e-l
4	2.55e-1			
5		2.57e-1	2.35e-1	1.78e-1
6	2.14e-1			
7.5			2.27e-1	1.82e-1
8	1.81e-l			
10	1.49e-1	2.22e-1	2.25e-1	1.76e-l
15	9.45e-2	1.92e-1	2.13e-1	1.73e-1
20	6.21e-2	1.61e-l	2.02e-1	1.72e-1
25	4.85e-2	1.32e-1	1.87e-l	1.69e-l
30	4.17e-2	1.11e-1	1.77e-l	1.69e-1

Average depth (mean range) in \ddot{A} of D implanted in Li on LiCu only low fluence ! ne= 4, na= 1, n(dx(1))= 16, n(m2)= 2

Eq	30 eV	100 eV	300 eV	1000 eV
dx (Ä)	0°	0°	0°	0°
0	1.43e + 1	3.09e+1	6.46e+l	1.54e+2
1	1.46e-f-l			
1.5		3.18e4-1	6.55e + 1	1.57e + 2
2	1.52e + 1	3.22e + 1	6.62e+1	1.58e-f-2
2.5			6.63e- -1	
3	1.55e + 1	3.29e-{-1	6.63e+1	1.59e-}-2
4	1.59e + 1			
5		3.38e + 1	6.83e + 1	1.61e-}-2
6	1.63e-f-l			
7.5			6.98e+1	1.60e-J-2
8	1.65e-{-l			
10	1.67e + 1	3.61e+1	7.06e + 1	1.64e + 2
15	1.77e + 1	3.80e+1	7.42e + 1	1.66e + 2
20	1.92e-{-1	3.96e+1	7.79e + 1	1.72e + 2
25	2.10e + 1	4.14e+1	8.05e + 1	1.76e+2
30	2.30e + 1	4.26e + 1	8.31e + 1	1.79e+2

Ar ->Li on LiCu

Sputtering yield of Li on LiCu by Ar zl = 18, ml = 39.95layer 1; z2 = 3, m2 = 6.94. sbe = 1.67 eV. ef=1.65 eV, rho=4.60e-2 $atoms/A^{**3}$ layer 2; z2 = 3 (0.24). 29 (0.76), m2=6.94. 63.54, sbe = 1.67, 3.52 eV, ef=1.65, 3.50 eV, rho=4.60e-2, 8.48e-2 $atoms/A^{**3}$ ef=0.20, sbe=0.00, ca=1.00, kk0=kk0r=2, kdeel=kdee2=3, ipot=ipotr=1 (KrC) program: tridyn (version 3.3), idrel=1 (static) e0=6000 eV, alpha=0.00, dx(1)=thickness (in A) of layer 1 only low fluence !ne=11, n(m2) = 2

dx (Ä)	Li	Cu
0	1.48e-0	2.16e-0
1.5	1.83e-0	1.74e-0
2	2.04e-0	1.51e-0
3	2.38e-0	1.36e-0
5	2.36e-0	9.55e-1
10	2.67e-0	4.71e-1
12.5	2.40e-0	3.71e-1
15	2.39e-0	2.88e-1
20	2.45e-0	2.06e-1
25	2.13e-0	1.27e-1
30	2.19e-0	7.20e-2

Sputtered energy of Li on LiCu by Ar only low fluence ! ne=15, n(m2)= 2

	_	
dx (A)	Li	Cu
0	9.27e-3	1.06e-2
1.5	1.03e-2	7.99e-3
2	9.59e-3	7.31e-3
3	1.07e-2	6.99e-3
5	1.15e-2	5.53e-3
10	1.37e-2	3.31e-3
12.5	1.46e-2	2.46e-3
15	1.45e-2	2.34e-3
20	1.50e-2	2.29e-3
25	1.68e-2	8.19e-4
30	1.81e-2	4.60e-4

