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Chapter 1

Prelude

Ceci n’est pas un Stellarator

Small scale, low frequency fluctuations are generally held responsible for the obser-
ved transport losses in fusion plasmas that exceed single particle collisional transport
by orders of magnitude. Experimental evidence suggests drift waves as a probable cause
of the underlying instabilities [1]. The basic mechanism of instability for drift waves
is independent of the confining magnetic field geometry: free energy from a pressure
gradient together with a non-adiabatic interaction between ions and parallel electron
dynamics leads to a nonlinear growth of wave amplitude. The coupling of different wave
numbers results in a locally homogenous, quasi two-dimensional turbulent state on the
typical perpendicular length scale of several ion gyro radii [2]. Stabilizing and cataly-
zing factors, like global and local shear damping or curvature of the magnetic field,
are on the other hand fundamentally determined by the geometry of magnetic confine-
ment. Different stellarator configurations are thus likely to also show specific anomalous
transport behaviour. For advanced stellarators, this specifically accounts for the plas-
ma edge, where measured turbulent transport exceeds the predicted neoclassical level
by far [3]. In present partially optimized experiments the plasma core however is still
dominated by collisional transport [3], but ion temperature gradient (ITG) driven core
turbulence [4] might become significant in future devices with improved neoclassical
confinement and higher core temperature.

It is thus desirable to put the understanding of the underlying microinstabilities
in stellarators on a similarly solid foundation like it exists for large-scale magneto-
hydrodynamic (MHD) stability. A well-known approach for the analysis of MHD stabi-
lity of a plasma utilizes the energy principle. By means of a quadratic form, information
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6 Prelude

on destabilization, for example due to unfavourable curvature, and suitable geometric
optimization in a stellarator can be obtained in this case [5].

Because of non-hermiticity in their governing equations, linear drift waves however
do in general not allow for the construction of such a quadratic form. For the special
case of a simple, collisionless model of radial drift waves, Antonsen [6] had been able to
set up a quadratic stability criterion by extension of the real radial coordinate into the
complex plane and rotation of the integration axis. This method has been extended by
Chen et al. [7] for the case of dissipative drift waves, where it has been shown that those
are linearly stable in a sheared slab configuration. In the formulation of the problem
as an equation along the field line in order to cover toroidal and helical variations
in general three-dimensional geometry, the trick of complex continuation is no longer
practicable. | .

Further, the applicability of such a linear stability criterion on transport prediction
would be questionable, as due to the nonlinear character of drift wave turbulence,
even for linear stability of all eigenmodes, the formation of nonlinear self-sustained
turbulence and thus enhanced transport is possible [8]. Simple analytical criteria for
stabilization of drift waves in three-dimensional geometry thus can not be specified.
For this reason we have chosen the approach of comparative numerical studies.

In the following chapter, an overview and references on the physics and geome-
try of helical advanced stellarators is given. On the basis of this configuration, the
influence of magnetic field geometry is then discussed in a basic model of drift-Alfvén
wave turbulence which contains the necessary physics that applies to the plasma edge
(chapter 6). By means of linear models, core physics in the form of ITG (chapter 5)
and dissipative trapped electron modes (chapter 4) is further included in our survey.
These models are, of course, by far not comprehensive in order to cover the complex
physics of plasma turbulence in three-dimensional fusion devices, where a large range of
parameter and mode regimes is present. Optimization criteria for a possible systematic
minimization of turbulent transport in Helias configurations therefore still have to be
regarded as tentative. The results presented here should, however, encourage for more
detailed future computations.

This report is based on the doctoral thesis “Driftwellen in Helias-Konfigurationen” by
the same author presented to the Technical University of Munich in 2000. Parts of the
contents have also been published in references [9], [10] and [11].



Chapter 2

Helias configurations

Size comparison of plasma volumes
from Wendelstein 7-AS (inside), W7-X
and the reactor concept HSR.

Helical advanced stellarator (Helias) configurations [12] find their foundations in
the basic ideas of A. Schliiter aiming towards the goal of improving the confinement
and equilibrium properties of a classical stellarator. The first experiment in this advan-
ced line has been the partially optimized stellarator Wendelstein 7-AS [13], that has
been in operation since 1988 and was able to succesfully demonstrate the feasibility
of the concept [14, 15]. As next step (under construction), Wendelstein 7-X has been
developed [16] to test the reactor relevance of Helias configurations. “HSR” (Helias
stellarator reactor) is the name of a power plant concept study based on W7-X and
scaled to reactor dimensions [17].

The basic properties of a Helias configuration are a MHD stable plasma with
temperature 7' and density n up to a pressure, averaged over the whole plasma, of
(B) = (2uonT /B?) ~ 5% with low Shafranov shift due to reduction of Pfirsch-Schliiter
currents, and low neoclassical losses [18]. Further criteria of optimization have been
good confinement properties for a-particles, low bootstrap currents and well-defined
magnetic surfaces of the vacuum field without major resonances [5, 19]. The currently
favoured realization is a five field-period configuration (see figure 2.1) with rotational
transform ¢ close to unity and low global shear.



8 Helias configurations

2.1 Flux coordinates
In the following, straight-field line (SFL) Boozer or Hamada coordinates z* with
x = (2}, 2%, 2%) = (s,6,() (2.1)
are used where s is the radial label and |
§=(C—qf) (2.2)
is the field line label [20]. The magnetic field can then be written as
By = V¢ x pr, (2.3)

where 27y, is the poloidal flux and the safety factor is ¢ = 0¥ /9xp = 1/t. The radial
coordinate s is defined via the flux derivative U, = Byaj with By the field strength
on axis and average minor radius ag. In our treatment of three-dimensional plasmas,
all relevant geometrical quantities for a given configuration are represented in terms of

metric elements

g = Vgt - Vz¥. (2.4)
Both V and z* are normalized to the minor radius ag. The geometric quantities are ob-
tained by means of a free boundary equilibrium code (NEMEC) [21] and transformation
to Boozer coordinates by the JMC code [22]. Cylindrical components X = (R, ¢, Z) of
closed flux surfaces and the magnetic field are given as a function of SFL coordinates
in a Fourier expansion in the mode numbers n and [ (Ny = 5 is the number of field

periods):

|B| =" Bu(s) cos(nf = I{), (2.5)

n,l
R =5 Ru(s)cos(nd - I(), (2.6)

n,l
Z =Y Zn(s)sin(nd - (), (2.7)

n,l
b = Nif + ﬁlj; S fuls) sin(nd — I¢) 2.8)

From these the covariant basis vector
oX

e, = —8_11,: (29)
and, in succession, the contravariant basis vectors
X

et =Vt = (e x &) (2.10)

le, - (e, % ex)]




Flux coordinates 9

are computed. The metric coefficients g#” are symmetric, and the non-diagonal elements
vanish in an orthogonal coordinate system. The Jacobian of the transformation into
the curvilinear coordinate system is J = [Vs - (V8 x V¢)]~*. The vector operator V is
written as

0

V =Vu a—ui—, (211)

where a double occurrence of indices ¢ implies a summation over its values (1,2,3).
Field line curvature is defined via the unit vector b = B/B along the field line as

k=b-vb=2v, [+ B\~ v, mB (2.12)
= B2 1P 2/_1,0 1 . 12
The second identity follows from the equilibrium relation Vp = JxB = u3(VxB)xB
directly by making use of some vector relations. The latter approximation is valid for
low plasma pressure (8 < 1). Then we have

k=0,InB-Vs+8InB -V0+031nB- V(. (2.13)

Global field line shear ¥ = —(2s/:)0;¢ describes the radial variation of the rota-
tional transform. Helias configurations are characterized by low global shear. However,
caused by deformation of the flux surfaces, radially neighbouring field lines may she-
ar apart locally and get closer at other places even when the average (global) shear
vanishes. A corresponding local description can be found by defining (see Ref. [23])

Vx x B
= VxR 2.14
= Tp (2.14)
and thus B = Q x Vy. It is further Q = V& — AV, where
A= vlé)dv?é =—(R+ g—i@) with R=—(Vx-V(—qVx-V8)/|Vx]> (2.15)

is often called integrated local shear. This secular quantity is depending on a point
of reference along the field line and grows nonperiodically proportional to # after a
circuit around the torus. R is termed integrated residual shear. Local shear S now can
be defined as quantity that is equal to global shear ¥ = (S)y when averaged over a
complete flux surface. The usual definition is [23]

S=-B-VA. (2.16)

This is identical to S = —Q - rotQ and has the dimension of an inverse volume.

