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Introduction. Experimental and theoretical evidence obtained recently that poloidal
and toroidal plasma rotation may considerably affect stability, raises the question re-
garding a theoretically and computationally adequate description of this phenomenon.
In this paper we study the linear, in general resistive, stability of toroidally-axisymmetric
ideal flow equilibria using single-fluid MHD equations. It is found that for moderate and
high Mach numbers the stabilizing character of differential flow strongly depends on
the consistent treatment of plasma compressibility and inertia not only in the stability
analysis but also in the equilibrium calculation.

MHD Background Theory. Equilibrium and stability are derived from the following
time-dependent MHD equations
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i.e. the balance equations for momentum and magnetic flux and conservation of mass
and energy, where most quantities have their usual meanings. d/dt denotes the total
derivative 0/0t + v-V. n is the electrical resistivity, ' is the ratio of the specific heats
and T the temperature in eV.

Considering (3) as the equation for the mass density p and (4) as determining the tem-
perature T, the plasma pressure follows from the equation of state p = pT'/m. This way
(1-4) form a closed set of equations for the nonlinear evolution of the velocity field v,
magnetic induction B, mass density p and temperature T. Note that due to V-B =0
(2) is satisfied for all times if it is satisfied initially. Naturally, for n = 0 the ideal MHD
model is recovered.

Equilibrium. Time-independent axisymmetric solutions of the ideal MHD equations
represent ideal flow equilibria. In stationary equilibrium both magnetic induction B and
momentum density pv are divergence-free vector fields with the flux-representations
B-_ (VUxVe+ V) and pv= L (VI x Ve + Cu V), (5)
27 27
where ¢ is the angle around the axis of symmetry in right-handed co-ordinates (R, ¢, 7).
U and Wy, are the poloidal fluxes of B and pv. C = p,J (where J is the poloidal current)
and C,; are the corresponding toroidal circulations of these vector fields. Equation (2)
implies that v x B is irrotational, so that ®,, in vxB = V&, is the electric potential
caused by the mass flow. From B-V®, =0 and v-V®,;, = 0 it can be concluded that
&, as well as Uy, are constants on magnetic surfaces. Evaluation of VU-V &, implies
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Cu = poJ U, + 47*R*p®,,’, where’ = d/d¥. In contrast to the fast adiabatic (isentropic)
perturbations of the equilibrium state on the Alfvén time scale, we assume for the steady-
state an isothermal behaviour (I' = 1) so that v-VT = 0 and T = T(¥). The equilibrium
components of the momentum balance (1) parallel to B and in the toroidal direction turn
out to be exactly integrable relations so that the dynamic free energy Gy, per mass unit
and the poloidal current Jy

2457 2
By R L G(T, pT/m), Ty = (1 _ iy
2p? p

also become surface quantities with Gy, = Gy (V) and Jy = Jy(¥). G is the Gibb’s free
energy G(T,p) = (T/m)In (p/pwu) of an ideal gas, where py is an arbitrary constant. The
last but most salient equation to be considered is the equilibrium component of equation
(1) normal to the magnetic surfaces which represents a quasilinear partial differential
equation for the poloidal magnetic flux W
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where
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The 5 functions Fp, = (Jy, Gy, T, ¥y, @) must be specified and J and p be determined
as solutions of the equations (6). Note that in contrast to static equilibria the quantities
J, p = pT/m and the toroidal rotation frequency ; = vi/R= poJU, /(27pR?) + 27 ®,,’
for non-zero poloidal flow are not constant on magnetic surfaces.

We determine the flux functions Fp, from the distributions of poloidal current, mass
density, temperature and of the poloidal and toroidal flow components on some line
leading from the magnetic axis to the plasma boundary. Once Fy, is calculated, (7) can
be solved. Here p,pv? /B < 3 must be satisfied in order not to violate the elliptic nature
of the partial differential equation (7).

With p, T, v and B determined we obtain an initial state for the evolution equations
(1-4) suitable for a stability analysis.

Stability. The linearization of (1-4) together with the ansatz ~ exp (At) for the time-
dependency yields

AIO()V = —I[)Vo‘VVO - po(Vo'VV + V‘VVO) — V(/)()T + /)To)
+(VxBoxB +VxBxBy)/p, (9)

AB=-vy-VB-BV-vi+B-Vvy+ Vx(vxBg—nVxB/u,) (10)
Ap=—vo-Vp—pV-vg—v-Vpy— poV-v (11)
AT = v VT — (I = 1)TV-vg— v-VTo — (I = )TV (12)

where the subscript 0 denotes zeroth-order equilibrium quantities and p, T, v and B
now (and in what follows) denote the first-order stability quantities.
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Computational Realization. The stationary equilibria described by solutions of the
equations (6-8) were calculated using the DIVA program [1] for axisymmetric free-
boundary, separatrix- or limiter-defined equilibria in the magnetic field of an external
conductor system. For the purpose of being able to study their linear stability a sig-
nificantly extended version of the CASTOR static-equilibrium spectral stability code [2]
was developed by allowing for compressible as well as for inertial equilibrium flow (rep-
resented by the coloured terms in the stability equations (9-12)). For the transfer of
equilibrium data and flux-surface geometry from DIVA to CASTOR an interface has
been developed between both the codes which arranges for an efficient coupling of equi-
librium and stability calculations. The stability equations are solved in CASTOR by
conversion into a large non-hermitian eigenvalue problem of the form (A — AB)-u =0
and determining the complex eigenvalues A and eigenvectors u by inverse vector itera-
tion.