Ar -> Li on LiCu

Particle reflection coefficient of Ar backscattered from Li on LiCu zl = 18, ml = 39.95layer 1: z2= 3, m2= 6.94, sb= 1.67 eV. ef=1.65 eV. rho=4.60e-2 atoms/A**3layer 2: z2= 3 (0.24). 29 (0.76). m2=6.94, 63.54, sb= 1.67. 3.52 eV, ef=1.65, 3.50 eV, rho=4.60e-2. 8.48e-2 atoms/A**3 ef=0.20, sb= 0.00. ca=1.00, kk0=kk0r=2, kdeel = kdee2=3. ipot=ipotr=1 (KrC) program: tridyn (version 3.3). idrel=1 (static) e0=6000 eV. alpha=0.00. dx(1) =thickness (in A) of layer 1 only low fluence !ne=11. n(m2)= 2

dx (A)	0°
0	4.60e-2
1.5	5.20e-2
2	4.10e-2
3	4.50e-2
5	4.00e-2
10	4.80e-2
12.5	4.00e-2
15	3.10e-2
20	3.20e-2
25	3.30e-2
30	2.50e-2

Energy reflection coefficient of Ar backscattered from Li on LiCu only low fluence ? ne=11, $n(m2)\!=2$

dx (A)	0°
0	3.42e-3
1.5	4.55e-3
2	2.93e-3
3	4.25e-3
5	2.71e-3
10	2.15e-3
12.5	2.18e-3
15	1.67e-3
20	1.36e-3
25	1.06e-3
30	9.20e-4

Average depth (mean range) in \ddot{A} of Ar implanted in Li on LiCu only low fluence ! ne=ll. $n(m2)\!=\!2$

dx (A)	0°
0	6.56e + 1
1.5	6.69e+1
2	6.79e + 1
3	6.81e+1
5	6.97e+1
10	7.47e + 1
12.5	7.68e+1
15	7.91e+1
20	8.27e+1
25	8.50e + 1
30	8.83e + 1

-

$O \rightarrow B2O3$ on B

1. $\Pi(\Pi X(1)) = 2$			
dx (Ä)	5	10	
E _o (eV)			
100	2.39e-1	2.53e-1	
300	4.68e-1	4.72e-1	
1000	5.87e-1	6.07e-1	
3000		6.03e-1	

O (1.layer)

1	dx (Ä)	5	10	
	Bo (eV)			
	100	2.86e-1	2.83e-1	L
	300	5.56e-1	6.16e-l	L
	1000	8.37e-1	8.07e-1	L
	3000		7.99e-1	L
				•

B (2.layer)

dx (Ä)	5	10
B _o (eV)		
100	5.10e-3	
300	4.43e-2	5.13e-4
1000	1.01e-1	1.43e-2
3000		3.28e-2

Sputtered energy of B2O3 on B by O only low fluence ! ne= 4, na= 1, n(dx(1)) = -2B (1.layer)

dx (Ä)	5	10
B_o (eV)		
100	5.90e-3	5.99e-3
300	5.06e-3	6.44e-3
1000	3.05e-3	4.19e-3
3000		2.05e-3

0 (1.layer)

dx (Ä)	5	10
B _o (eV)		
100	5.89e-3	6.06e-3
300	5.75e-3	6.64e-3
1000	4.42e-3	4.81e-3
3000		2.32e-3

B (2.layer)

dx (Ä)	5	10
B_{o} (eV)		
100	1.69e-4	
300	7.62e-4	6.83e-6
1000	1.21e-3	4.22e-4
3000		4.79e-4

$0 \rightarrow B2O3$ on B

Particle reflection coefficient of O backscattered from $B_2 C>3$ on $B_2 l = 8$, ml = 16.001.1ayer: z2= 5 (0.40). 8 (0.60). m2= 10.81. 16.00. sbe=5.90, 2.50 eV, rho=1.62 g/cm**3 2.1ayer: z2= 5, m2= 10.81. sbe=5.90 eV. rho= 2.35 g/cm**3 eff=2.10 eV. esb=2.60 eV, ea=1.00, kkO=kkOr=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) alpha=0.00, dx(1) =thickness of 1.1ayer program: trspvmc only low fluence ! ne= 4, na= 1, n(dx(1)) = 2

dx (Ä)	5	10
Bo (eV)		
100	4.37e-3	5.46e-3
300	6.58e-3	6.15e-3
1000	4.68e-3	3.96e-3
3000		1.75e-3

