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Abstract

This is the first of two papers: I general formalism, II further develop-
ment of the theory with particular emphasis on the technique for performing
variations when the arguments of the quantities to be varied are themselves
functions of these quantities, and application to special kinetic theories, in
which we describe a relatively simple and transparent method of obtaining
collisionless drift-kinetic, gyrokinetic and more general theories, including lo-
cal conservation laws.

The present paper starts with the introduction and proof of the correctness
of a Lagrangian for the combined Maxwell-kinetic theory in general coordi-
nates as concerns the particle motion. The kinetic part of it is formulated in
Eulerian form by means of the equations of motion in the form of Hamilton-
Jacobi’s equation as a tool and Dirac’s constraint theory. Charge and current
densities automatically distinguish between “particle-like” (guiding-center),
polarization and magnetization contributions. This formalism is applied to
averaging coordinates derived by a method similar to Kruskal’s.

Certain properties of the averaging coordinates can be used to obtain a
Lagrangian for the combined Maxwell-kinetic theory in a reduced phase space
that is applicable to situations in which one is not interested in the dependence
on some kind of gyroangle describing the gyromotion.

The perturbation theory with respect to small gyroperiods, and in the case
of drift-kinetic ordering also to small gyroradii, is done solely within the frame-
work of the rather simple part of Kruskal’s method explicitly derived in this
paper. For the definition of certain approximations to the exact Lagrangian
the vector potential is formally treated as scaling with the magnetic field B
times the scale length of the background plasma, and the electric potential ®
is formally treated as scaling with B, but there is no need to really attribute
certain orders to the potentials by a corresponding choice of gauge. The terms




of the zeroth and first orders needed are given. For the drift-kinetic ordering
Littlejohn’s Lagrangian is readily rederived and hence the drift-kinetic theory
as obtained and investigated by the present authors in some previous work.
The gyrokinetic ordering will be treated in the second paper.
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I. INTRODUCTION

This is the first of two papers: I general formalism, II application to special ki-
netic theories - in which we describe a relatively simple and transparent method of
obtaining collisionless drift-kinetic, gyrokinetic and more general theories together
with local conservation laws by applying a Noether-like formalism. In particular,
they present a rather difficult subject from a point of view different to that of the
standard theories and offers an alternative to the usual systematic treatments based
on pseudo-canonical theory and Lie-transform theory [1-6]. The very specific fea-
ture of our method is the Eulerian - as opposed to Lagrangian - formulation of the
Lagrangians for the kinetic equations which are the appropriate base for deriving
not only total but also local conservation laws. These Lagrangians Lx are corre-
spondingly based on a Eulerian instead of the more usual Lagrangian description of
the particle motion. Eulerian Lagrangians for the linearized gyrokinetic theory were
already obtained by Brizard [7, 8] employing the methods of Pfirsch [9] and Pfirsch
and Morrison [10,11].

Together with the Lagrangian for Maxwell’s equations,

1 :
I 2 2
LM_/MS7T (B2 (x,1) - B? (x,1)] , (1)
the Lagrangians Lk form a total Lagrangian,
Ltot(t) = LM + LK ) (2)

from which one obtains, via Hamilton’s principle, the kinetic and inhomogeneous
Maxwell equations. The latter appear directly in the form

c 1 OE oP
—V — ——— = Jparticle—like T ¢V -, :
An xB ar Ot Jparticle—like T € XM + It (3)
¢
EV - E = pparticle-like — V - P, (4)

where “particle-like” refers to entities which can and will be chosen as the guiding
centers or the gyrocenters, and M is the magnetization and P is the polarization
connected with these “quasi-particles” . We consider it an important feature of
the new method that it automatically yields this kind of representation, unlike the
standard methods.

In previous publications of the authors [9-12] the drift-kinetic and Vlasov theories
were already treated in part by the same method, where for the drift-kinetic theory
Littlejohn’s Lagrangian [3] had to be used. This Lagrangian is now also obtained,
and in a very simple way, too, as shown in Sec. V.C.1.

The method of obtaining the stated Lagrangians for the kinetic equations consists
in a series of rather simple steps:




. Obtain for each particle species v a transformation x(¢{,t), p(¢,t), ¢ =
(¢1,...,Cs), from the phase-space variables x, p to “quasi-particle”variables
(¢1y---5Cs) = (21,...,24), an adiabatic invariant (5 = J and a gyroangle-like
variable (¢ = 6 by applying Kruskal’s asymptotic theory of systems with all
solutions nearly periodic [13].

. Use these transformations for transforming the original phase-space Lagrangians
- L,(x,p,t) for each particle species. The transformed Lagrangians are of a non-
standard type, which means that Hamilton’s equations with a Hamiltonian
obtained in the usual way from such a Lagrangian are not identical with the
original equations of motion.

. Obtain, by applying Dirac’s “constraint theory”[14,15], Hamiltonians Hy, in
an extended phase space which lead, together with certain “constraints”, to
the correct equations of motion.

. Use these Hamiltonians in Hamilton-Jacobi equations for the Hamilton-Jacobi

functions S, (¢, a,t). These equations are the Eulerian forms of the equations
of motion.

The Hamilton-Jacobi equations, however, only play the role of a tool; the
Hamilton-Jacobi functions S, will not appear in the final expressions for the
kinetic equations and the various macroscopic densities, i.e. the densities in
configuration space. This holds for the nonlinear theory which we present here.
For linearized theories it will be advantageous to use a modified version of the
Hamilton-Jacobi equations which yields generating functions for the transfor-
mation of the perturbed orbits to the unperturbed ones [7,8,11]. In this case
the first-order generating functions S,; play a central role, particularly in the
second-order energy.

5. Obtain the primary form of the Lagrangians for the kinetic equations as

aS. aS,
;/dec dea fpv <—8¥_ + HDV(C? a_C:t)> ’ (5)

where f,, = fp.,(¢,a,t) are the primary forms of the distribution functions;
the final form of the distribution functions will be denoted by f,. The quanti-
ties to be varied in Hamilton’s principle are f,,, S,, and the vector and scalar
potentials A and @, on which the Hy,’s depend somehow.

3. Prove that this Lagrangian is equivalent to the Vlasov theory

. Eliminate the 5,’s and « in all final expressions such as the kinetic equations
and charge and current densities.



Kruskal’s theory (point 1 above), and also a certain modification of it which has
to be used here, is based on a formal infinite power series expansion in a certain
small parameter €. In the present context it is concerned with the single-particle
motion in given electric and magnetic fields. For the drift-kinetic theory ¢ is given
by the ratio of the gyroperiod and the time scale for these fields and it is required
that the ratio of the gyroradius rgyy, to the length scale L for these fields also be of
the order of this e. For the gyrokinetic theory this requirement concerns only the
“background” fields. There may be in addition fluctuations around these fields with
length scales of the order of the gyroradius, but the amplitudes of these fluctuations
in some units must be of the order € (details are given in Sec. III). This restriction,
which is an element of all systematic present-day treatments, already arises here
within the simple Kruskal formalism in a straightforward way.

Kruskal’s method is neither Hamiltonian nor pseudo-Hamiltonian. It also applies
to non-Hamiltonian systems. [t yields a transformation to new dependent variables
implying a reduction of the number of equations. The omitted variable is essen-
tially an angle variable ¢. Correspondingly, one obtains for Hamiltonian systems
an adiabatic invariant. The method is straightforward to any order in e. There is,
in particular, in contrast to present-day theories, no need to solve any differential
equations.

The basic modification of Kruskal’s theory needed here is that the old variables
are obtained as functions of the new ones, instead of the other way around as in
Kruskal’s original paper. Such a modification was first introduced by Larsson within
the framework of guiding-center theory [16].

Another modification is needed for the gyrokinetic scaling. These modifications,
however, do not change the characteristics of Kruskal’s theory.