For further reading, the most comprehensive treatment of flux coordinate systems
can be found in the text book by D’haeseleer et al. [20].
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2.2 Anomalous transport in stellarator geometry

The connection of a drift-optimized Helias stellarator geometry with anomalous trans-
port has previously been discussed analytically with regard to the effect of fixed, pre-
scribed fluctuations of electric and magnetic fields on fluxes by Wobig [5]. It is shown
therein that in such a case fluctuation induced particle transport in a Helias has no
direct dependence on the geometric properties of an optimized, low geodesic curvature
configuration. The anomalous heat flux has been found to include a term proportional
to the minimized Pfirsch-Schliiter factor (e, - b), where e, = V({ x Vs and b = B/B.
It had been concluded that the geometry could instead enter directly into transport
via the fluctuation level. Recently, the long-time behaviour of drift wave test particles
orbits and transport in Helias configurations has been investigated by means of the
mapping technique [24]. This mapping method allows to study the influence of magne-
tic islands on the transport, but also needs as input pre-calculated electrostatic and
magnetic field perturbations. In that sense such calculations are not self-consistent,
as the particle motion does not act back on the perturbed electromagnetic fields. In
contrast to these previous considerations, we will outline in chapter 5 self-consistent
first-principle direct numerical computations of turbulent fluctuations and transport in
Helias geometry.

Figure 2.1. Local shear contours on a flux surface of the Helias configuration Wendel-
stein 7-X. Notice the strong increase of local shear at regions of strong flux surface
deformation, for example at the vertices of the triangular cross section parts.



Chapter 3

Drift waves in inhomogenous plasma

Measured density fluctuations generated b
weakly turbulent drift weaves. From Ref. [25%

Collective phenomena in plasmas are most often described in the framework of
magneto hydrodynamics (MHD) [26]. The use of the approximations employed in this
model is justified when background scales lengths and mode structures are large com-
pared to the parallel mean free path and to the gyro radius, and when other kinetic
effects like Landau damping can be neglected.

Fluid equations are derived starting from the kinetic description of a plasma by
taking moments of the distribution function f(x,v). In lowest order density, velocity
and temperature of a fluid element are obtained:

n = /d3vf, (3.1)
V = (1/n) / Pufv, (32)
T = (m/3n) / Pof(v — V)2 (3.3)

Under the assumptions mentioned above the distribution locally does not deviate much
from a Maxwellian, and the (in principle infinite) hierarchy may be closed after these
first three moments. The resulting fluid description is determined by the equations for
conservation of density, momentum and energy. Ideal MHD uses single fluid equations
without resistivity where all plasma components have the same density n, velocity v
and temperature T. This most simplified model allows already for a description of the
global equilibrium, the excitation of basic modes (sound waves, Alfvén waves) and their
macroscopic stability [27].

A large class of instabilities is however not covered by this idealized approach and
can be made accessible only when separate electron and ion dynamics and coupling via

resistivity are additionally taken into account.
11




12 Drift waves in inhomogenous plasma

3.1 Fluid equations and drift ordering

The dynamics of a plasma is often paradigmatically described in the fluid model by
means of the Braginskii equations [28] consisting of the equations of continuity and of
conservation for momentum and energy of both species (index j):

3tnj + V- (njvj) = 0, T (34)
m;n; Dyv; = ¢g;n;(E+v; x B) = Vp; — VII; + R, (3.5)

3

§nj8tTj +ij *V; = -V - q; — HjVVj + QJ‘. (36)

Here D; = 0, +v; -V is the total time derivative, q; is the heat flux, IT is the nonscalar
part of the pressure tensor, R describes momentum exchange by collisions, and @Q; is
a energy exchange term, each in the form derived by Braginskii [26].

A simple closure of the equations can be obtained with an (adiabatic or isothermal)
‘equation of state p(T). They are further coupled to Maxwell’s equations

VxB= Ho ZJ] + /l.oGoatE (37)
J

and

If quasi neutrality is a valid assumption (n; = n.), then one of the equations (3.4) can
be also written as V - j = 0, that is, the current is free of divergence.

The Braginskii equations in the form (3.4)-(3.6) describe plasma dynamics in a
broad range of time scales. For fluctuations relevant to turbulent transport in a fusion

plasma, typical scales of frequency w < {}; are small compared to the gyro frequencies .

Q; = ¢;B/m;. Their spatial extension A < L is much smaller than typical length
scales L of the background equilibrium that is only weakly depending on time and
space variations. Then the dynamics in the equation of motion (3.5) can be reduced to
these relevant scales by application of drift ordering [29, 30]: A perturbation analysis
is performed in the small parameter

A
E=—n~ —n~ =< 1. ' (3.9)

Further it is assumed that fluctuating quantities are also small in order of € compared
to their equilibrium values. In lowest order in e we obtain from the perpendicular
component of (3.5) the drift velocities

V;]_i =VE+VD'i+vpi (310)

and
Vlie = VE + VDe-: - (311)

I EEE————.
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Here convection through E x B drift is described by

1
Vg = —B—Q-(E x B). (3.12)
The diamagnetic drift
B x ij
AR | 3.13
VDj qJnJBQ ( )
has different sign for electrons and ions because of their specific charge g;, and
m;
Vpi = _e—EEDtE (314)

is the polarization drift of the ions that appears due to finite mass inertia. Although
Vpi is an order in € smaller than the other terms, it is kept as for the finite space charge
it is the only term that does not vanish by taking the divergence at a homogenous
magnetic field. For the electrons this term is negligible. In eq. (3.4) and (3.6) also
v;j = buy; + v, is substituted and drift ordering is applied 30, 29]. In the Ampere’s
law in (3.7) the displacement current can further be neglected at low frequencies and
high electric conductivity.

Figure 3.1. Schematic view of a drift wave driven by a density gradient.
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3.2 Basic drift wave dynamics

The collective phenomena resulting from these drift reduced equations are often sub-
sumed under the common term drift waves. On the other hand, drift waves in a narrow
sense are often meant to designate the interrelated dynamics of perturbations in the
pressure p and the electrostatic potential ® subjected to a pressure gradient, where the
perpendicular E x B motion carried by ions couples essentially to the parallel electron
dynamics at finite Vp, via the parallel component jj of the current [31, 32, 33]. The
magnetic field may be homogenous. Drift waves are subject to a nonlinear character
that enables self-sustained turbulence even without linear instability: Nonlinear advec-
tive coupling of vz with vorticity V3 @ opens more degrees of freedom for access on
sources of free energy compared to linear perturbations, and thus may enable strong
turbulence even if all linear modes are stable [34, 35, 8].

Destabilization occurs when the parallel electron dynamics deviates from a fast
“adiabatic” response to potential perturbations [36]. Drift waves are a universal phe-
nomenon that is found in magnetically confined plasma even for homogenous magnetic
fields and cold ions. Figure 3.1 schematically shows a localized perturbation of ion
density n; (left) that results in a positive potential perturbation ® > 0 (right) due to
ambipolar diffusion. The magnetic field is oriented in z direction. For typical scales
A of the perturbation it is found that A > Ap = y/e¢Te/(ne?) is much larger than
the Debye length, so that quasi neutrality n; ~ n. can be assumed. Along the field
line the electrons try to locally establish a Boltzmann relation n, = ng(z) exp(e®/Te)
in accordance with their parallel equation of motion (3.5). Without restrictions on the
parallel electron dynamics (like e.g. due to collisions, Alfvén waves or kinetic effects like
Landau damping and particles trapped in magnetic field inhomogenities) this balance
is established instantanously on the drift time scale and is often called an “adiabatic
response” [36].

Already at homogenous background density the perturbation convects the plasma
with v, = vz due to the equal E x B drift for electrons and ions. By adding a density
gradient in negative z direction, the whole structure propagates in y direction: It follows
from the continuity equation (3.4) for a homogenous magnetic field and by neglecting
ion inertia, that

8tnz- + V(VE 7’L1) = 0. (315)

Using quasi neutrality n;=n.=no ()47, and the stationary momentum balance
—ETLOEH — V”pe =0 _ (3.16)

for isothermal electrons without collisions, it follows that

ed

n; = Ng €Xp (—T—> . (3.17)
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Combining equation (3.15) with the drift velocity vy = B~2(E x B) = —B~%(V® x B)
we now have

ed 1 ed
Bt Ny €Xp (E) -V [E(VQ X B) Ny €Xp (E)] = O, (318)
and due to B = B, we obtain
T,
8% — <£) (8, Inng) 8, = 0. (3.19)

Assuming a perturbation periodical in y with ® = @exp[—iwt + ikyy], we find as a
typical frequency the diamagnetic frequency of the electrons

~ Qg psky
e = Wye— = . .20
G = Wre = = - (3.20)

Here the density gradient length L, = |agV;Inng|™! and a thermal ion gyro radius
ps = Vm;T,/(eB), determined at electron temperature, have been introduced. The
motion of the structure perpendicular to magnetic field and density gradient is still
stable and does so far not cause any transport in z direction.

The drift wave is destabilized only when a phase shift dx between potential and
density perturbation is introduced by “nonadiabatic” electron dynamecis

o = no(1 — i6y) 22 (3.21)
Te
The imaginary term idy in general is an antihermitic operator and describes dissipa-
tion of the electrons, that causes the density perturbations to proceed the potential
perturbations in y by slowing down the parallel equilibration. This leads to an expo-
nential growth exp(yxt) with 75 ~ dxwy, and may for the case of resistive drift modes
be described approximately by 0x & (wve/kjc2) [36].