Energy reflection coefficient of O backscattered from B2O3 on B only low fluence ? ne= 4, na= 1, n(dx(1)) = 2

dx (Ä)	5	10
Ro (eV)		
100	1.84e-4	1.94e-4
300	3.12e-4	2.83e-4
1000	2.89e-4	7.97e-5
3000		4.88e-5

Average depth (mean range) in \hat{A} of O implanted in B $_2$ O $_3$ on B only low fluence ! ne= 4, na= 1, n(dx(1))= 2

dx (A)	5	10
Eq (eV)		
100	7.60e + 0	8.94e+0
300	1.42e+1	1.59e+1
1000	3.22e-f-l	3.38e+1
3000		8.05e+1

0 -4 B_2O_3 on B_4C

2

Sputtering yield of R2O3 on B4C by O zl = 8, ml = 16.001.layer: z2 = 5 (0.40). 8 (0.60). m2 = 10.81, 16.00, sbe = 5.90, 2.50 eV, sbe(mean) = 1.28 eV, rho = 1.62 g/cm**3 2.layer: z2 = 5 (0.80). 6 (0.20), m2 = 10.81, 12.01 sbe = 5.90. 7.40 eV, sbe(mean) = 6.05 eV, rho = 2.28 g/cm**3 ef = 2.10 eV, esb = 2.60 eV, ca = 1.00. kk0 = kk0r = 2. kdeel = kdee2 = 3, ipot = ipotr = 1 (KrC) alpha = 0.00, dx(B2O3) = 2,...10 Å, dx(b4c) = 10000 Å program: trapure

10

program: trspvmc only low fluence ! ne= 4, na= 1, n(dx(1)) = 4B (1.layer)

dx (Ä)

dx (Ä)	2	4	5	10
Eo (eV)				
150				3.25e-1
300				4.51e-1
1000				6.17e-1
3000	1.54e-1	5.26e-l	6.46e-1	5.74e-1

4

O (1.layer)

E_{o} (eV)				
150				4.13e-1
300				5.83e-1
1000				8.45e-1
3000	1.81e-1	6.73e-1	8.45e-1	8.23e-1

B (2.layer)

dx (Ä)	2	4	5	10
E _o (eV)				
300				7.12e-4
1000				1.05e-2
3000	1.22e-0	2.69e-1	1.71e-l	1.69e-2

C (2.layer)

dx (Ä)	2	4	5	10
Eo (eV)				
300				3.56e-4
1000				2.09e-3
3000	2.85e-1	5.75e-2	2.81e-2	2.11e-3

Sputtered energy of B2O3 on B4G by O only low fluence / ne= 4, na= 1, n(dx(1)) = 4B (1.layer) dx (\ddot{a} : 2 4

	dx (ä;	2	4	5	10
	Ro (ev;				
Г	150				5.82e-3
	300				6.01e-3
	1000				3.91e-3
	3000	6.13e-4	1.37e-3	1.43e-3	2.45e-3

0 (1.lay er)

01)	dx (Ä)	2	4	5	10
	Eo (eV)				
	150				6.90e-3
	300				6.66e-3
	1000				5.05e-3
	3000	8.13e-4	1.55e-3	2.02e-3	2.73e-3

B (2.layer)

dx (Ä)	2	4	5	10
Eo (eV)				
300				2.85e-5
1000				3.08e-4
3000	2.86e-3	1.68e-3	1.79e-3	6.18e-4

C (2.lay er)

dx (Ä)	2	4	5	10
E _o (eV)				
300				2.28e-5
1000				4.86e-5
3000	6.19e-4	2.60e-4	2.75e-4	2.78e-5