Since Kruskal’s theory is a complete theory for the particle motion, this theory
could be used directly for solving Vlasov’s equation and obtaining the charge and
current densities for Maxwell’s equations. This would, however, have the disadvan-
tage that, when the expansion is only done to a finite order in ¢, this kind of theory
in general lacks, within the approximation made, conservation of energy, momentum
and angular momentum. This deficit is avoided in the present-day theories. In our
paper it is avoided by incorporating Kruskal’s theory for any finite approximation
in € in a Eulerian form of a Lagrangian for the combined Maxwell-kinetic theories
(points 2 to 5). Since this Lagrangian is of finite order in € only as concerns the
Kruskal theory, its variation with respect to, in particular, the scalar and vector
potentials ® and A yields expressions for the charge and current densities which
guarantee the various conservation laws for any finite approximation in e. As al-
ready shown in [9], these expressions contain particle-like (guiding-center) as well as
polarization and magnetization contributions corresponding to the rotational motion
in these particle-like entities [see Egs. (3) and (4)].
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It is emphasized that the finite approximation in € concerns only the Kruskal
part, which implies only the electric and magnetic fields E and B but not ® and
A. In this way, the somewhat doubtful attribution of certain orders in ¢ to ® and
A, as done in some present-day theories, is avoided. Such an attribution could
be meaningful only for specific gauges. However, in order to obtain approximate
Lagrangians, the following procedure is applied: since A must scale at least as
B, one can formally treat it as being of the order ¢!, although it might contain
components of order ¢™* with n > 1 or n < 0. Similarly, one can formally treat ® as
being of order €', so that these scalings yield to leading order a motion parallel to B
with superimposed E x B drift, according to E + (v x B)/c = 0 for the drift-kinetic
case, or (V X Bpackgroud)/¢c = 0 for the gyrokinetic case. For the purposes of this
paper, only the very simple lowest-order contribution and some readily calculated
first-order quantities from Kruskal’s theory are needed.

As it appears convenient for the particular aspect of the problem being investi-
gated, the description of the particle motion is based on three alternative pictures
using either the usual canonical Hamiltonian for particles in an electromagnetic field,
viz.

2m

or Newton’s equations of motion as given by Eq. (61) below, or the Hamilton-Jacobi
equations as done in Sec. IL.D.

The paper is organized as follows: Section II concerns the above points 1 to 7
for general transformations x(¢,t), p(¢{,t), i.e. not necessarily for a transformation
to averaging coordinates. Section III presents a reformulation of the equations of
motion suitable for application of Kruskal’s theory and discussion of the conditions
to be satisfied as concerns orders in €. Section IV presents Kruskal’s modified theory.
In Sec. V we derive a manifestly gyrophase independent Lagrangian corresponding
to Kruskal’s modified theory for any order in €. In Sec. VI we obtain the Eulerian
form of a Lagrangian for the combined Maxwell-kinetic theories with averaging
coordinates based on Kruskal’s theory and formulate the whole Maxwell-kinetic
theory. Section VII presents a summary of the first paper.

In Appendix A, direct proof is given that the quantity J of Kruskal’s theory
is indeed a constant of the motion. In Appendix B, the Lagrange brackets needed
for the derivation of a manifestly gyrophase independent phase-space Lagrangian
are calculated. In Appendix C, an alternative derivation to that given in the main
text of a Liouvillian volume element is presented. Finally, in Appendix D, a concise
derivation of a Liouvillian volume element for general kinetic theories is given.

Hxpit) = 5 [p = SAGo )] +e(x0) (©



II. LAGRANGIANS FOR KINETIC EQUATIONS
IN GENERAL COORDINATES

In the following the index v for the particle species is suppressed.

A. Phase-space Lagrangian

The starting point is the phase-space Lagrangian for each particle species,
L(x,p;%;t)=x-p—H(x,p,t) , (7)

with the Hamiltonian H given by Eq. (6). The quantities to be independently varied
in the corresponding action integral are x and p. :

B. Transformation to new variables (i,...,(st
With
C=(<17"‘3§6)7X:X(Cat)v pzp(C7t) Y (8)

where these functions can depend somehow on the electric and magnetic fields, one
obtains

L(Cvéat>=é'7—Hp> (9)
with 5
V(G =5z p : - (10)
and ox
Hy(Ct)=H—p- 1)

The quantities to be varied independently in Hamilton’s principle are the (;’s,
while 6(; follows via partial integration over ¢ in the action integral, which yields
the usual form of the Euler-Lagrange equations. With '

0L Oy . OH,

—_— i — 2
5¢ =3¢ ¢ A 1)
and oL iy 0 9
- “or_9v s :
=7 ama R (13)
the Euler-Lagrange equations become
oy . . Oy Oy O0H, -
L. L1 _ e 14
a¢ ¢-¢ ¢ ot a¢ 0, (14)




or, equivalently,

871 a'}’k 0k a[_Ip _
ZQ [5€k 5@} ot A 0, (15)
with solutions '
The momenta canonically conjugated to the (;’s are
oL A
Pi=—-=’¢' ~,..., 1) . 17
ac. % (G Ces 1) (17)

The equations for the P;’s have the meaning of “constraints” in the sense that
the P’s are completely determined by the (;’s, and have no degrees of freedom of
their own. Therefore, the (;’s cannot be expressed by the P.’s as usually possible.

Lagrangians of the above type belong to the class of non-standard Lagrangians, as
Dirac named them.

C. Dirac’s Hamiltonian

The usual Hamiltonian method applied to the Lagrangian (9) to derive a Hamil-
tonian from a Lagrangian yields the “primary” Hamiltonian

géiR—L(C,ﬁ,t) = Hy (¢,1) . (18)

As mentioned in the Introduction, Hamilton’s equations with this Hamiltonian are
not identical with the equations of motion, Eqs (15). Following Dirac one can, how-
ever, define a Hamiltonian Hy in an extended phase space which, however, possesses
a manifold of solutions twice as large as that following from the original Lagrangian,

but reducing again to the original manifold when imposing the constraints. For the
present case Dirac’s Hamiltonian is

6
Hp (G, Pit) = )+ Vi(Pi— ) . (19)
=0
with V; as defined in Eqgs. (15) and (16). The corresponding Hamilton equations are
. 0H,
= =V, 20
G=7p =V (20)

these being the same as the original equations of motlon Egs. (16). But there are
the following additional equations:

. 0H,
P = -
* ack
S V; . Oy ' :
= 9hp -+ v 21
a(k Z Ck g O (21)
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These equations are now proved to be solved by the constraints (17):

With

c_ 5% ,5%
Te = -I-Z_ZO‘ ac.

_ .a% :
- 8<k Z Vi ’ (22)

1=0

where Eqs. (15) and (16) have been used, one obtains

Z Pi=7) - (23)

1'-0

These equations have as special solution the constraints P, = 5:. Hence, Dirac’s
Hamiltonian allows one to obtain the correct equations of motion including the
constraints.

There is, however, an important point to be taken into account later. The
combinations (P — 7%) are not in general constants of motion, and (P — ;) = 0
are only special values.

D. The Lagrangiall for a kinetic equation

As mentioned in the Introduction, this Lagrangian will be based on the Hamilton-
Jacobi equation with Hp:

0S8 oS
_ = = e - = — 2
It + H, ( CaCza ) 0, S S(Cg,a,,t), P aCz . ("4)

The variables «; are constants of integration for a so-called complete solution.

The meaning of the Hamilton-Jacobi equation is briefly recalled. It is the equa-
tion for a generating function for a canonical transformation from the old variables
¢; and momenta P; to the new variables §; = 05/0c; and momenta «;, and a new
Hamiltonian which vanishes identically. The latter has the consequence that a; , 3;
are constants of motion. “Complete” solution means that o;, 3; form a complete set
of constants of motion.

It is now claimed that the Lagrangian L (t) for a kinetic equation is given by

S .
Ik = = X /dGCdGO‘fp(Ciaa’iat) [W (Giy s ) + Hp (G 2)

particle species

+ZVJ (Git) (gf (G @iy t) = 7]'(Ci>t)>:| : (25)
7=1 J

11




Proof of the correctness of this Lagrangian will evolve from the Euler-Lagrange
equations for the combined Maxwell-kinetic theory.