In the following chapter a linear drift wave model for cold ions and isothermal
electrons is applied to stellarator geometry by using two simple cases for Jy. Parallel

coupling by electron motion causes the parallel wave number of the drift modes to-

follow the scale L of inhomogenities of the background magnetic field as ky ~ 1/L
and implies a typical anisotropy of k& < kj. In toroidal geometry the drift waves
couple to ion sound waves for finite kj;, which leads to an eigenmode structure along
the field line. Interchange effects (see fig. 3.2) caused by an inhomogenous magnetic
field can lead to a localization of the modes, for example on the outside of the torus.
Parallel electron motion also couples drift waves to shear Alfvén waves, which are
parallely propagating perpendicular magnetic field perturbations. With the vector po-
tential A)| as a further dynamic variable, the parallel electric field Ej|, parallel electron
motion, and nonlinearly the parallel gradient are modified [37]. The resulting equati-

ons are discussed in chapter 6 in the context of nonlinear simulations of drift-Alfvén
turbulence.
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Figure 3.2. Schematic view of the interchange instability in an inhomogenous plasma:
an initial perturbation of pressure p(z) with dp = dpoexp(iky) and a resulting E x B
convection can be destabilized by diama%netic currents for equally oriented gradients
VB-Vp > 0. The drifts v.; = (2p;/q;n; B*)B x V In B correspond to the essential term
of vp; that does not vanish when taking the divergence. Here the phase shift between

pressure and potential is 7/2.

A destabilization of ion sound waves can be found for a finite ion temperature
gradient (ITG) V,T; even at homogenous magnetic field and homogenous equilibrium
density, when the parallel motion and perpendicular drift wave dynamics couple via
parallel compressibility [38]. The instability of this ITG mode is increased by the VB
drift for unfavourable curvature (VB - Vp > 0) of the field lines in toroidal geometry.
ITG modes are commonly held responsible for transport in the low-collisionality core
plasma [39], as this mechanism is already effective for adiabatic electrons. ITG modes in
stellarator reactor geometry are discussed in chapter 5 in the framework of gyrokinetic

theory.

Drift waves are stabilized by magnetic field line shear [40]. In a linear model, shear
Y causes a spatial dependence of kj across the field lines, what leads to an effecti-
ve damping for localized eigenmodes with outgoing wave energy boundary conditions
[7, 41, 36]. An absolute shear stabilization of dissipative drift modes, that had been
found for constant magnetic field, does not occur any more in a torus with finite field
line curvature[41]. Concerning a damping mechanism in-globally nearly shearless stella-
ra,tors; Waltz and Boozer have proposed in 1993 that local shear S may be an effective
substitute [42]. In the following chapter, a numerical investigation on localization and
stabilization of drift waves in Helias stellarators is conducted.
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3.3 Ballooning transformation

Eigenfunctions on a flux surface in a toroidal system have to fulfil double periodicity
in the coordinates # € [0...27] and ¢ € [0...27]. On the other hand, the dynamics of
drift waves is coupled strongly along the field lines, and the development of eigenmodes
is oriented in filaments along the field with a parallel wave number &k < k.. Making
use of this asymmetry by means of the WKB method and splitting the eigenmode
problem into a spatially slowly varying parallel and a strongly oscillating perpendicular
component (e.g. with Fourier decomposition) is not directly compatible with periodicity
constraints. '

A modified WKB method, that is able to fulfil these requirements, has been in-
troduced by Connor et al. [43] and was further developed by Dewar and Glasser [45]
for application to three-dimensional geometry. It allows to represent fluctuations in a
quantity F with small amplitude by an eikonal ansatz with

F = Fils, () exp GW) (3.22)

The eikonal W = W (s,€) and amplitude F,(s,{) are supposed to vary slowly on
the scale of variations of the background quantities. The parallel coordinate is here
represented by the toroidal angle ¢ projected onto the field line. The eikonal depends
on the radial coordinate s and field line label

§=(—qgb. (3.23)
This fulfils the requirement
k; - B=0 (3.24)
by an ansatz
k, = évw — keVE + k,Vs. (3.25)

Here k; = 0;W and k; = O,W. Under the assumption of W = £ + W(s) and by
defining a large perpendicular mode number m = 7! and a radial wave number (; =
e710,W/09:W we can also write

k., =mVe¢ + G Vs. (3.26)

In lowest order in expansion by ¢ this ansatz reduces the eigenmode problem to the
solution of a one dimensional equation along the field line, where m and (i are free
parameters.

The ballooning transformation by Connor et al. [43] translates these nonperiodic
quasimodes from the infinite parallel domain back to a doubly periodic domain with
periodic potential F, by summation in a series

Fu(5,0) = 3 F(s,¢ +2nl). ' (3.27)
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The quasimodes F now fulfil for decaying boundary conditions at || — oo the same
equations as F. It has been noted by Antonsen and Lane [44] that this formulation
still allows consistent treatment of local and global magnetic shear via the dependence
of VIV on these quantities along the field line.

The ballooning transformation had been developed initially for calculation of ma-
gneto hydrodynamic ballooning modes, and later it was also applied to drift waves.
For MHD ballooning the formalism has also been extended to cover the radial mode
structure by expansion to higher orders in € [45]. Constructing global modes in three-
dimensional stellarator geometry without axial symmetry by solution of ray tracing
equations, that couple the eigenmodes along the field line for the free parameters ¢, s,
ke and ks, is, however, not always generally practicable!. The resulting equations are
in the form of a non-integrable four-dimensional Hamiltonian system, where even for
small deviation from integrability KAM surfaces exist only in the axisymmetric case.

The quasimodes calculated in chapters 4 and 5 are thus only local approximations
to actually global drift modes. The geometric properties of a stellarator are, howe-
ver, still completely contained in these reduced equations. The WKB ansatz limits
the treatment to small perpendicular wave lengths, which is justified by the scale of
experimentally determined structures in the order of serveral gyro radii p, for typical
fusion plasmas. In toroidal and linear plasma devices with low temperature also drift
modes with low mode number m are found, where this WKB approach is not any more
applicable.

1 R.L. Dewar, private communication



Chapter 4

Linear fluid theory: cold ion drift waves

It has been shown by Bhattacharjee et al. [46] that in linear helical symmetry
electrostatic drift modes localize in helical ripple wells, and Waltz and Boozer [42]
pointed out that these modes again should be effected by local ripple shear rather than
global average shear. The eigenmode spectrum in linear helical symmetry has been
studied by Persson et al. [47]. Little work, however, has been done on investigating drift
modes in fully three-dimensional stellarator equilibria in the past, although the theory
should in principle be a direct expansion of studies conducted in tokamak research.

At first Dominguez et al. [48] have calculated linear growth rates for the dissipa-
tive trapped electron mode in 1=2 torsatrons in the ballooning mode formalism and
found that, again, helically trapped particles have dominant influence on the stability
in stellarators. Collisional drift waves in a three-period geometry have been discussed
by Lewandowski through solving a linear fluid three-field model [49] and a gyrokinetic
model [50, 51] as an initial-value problem along the field line and investigating the
dependence of the growth rate on gradients and time. Recently, first results on con-
struction of a global code for linear drift ballooning modes in general three-dimensional
geometry have been presented by Kleiber [52].

In this chapter, we discuss in a simple electrostatic model the effect of stellarator
optimization and local properties of shear and curvature on linear drift instability. A
common feature of Helias stellarators is their intrinsic “shearlessness” with very weak
global shear, which has led to the question of radial localization of drift modes. This
was resolved in Ref. [42], where it has been shown that localization is determined by
local shear from the helical ripple rather than by global average shear.

19




20 Linear fluid theory: cold ion drift waves

In this chapter we apply the most simple common model of electrostatic drift waves
in the approximation of cold ions and quasi-adiabatic electron dynamics to general
three-dimensional geometry. The Braginskii equations in the fluid model of a plasma
are linearized with respect to the potential perturbation ®: The continuity equation
for ions

oyn; + V- (ngv;) =0, (4.1)

and the equation of motion for cold ions (p; = 0)
—'iQJTLQ]V[Vi = enoE + Gno(Vi X B), (42)

together with the linearized quasi neutrality condition

o
n; & Me = Ny (1 - &%) : (4.3)

e

form a closed set of equations. The latter takes the place of the Poisson equation.
Non-adiabaticity is represented by a phase & = 1 — 46 with § > 0. In the general case
§ = 6(k) is a function of the wave vector k [53]. For the rest of this chapter, d is either
assumed to be a constant parameter for simplicity, or is calculated perturbatively from
the kinetic response of trapped electrons.