$O \to B_2 O_3 \text{ on } B_4 C$

Particle reflection coefficient of 0 backscattered from B2O3 on B4C zl = 8, ml = 16.001.layer: z2 = 5 (0.40), 8 (0.60), m2 = 10.81, 16.00, sbe = 5.90, 2.50 eV, sbe(mean) = 1.28 eV, rho = 1.62 g/cm**3 2.layer: z2 = 5 (0.80), 6 (0.20), m2 = 10.81, 12.01 sbe = 5.90, 7.40 eV, sbe(mean) = 6.05 eV, rho = 2.28 g/cm**3 ef = 2.10 eV, esb = 2.60 eV, ca = 1.00, kk0 = kk0r = 2, kdeel = kdee2 = 3, ipot = ipotr = 1 (KrC) alpha = 0.00, dx(B2O3) = 2...10 A, dx(b4c) = 10000 A program: trspwnc *only low fluence* ! ne = 4, na = 1, n(dx(1)) = 2

dx (Ä)	2	10
E _o (eV)		
150		4.65e-3
300		5.70e-3
1000		5.58e-3
3000	9.74e-4	4.22e-3

Energy reflection coefficient of O backscattered from B2O3 on B4C only low fluence ! ne= 4, na= 1, n(dx(1))= 2

dx (Ä)	2	10
E _o (eV)		
150		1.81e-4
300		1.77e-4
1000		3.88e-4
3000	5.03e-5	3.22e-4

Average depth (mean energy) in \ddot{A} of 0 implanted in B2O3 on B4C only low fluence ! ne= 4, na= 1, n(dx(1))= 4

dx (Ä)	2	4	5	10
E _o (eV)				
150	-			1.08e4-1
300				1.59e + 1
1000				3.32e + 1
3000	7.38e + 1	7.55e4-1	7.70e4-1	7.91e4-1

$O \rightarrow B(OH)_3$ on B

	100	3.61e-2	
	300	7.30e-2	
	1000	1.30e-1	
	3000	1.20e-1	
	L		1
O(1 laver)			
0 (1.10301)	Eo (eV)	0°	
	100	9.94e-2	
	300	2.17e-1	
	1000	3.15e-1	
	3000	3.63e-1	
H (1 laver)			
	Bo (eV)	0°	
	100	1.12e-1	
	300	3.39e-1	
	1000	4.38e-1	
	3000	4.14e-1	
B (2 laver)			
(2.1.03.01)	Eo (eV)	0°	
	300	6.23e-3	
	1000	3.44e-2	
	3000	6.03e-2	

 $\begin{array}{l} \label{eq:space-$ 0° 9.75e-4 Eo (eV) 100 9.73e-4 1.03e-3 9.49e-4 3.63e-4 300 1000 3000 O (1.layer) Eo (eV) 100 0° 2.41e-3 2.86e-3 300 1.97e-3 1.45e-3 1000 3000 H (1.layer)

	Eo (»V)	0°
	100	2.32e-3
	300	4.98e-3
	1000	3.88e-3
	3000	1.57e-3
B (2.layer)	Eq. («V)	0°
	300	1.35e-4
	1000	5.24e-4
	3000	5.83e-4

$O \rightarrow B(OH)_3$ on B

Particle reflection coefficient of O backscattered from B(OH)g on B = 21 = 8, ml = 16.001.1ayer: z2 = 5 (0.14). 8 (0.43), 1 (0.43), m2 = 10.81, 16.00, 1.01, sbe = 5.90, 2.50, 2.19 eV, rho = 0.85 g/cm**3 2.1ayer: z2 = 5, m2 = 10.81, sbe=5.90 eV, rho = 2.35 g/cm**3 ef=2.10 eV, esb=2.60 eV, ca=1.00, kk0=kk0r=2, kdeel = kdee2=3, ipot=ipotr=1 (KrC) alpha=0.00, dx(bo3h 3) = 10 Å program: trspvmc only low fluence ! ne = 4, na = 1, n(dx(1)) = 2

Bo (eV)	0°
100	2.98e-3
300	4.89e-3
1000	1.64e-3
3000	2.44e-3

Energy reflection coefficient of O backscattered from B(OH)3 on B only low fluence ! ne= 4, na= 1, n(dx(1))= 2

E _o (eV)	0°
100	2.05e-4
300	1.90e-4
1000	9.73e-5
3000	2.47e-5

Average depth (mean range) in \ddot{A} of O implanted in B(OH) $_3$ on B only low fluence ! ne= 4, na= 1, n(dx(l))= 2