Variation of the total action integral corresponding to the Lagrangian (2) (with
relation(1)) yields by variation of f;, ,.5, ,® and A, respectively,

a8
fp : E(Ciaaioﬂ‘l'Hp (Ci,t)
: oS | .
+Z"{7 (Cht) f(ci7ai7t) ] (Ci7t) =0 5 (26)
J=1 8@
of 6.9
S 2+ = (Vifs) =0, (27)
ot ;'—:; 8@_7 JIP
1 § Ak v
LN —V - -E=- —_ (28
471' particépecies 5(1, (X, t) - )
1 10E Ak .
. il _ -7 = o
A . 4m [VX ° c Ot :| particépecies oA (X? t) . (-'9)

Equation (26) is the Hamilton-Jacobi equation for the particle motion. Equa-
tion (27) is a continuity equation along the particle orbits (note that the a;’s are
constants of motion). It will later become the kinetic equation. Equations (28) and
(29) represent the charge and current densities, respectively. They will later become,
in particular, the usual equations for these quantities in Vlasov’s theory.

A first step in the direction of usual equations is to replace the function f, ({;, a4, 1)
by a function which, like the distribution function, is a constant of motion. This is
accomplished by

fP (Civaivt) = w(ciaaiat)f(ghai?t) ’ (30)
where
0?8
0a;0(
is the Van Vleck determinant. This function has the property of solving the conti-

nuity equation, Eq. (27) [18,19]. Hence, the function f({;, ai,t) is a solution of the
equation

w ((i,ai,t) = (31)

of &, 9f |
_— W/ 2

which means that f({;, s, 1) is a constant of motion.
The next step is to eliminate the new momenta ; by again introducing the F;’s
with the help of P; = 35/9¢;. This means that in the integrals over the «;’s one has

to replace
-1

2
S 11 op = w 1P | (33)

dfa — 50,




and, as a consequence of this,

fo (G t)d®a = f(Gy Piyt)d°P (34)

The last step is to incorporate the constraints, Eq. (17). They require that

(&, Pyt) = /\(Ci,Pi,t)Hé(Pi = %) (&, Gent) - (35)

The function A ({;, P;,t) is to be chosen such that f ((;,t) is also a constant of motion
in order to become the distribution function. Since []; é (P; — #;) is not a constant of
motion (as mentioned in Sec. II. C, P; = ~; are only special solutions of Eq. (23)), A
cannot be a constant. Since f and the canonical volume element in extended phase
space d®( d®P are constants of motion, and [[I; § (P; — ;) d®P = 1, it follows that
A must be chosen such that

M (¢, P;,t) d°¢ = constant of the motion. (36)

As shown in Appendix D, such a A is given by
A= /llwirll (37)

07 a’)’k
8¢ 9G
In Sec. VI.B.2a very simple derivation of A within the framework of the averaging
variables will be given.

The equation for the function f ((1,...,(s,t) is the kinetic equation

with

Wik =

(38)

V . 39
Z a@ - %
The simplest example is the one which leads back to x, p. This is obtained with

X = (C17C27C3) s P= (C‘ivCSvCG) s (40)
which yields

7=(g49<57§6703030) ) A= \/”wik”‘:l . (41)

This way all relations found above become identical with the usual ones in the
Vlasov theory. This only shows, however, that the Lagrangian (25) is correct for
the identity transformation. That this Lagrangian is correct for any transformation
will follow from a covariance property of this Lagrangian which will be proved in
the following subsection.
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E. Covariance property of the Lagrangian for the kinetic
equations

Let
G = G(&,1) (42)

be a transformation from one choice of coordinates (; to another choice of coordinates
§i. This transformation results, in particular, in

X=x(517"'7§67t)7pzp(fla'--v&ht)' (43)
There are then two ways of obtaining the new Lagrangian for the kinetic equations.

1. Direct use of the latter functions in the general definition of the Lagrangian
for the kinetic equations.

2. Transformation of the integrand in the old Lagrangian for the kinetic equa-
tions.

If both ways lead, up to a total time derivative, to the same Lagrangian, then direct
use of the identity transformation and the transformation inside the integral on the
RHS of Eq. (25) leads to the same results in Hamilton’s principle. Since the integral
1s independent of the choice of the integration variables, this “covariance” proves
the general correctness of the Lagrangian (25).

The result of the first way for the contribution of particle species v is simply

85‘(§i,ai,t)

L= [d o fienant) { T

3 . (35 . .
with 5

7 =y L] I €A) |
By =TV 4 b - 2 i (mv+ “A) | (45)
(61s-060) = g | - (mv+ A) (46)

Yil81,--.586) = 861 ) m c )
~ (0% 0% % OH, -
Vil =— - - - =0. 47
; (agk a@) o9& 47)

For the second way the following transformation relations are needed:
O0x ox 0G| 0Ox

—| = = —| =. 48
3t |, 8t<+zi: 3t |, oG (48)

14



Hence it follows that

ax ox a¢| oOx
—| p = —=| p=> =| =
ot ¢ ot ¢ —~ Ot ¢ ¢
_ 6x 6@
= a ¢ "P— ZL: "5? . Y.
This yields
| H,=H,+Y %
T
Furthermore, one obtains
dg; _ -y oG dex | 0¢
dt 9t, dt ' ot ¢ ’
and, therefore
6@ 6(_,}
Vi =
V=g et ot |,
With .
S = S(Gilé»t), aiyt) = S(&k, i, 1)
one has .
as _ a8
dt — dt
or R )
as as as ~ 08
/o —
bt Zvafz at+zi:ha§i.
Furthermore, one gets
A ox BQ ox
= o9& |, 2 8¢ 9 P
_ G
This yields
a¢; 9Gi
V; T = ae . i
(2};8& Vit 5) Yi s

N o¢;
S V= Dl + X o
: p : ¢

15




The combination of all these relations yields

aS(Ci,ai,t) _
Bt (5 0)-

65'(&,042-,75) .
— g T (&) +Z¥ ( ) : (59)

It then remains to mention that, correspondmg to the transformation of the volume
element, one obtains
r_ 0G5 Ge)

o= F )

These last two relations together prove the covariance property of the Lagrangian
for the kinetic equations and therefore also its correctness.

fo - (60)

III. REFORMULATION OF THE EQUATIONS

OF MOTION SUITABLE FOR KRUSKAL’S
FORMALISM

The equation of motion

dv e 1
- = Z 1
dt m <E+ CVXB> (61)

is reformulated in a form suitable for applying Kruskal’s method. This is done by
representing the particle velocity as

v=yb+uvn +vg (62)

and introducing the five-component vector y and an angle variable 9 given by

0
Yy = (ylay%y&y% y5) = (xayazavllavl) = (X) v||,U_L) ) V= 5—71’- . (63)

Here, the dot means d/dt, b = B/B, and vg = (¢/B*)EXB. n; = n;(x,6,t) is a
unit vector perpendicular to the magnetic field at point x and time ¢, characterized
by the angle 6 as defined by Eq. (65) below. This description makes use of two
orthonormal basis sets. The first one, (e;, e, e3), is related to the magnetic field
and thus depends only on x and ¢. The second one, (n;,n,,e3), is a particle-related
basis set with n; and n, depending not only on x and ¢, but also on the instantaneous

16



orientation of the particle velocity in terms of the angle 6. Given in right-hand-rule
order, these two sets are defined by the relations

b-Vb
E1_m s e2=b><e1 y e3=b 3 (64)
n; (x,0,t) = —sinfle; —cosfe; , ny(x,0,t)=cosfe; —sinfe, . (65)

Substituting Eq. (62) in Eq. (61) yields for the LHS of this equation
v =uyb+ U”B + o0y — fving — vi(érsinfd + é;cosf) + Vg , (66)
while the RHS is given by