From the perpendicular and parallel components of the equation of motion (4.2)
we obtain with E = —V® and V| = b(b - V) the parallel velocity

1 e
i =— - —V)®, 4.4
VIE= 25 | (44)
and, applying drift ordering, the perpendicular velocity
vV, ;=Vg-+ Vpi- (45)

Here vy = +b x V. & is the £ x B drift velocity and vy = —(e/miQ*)8;V L ® is the
ion polarization velocity. s = ¢s /ps is the cyclotrone velocity, and ¢; = \/Te/m; and
ps = Vmil./(eB) are, respectively, a sound velocity and a gyro radius of ions evaluated

at electron temperature Te.
Velocities (4.4), (4.5) are inserted into (4.1), which is linearized with respect to ®:

o
—iwngf—ej,— + V- (nove) + V- (ngvps) +noV - vy = 0. (4.6)
For that purpose the divergences are rewritten in linear approximation:
1
V-vg= E(beInB)-V@, (4.7)
w
V- Vpi = QSBV2(I)’ (4.8)
Vv = — V3o, (4.9)

wm;
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When an eikonal representation in the context of the ballooning formalism is used for
the perturbed potential (see previous chapter), we can write:

® = ®((, s) - exp[—iwt + imal], (4.10)

Here a=0-.( and m is the large perpendicular mode number. From (4.6-4.10) we thus
obtain an ordinary second order differential equation for the electrostatic potential ®:

Vid=U(¢ w). (4.11)

The normalized complex potential U = a2U (also see [46, 42, 47, 48]) is defined by

U=-2 [&J <rfm2|@a|2 + g) —r.m(b x Va)-&a| . (4.12)
B T,

Here the dimensionless quantities ® = e® /Teo, V=gV, T.=T, /Teo, B=B /Bo
and @ = wag/c;s have been introduced. T, is the electron temperature on axis, ag is the
minor radius, and we abbreviate £, = V In ny — Vin B. The magnetic field is written
in the form b = B/B = B1(Vs x Va).

By noting that § = 1 — 40 and & = &g + 7y are both complex values we express
b= R—H'(f) I U=u r+1ur, and finally obtain a set of two coupled ordinary differential

equations: X X
9 Ugp —Uu 0]

a2 SR [ Ur I R 4.13

ag ( (I)[ ) ( Ur UR @[ ( )

F =1/(BJ) is a metric factor where J = [Vs - (VO X V¢)]7L is the Jacobian of the
transformation to Boozer coordinates. We may now write Eq. 4.12 as
52

A A, A A~ A2 ~
F2U = —rJ? @ Bﬁ +rm?BK )+ 2 B _ cll|, (4.14)
T'Te 2 Ln

The density scale length L, is defined by L-! = ;Inny. By using metric elements
g* =Vt . V¥ with (z#,z¥) € (s,0,(), we obtain

A\ 2
f = goo = g <§> s (4.15)
gSS
2B\’
C’ :gsS <E‘;> 'lﬁZN-{—A'K,Gjl . (416)

All metric elements g*” are periodic in ¢ and secularity with respect to a localization
point ¢, arises through terms proportional to the global shear 8,.. We note that K~ k2
is proportional to the square of the perpendicular wave vector. The secular quantity
A = g°*/g* is interpreted as the local shear S = (b - V)A integrated along the field
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line [42]. We have introduced the notation ry = VInB-Vs = ¥, 90, In B for the
normal curvature and kg = VInB - (Va — AVs) for the geodesic curvature. The
magnetic field and all metrical quantities are calculated by using three-dimensional
numerical equilibrium code data.

The system (4.13) of ordinary differential equations is solved using standard shoo-
ting techniques in a complex eigenvalue code for three-dimensional equilibria. Details
of the numerical shooting and root finding procedures can be found elsewhere [47, 54].
Boundary conditions are found for a bordering point (., sufficiently far outside from
the localization region of square-integrable modes with [55]:

*(

S, =U M exp [i /O - dC\/—(f] : o (4.17)

For outgoing wave boundary conditions [40] we also use

dd

d¢

1 dU\ & -
L= (i\/— ~ WEC—) . (4.18)

All previous applications to stellarator-like configurations [47, 48] were restricted
to symmetric modes only. We generalize this approach to arbitrary modes, as the most
unstable mode may be found asymmetric and we will not be restricted to symmetric
field lines. The frequency eigenvalues are thus now iterated until (complex) $ and its
derivatives agree within a specified tolerance at a matching point (p. The equations
are solved on a grid along the field line with a resolution of 1000 points in ¢ per one
toroidal circuit (27) by shooting from (o = (m % 10 - 27. For root finding a Mueller
algorithm is used [56]. The starting points of the iteration are varied on a fixed grid in
the frequency plane.

The Helias configurations are composed of 5 identical field periods with two sym-
metry planes in each period. A symmetry plane is a poloidal plane that shows both the
fivefold toroidal rotational symmetry and simultaneously intersects a line of stellarator
symmetry (see Ref. [57]). We define our magnetic coordinates in such a way as that the
origin fy = ¢p = 0 (and thus o = 0) falls on the outboard side of the triangular shaped
symmetry plane. The other (bean-shaped) plane of symmetry is at ¢; = 7/5. Along a
field line passing through (g, o) or (6o, C1), an equilibrium quantity f(¢) satisfies the
symmetry f(Co1 +¢) = f(Cox = ¢)- As the solution of Eq. 4.13 along a given field line
is independent of the matching point (n, we may arbitrarily choose (m = (p. There
remain two degree of freedom in the choice of  and radial label s, and to determine
the most unstable mode of a configuration a scan over these parameters has to be

performed.
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4.1 Linear spectrum in “i¢” approach

By solving Equations 4.13 for a given equilibrium we obtain the eigenfunctions and a
spectrum of eigenvalues in the complex frequency plane (wg, 7). Non-square integrable
eigenfunction solutions, as reported by Persson et al. [47], are ignored as unphysical and
automatically suppressed. In this section we will limit our study to the one field line
with label o = 0, and focus on the dependence of solutions on geometrical properties

local to this field line. We explicitly discuss the dependence on « and s later in section
4.4.

As matching point we take (, = (; and we set s=1/4, which is halfway of the
minor radius to the last closed flux surface on the outside of the torus. The density is
assumed to have a bell shaped profile with n = ny(1—s)? and q¢ = 2 where not explicitly
stated otherwise, and temperature 7, (s = 1/4) = 0.65. For the non-adiabaticity, which
can for example be due to collisions, we take the approach to assume an arbitrary fixed
value of § = 0.01 (as e.g. in [47]). We will not investigate the dependence of the solution
on this parameter but rather will later explicitly study the dissipative trapped electron
mode in a perturbation ansatz. For the moment, we want to look at the influence of
geometry only without the further complication due to particle trapping. For § = 0 all
obtained solutions are marginally stable.

A typical frequency spectrum for W7-X obtained with § = 0.01 is shown in Fig. 4.1
for a mode number m = 50. Inset are real eigenfunctions ®5 of this spectrum. In
accordance with Refs. [46, 47, 48] we find with different choices of parameters both
weakly and strongly localized modes. For each of the three Helias configurations such a
spectrum is calculated for each perpendicular mode number m, and so the growth rate v
and real frequency wg of the most unstable solution (local to the specified field line) are
obtained. In order not to mix geometry effects on the growth rate with artefacts due to
blowing up of the device in scale, we have normalized the length scales to the respective
minor radii of the devices. In Fig. 4.2 the three spectra are compared. The gyroratio
parameter is set to = 0.005 identically for all configurations to the approximate value
for W7-X. '

The reduction of linear growth rate as shown here, from W7-AS to W7-X and
HSR, may be understood when the local shear properties are examined. In Fig. 4.3 the
local shear S has been plotted for all three configurations on the treated field line. The
increase in the absolute value of S can be expected to have the major contribution to
the observed favourable behaviour of one configuration over an other, since local shear
is understood to play a considerable role in stabilizing drift waves [42]. An increase of S
is only an indirect consequence of optimization: In the Helias approach to reduction of
Pfirsch-Schliiter currents, helicity and field line torsion are increased in the stellarator.

Through change of the pitch angle of field lines with radius, torsion again is related to
shear S.
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Figure 4.1. Drift wave frequency spectrum

in Wendelstein 7-X (s=1/4, a=0).
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Still, HSR in Fig. 4.2 shows better performance for most mode numbers m despite
less absolute local shear than W7-X. Besides local shear therefore other influences
from geometry on stability and localization of modes have to be invoked. One more
possible mechanism in the present ballooning type drift wave model is the overall
favourable normalized normal curvature on the investigated field line for HSR, as shown
(normalized as ky//g%) in Fig. 4.4, compared to a substantial region with negative
ky for W7-X (cf. Ref. [50]).

1.0 —

0.0 [
-1.0 |

-2.0 |

local shear S

-3.0 |

T

~0.50 -0.25 0.00 0.25 - 0.50
¢/(2nN,)

Figure 4.3. Local shear S along the field line a=0 in one period on s=1/4 surface.