Eo (eV)	0°
100	1.24e + 1
300	1.93e + 1
1000	3.72e + 1
3000	8.41e + 1

$O \rightarrow B(OH)_3$ on B_4C

Sputtering y z1 = 8, m1 = 1.layer: z2 = sbe = 5.90, 2. 2.layer: z2 = sbe=5.90, 7. ef=2.10 eV, alpha=0.00, program: trs only low fluen	rield of B(OH 16.00 5 (0.14), 8 50, 2.19 eV, 5 (0.80), 6 40 eV, sbe(n esb=2.60 eV dx(B(OH)3): pymc cce !	I) 3 on B 4 ((0.43), 1 ((sbe(mean) (0.20), m2= nean) =6.05 7, ca=1.00, =2,20 Ä	C by O 0.43), m2= = 1.22 eV, = 10.81, 12 5 eV, rho= kk0=kk0r= , dx(b4c) =	10.81, 16.0 rho = 0.85 .01 2.28 g/cm ⁴ 2, kdeel=1 10000 A	00, 1.01, g/cm**3 **3 kdee2=3,	ipot=ipotr=)	l (KrC)	
ne= 4, na=	1, n(dx(1))=	7						
B (1.layer)	dx (A)	2	3	4	5	7	10	20
	Eo (eV)							
	150	1.77e-2	3.96e-2	5.60e-2	5.22e-2	6.69e-2	5.97e-2	
	300	2.43e-2	5.45e-2	8.59e-2	9.47e-2	8.11e-2	9.56e-2	9.65e-2
	1000	3.02e-2	7.44e-2	1.12e-1	1.20e-1	1.34e-1	1.23e-1	1.46e-1
	3000		6.87e-2	1.06e-l	1.34e-1			

0 (1.1ay er)

dx (A)	2	3	4	5	7	10	20
Eo (eV)							
150	4.20e-2	1.04e-1	1.51e-l	1.55e-l	1.74e-1	1.51e-l	
300	5.91e-2	1.41e-1	2.43e-1	2.43e-1	2.24e-1	2.53e-1	2.38e-1
1000	9.46e-2	1.99e-l	3.28e-1	3.96e-1	3.79e-1	3.20e-1	3.66e-1
3000		2.04e-1	2.97e-1	3.98e-1			

H (1.layer)

dx (A)	2	3	4	5	7	10	20
Bo (eV)							
150	7.50e-2	1.07e-1	1.34e-1	1.48e-1	1.98e-1	1.85e-l	
300	9.25e-2	1.42e-1	1.88e-1	2.03e-1	2.77e-1	3.35e-1	3.53e-1
1000	1.30e-1	1.75e-l	2.45e-1	2.88e-1	3.74e-1	4.04e-1	5.92e-1
3000		2.02e-1	2.54e-1	2.89e-1			

B (2.layer)

dx (A)	2	3	4	5	7	10	20
E _o (eV)							
150	4.25e-1	2.62e-1	1.12e-1	3.15e-2	6.55e-3	2.60e-4	
300	6.67e-l	4.45e-1	1.87e-l	7.50e-2	2.21e-2	3.25e-3	
1000	1.00e-0	6.82e-1	3.39e-1	1.75e-l	8.22e-2	2.71e-2	2.95e-3
3000		6.97e-1	3.15e-1	1.86e-1			

C (2.layer)

1	dx (A)	2	3	4	5	7	10	20
	E_{0} (eV)							
	150	1.10e-1	5.99e-2	2.73e-2	9.58e-3			
	300	1.69e-l	1.07e-l	4.28e-2	1.38e-2	5.64e-3		
	1000	2.39e-1	1.92e-1	7.56e-2	2.93e-2	1.61e-2	2.85e-3	1.48e-3
	3000		1.72e-1	8.03e-2	4.25e-2			

$O \rightarrow B(OH)_3$ on B_4C

(KrC)

dx (Ä)	2	3	4	5	7	10	20
E_{o} (eV)							
150	3.88e-4	7.36e-4	9.02e-4	7.81e-4	1.26e-3	1.22e-3	
300	3.49e-4	6.59e-4	1.02e-3	1.10e-3	9.92e-4	1.28e-3	1.46e-3
1000	2.33e-4	4.75e-4	4.33e-4	6.64e-4	6.69e-4	8.80e-4	9.68e-4
3000		1.60e-4	1.90e-4	2.24e-4			