€

1
(E—}——va):i(b-E)b—ﬂvinz. (67)
4 mc

m m

Scalar multiplication of Eq. (66) by b, n; and n; yields the equations for ¢, v, and
0, respectively. With the operator D/Dt defined by

D d
'Z—D—t- = E —vU31q - v (66)

in order to separate the explicit §-dependence in d/dt, one obtains

) Db
v = ;—%b -E + [’U.Lnl + VE] : [E +oving - Vb} ) (69)
. Db Dv
v = —1Nj- {UH—D—{ -+ #il —viny- [n1 . (U”Vb + VvE)] ) (70)
: 6
¥ = 7
= LB me g, db dve) 2
T 2r |me vy I dt €2 dt
1 6B Ilg Db DVE
= o {E v {”“7—3? T D } +nz- [n- (o Vb + V)]
de ’
+ey - 8_151 + (Ullb +VE + v¢n1> [Ver- 92]} : (71)



A. The Kruskal form of the equations of motion and related
requirements

The Kruskal form of the equations of motion is obtained by changing the time
scale,
t .
t—s=-. 72
: (72)
The basic assumption of the drift-kinetic and gyrokinetic theories is that the fast

time dependence is described by the gyrofrequency alone. One can therefore write

B _g,= 0, . (73)

mc

This yields for Eqgs. (62) and (69)-(71)

dx
:Z; =€ (v”b +oin; + VE) ) (.74)
dv Db
_dsn =€ [%b -E+[viny + vg] - [—D—t. +ving - Vb” ) (75)
dv Db Dvg -
_ds = —¢ [nl . [’U“ﬁ“ + —D%—] +ov,n; - [111. . ('U”Vb + VVE)]} , (16)
dy 1 1 [n, Db  Dvg
& T kTt {ZI ' [v"“ﬁ * "ﬁ] + 0z [0y (Vb + Vvg)]
0
+e; - —;—1 + (UIIb + Vg + UJ,HI) [Ver e2]} ' (77)

With the definition of the five-component vector y in Eq. (63), these equations
are of the form

9
Tocsvd) . Doy, (79)
with
B30+ 1) =gy, 9) . $(y.0+1)= by, 0) (79)

Equations (78) and (79) are of the same type as the starting equations in Kruskal’s
method if they satisfy the conditions

8(y,9)=0() , %(y,9)=0O() . (80)
For the inverse Kruskal method there is the additional requirement that
¥(y,9) = to(y) + O (¢) . (81)
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Weaker conditions, which would be of interest for the gyrokinetic theory are not
possible, as follows from Eqgs. (115) and (116) below. These latter relations require
that the ¢-average of go possess only a parallel spatial component, which is the
case if vg is of the order ev,, ev. This way it is ensured that, like d/0¢, also
k, - vg = O(e)fy, with k. ~ 1/rgyo. (In the drift-kinetic case this is guaranteed
with vg = O (€°) because of k; ~ 1/L.) This and the above conditions are satisfied
if with

v =0() oy =0(&) (82)
it holds that
b-E=0() , Vvg=0(), (83)
% = 0,0 (EO) , vg=0 (60> (drift-kinetic case) , vg = O (¢€) (gyrokinetic case) ,
(84)
Vb =0 (&) . (85)
In the drift-kinetic case, one has
1 T :
VAN -, Teyro 2
7 with L — (86)
and the conditions (82)-(85) are therefore satisfied if
b-E= %BO(C) ., bxE= %BO(CO). (87)

In the gyrokinetic case, one also considers fluctuations with large perpendicular
derivatives,

bxV ~

for fluctuations . (88)
Tgyro

Equations (82)-(85) then require that the fluctuations of vg and b, given by dvg
and ¢b, satisfy the condition

dve = O(e) ) éb = 0O(e) . (89)

This means, together with the characterization of vg in Eq. (84), that
bXE fuctustions = =B O (€) , Buctvasions = BO (¢) . (90)
In Sec. IV it will be shown that the recursion procedure of the inverse Kruskal
method does not introduce any further conditions. This is due to the fact that

the perpendicular derivatives which appear in the recursion procedure occur only
together with a factor €*, with n > 1.
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In order to avoid problems in doing variations of the electric and magnetic po-
tentials in Hamilton’s principle with the Lagrangian for the combined gyrokinetic-
Maxwell theory which will be derived in Sec. VI, no splitting into slow and fast
spatial dependences will be done. This implies that expansions with respect to
terms O (€) occurring in the arguments characterizing slow spatial dependences can
only be done after the stated variations. This problem does not appear in the
drift-kinetic case.

B. Estimate of the allowed fluctuation densities for electro-
static perturbations

If E is assumed to be mainly of electrostatic origin, the electron density can be
approximated by

e®
NfAuctuation,e = Toe €7 - (91)

In the drift-kinetic case one has for all components

®
E~—. 92
; (92)
According to Eq. (87), it then follows that
O ~ reyro =B (93)
c
and, therefore, that
e meveplon. (94)

T eB ¢ T

This means that large density fluctuations are allowed.
In the gyrokinetic case one has

i

Tgyro

b-E~q>

e bXE~
7 °x

(93)

According to Eq. (87) and (90), which give the same limits for all components of E,
the second relation, Eq. (95), is the critical one and yields

Tgyro U

q) ~ Tgyro T P 9 (96)

and, therefore, it follows that
e® Ty .
T T (97)

Hence, only very small fluctuation amplitudes are allowed.



IV. THE INVERSE KRUSKAL METHOD

A. General outline

Kruskal’s method [13] (with slightly different notation here and later, and adapted
to explicitly account for a possible slow dependence of the fields on time, i.e. a de-

pendence on ¢ = es) starts with a set of ordinary differential equations which have
the following structure:

d
ys= _y_zég(y719365) 9 ﬁs:

% = ¥(y,d,es) (98)

n

with

g(y7ﬂ+1368)=g(y719765) ? ¢(y70+1768)=¢,(y’ﬂ763) ? y-—:(yl’""yn) .
(99)
The goal of the inverse Kruskal method is to obtain a transformation (cf. also

Ref.[16])
v=Y(z,¢,es) , 9=0(z,¢,es) , z=(%1,...,%), (100)
where ¢ is an angle variable with period 1 such that
zs = eh(z,es) , ¢s = w(z,€3) . (101)

These transformations will be obtained below, analogously to the original Kruskal
method, iteratively via a recursion procedure to any approximation in € without
solving any differential equations.

For Hamiltonian systems the quantity

J(2,) = }i_mt Cdx = / p- d¢ (102)

turns out to be canonically conjugated to ¢ and a constant of motion for the ap-
proximation considered. A direct proof of dJ(2,t)/dt = 0 is given in Appendix A.
This constant of motion is gauge-invariant since it is unchanged by replacing A with

A+ VY,
/qu %, 1) d¢ / 9% 4o = fdw_o (103)

and therefore does not exphcltly depend on the vector potential, but only on the
magnetic field and its derivatives. Note that by Stokes’ theorem the contribution of
the vector potential A to J is essentially the magnetic flux inside the loop z = const.
This is discussed in detail in Ref. [20].
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B. Recursion procedure

As in Kruskal’s original theory, one can find a recursion procedure which enables
one to obtain the transformation of Eqs. (100) together with the functions h and
w in Egs. (101) to arbitrary approximation in € without solving any differential
equations. This goal is reached in the following way:

From Egs. (98) and (100) one obtains

) Ty 8¢ ' O(es)
_ . Y " Y Y v e
= eh(z,es) 5 +w(z’68)6_¢—+ s eg(Y,0,es) (104)

7-9s = sg"}"(bsa(ﬁ 68(68)
R 00 . 00 00 .
= eh(z,es)- % + w (2, ¢€s) 7 + 65@-)- = (Y,0,es) . (105)

Formal integration of Eqs. (104) and (105) over ¢ yields
Y = Y (2,¢0=0c¢s)

€ ¢ . oY oY ~
m/ﬂ [g (Y,0,es) — h(z,es) - 55 m] do, (106)