O
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Figure 4.4. Normal curvature ky: Along the treated field line HSR shows mostly favou-

rable curvature.
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4.2 Trapped electron mode

Particles confined in a magnetic mirror can be detrapped by collisions, which is the
cause for the trapped-particle instability. The effective collision frequency veg is deter-
mined by the inverse time a particle needs to change its pitch angle through collisions
in order to become untrapped. For electrons of energy E, veg = (vei/€)(T./E)*? where
/€ is the fraction of helically trapped electrons. The linear theory of the dissipative
trapped electron mode (DTEM) has already been discussed by Dominguez et al. [48].
We basically follow this perturbative approach, and we thus arrive at

Vid = (U + U1)@. (4.19)

Here U, is real and correspondes to Eq. 4.12, and U, = i34 is the complex perturbed
part of the potential where ¢ is now calculated from trapped electron response. We
will calculate ®(¢) and the real eigenfrequencies wp at first from the real equation
ﬁﬁ@ = Uy®, and perturbatively compute the complex change in the eigenfrequency to

be
__Jdn®Ui(wo) (2o)
S [ dnag gh

0 dw

: (4.20)
o

In order to explicitly obtain U;, we start by assuming the nonadiabatic part g of the
perturbed electron distribution function to be in the DTEM limit wj > veg > w, where
wp = vb - Vg is the bounce frequency of the trapped electrons [48]:

iFy E  3\\ /v _ . /s
g(E,u) = - (w — W [1 + Ne <i - 5)}) <<I>> = 19 <<1>> , (4.21)
where Fj is the electron equilibrium distribution function. Bounce average
A [ dt,®
®) = 4.22
(@) Tan (4.22)

of the electrostatic potential perturbation is taken along the field line over the trapping

region. The non-adiabatic part of the perturbed density
M _i6d = 2mi / duy / dv, vy go(®) (4.23)

o

is obtained by integration of g over velocity space. Contrary to the last chapter, § now
is no longer a constant but acts as an operator on (®). We explicitly evaluate ¢ by

vy = ./%BE/A (4.24)

change in variables from

and
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to E and A = E/uB. Noting that veg = I/ (E /T)*?, we can perform the integration

over F: )
2 dA/As/2
i= = P [(1 ) } / (4.26)

The electron diamagnetic frequency is given by @, = —2rm - 85 InneT, / B=r / B.
With U; as above and Uy = U(€ = 1) we finally obtain

) 20 & (2)5:0) {3 ( wo)] H,
i = s(1-9)) .2 4.27
V=R 0 2 2 (4.27)

f_g ()

dA i VA-B(©)
=3 [
Interv (f ac —A e ))

d . . B 8 "
H, = / %1% ENE [20)0 <Tm2]Voz|2 + -—A> —m(b x Va) - Ra

rT,

The integration over ¢ along the field line is carried out between turning points, and
that over the particle energy A = E/(uB,) between maximum values of B along
the field line in one trapping interval; thus a factor of 2 difference in Eq. 4.27 to
the corresponding equation in Ref. [48] (Note that some other minor differences arise
e.g. from us explicitly taking into account the B-dependence of p;). A summation has
to be carried through in H; over all trapping intervals.

Again, we obtain a mode number spectrum for each of the three Helias devices.
We set U = 0.2 equally for all configurations. For W7-X and m = 50 the local
frequency spectrum is shown in Fig. 4.5. The most unstable solutions (local to the
field line in focus) for all investigated mode numbers m are compiled in Fig. 4.6.
In addition to the role of local shear as previously discussed, now also the interplay
between trapping intervalls and regions of good and bad magnetic field curvature comes
to significance. Generally, in W7-X most particles are trapped in regions of favourable
magnetic curvature. On the other hand, in W7-AS additional magnetic traps are created
through coils that are located close by the plasma. For the specific field line of our choice
(=0, s=1/4) we plot the eigenfunctions of the electrostatic potential ®(¢) against the
magnetic field B for the most unstable m = 50 modes in Fig. 4.7. One can recognize
the highly localized position in a single helical ripple of the W7-AS wave function in
a region with the possibility of a variety of both helical and toroidal trapping zones.
As has been pointed out in Ref. [48], the more localized a mode the more unstable it
becomes. The basic modes of W7-X and HSR, on the other hand, show a delocalization
to more helical wells.
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4.3 The role of local shear

The results of the last two sections implied a crucial role of local shear and curvature
for drift wave stability. In order to more closely investigate the dependence on these
parameters, we return to our most simple model, the “i6” representation. Equations
4.15-4.16 are already explicitly expressed in terms of A, Ky and kg. We now scale
each of these parameters independently by a factor, A = A\A, Ky — Aysy and
ko — Agkg. For otherwise same parameters as in Chapter IV, we vary for a specific
configuration (W7-X, m=>50) one of the factors A and keep the other two constant to
one. However, as the equilibrium itself is not self-consistently modified, this is strictly
speaking reasonable only for small changes around A ~ 1.

We obtain a dependence as shown in Fig. 4.8: With increasing local shear A, the
instability clearly decreases. This gives clear evidence for our suggestion of the last

chapters, that the observed ordering in stability for the various Helias configurations

mainly results from differences in local shear properties. We thus have shown nume-
rically in an actual geometry, that in BhearlessBtellarators local shear takes over the
stabilizing role, instead of global shear properties and the relating iota dependence that
proved to be of essential importance in torsatrons [48].

On the specific field line of our investigation, ky is mostly negative in the region of
mode localization, as could be seen in Fig. 4.4. A large prefactor Ay here thus, slightly,
raises instability. Geodesic curvature shows a weakly pronounced reverse dependence.

!

.O . . . ! n : . | L . . . . .
0 0.0 1.0 2.0 3.0 4.0

A

Figure 4.8. Modification of growth rate through variation of local shear (A) and curvature
(k) properties by a constant factor A.
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4.4 Radial and poloidal dependence

We drop in this section at first the constraint of a fixed field line . The model em-
ployed here is that of trapped electron modes from section 4.2. The dependence of the
frequency spectrum on this field line label o turns out to result in a highly degenerate
band structure even for one mode number (m = 50 here) and radial label (s = 0.25).
Real and imaginary frequencies are drawn against o in Fig. 4.9. Inset in the figure
is an enlargement to show that real frequencies do not intersect but rather possess
small band gaps. The whole structure could not be completely resolved numerically.
It seems clear from the figure, that it turns out to be computationally very expensive
if one would want to resolve the complete band structure, in two more dimensions of
parameter space, for a variety of radial positions and mode numbers. For the same
reasons the globally most unstable mode of a whole configuration is difficult to obtain
within the framework of the ballooning mode formalism employed in this work. In the
following discussion on radial features of the spectrum we thus again restrict to a local
analysis on one field line (o = 0) as before.

0.9 i T I i I 1 ‘ 1 i i |

0.8 :‘\:-e'\?/ S= i\/“‘-‘\/'_"‘x/) 2 \//-;:;‘
2 07 il . —<]
3

field line label

Figure 4.9. Frequencies show a complex band structure spectrum in relation to the field
line label a.

To calculate the anomalous diffusion coefficient from linear theory can be no more
than just a rough mixing length estimate. This could, however, give at least the right
order of magnitude of the diffussion D a yA2, with the radial mode width, approxi-
mated by kj =S - Az - ki [42, 48], to be A, = p;/(SA,) and the average width along
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the field line
_ o P
Jo dC|®f?

Note that S in Ag is again the local shear, in contrast to the corresponding equation in
Ref. [48]. The mode width A¢ along the field line and frequencies are compared radially
in Fig. 4.10 for the locally most unstable m = 50 modes in the W7-X stellarator. Gra-
dient parameters Ly,(s) and 7(s) are set according to experimental profiles (obtained
at WT7-AS) with n/ng = [1 + 6.67s*7]~" and T, = [1 + 33.352%]"!. From mode widths
and the DTEM growth rates as a function of the radial label (also Fig. 4.10) a diffusion
rate of about D ~ 0.5 m?/s can be inferred.

A} (4.28)
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Figure 4.10. Radial dependencies of length along the field line A (in units of field

periods) of the locally most unstable m = 50 DTEM eigenfunctions in W7-X, and of
linear growth rate and real eigenfrequency.

Because of the broad radial width of exactly helical modes calculated with the
above approximation for their torsatron configuration, Dominguez et al. concluded
that in discharges with good confinement these modes should be marginally stable, and
inferred only restrictions to density and temperature gradients for marginal stability.
In our case, however, the most unstable modes in Helias configurations are found to be
more extended along the field line than in Ref. [48]. Even more essential, the difference
is due to the dominant influence of local shear in Eq. 4.27, whereas for the torsatron
calculation global shear is the relevant quantity.
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A direct comparison of the calculated drift wave frequencies to experimental obser-
vation may not be realized unreservedly, as linear theory can only be expected to give
qualitative agreement, and a reasonable interpretation of fluctuation measurements can
only be performed by nonlinear turbulence simulations. Also, a common problem in the
interplay between theory and experiment is the need for non-local treatment of wave
vectors in stellarator theory, while in the experiment k, is supplied by local values
only. A typical local value of the perpendicular wave vector in experiments at W7-AS,
obtained near the separatrix, has been &k, = 1.74;15 which resembles a mode number
of about m = 15 in our notation. This value for m can thus be just an approximation.
Still, a calculation for experimental parameters shows qualitatively sound agreement
between spectral localization of maximum values, even if the highest measured fluc-
tuation amplitude at f ~ 3 kHz does not exactly coincide with the largest growth rate
computed for f ~ 11 kHz. An observed feature for a boundary value of s ~ 0.99 is
a toroidaly highly unlocalized nature of the drift waves (A, ~ 50). Because of the re-
sulting relatively tight radial mode width in W7-AS (also in intermediate values of s),
both DTEM and ¢6 model origin may here be regarded as sound possible explanations
of the experimental data.