0 (1.layer)

dx (Ä)	2	3	4	5	7	10	20
E _o (eV)							
150	9.14e-4	1.98e-3	2.57e-3	2.72e-3	3.10e-3	2.74e-3	
300	9.37e-4	1.73e-3	2.52e-3	2.30e-3	2.54e-3	3.34e-3	3.10e-3
1000	7.48e-4	1.19e-3	1.42e-3	1.75e-3	2.18e-3	1.95e-3	2.80e-3
3000		4.04e-4	8.04e-4	7.25e-4			

H (1.lay er)

dx (Ä)	2	3	4	5	7	10	20
Eo (eV)							
150	1.60e-3	2.20e-3	2.62e-3	2.84e-3	3.72e-3	3.28e-3	
300	1.64e-3	2.15e-3	2.82e-3	3.10e-3	3.85e-3	5.33e-3	4.91e-3
1000	1.30e-3	1.62e-3	1.89e-3	2.29e-3	2.44e-3	3.52e-3	5.15e-3
3000		1.16e-3	1.02e-3	9.40e-4			

B (2.layer)

dx (Ä)	2	3	4	5	7	10	20
E_0 (eV)							
150	5.27e-3	3.07e-3	1.22e-3	4.12e-4	1.42e-4	4.65e-6	
300	4.90e-3	3.28e-3	1.52e-3	7.48e-4	3.54e-4	4.00e-5	
1000	3.79e-3	2.31e-3	1.67e-3	1.26e-3	1.17e-3	2.87e-4	9.37e-5
3000		1.35e-3	8.06e-4	1.43e-3			

ыQ.

C (2.layer)

ć	lx (Ä)	2	3	4	5	7	10	20
Ec	(eV)							
	100	1.25e-3	6.85e-4	3.05e-4	1.23e-4			
	300	1.17e-3	6.81e-4	2.51e-4	1.18e-4	6.86e-5		
	1000	7.81e-4	6.70e-4	3.01e-4	3.08e-4	2.14e-4	8.77e-5	6.54e-5
	3000		2.51e-4	1.74e-4	1.56e-4			

$O \rightarrow B(OH)_3$ on B_4C

Particle reflection coefficient of O backscattered from $B(OH)_3$ on B4C zl = 8, ml = 16.001.layer: z2 = 5 (0.14). 8 (0.43), 1 (0.43). m2 = 10.81. 16.00, 1.01, sbe = 5.90, 2.50, 2.19 eV, sbe(mean) = 1.22 eV, rho = 0.85 g/cm**3 2.layer: z2 = 5 (0.80), 6 (0.20), m2 = 10.81, 12.01 sbe = 5.90, 7.40 eV, sbe(mean) = 6.05 eV, rho = 2.28 g/cm**3 ef = 2.10 eV, esb = 2.60 eV, ca = 1.00. kk0 = kk0r = 2, kdeel = kdee2 = 3, ipot = ipotr = 1 (KrC) alpha = 0.00, dx(B(OH)3) = 2,...20 A, dx(b4c) = 10000 A program: trspvmc *only low fluence !* ne = 3, na = 1, n(dx(1)) = 7

dx (A)	2	3	4	5	7	10	20
B _o (eV)							
150	7.97e-4	1.40e-3	1.62e-3	1.85e-3	2.07e-3	3.11e-3	
300	1.30e-3	1.63e-3	1.70e-3	3.73e-3	3.08e-3	5.10e-3	3.95e-3
1000					1.61e-3	2.14e-3	1.48e-3

Energy reflection coefficient of O backscattered from B(OH) $_3$ on B4C only low fluence $\,$! ne= 3, na= 1, n(dx(1))= 7 $\,$

dx (A)	2	3	4	5	7	10	20
Bo (eV)							
150	4.63e-5	5.57e-5	8.40e-5	5.51e-5	8.93e-5	1.43e-4	
300	5.85e-5	8.70e-5	4.52e-5	1.66e-4	1.93e-4	2.40e-4	1.91e-4
1000					3.41e-5	3.28e-5	4.23e-5