0 = 0O(z,¢=0,¢s)

1 ¢ R 00 00 ~ -
Tm::_s—)/o {w (Y,0,es) — eh(z,es) - —a—i—emJ d¢ . (107)
The transformation functions Y and © must satisfy the periodicity conditions

Y(z,6+1,es) = Y(z,¢,¢s),
O(2,¢+ 1,es) = O(z,,es)+1. (108)

They need to be imposed only for ¢ = 0 as starting values. With Egs. (106) and
(107), these conditions become

! . oY oY _
/0 [g (Y,0,¢es) — h(z,es) - 55 8(63)J dp =0, (109)
1 ! , 06 00
mA [¢ (Y,@, 65) - €h(Z,€5) . -6—2 - Em:l dqb =1. (110)

[SV]
(3]
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The functions Y (2, ¢ = 0, es) and O (Z,¢ = 0, es) may be prescribed arbitrarily.
The choice Y (2,6 = 0,es) = 2, © (2,¢ = 0,es) = 0, which is analogous to that in
the original Kruskal method, though perfectly valid, does not yield the usual guiding
center position. Instead we choose

Y (2,6 =0,es) =2+ €Y. (2,€s) , (111)
©(z,¢=0,es) = €O, (&,€s) , (112)
where Y, (2, es) and O (2, es) are power series in e:
€Y (2,e8) = €Yoy (2,€8) + € Yeg (2,€8) + - - -, (113)
€0, (2,€5) = €O (2, €5) + €202 (2, €s)+ - . (114)

This choice guarantees that the variables z and ¢ and the particle variables y and 6
coincide in the limit € — 0, leaving, however, each term in the series for Y, (2, es) and
O (2, es) still arbitrary, these being chosen later as appears convenient. A subject
related to the freedom to prescribe the functions Y (2,¢ = 0,¢es) and © (2,¢ = 0, es)
is discussed in Ref. [21].

Equations (106) and (107) together with (109) and (112) determine the functions
Y (2, ¢,¢es), O(%, ¢, €s), h(Z,es) and w(z, es). "
C. Solution by iteration
1. Remarks on the gyrokinetic theory

Because of the fast spatial variations allowed in the gyrokinetic theory, spatial
derivatives can change the order in e. In Eqgs. (106), (107), (109) and (110) such
derivatives occur only in the form

h(%, es) - (% L (115)

As will be shown below, h is given to zeroth order in € by

1 .
ho =/O godd =< go > . (116)

According to Egs. (74), (78), (84) and (89), < go > possesses only a parallel spatial
component. The derivatives (115) therefore cannot lower the order in €. This means
that an iterative solution procedure is possible. This was the reason for introducing
the condition vg = O (¢) for the gyrokinetic theory. There is, of course, no problem
in the case of drift-kinetic theory.
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2. Notations

The following notations will be used:

Y™ = Y, obtained in the n-th iteration ,
1
<f> = / fd¢ for any function f . (117)
A .

The upper indices introduced here must not be mixed up with the lower indices
indicating the order in .

3. Structure of the iteration procedure

The iteration is done in the following way: Egs. (106), (107), (109) and (110) will
be solved in the order (106), (110), (107) and (109) using in each step the results
obtained in the preceding one.

The iteration procedure will make use of the following properties of the functions
g and 1, which, according to Eqgs. (74)-(77) and (78), have the form

Ns(x, €s5)
2T '

g= go(y7 '197 ES) 9 /‘1") = "/’0(}7, 68)+€'¢J1(y, 197 ES) 9 UI)O(Ya 63) = (118)

4. Orders in € needed

The orders in € needed are € and €'. From the first order of Y, only x is necessary
in order to calculate J, and also for the spatial arguments in the gyrokinetic case
and for the factor in front of the scalar and vector potentials in order to guarantee
gauge invariance.

5. Zeroth order

The zeroth-order quantities follow from Egs. (106), (107), (109) and (110) with
e=0:
From Eq. (106):

YO =3 . (119)

From Eq. (110):
wO(%,es) = ho(%, €5) = — (2, €s) (120)

From Eq. (107):
00 = ¢ . (121)

From Eq. (109):
h©® =< go(%, 6, €s) > (122)
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Corrigenda

Page 24: the correct reading of Eq.(118) is:

g= gD(Y7 19) 63) + égl(YJ 197 65) 9 ¢ = ¢0(Y7 65) + 6%/’1(3’,79, 63) 3

Po(y,es) = -g%ﬂ : (118)

Page 29: the last but one sentence of Sec. V B should read:

For the Dirac Hamiltonian the solutions Z; (21, - -, 24, J, t) of the Euler-Lagrange
equations corresponding to Eq. (147) are needed. .



In the later applications only the first three components h(® are of interest. These
are

(hgo), hgo), hgo)) = ’U“b + Vg, (123)
where the RHS is understood to be given in terms of the phase-space coordinates z
and ¢. Note that in the gyrokinetic theory v does not appear because of vg = O (¢).
6. First order
From Eqgs. (106) and (111):
YW = g4 €Yy (2, es)+

wo(z, €s

= Z4+e€Y;. (124)

[ ol es)- < g0 5] a3

In the later applications, again only the spatial components x(!) are of interest.
With

R:= (2?1,?:’2,23) , V_L = 25 ) (125)
they are

é .
x(l) = R + €Xc1 (i, ES) -+ n; (Ra q)7 68) ‘/-L d¢

€
wo(R, €s) /0

€
21w (R, €8)

——Qs(;{’ o Vi(pa (R @, es) —er (Ryes)) . (126)

= R+ exa(2,es)+ Vi(ne (R, ®,es) — e; (R, €3))

= R+ exa(2,es)+

The arbitrary function X¢; (Z, es) can be chosen such as to obtain the usual guiding
center position to first order in e: '

Vi

X1 (2, CS) = mel (R, 68) . (127)
This yields
xM =R+ ean (R, ¢, €s) (128)

(R, €s)
A particular result is obtained by substituting this relation in Eq. (102):

2
2r . mV?

JO =
6QS(R, €s) 2

(129)
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V. REDUCED PHASE-SPACE LAGRANGIAN

A. Convenient choice of a gauge function in the phase-space
Lagrangian

In order to obtain a Lagrangian in a lower-dimensional space in terms of J-based
averaging variables (with J taken as one of the coordinates in phase space), we start,
as in Sec. II.A, with a phase-space particle Lagrangian in the form

d
L(p,x;%;t) = p-% — H(x,p,1) + 5 F 1), (130)

where, as compared with Sec. IL.A, a total time derivative of an arbitrary gauge
function F(x, p,t) in phase space is added. By expressing the position vector x and
the canonical momentum p in terms of J-based averaging variables z; = 2,2, =
29,23 = 23,24 = Z4,J and ¢,

X=;(2’1,...,Z4,J,¢,t) ’ p=p(zl,...,z4,J,cf),t) ’ (131)
where ¢ and p are periodic functions of ¢ with period 1, one obtains the Lagrangian

L(zt,eeszndydiin,. . 50 J, dit) =

Z. . 0r OF d | OF
Z[”a 62}”’[ 6" 8¢]

or OF or  OF o
wi o E e S -0 Z-20) (132

Here, the Fraktur letters r and p are used to stress the functional dependence on
the J-based averaging coordinates. The arbitrary gauge function F' can be chosen
such as to make the coefficient of ¢ in Eq. (132) independent of ¢ and equal to J,

%g:.]—p-g—;. (133)
Integration of this equation yields
Fz,eo 20, J,05t) = (F)(z1,...,24,051) + FO (21,0, 24, J, 1)
—(F9 (21,...,24,J, #i1)), (134)
where (F') (z1,...,24,J;1) is an arbitrary function, and
FO (2, za Jyit) = T — / —-d¢. (135)
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The function F(®) is periodic in ¢.
With the identity