4.5 Conclusions

In this chapter we have conducted a comparative numerical study of linear drift waves
in Helias type stellarator configurations. Complex frequency spectra and eigenfuncti-
ons were obtained for both an arbitrary non-adiabaticity 76 and the physically more
realistic dissipative trapped electron mode. In our case of studies for a specific field
line, a noticeable reduction of linear growth rates has been observed for growing stella-
rator optimization in HSR and W7-X compared to W7-AS. This has been understood
in terms of local shear properties, which are influenced by field line torsion through
increasing helicity with growing stellarator optimization. The intrinsic shearlessness
of all Helias devices has the main effect on the dominant importance of local shear
properties over global shear. .

For the dissipative trapped electron mode we arrive at the conclusion that this
regime, as far as can be judged from our local linear analysis and inferred mode widths,
also remains a prospective candidate for anomalous diffusion in Helias devices. This is
in contrast to [48], where the large radial width of the modes in the torsatron has led to
the assumption that DTEM modes are only close to marginal stability compatible with
measured transport. In Helias devices, however, the obtained solutions are associated
with relatively weak localization along the field line and therefore smaller radial width
(as could be seen e.g. at the inset picture in Fig. 4.5). Further, the mode width is
dominated by local shear in Helias devices rather than global average shear in the
torsatron.




Chapter 5

Linear gyrokinetic theory: ITG modes

The linear gyrokinetic equation is solved in the local approximation for a series
of advanced stellarator configurations. Included in the model are finite ion and
electron temperature gradients and finite plasma beta effects on general three-
dimensional equilibria. This allows investigation of drift mode instability for
core plasma parameters of a Helias fusion power plant. Numerical results for the
HSR reactor configuration are presented. It is shown that consistent treatment
of beta effects on the geometry is an essential ingredient for microstability
calculations.

Helias stellarators are promising candidates for steady-state fusion power plants.
Based on this configuration and scaled to reactor dimensions is a concept study of
the stellarator power plant HSR [17]. Investigations into magnetohydrodynamic stabi-
lity of HSR have shown the ability to confine a plasma up to a plasma beta beyond
(B) = 4% [58]. The magnetic field configuration is optimized for low neoclassical losses
that are not prohibitive to ignition. In present partially optimized experiments the
plasma core however is still dominated by collisional transport [3], but ion temperature
gradient (ITG) driven core turbulence [4] might become significant in future devices
with improved neoclassical confinement and higher core temperature.

The study in the previous chapter has been restricted to cold ions only. In a fully
optimized reactor configuration, however, effects from finite ion temperature can not
be neglected. The size of fluctuations itself is on the scale of several ion gyroradii
and potential screening has to be taken into account. Also, a consistent treatment
of finite pressure effects due to Shafranov shifting on the equilibrium is necessary. A
gyrokinetic electrostatic model, that takes into account an ion temperature gradient
(ITG), has been presented for stellarator geometry by Lewandowski [50, 51]. In this
paper the previous work is extended to electromagnetic gyrokinetic modes. The basic
equations for that mode have been formulated by Antonsen and Lane [44]. In the
following, the formalism is applied to actual stellarator geometry and the effects of
finite [ configurations on gyrokinetic instability in a Helias reactor are investigated
numerically.

35
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5.1 The linear gyrokinetic equation

The linear electromagnetic gyrokinetic equation (GKE) describes the evolution of the
nonadiabatic component k; of the perturbed part

fi =la9(0sFou) + Johi] (5.1)

of the distribution function for electrons and ions with charge ¢, for low-frequency
fluctuations obeying the drift ordering
Moot JAL L2 P (5.2)
Fou Ti Bop Qe L
When specified, an index | = (e, %) denotes the particle species. The fluctuating quanti-
ties hy, electrostatic potential ¢ and vector potential A are assumed to be small com-
pared to their equilibrium values. The fluctuation frequency w of interest is much lower
than the gyro frequency Q.; = (q:Bo/Mic), and the gyro radius p; = eI M, /(g Bo)
is much smaller than a typical background scale length L of the equilibrium in a ma-
gnetized plasma with unperturbed field strength By. A Maxwellian

Fo; = (Vi) no exp[—E/T)] (5.3)

with kinetic energy E is assumed for the equilibrium distribution function, so that
OpFo; = —(Fou/Ti). Here ng is the unperturbed quasineutral equilibrium density and
viny = 1/ 271/ M, is the thermal velocity of the species [ with mass M;.

Following Antonsen and Lane [44], the GKE for each species is written as

(8 + 1% + vy V) h = [~ (05 Fb) 8 + %] ax. (5.4)
Here
X = J0¢ - ('UH/C)J()AH with Jo = Jo(k?J_’U_L/Qc) (55)

combines the perturbed electrostatic and (parallel) electromagnetic potentials (com-
pressional Alfvén dynamics is neglected). Jp is a Bessel function and acts as gyroave-
raging operator. The diamagnetic frequency is

1
Q* = —MQC [(bo X VF()) . k_]_], (56)
and the curvature frequency is
1 1
Qp = B, [(Bo x VB) - k] (Uﬁ + 5?&) : (5.7)

In this form, the GKE is a partial differential equation that determines the temporal
evolution of (¢, v, v.) for each species along the coordinate ¢ in the parallel direction
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Bo/ By of an unperturbed field line, and the perpendicular dynamics is prescribed by
the wave vector k, (¢). In the following, & = ((—¢0) is used as field line label. With this
an eikonal representation is employed where k; = VW = mV¢ + 0, Vs, with m as the
(large) poloidal mode number and 6, the Ballooning angle, as radial mode number.
In SFL coordinates, the magnetic field can be written as By = V& x Vi,, where 2mx,
is the poloidal flux and the safety factor is ¢ = 0¥ /dx, = 1/.. The radial coordinate
s is defined via the flux derivative U, = Bya2 with By the field strength on axis and
average minor radius ag. The length scales representing the equilibrium (like metric
elements g = a2Vz* - Vz¥ and Jacobian J) are normalized to this minor radius.
Projecting the angle ¢ onto the field line we write agV)| = ngac with Jg = BJ where
B = B/By. For the assorted equations we use the following normalization scheme,
where the index [ refers to the appropriate species (dynamic ions for ITG, or electrons
for ETG): = (v/vmy), fi = (fi/Fon), ¢ = (lel6/To,), Ay = A/ (BiBopro), t = tar/Ly
and @ = wL, /¢ with ¢ = /T;/M;. Thus, ¥ = Jod — xHﬁJOAH. For the charge,
q = oile| with o; = +1 for ions and o, = —1 for electrons. The species related beta is
B, = 4wn,T;/ B2. The gradient of the Maxwellian is written as

VFy = —F L' Vs {1 4 (:gﬁ +a? - %)] (5.8)
with L, = |0;1lnng|™! and Ly, = |9,InT;|™! the density and temperature gradient

lenghts respectively,
Ly,

=T
and we define L, = agL,. When the notations kxy = VinB - Vs for the normal
curvature, kg = VIn B - (Va — AVs) for the geodesic curvature and A = (¢°®/g°°) are

i (5.9)

employed with o = —i£, it can thus.be written (after some transformations)
k 1 B\’
oQp = 02 n({ m (l_ﬁ + §xi> g (Eg) KN — (A + 9m) Iﬁg} (510)
and 3
ol = o Bak,, [1 . (mﬁ —2 - 5)] . (5.11)

Here k., = (mpi/ao) and 0, = (0x/m). Further Q) = v2e,40/Jp with €, = L1 /Ry
and aspect ratio Ag = Ry/ag. Declaring a new dependent variable

H = ﬁ—af(, (5.12)
with these definitions the GK equations are finally written as:

atH = _xIIQHBC (H -+ O')A() — iO'QDH -1 (QD + Q*) X- (513)
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5.2 The gyrokinetic Poisson equation

The electrostatic potential is connected to the distribution function via the Poisson
equation

V2 ¢ = —drlel(n; — ne) = —4nle] [/ Buf; — /dgvfe} : (5.14)
with
fe = ¢e¢ 05 Foe + deJohe = +(|e|d/Te) Foe + beJohe (5.15)
and , ‘ .
f; = qid g Fo; + 0; Joh; = —(|e|o/Ti) Foi + diJoh. (5.16)

We introduce &; as an artificial parameter that is unity in the general case where both
species are evolved, and is set to (6; = 1, &, = 0) for ITG modes with adiabatic electrons
or vice versa to (6; = 0, 6, = 1) when ETG modes with adiabatic ions are considered.