Average depth (mean range) in \tilde{A} of O implanted in B(OH) 3 on B4C only low fluence ! ne= 4, na= 1, n(dx(1))= 7

dx (A)	2	3	4	5	7	10	20
E _o (eV)							
150	9.48e+0	9.91e + 0	1.06e+l	1.15e + 1	1.28e + 1	1.45e+l	
300	1.44e + 1	1.48effl	1.55e + 1	1.64e + 1	1.76e + 1	1.94e + 1	2.53e+1
1000	3.36e + 1	3.28effl	3.27e+1	3.45effl	3.59e + 1	3.77e-H	4.36e+1
3000		7.56e+1	7.72e + 1	7.86e+1			

$O \rightarrow O \text{ on } W0_3$

Sputtering yield of 0 on WO 3 by 0 zl = 8, ml = 16.00layer 1: z2 = 8, m2 = 16.00, sbe=2.60 eV. rho = 1.14 g/cm**3 layer 2: z2 = 74 (0.25). 8 (0.75), m2 = 183.85, 16.00, dx = 10000 A, sbe = 6.28, 6.28 eV, rho = 6.47 g/cm**3 ef = 2.50 eV. sb=2.60 eV. ca=1.00, kk0 = kk0r=2, kdeel = kdee2=3, ipot=ipotr=l (KrC) program: trspvmc only low fluence ! ne= 3, na= 1, n(dx(l)= 2 0 (1.layer) dx (\ddot{A}) 1 5 dx (Ä) 1 B_o (eV) 1000 8.71e-2 6.85e-1 W (2.lay er) dx (Ä) 1 5 E₀ (eV) 1000 8.29e-2 4.30e-2 0 (2.layer) dx (Ä) B_o (eV) 1000 8.72e-1 2.98e-1 Sputtered energy of 0 on WO₃ by 0 only low fluence ! ne= 3, na= 1, n(dx(1)= 20 (1.1ayer) $dx(\frac{3}{2}) = 1$ _____ dx (Ä)_____ 5 1 Bo (eV) 1000 2.72e-3 9.07e-3 W (2.layer) dx (Ä) 1 5 <u>Bq (eV)</u> 1000 7.57e-4 4.28e-4 0 (2.layer) dx (X) 5 1 E_{o} (eV) 1.00e-2 1000 2.06e-2

Particle reflection coefficient of O backscattered from O on WO 3 only low fluence ! ne= 3, na= 1, $n(dx(1)=\ 2$

Energy reflection coefficient of O backscattered from O on WO 3 only low fluence ! ne= 3, na= 1, n(dx(1)= 2

dx (Ä)	1	5	
B _o (eV)			
1000	2.27e-2	1.74e-2	

Average depth (mean range) in \ddot{A} of 0 implanted in 0 on WO 3 only low fluence ! ne= 3, na= 1, n(dx(1)= 2

dx (Ä)	1	5
Bo (eV)		
1000	3.44e + 1	3.47e+1

$O \rightarrow WO_3$ on W

 Sputtering
 yield of WO 3 on W by O

 zl = 8, ml = 16.00
 1.1ayer: z2 = 74 (0.25), 8 (0.75), m2=183.85, 16.00, sbe = 6.28, 6.28 eV, rho = 6.47 g/cm**3

 2.layer: zl = 74, m2=183.85, sbe = 8.68 eV, rho = 19.30 g/cm**3
 ef=2.50 eV, esb=2.60 eV, ca=1.00, kkO=kkOr=2. kdeel = kdee2=3, ipot=ipotr=1 (KrC)

 alpha=0.00, dx(1) =thickness of 1.layer
 program: trspwnc

 only low fluence. !
 ne= 9, na= 1, n(dx) = 3

 W
 (1.layer)

 dx (\ddot{A})
 10
 15

dx (Ä)	10	15	25
E _o (eV)			
50			7.71e-5
100		1.74e-3	1.66e-3
200	8.86e-3		
300	1.88e-2		
500	4.09e-2	2.93e-2	2.00e-2
1000	8.79e-2	6.40e-2	6.01e-2
2000	1.36e-1		
5000	1.38e-1	1.46e-2	
6000	1.80e-1		