=)+ [ 5= ([ a0) (1)
for any function f taken into account, one obtains
ot = o) e
[l e
_</0 [%.%_%.%] dgz>, (137)
o  OF o\ . (F)
YR <p"a7>+‘a7
_</0¢[1+§_;.%_3_§-%] d¢>, (135)
H—p-—g—i—%—f = <H>—<p g§> aé?
¢ . ~
NN P

As shown in Appendix B, the Lagrange brackets which appear in these equations

satisfy the following relations

96 0t ot 06 04
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By inserting Eqs. (137)-(142) in Eq. (132), one obtains
L (21,...724,-];21,_...,é4,j,§.b;t) =

L. or d(F) -
PR [<p 8zi>+79?f] +Jé

1=1

- Or Jd(F)
+J [<p-57>+—83—}
-(H)+<p-%>+-aé—f>- (143)

This Lagrangian obviously does not depend on ¢. The simplest expression for L is
obtained by choosing the free function (F') as

(Fy=0. (144)

With this choice of (F') the Lagrangian becomes
L (21,...,Z4,J;2:1,...i'4,j,§.b;t) =

4
Zéi<p §‘>+J¢

= N
+J<p 8J>
-<H)+<p-g—§> : (145)

This agrees with Larsson’s results [16] obtained in a somewhat different way within
the framework of guiding-center theory.

B. Reduced phase-space Lagrangian

For the applications envisaged one is not interested in the dynamics of ¢. It then
suffices to describe the reduced dynamics involving only 21, ..., 24, with the constant
of motion J having the character of a parameter. This is possible since L does not
depend explicitly on ¢. Such a description can be made in terms of a reduced
Lagrangian L, which is obtained from the Lagrangian L, Eq. (145), by omitting the
term J¢ and the terms proportional to J. With the total time derivative in the
reduced phase space given by

+ Z Si— a (146)
"’.7

J=1
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the Euler-Lagrange equations for the z; obtained from the Lagrangian Ly,
Ly (21,0 205 T3 20,000 245 t) 1=

£

i=1

or
—(H il 4 -
)+ (o7 (147)
are the same as those obtained from Eq. (145).
There are no approximations in the Lagrangian L, from which Z1,...,%4 are

derived. In particular, there is no approximation concerning ¢. Any results obtained
from this Lagrangian are therefore exact.
For the Dirac Hamiltonian the solutions Z; (zy, - - -, 24, J, t) of Eq. (147) are needed.

These will be obtained in the next section by using an appropriate vector notation.

C. Vector representation of the reduced Lagrangian and the
Euler-Lagrange equations

For the further development of the theory it will be convenient to express the La-
grangian L, and the corresponding Euler-Lagrange equations in vector notation. For
this purpose, it is useful to introduce a vector R with three Cartesian components,

R = (Rl, Rz, R3) 5 R2 =z, 1= 1,2,3 . (148)
The fourth coordinate in the reduced phase space will be designated by U,
Ui=2. (149)

The gradient with respect to R will be denoted by both §/3R and Vg, as it appears
convenient. The reduced Lagrangian L,, Eq. (147), can then be written as

L, (R, U, J;R,U; t) =

% [R-A(R,U; J;t) + UAu] — ed (R, U; J;1) (150)
where
. c/ Or
A(R?U;J;t) = g gﬁ ) (151)
Ay (R,U; Jit) 1= -<§—5p> , (152)
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. 0
ed (R, U; J;t) := (H) - <p a—§> . (153)
The Euler-Lagrange equation obtained by varying R is
1d . 1(0A\ . 1(8Ay) . od
_____A — — . _ —— —_— —— . =
cdt +c(8R> R+c(3R>U JR 0 (154)
The Euler-Lagrange equation obtained by varying U is
1d . 1(0A\ . 8 Ay o
———Au+-|=— - -——=0. 5
cd U+c(8U> R+7 (8U>U a0 =" (155)
With the total time derivative given by
d 0 0 . 0
P '52+R IR +U6U, 156)
and ) )
B = VRXA ) (157)
. 1
E:= __Qé —Ved, (158)
c Ot
the two Euler-Lagrange equations become, respectively,
1. 0A 0Ay
—RXB-I—E U= <8U 8R> =0 (159)
and . . R X
1. 0A 0Ay 00 10Ay )
p '[%"—an]‘a'ﬁ“z*‘at =0 (160)

Crossing Eq. (159) with A /U and Ay /IR and subtracting the second from
the first equation resulting yields

. (0A 0Au\ . (8% 18Av\ 1. [. (0A 9Au\] _ _
Ex (%‘?}E)*B (%*zzw)‘zf‘ {B (w“—aaﬂ—o- (161)

With the definition

. e [OA YAy
= — 2
B B mce <6U 6R> (162)
one obtains from this relation
R‘—"VR (R’ U; ‘];t) > (163)
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with

e [o (02  184y\ .~ (0A Ay
ViR, U; J5t) = — |B | =— + ~—— — .
= (B U3 551) mB[ <6U+c8t)+Ex(6U BRH (164)
The scalar product of Eq. (159) with B yields
U=V, (R,U;J;t) , (165)
where e . .
Vo (R, U;J;t) = —B-E, (166)
mB S

which, using Eq. (164), can also be written in an alternative form which is sometimes
useful,

Vo= 2B (167)
00 10Ay
v T
Thus, one advantage of using the vector representation is that it is relatively easy to
solve for the time derivatives R and U as functions of R, U; J; ¢, while the (equiva-
lent) solution of  the equations for 2; (z1,...,24;J;t), J=1,...,4, obtained from
the Lagrangian L,, Eq. (147), is more involved.

1. The Littlejohn Lagrangian

Littlejohn’s Lagrangian, basically in the form of Ref. [3], Eq. (20) but with
the electric drift being taken into account, can readily be derived from the vector
representation for the reduced Lagrangian obtained in the preceding section and

from the results of Sec. IV. C. 5 and Sec. IV. C. 6. One has
Py = %A(R,t), d_, = 3 (R,1),

© _ (0 _ ©_ [20J0 o © _ E(R,t) xB(R,1)

[2Q,JO ‘
X = ;;2—”'?“2 (Raqsat) ;
20Q,J1 ' e
() — ,/__s_ (0) z
P -m{Ub(th)'F mon € nl(Raqb?t)—*'vE}-*’CA(R?t)

+5x;,- VRA(R,1)
[

2 Q,JO)

2
HO — g 5o (R, 6,1) + vgy} +¢d (R, 1)

4

Ub(R,t)+

mainm €

+ex; - Vad (R,1) . (168)
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With these relations, one obtains:

A0 — §<p(0)>

== [Ub®R)+VD]+ AR

AP =0,

ed© = _ <H(0)>
_ M, (yoyd] - LY -
=2 [U +(VE)]-27r —0,~ @ (R,1) . (169)

This yields the Lagrangian

Liitijorn = R- [m [Ub (R,t) + Vg)] + %A (R,t)]

(1)
-2 [U2+ (v;g>)2] _ 1 g —eo®Rt) . (170)

2r €

VI. MAXWELL-KINETIC THEORY IN THE RE-
DUCED PHASE SPACE

In this section the formalism of Sec. II is specialized to the reduced Lagrangian
in the form of Eq. (150). The situation with this Lagrangian is the following:

A. Quantities entering the Lagrangian for the kinetic theory
1. The canonical momenta in the reduced phase space

These momenta are

oL € .
Pp=—=-A 71

R 6R c ) (1‘ )
aLr e " -

PU aU = 'C'AU . (1(2)

2. Dirac’s constrained Hamiltonian
Therefore, the primary Hamiltonian is

H = R-Pa+UP,— L
= eb, (173)




and Dirac’s Hamiltonian becomes
Hy (R,U; P, Py; Jit) i= eb + Vi - (PR - %A) +V, (PU - -Z%) . (174)

with A (R,U;J;t), Ay (R,U;J;t) and & (R,U;J;t) from Egs. (151), (152) and
(153), respectively, and Vg (R, U; J;t) and V; (R, U; J;t) given by Eqgs. (164) and
(166).