The Debye term in the Poisson equation is kept for ETG modes only, as the electron
gyro radius p, may be in the same order as the Debye length Ap = 1/Tj/4mnoe. The

temperature ratio here is defined as 7 = (To;/Toe)- Then one has with o = (le|¢/Ty):
- k)id) = —47T|€| [5e/d3vJoiliFoi - QB/d:S'UFoi
—5i/d3ngﬁeFoe —Té/d?’vFoe] . (5.17)

The Maxwellian integrals can be explicitly evaluated with [ d3v = 27 [dvydujvy. In
the same normalization as before one thus gets

= n A 2 n ~ —w? —w?
1VW|2¢ = Q%Tﬂ_i)‘ [_¢(T + 1)%—71 + 0; / de_d’w”wJ_Johi e L

2

~b, [ dz.dzyz. doh. e"ﬂ"zﬂ . (5.18)

Here z is substituted by w for ions and by z for electrons. When h = H + o¥ is re-
expressed in the dependent variables, the remaining integral can be partially evaluated
in terms of the modified Bessel function Io:

| /d:dexHxLJg(plkaL) exp[—1z2 — 3312]] = (v/7/2)Io(y) exp[—y] (5.19)

where y = (pink1)?/2 = (pkL)® = k2 |VE+6, V5|2 Further we use that J3 dayx) exp[—zf] =

0,and D = V27 (Ap/ao)2|VW |2 = 2v/2my(Ap/p)? is abbreviated. Thus one can write
in a compact form:

R §
4=2 / dwy dwyw o Jo(y/ 2w ) H(C wi,wy) exp [—w? — wi]

Oe
-2 / dz. dzyzs Jo(y/2ue20) H(G, 2, 7)) exp [=23 — 2f ] (5.20)
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with G = (/7/2) [1 4+ 7 = 6;Io(ys) exp(—y:) — 8elo(ye) exp(—v.)] — D. For ITG modes
(6; = 1) the Debye term D is neglected because (Ap/p;) < 1. G thus reduces to
G = (V7/2)[1 = b +7 — In(y;) exp(—y;)] because yo = vy;/ s < 1 with pp, = M;/M,.
In this case, one is usually not interested in the high-frequency electron oscillations,
and the GKE for the electrons may be computed with fixed electromagnetic potentials
that are evaluated on the ion time scale only [59].

In the following numerical examples only electrostatic ITG modes with adiabatic
electrons (6, = 0) will be considered. A possible future extension of such an ITG
model with adiabatic electrons is to combine our electromagnetic approach with the
electrostatic hybrid kinetic ion / fluid electron model by Lewandowski [51], or with a
nonadiabatic trapped electron response [60].

Gyrobahn
eines fons

Figure 5.1. Due to their gyro motion the ions feel an average electric field (dotted line), which is less than
the real field at the gyro center (dark line).

5.3 Gyrokinetic Ampere’s law

The parallel vector potential component A is evaluated via Ampere’s law V X B=
(47 /c)j, or for shear-Alfvén contributions only:

(V x B) = Vidy = = [ douylel(fi - f.). (5.21)

Herein the adiabatic contributions of f vanish, because in the parallel velocity integral
again negative and positive parts cancel. After evaluation of some of the integrals like
before, one again arrives in the above normalization at a compact explicit form for the
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vector potential:
N
Ay=3 /dw_deHwJ_wHJo(C, wi)H (¢, wi,wy) exp[-w] — wil]

—- 566 / dZ_LdZHZ_LZHJO(C) Z_L)H(C, Z, Z“) exp[——zi — zﬁ] (5_22)
with C = (\/%-/2> [%\/_2-(51,:% + 5eye) - %/8(6110 (yz) eXp(—yz) -+ 5610 (ye) eXp<_ye))] '

5.4 Set of equations for explicit numerical evaluation

The compound distribution function Hp, the electrostatic potential qASR,I and vector
potential AH RI> anfi thus also ¥ g 1, are all complex quantities. With G(¢), C(¢), QH(C),
Qp(¢, 71, z)) and Q.(¢,z1, 7)) as defined above one thus arrive at the following set of
eight equations:

OHp = — )0 (Hr + o1Xm) + 0o Hn + (QD + Q*) X (5.23)

0.Hn = — 0 (Hn + o1Xn) = o Hp — (QD + Q*) XRi (5.24)

Q’BR,I =(1/G) ;&al /de_da:HxJ_JOHR,I exp [—xi - xﬂ (5.25)

AH RI = (1/0) Zdlal / dQS_LdiEuxj_iEHJOHRJ exp[—xi - .’Eﬁ] (5.26)
1

For numerical solution of the GKE an explicit two-step Lax-Wendroff-Richtmyer sche-
me is used [61]. In this initial-value approach, the most unstable eigenmode settles
after a transient initial phase that is dependent on the width A of the initial Gaussian

perturbation

X(t = 0) = exp[-(?/A%. (5.27)
The instantanous real eigenfrequency wg and growth rate ~ are obtained via the rela-
tions
and :

wr = [(61/8r)/ (1 + ($1/6r)*] - [0+ 1n ¢ — 8; 1n 6] (5.29)
evaluated for an average

- 1 (mtCo
Bl=g B0 (5.30)

over the relevant parallel computational domain [59] after each complete time step.
More details on explicit and semi-implicit numerical procedures for solving the linear
GKE can e.g. be found in references [51] and [59].
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5.5 Simple tokamak model: § — a); geometry

For the axisymmetric magnetic field configuration of a tokamak with large aspect ratio
Ay = Ry/ag, a simple representation of the field geometry is frequently used. It takes
into account the global magnetic shear § = (ay/q)(0g/0r) and Shafranov shift ay =
—q?R(0B/0r) for circular flux surfaces. The magnetic field strength is then B = 1 +
(1/Ag)cos@ ~ 1 with b = 1. The relevant metric elements are ¢° = 1 and ¢g** =
(bB)?/g% + A%g% = 1+ A% with A = ¢°®/¢* = 30 — ayrsin . The curvature terms
are Ky = —(1/Ag)cosf and kg = (1/Ap)sinf. The Jacobian is Jg = 1 and thus
(1/JB)0; = (1/q)09 when, as ususal in tokamak literature, the coordinate € is used as
a label along the field line instead of (. It is also common for tokamaks to define as
field line label £ = { — ¢f instead of @ = 6 — +(, so that

ki = m|VeE| = mg|Va] = mgy/1 + (3 — aursin)?. (5.31)

The curvature frequency now is

Qp = —2kne, (:vﬁ + (1/2)9:21) [cos @ + (80 — aprsin ) sin 6] . (5.32)

These definitions describe the standard case for tokamak geometry and allow for a
benchmark with existing codes and with numerically tabulated circular tokamak equi-
libria (e.g. of Tore Supra). A p;ky spectrum obtained with our code for the standard
Cyclone base case data set [4] in figure 5.2 shows good agreement to other gyrokinetic
codes (compare to figure 1 in Dimits et al [4]). |
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Figure 5.2. p;kg benchmark spectrum of electrostatic ITG growth rate and real frequency
for standard Cyclone base case data in circular tokamak geometry [4].
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5.6 HSR finite beta equilibrium

The metric quantities in a stellarator vary rapidly along a field line due to helical
modulations in contrast to tokamak geometry. In figure 5.3 the perpendicular wave
vector |piky| = |piky/km| = \/g—ﬁg is shown for two different cases of Helias stellarator
equilibria. In ballooning space g*¢ is a secular quantity increasing proportional to shear
with the parallel coordinate ({ — (o), in relation to a location point (6, (o) on the flux
surface. Global shear is very low in advanced stellarators, but high local shear leads to
strong variations of the wave vector.
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Figure 5.3. Perpendicular wave vector |p;ky| = |pikL/kmn| along a field line for a vacuum
Helias configuration HSR-BO (thin line) and for 5% beta HSR-B5 (bold line).

The Helias reactor HSR is optimized for reduction of the currents flowing in the
plasma to a low level. The currents parallel to the magnetic field (Pfirsch-Schliiter
currents) are smaller than the diamagnetic currents [17]. This results in a low Shafranov
shift for increasing beta. The rotational transform decreases with rising plasma pressure
and an . = 5/6 resonance appears around () = 4.2%. It has been demonstrated that
below this margin the HSR Helias reactor configuration shows stability with respect to
local ballooning modes, Mercier and resistive interchange criteria and to global ideal
MHD modes [58]. Still, the deformation of the plasma column through Shafranov shift
has effects on the equilibrium and geometric properties that may not be neglected in
microstability simulations. In this section the gyrokinetic stability of a series of six HSR
equilibria for plasma beta values between (8) = 0 and (8) = 5% is investigated. The
same numerical equilibria are used as obtained by E. Strumberger in Ref. [58]. In the
following we term the single equilibria as “HSR-B0” for the vacuum case, “HSR-B1” for
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the () = 1% case and so on. The poloidal cross sections of two stellarator-symmetry
planes (termed “triangular” and “bean-shaped” in the following) for the two extremal
configurations of zero and maximum beta are shown in Fig. 5.4. We define the location
point (6, (o), that has to be specified in ballooning space, as on the outboard midplane

of the bean shaped cross section, and (6, (1) = (6o, (o+7/Ny) on the outboard midplane
of the triangular cross section.
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Figure 5.4. Plasma cross section on the two Helias stellarator reactor symmetry planes
of HSR-BO for () = 0 (left) and shifted due to finite plasma pressure for () = 5%
(right) of HSR-B5.