0 (1.layer)

dx (A)	10	15	25
E _o (eV)			
50			3.99e-2
100		1.19e-1	1.19e~l
200	2.67e-1		
300	3.85e-1		
500	5.57e-l	4.87e-1	4.02e-1
1000	7.14e-l	6.78e-1	6.25e-1
2000	7.94e-1		
5000	7.04e-1	9.04e-1	
6000	7.09e-1		

W (2.layer)

dx (A)	10
E _o (eV)	
200	6.19e-6
300	3.09e-4
500	1.63e-3
1000	8.24e-3
2000	2.54e-2
5000	5.53e-2
6000	6.77e-2

Sputtered energy of WO 3 on W by O only low fluence ! ne= 9, na= 1, n(dx) = 3W (1.layer) dx (\ddot{A}) 10

dx (Ä)	10	15	25
Eo (eV)			
50			2.75e-6
100		7.97e-5	9.25e-5
200	3.52e-4		
300	6.02e-4		
500	1.11e-3	8.38e-4	5.71e-4
1000	1.76e-3	1.03e-3	1.22e-3
2000	1.99e-3		
5000	1.28e-3	1.50e-3	
6000	1.56e-3		

0 (1.layer)

dx (A)	10	15	25
E _o (eV)			
50			6.29e-3
100		1.37e-2	1.36e-2
200	2.14e-2		
300	2.69e-2		
500	3.25e-2	2.57e-2	2.24e-2
1000	3.54e-2	2.71e-2	2.37e-2
2000	2.71e-2		
5000	1.59e-2	1.92e-2	
6000	1.25e-2		

W (2.layer)

-	-
dx (A)	10
Eq (eV)	
200	7.37e-8
300	4.94e-6
500	2.70e-5
1000	7.52e-5
2000	3.90e-4
5000	8.52e-4
6000	8.79e-4

$O \rightarrow WO_3 \text{ on } W$

Particle reflection coefficient of O backscattered from WO3 on W zl = 8, ml = 16.00 1.layer: z2=74 (0.25), 8 (0.75). m2=183.85, 16.00, sbe=6.28. 6.28 eV. rho=6.47 g/cm**3 2.layer: zl= 74. m2=183.85. sbe=8.68 eV. rho=19.30 g/cm**3 ef=2.50 eV. esb=2.60 eV, ca=1.00. kk0=kk0r=2. kdeel=kdee2=3. ipot=ipotr=1 (KrC) alpha=0.00, dx(1) =thickness of 1.layer program: trspvmc only low fluence ! ne= 9, na= 1, n(dx)= 3

e

dx (A)	10	15	25
E_0 (eV)			
50			1.33e-1
100		1.31e-1	1.31e-1
200	1.47e-l		
300	1.71e-1		
500	2.15e-1	1.47e-l	1.19e-1
1000	2.67e-1	1.95e-l	1.27e-1
2000	3.14e-1		
5000	3.12e-1	3.03e-1	
6000	3.01e-1		

Energy reflection coefficient of O backscattered from WO 3 on W only low fluence ! ne= 9, na= 1. n(dx)= 3

dx (A)	10	15	25
Eo (eV)			
50			5.30e-2
100		4.84e-2	4.90e-2
200	4.71e-2		
300	5.07e-2		
500	5.95e-2	4.16e-2	4.Ole-2
1000	8.66e-2	5.62e-2	3.80e-2
2000	1.08e-1		
5000	1.14e-1	1.09e-1	
6000	1.13e-l		

Average depth (mean range) in \ddot{A} of O implanted in WO 3 on W only low fluence ! ne= 9, na= 1. n(dx)= 3

dx (A)	10	15	25
E _o (eV)			
50			5.30e- -0
100		8.10e4-0	8.17e+0
200	1.11e+1		
300	1.41e + 1		
500	1.92e + 1	1.86e4-l	2.01e4-1
1000	2.86e+1	2.82e- -1	2.96e-f-l
2000	4.75e+1		
5000	8.05e+1	7.63e+1	
6000	9.80e+1		

.