B. Maxwell-kinetic theory

1. The Lagrangian

The total Lagrangian for the Maxwell-kinetic theory according to Eqgs. (1), (2)
and (25) is now

Liot(t) = Lm + Lx (175)
— 3 1 2 2 -
Lu _/d e o [B*(x1) - B (x,1)] (176)
3 4 85 2
Ly = - Z /d RdUd*adJ f, (R,U;a;; J;1) E(R,U;a,—;J;t)—i—e@
particle species
65 € A aS € -

with A, Ay and & given by Egs. (151), (152) and (153) and Vg and V;; given by
Egs. (164) and (166), respectively, and with the integration over J representing the
summation over the parameter J (cf. Sec. V.B).

2. Liouwville’s theorem

The quantity A, introduced in Eq. (36) for general coordinates (;, for obtaining
a volume element d7 in the R, U, J phase space which is conserved along the orbits
in R, U, J phase space can easily be derived in the following way. From Egs. (157),
(158) and (163)-(166) one finds

0B 9
S T Ve (BVa)+ 55 (BV) =0. (178)

The quantity B thus satisfies a continuity equation in the reduced phase space.
Therefore, the phase-space volume element drg ;; defined as

dTR,U = lB (Rl, ceey Rg, U, J; t)l dengng;dU (179)
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is Liouvillian, <.e.

d
p (dtav) =0, (180)

where the time derivative along orbits in this extended phase space is given by
Eq. (156). Since J is only a parameter which is constant along the orbits, the same
is also valid for the volume element dr in extended phase space which is obtained
by adding the parameter J,

= |B(Ry,...,Rs,U; J;t)| dR1dRydR3dUdJ . (181)
Hence, it holds that
3. The kinetic equation
The kinetic equation for the distribution function f, which here takes the form

af e {a«iu oA ] af . . Of

'5{4'% B- —=XE +——B E—L =0, (183)

oU U "OR ' mB oU

is obtained from the Lagrangian (177) by variation of S, in a way similar to that in
Sec. II.D .

4. Sketch of a procedure for obtaining the inhomogeneous Mazwell equations and
conservation laws

Variation of the total action integral
2
.A == Ltotdt (184)
3}

with respect to the potentials ®(x,t) and A(x,t) yields the expressions for the
charge and current densities, respectively. By means of the Noether formalism one
can also obtain the energy-momentum tensor density. In these expressions one has
to replace

fodla — B (PR - SA) § (PU - E‘4U> F(R,U; J;t) d®Pg dP,

oS
—a—ﬁ — PR
oS

where B is given by Eq. (162).
This program will be carried out in paper II with special application to the
gyrokinetic theory.
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VII. SUMMARY

The paper starts with the introduction and proof of the correctness of a La-
grangian for the combined Maxwell-kinetic theory in general coordinates as con-
cerns the particle motion. The kinetic part of it is formulated Eulerian with the
help of the equations of motion in form of Hamilton-Jacobi’s equation as a tool and
Dirac’s constraint theory. In all final expressions such as charge and current densi-
ties as well as the energy-momentum tensor density and the kinetic equations the
Hamilton-Jacobi function is eliminated. There is correspondingly no need to solve
the Hamilton-Jacobi equation. Charge and current densities distinguish automati-
cally between “particle-like” (guiding center), polarization and magnetization con-
tributions. This formalism is applied to averaging coordinates derived by Kruskal’s
method.

With the help of certain properties of the averaging coordinates it was possi-
ble to obtain a Lagrangian for the combined Maxwell-kinetic theory in a reduced
phase space which is applicable to situations in which one is not interested in the
dependence on some kind of gyroangle describing the gyromotion. There is no ap-
proximation with this Lagrangian. This reduced phase-space Lagrangian is obtained
from a form of the exact particle Lagrangian which is manifestly independent of the
gyrophase @.

The perturbation theory with respect to small gyroperiods, and in the case of
drift-kinetic ordering also to small gyroradii, is done solely within the framework
of the rather simple part of the inverse Kruskal formalism derived explicitly in this
paper. For the definition of certain approximations to the exact Lagrangian the
vector potential is formally treated as scaling with the magnetic field B times the
scale length of the background plasma, and the electric potential ® is formally
treated as scaling with B, but there is no need to really attribute certain orders to
the potentials by a corresponding choice of gauge. The terms of the needed zeroth
and first orders are given. For the drift-kinetic ordering Littlejohn’s Lagrangian
is rederived immediately and with this the drift-kinetic theory as obtained and
investigated by the present authors in some previous work.

The forthcoming paper will apply the above method to the gyrokinetic ordering.
There one will encounter complications compared with the linearized theory and
with the drift-kinetic ordering which result from the occurrence of first-order terms in
the arguments of the potentials. This will lead to certain averages of these potentials
over the gyromotion similar as in other present-day theories.



APPENDIX A: DIRECT PROOF OF 4] (2,t) =0

J(%1,...,%5;t) is defined as

1 ox .
=/0 P55 4% (A1)

Its time derivative is

jﬂ( t) = ”‘az,/ P a¢d¢+at/ P 8¢d¢
= hia_ﬁi./o p-%ddmafo p-%dcb
- L[5 5) Foe (e ) 5
- [l R) g () e @

This relation can also be written in the form

_ Jp dp w(z)dp\ Ox
Gy = [ K‘a‘;*haﬁ ‘ %)‘%

op [0x IOx  w(z)ox :
-%-(EM&ZJF : %)} i . (A3)

The additional terms obviously cancel each other. The function w(z)/¢ is the time
derivative of ¢. The expressions in parentheses are therefore the total time deriva-
tives of p and x. They can be expressed by Hamilton’s equations of motion as

dp 8H dx OH

dt - " ox ’ dt op

Equation (A3) can therefore be written as

d _ [M[_0H ox _op 9H]
@&t = /o [‘a_x'aqﬁ‘w ap} d¢ = /[ ]
= 0. C(A9)

Note that it was essential that h, Eq. (101), should not depend on ¢, and that it
was not required that H be independent of ¢, which it in general is not.
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APPENDIX B: PROPERTIES OF SOME
LAGRANGE BRACKETS

Equations (140)-(142) are derived in this appendix.

In the phase-space coordinates zi,...,z4,J,¢ the constant of the motion J,
Eq. (102), can be written as

or -~ 1 or -
{z1,000y24,J,t}=const » a¢ ¢ ./0 P a¢ (b ( )
Partial derivation of J with respect to z;, J and ¢ yields, respectively,
Pl ) s 9
°= /0 [azi ¢ 0 821} dé = fo Lidg (B2)
_[Y[0p Or Op Ox 1
_/0 [6J 56 94 8]] d:= | Lidd (B3)
and 119p O dp O 1
= op or _Op Or|,.._ 7
O—A [at 96 09 3t] d¢: /0 ldg (B4)

where the convenient notation /;, [, l; has been introduced for the Lagrange brackets
concerned. Thus, /;,I; — 1 and [; have vanishing mean values. It will now be shown
that also their oscillating parts vanish. The calculations are made with basically the
same methods used to derive the transformation equations (104)-(107) in Sec. IV,
but employing the phase-space coordinates zy, ..., z4,J, ¢ instead of 2,,..., %5, &.