12 . . . . Results. For a case study of a particular ASDEX
Upgrade discharge (the flat-top phase of shot 12224
1.0 1 at 0.72 s with neutral beam injection and reversed
Min shear profile) we distinguish between data which have
0.8 r 1 Dbeen held fixed and parametrized data.
06 | \ | To the first group belong the plasma current I, =
' 0.786 MA, 3, = 0.644, the temperature on axis T,
0a L = 9.6 keV, the external magnetic field and the forms
pn, Th and J, of the reference-line profile functions
0.2t 1 entering the equilibrium fields pg, Ty and Bgy. In an
equilibrium state these profiles are completely deter-
0.0 0 02 04 o6 os 1 minedby the relations
s To(s) = TaTu(s),  pols) = mpa(lp, Bp)pnls)/Ta;
Figure 1: Normalized poloidal and 12
toroidal Mach profiles M, and Mg,. Jo(s) = Jp (1 — Cs(1, Bp) (1 — Jn(s)2)>

where s is the square root of the normalized poloidal flux. Note that the poloidal current
at the plasma boundary, Jy,, is determined by the toroidal vacuum magnetic field and the
pressure on axis p, as well as the diamagnetism parameter C; by the plasma current and
beta-poloidal. As parametrized data we have chosen the poloidal and toroidal rotation
Mach number distributions on the reference line:

M, = vp/cs = MpmMpn(s), M; = vi/cs = MiaMin(s)

where ¢ = T/m. As shown in Fig.1 the normalized distributions M,, and M, have
been chosen such that they have a value of 1 at the maximum of M,, and My, respec-
tively. After having made a choice for the distributions My, and My, the only free
parameters in the problem are M, and My,. We have carried through stability studies
for M¢a € (0,0.6) and My, € (0,0.01), where at M, = 0.32 the toroidal Mach number on
axis passes the experimentally observed value. As a starting point we refer to the static
equilibrium My, = Mg, = 0. Due to the presence of reversed shear there are two (2, —1)
rational magnetic surfaces in the variability range of q € (—5.53,—1.87). They lead to
the formation of a double tearing mode (where we have assumed a Lundquist-Reynolds
number S ~ 2.7 x 10°) which also persists for non-zero flow. Fig.2 (left and middle)
illustrates that up to a certain value a small amount of differential rotation already pro-
duces considerable damping of this mode. Beneath this value, the growth rates start to
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Figure 2: Left - Growth rates due to toroidal flow (M, = 0). Middle - Growth rates due to
poloidal flow (M¢ = 0). Right - ©¢ on the outer resonant surface (solid) and w = Im(A) (points).

increase and then, for stationary equilibria, drop again. With toroidal flow, v reaches
its minimum near M, = 0.10 with a difference between the rotation frequencies on the
rational surfaces of A}y = 11.0 kHz, for poloidal flow this minimum is at M, ~ 0.006
(AQ, = 8.2 kHz). Fig.2 (left and middle, green curves) shows a growth rate calculation
on the basis of the static equilibrium with vo # 0 only in the stability equations. For
small Mg there is good agreement with the growth rates of the stationary equilibria (left,
red curve), but for moderate and high toroidal Mach numbers where the signatures of
the stationary equilibrium change noticeably, quantitative discrepancies are obtained. A
similiar ascertainment holds for the frequency w = Im(\) of the solution of the stability
equations (9-12) (Fig.2, right, points). Due to g-profile variations with increasing Mg,
the outer rational surface moves radially outward into regions where €} is smaller so that
there is no linear relation between My, and €, as for static equilibria with fixed g-profile
(blue curves). Note that there is remarkably good numerical agreement between € on
the outer resonant surface and w.

Conclusions. We have investigated the damping of a double-tearing mode due to
poloidal and toroidal plasma rotation. For purely toroidal flow we studied the behaviour
of a double-tearing mode for a whole family of stationary equilibria parametrized by the
toroidal Mach number trough the calculation of growth rates and oscillation frequencies.
It was found that for moderate and high Mach numbers correct results can be only
obtained if plasma compressibility and inertia are taken into account both for equilibrium
and stability calculations. The results indicate that the stabilization of the plasma is
more sensitive to poloidal than to toroidal flow, and suggest an investigation of the
combined effects of both. It should be noted that the accurate Fourier representation
of the poloidal variation of mass density p and poloidal current J as described by the
nonlinear equations (6) in the CASTOR stability code is highly complex and presently
only has been done completely for the mass density. The reason is the inherent constancy
on magnetic surfaces of p and J for static equilibria which is removed by plasma flow.
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