Some relations needed for the calculations can be derived from the canonical
Hamiltonian H,

H(x,p,t=-es)=H(x(z1,...,24,J, 8t = €35),0 (21,..., 24, J, ;1 = €5) ;t = es) ,
(B5)
from which one obtains as derivatives with respect to the independent variables
Z1,...,%24,d,® and t the relations

o
az,-

OH _ 8H| o  0OH

5z Or|p, 9m 0 @p
dp Or dr Op

dit % @t 8n

OH dp Or dr Op -
WS Tw AT E B (B7)

Lt
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oH d_p Or d;_a_p

%= @ %t @ 99 (B3)
and OH dp o dp Op dH
__9% or d Op all

B, ,, " T a @ e dt (B9)

where 22 rp = %{ has been used in the last equation. With 5% (%) = 5} (%%)

(and similarly for J and t) taken into account, these equations yield

o 9 [d], o o (& _ & o [d] 0 0 k] g
0z; 0¢ |dt 0z; 0¢ |dt - 0o O0z; | dit 0o 0z Ldt_ ’ ' )
O 0 [do) Op O [dr] _ O O [de] Op O [dr] g5
oJ 0¢ |dt aJ 0¢ |dt| 0¢ OJ |dt d¢ 0J |dt] S
and
dgr 0 |d dp 0 |d 0 |dH 0 |d d
__;.._f ._p. +_£..__ ._; 4 —|— =__8£._ _.E _1.@2 ._; . (Blz)
at 0¢ | dt ot 0¢ |dt| 0¢ | dt d¢ Ot |dt| 0¢ Ot |dt
In the phase-space coordinates zy,...,z4, J, &, the total time derivative is given by
d 4 0w 0 o) _
E—;hj(zl,...,24,J,t—68)"6—2:;-{"?(21,...,24,.],75—_—68)55"}‘& (B13)
(cf. Egs. (101). It is easily seen that
0 d d J
4 .
0 d d 0 Oh; 0 10w 0 (B15)

Gadi  didm %020z <0508 ~

and correspondingly for 8/8.J and &/8t. When this is taken into account, Eqgs. (B10)-
(B12) yield, respectively,

dl _Ohy)

l(z) ,Wlth l(z) = (ll,lg,lg,l4) ) h(z) = (hl, hg,hs,h4) N (B16)

dt 0z
dl Ohy,
d_; = - &(I) 1) (B17)
d oH oh,
EZ; [lt+_8_<_;§] = —-F(t—)-l(z) . . (B18)
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Since the mean values of lz) and [; vanish, and the mean value of [ is 1 accordlng
to Eqs (B2)-(B4), lz), Iy and I; can be replaced by their oscillatory parts l(z I;
and /; in Eqs. (B16)-(B18). By substituting d/d¢ from Eq. (B13) in Eq. (B16) and

solving for dl(;)/0¢, one obtains
31 6 ah(z) ~ al(z a’i(z)
Fe =5 | el the 52+

(B19)

The iterative solution of this equation yields I(z) = 0 to all orders in e. With this
result taken into account, Eqs. (B17) and (B18) yield in a similar way

~ ~  OH .
ly = L+—=0. y
s=0 , L+ 5 0 (B20)
Therefore, - B0 B
p or p o
e A et S _ 5
5z 09 86 Bz tThets (B21)
9 O O O _. 00
3] 94 8¢ 811 (B22)
and

5?'%—%'5{-1-895—0. (B23)

It is easy to calculate the Poisson brackets [z;,J] and [¢, J] by making use of these
results. Let ¢y be any of the coordinates z,..., 24, J,é. Then, from

O = qr (2 (qust),0(gu 1), 1) , (B24)
obtains
e dar _ g _ 0 09 B On (B25)
9q, " 0Oq. Or g, Op’
which, with 9g\/0r = [g),p] = 25_, (a2, 4] Op/8q, and 0¢:/0p = —[g,1] =

-0 [an, ) 02/8q, yields the orthogonality relations between the Poisson and
the Lagrange brackets, viz.

6 i
b= Y loal - g KL (B20)
By taking g, = ¢, this equation yields
[z:,J] =0 i=1,....4 (B27)
and
6, J]=1. (B28)
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APPENDIX C: ALTERNATIVE DERIVATION
OF A LIOUVILLIAN
VOLUME ELEMENT

In Sec. VI . B . 2 a Liouvillian volume element was derived in a simple way
by making use of the vector representation of the Euler-Lagrange equations. Here,
an alternative (though more complicated) derivation will be given which is similar
to the usual derivation of a Liouvillian volume element within the framework of
guiding-center theories.

The Lagrangian equations derived from L,, Eq. (147), can be written as

= oH dp or Op O
Zw”é_+<§'a—“a_'a—t> R
with w;ir the antisymmetric matrix given by
_ /o Op Or Op ,
ke <8zi Oz, Oz, 0z (C2)

The following phase-space volume element dr), is then Liouvillian, i.e. d(dry) /dt =0
along orbits:

dry := M(z1,...,24;J; 1) dz1dzodzadzy (C3)
with
X = |det (wir)]? . (C4)
A proof of this theorem is given in Appendix D. Here, an expression for A will be
derived, and it will be shown that it coincides with B, Eq. (162).
The matrix elements w;;, satisfy the following conditions: w;; = 0 fori=1,...,4;

Wy = —wig for i = 1,...,3; wig = —wyy; w1z = —ws; and wys = —wsy. Calculation
of det (w;) yields

det (i) = (Wiawzs — wiawas + wWizwas) (C5)

By identifying zi, 29, 23 and z4 with R;, Ry, Rs and U, respectively, the following
relations can be derived by comparing Eq. (C1) with Eq. (159):

e OA aAU
=X |=— — — E=1,...,3
Wka cxk [BU IR } ) ) ’ ) (06)
where the Xz, k= 1,...,3 are Cartesian unit vectors. Next, one has
€ € - € -
wis=—-By , wis=-By , wipp=--Bs. (C7)
c c c




Since B - (BA/aU - 8AU/8R) = (mc/e)B according Eq. (162), one obtains

3 : 8A 814] 2 2
et (wir) L 1 (c x (GU 6R> B’}

_ [_’EB] . (C8)

The Liouvillian volume element given by Eq. (C3) is thus the same (within a constant
factor) as that given by Eq. (179).

APPENDIX D: LIOUVILLE’S THEOREM

The equations of motion as given by Egs. (15) and (16) can be written as

Oy,  OH,
Z‘/zwzk— Bt + aCk 5 (Dl)

i=1
with the elements of the matrix (w;;) given by

0% O 2
Wi = 8Ck 64_2 . (D-)

In order to derive Liouville’s theorem, one needs the time derivative of

A = det (w,-k) . (D3)
It is convenient to use the Laplacian development of A, viz.
A= Zwikcik , (D4)
k=1
where ¢ can be any of the numbers 1,...,n. Here, the determinant is expanded as a

linear combination of the products of the elements of any row and the corresponding

signed minors, viz. the cofactors Cj;. By definition, the C;; do not contain the
element w;; and, therefore,

oA
— =Cy . D5
Bwik k . ( )
Since A is a function of the wy’s, its derivative with respect to time is
dA . 0A
E - ; Wik awik
= > wuCu (D6)
ik
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By using the relation

(Cir) = A (Jwi) (D7)
where the matrix (J;;) is the inverse of the matrix (w;), i.e
> widi =i, (D8)
]
one obtalns A
dt = Azwﬂ_J]ﬂ . (Dg)

From the definition of wi;, Eq. (D2), one can derive the relation

awz,j 8wkl Bwik

oG 8¢ 0

By using Eq. (D1) in the expression for the partial derivative of Eq. (D2) with
respect to time, one obtains

Owik _ 8wh 8wk1 6‘/} BVI .
ot 4 [Vl L%k * a¢; } " 3(}:“)11 Cq‘wml ' (D11)

By making use of the last two equations, the total time derivative of wyy,

=0. (D10)

dwy, awzk Zvawzk

— )
@ (D12)
can be written as i v o
wzk l
= . D1
Z [5§k 9G; wm} (D13)
Multiplication of this equation by J; and summation over ¢ and k, with Ji; = —Ji
and wy = —wy and the relations 3, wy;Jix = 6ix and p wipJri = &y being taken
into account, yields
dw;j oV,
—J==2) — . D14)
; dt 7 a¢ ( '
By inserting this in Eq. (D9), one obtains -
dA A
= =2A . D15
Z ¢ (D15)
The quantity
A= A2 (D16)
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then satisfies the continuity equation

N D
E-‘_ZEE(AM)—O-

l

Thus, the volume element
dr = Ad(;...d¢,

is Liouvillian, i.e.
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