5.7 Finite beta equilibrium effects on ion temperature gradient instability

The effect of finite plasma pressure Helias reactor equilibria on microinstability is
demonstrated in this section with numerical examples for electrostatic ITG modes with
adiabatic electrons. Electromagnetic ITG simulations including nonadiabatic electron
dynamics with the further complication of destabilization of the kinetic ballooning
mode branch (KBM), as well as a discussion of ETG modes in stellarator geometry
will be left for future work. Thus, in the following we set 6; = 1, 6, = 0 and the
parameter 8 = 0 in the GKE. It shall be assumed that the profiles (T(s)/T;) and
(n(s)/no) change self-similarly with increasing plasma pressure and consequently the
profile scales ¢, and 7; remain unchanged during variation of the finite (3) equilibrium.
If not explicitly specified otherwise in the following, the parameters in the GKE are
set to €, = 0.15, n; = 6.5, 7=1and &k, = 0.8.

The standard normalization of frequencies is to (¢;/L, ). For the dependence of ¢;
on the plasma pressure it may be assumed that T;(8) ~ +/B. For a scan in finite beta
equilibria, however, one might want to chose physical units instead, or a normalizati-
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on to a fixed reference temperature, as the normalization should not depend on the
quantity whose variation is considered. For a reference thermal speed ¢y we here chose
T(B = 0.05) such that @ = &(8/0.05)*/* when compared to the frequency & calculated
in the standard normalization.

A strongly stabilizing effect of finite plasma pressure entering into ITG mode
analysis via the Shafranov shift of the equilibrium is well known from the investigation
of shaped (s — a) tokamak models (see e.g. reference [62]). In that case, axisymmetric
shaping effects of elongation, triangularity and Shafranov shift can be described by
single variable parameters when determining the metric quantities. For a stellarator
such simple models can not be obtained. We therefore have to make use of precalculated,
self-consistently iterated tabular representations of finite beta equilibria as described
in the previous section.

For the present HSR configuration it has been found that the finite plasma pressure
leads to an increase of the magnetic well from V" = —0.68% in the vacuum case to
V" = —9.14% for (B) = 5% [58]. This enters into the GKE description of ITG modes
through the curvature drift term Q D, Where both normal and geodesic curvature, and
local shear are modified by the transition of the equilibrium to higher beta. From a
basic dispersion relation analysis in the fluid electrostatic limit of ITG description [63]
it becomes clear that for Qp < 0 the frequency becomes imaginary and the mode
is destabilized. In figure 5.5 the variation. of Qp(¢) along a field line is shown for
the vacuum and high beta cases HSR-BO and HSR-B5. The destabilizing region in
ballooning space has significantly shrunk for large plasma pressure.
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Figure 5.5. Curvature drift frequency Q p(C) for k,, = 1 in ballooning space along the
field line for HSR-BO (thin line) and for HSR-B5 (bold line).
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For each of these two configurations mode number spectra of the growth rate ¥
are calculated as a function of k,, = p;ks. In the standard normalization, as shown in
the figure, the maximum growth rate clearly decreases for the high beta case by around
one third compared to the vacuum configuration. This is what could already have been
expected by the qualitative change of the curvature frequency Qp as seen in figure 5.5.

Nevertheless, normalized by a reference thermal speed cy, the growth rate 7 is
increased again by the corresponding factor (5'/4) when pressure quintuples. Conside-
ring the maximum growth rate thus nothing is gained, and stabilizing and destabilizing
effects approximately even out.

The finite pressure shaping of the geometry, however, also shifts the maximum
in the growth rate to higher values of the perpendicular wave vector. A similar shift
has been observed also for tokamaks with increasing ellipticity [64]. There it has been
argued that the smaller wavelength of potential perturbations in a mixing lengths

picture directly results in a reduction of transport by shortening the correlation length
of fluctuations.

Note that in our case the finite pressure flux surface shaping is accompanied by an
according increase of p; that enters into the normalized p;ky in such a way that, again,
suppression of the resulting turbulence is ineffective.

4.0 , | , .,
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Figure 5.6. Perpendicular mode number spectra of the growth rate 4 for the cases
HSR-BO (bold line, circles) and HSR-B5 (thin line, stars). A reduction of the destabi-
lizing region as seen in figure 5.5 with rising beta results in a decrease of the maximum
growth rate. The shift of the spectrum to shorter wavelengths is a further effect of
plasma shaping. Note that here the normalization also depends on beta.
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These results are illustrated in figure 5.7, where £, has been varied for each equili-
brium to find the maximum growth rate: The lowering of 4 with rising plasma pressure
by the Shafranov shift in standard normalization (bold solid line) is compensated when
a normalization to a reference temperature is applied (thin solid line). For a tokamak
model, where a continous variation of beta is possible, it has been reported by Re-
woldt et al. that a maximum in the growth rate can be observed (there for different
parameters and inclusion of trapped electrons at 8 =~ 0.5%) [62]. For HSR the per-
pendicular wave number of the most unstable solution for each configuration (dashed
line) gradually increases with rising beta, when normalized to the equally increasing
beta-dependent gyro radius. This shows the important effect of flux surface shaping
on microinstabilities in a stellarator, but as the shaping in our case is due to rising
pressure, no consequent suppression of transport can be expected.
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Figure 5.7. Effect of gradually rising @ in a Helias reactor configuration HSR: In a
standard normalization, that depends on beta itself, a beta stabilization is observed
(bold line). In a normalization to a reference temperature (co = c;5%) the linear growth

rate (thin line) remains on a similar level throughout. Dotted line: The perpendicular
wave vector p;ke in units of the (varying) gyro radius increases with rising pressure.

5.8 Parameter dependence of ITG growth rates

Next, some of the free parameters appearing in the GKE are varied. It has been assumed
in the previous calculations that the radial mode number, specified by the ballooning
angle @y, is zero. In figure 5.8 this parameter is varied for HSR-B3 at 8 = 0.03, kr, = 0.8
and the other settings as above. The largest growth rate indeed appears for §; = 0.
This characteristic may be responsible for the radially elonged streamer formation that
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is observed in nonlinear ETG turbulence studies [65]. For ITG modes these streamers
are broken up by secondary nonlinear processes and poloidal shear flows. Figure 5.9
shows how the growth rate increases with the relative ITG scale 7;. ‘
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Figure 5.8. Variation of the radial mode number ballooning parameter ) for HSR-B3.

The maximum growth rate occurs for 6, = 0.

4.0

Figure 5.9. Increase of linear growth rate ¥ with variation of n; = L/ L1;
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5.9 Negative shear in tokamaks and Helias stellarators

The toroidal ITG mode in a tokamak is known to be effectively stabilized by negative
shear § < 0 [66]. By considering equations (8-10) it can be noted that the sign of shear
enters via A only into the curvature drift frequency €)p, when the Bloch number 0y is
zero. For f = 0 the other contributions into the Bessel functions and scaling factors
G and C of the electromagnetic potentials only appear via A2. As a consequence the
width of the region of destabilizing negative Qp in ballooning space is modified by
a change of sign in A according to the combination of ky and kg. The situation is
illustrated in figure 5.10: For a circular tokamak with shift a;; = 0 as described by
equation (25) the value of Qp for positive global shear § = 0.8 is shown by the bold
curve. For negative shear § = —0.8 the unstable region around the localization point
(¢o = 0) is reduced significantly (dashed line).

An interesting question is whether the overall negative global shear of a Helias
stellarator contributes to a favourable stabilization of the ITG mode. The flux surface
average at half minor radius for HSR is about § = —0.1. A much larger contribution
results however from local modifications to the shear, and the well of Qp acquires a
more complicated structure, as it is illustrated in figure 5.10 by the thin curve. The
helical modulations dominate the effect of toroidicity and also lead to a more detailed
structure of the eigenmodes themselve. In chapter 6 we will see the significance of the
local structure of shear for the case of drift-Alfvén wave turbulence, where local shear
acts as an efficient stabilizing agent in low-global-shear Helias stellarators [10].
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Figure 5.10. Curvature drift frequency (1p in ballooning space for the cases of a circular
tokamak with global shear § = 0.8 (bold curve), § = —0.8 (slashed curve) and HSR-B0
(thin curve) with strong helical variations of local shear.



Conclusions 49

5.10 Conclusions

The gyrokinetic equation has been solved numerically for a series of finite beta Helias
stellarator reactor configurations, and growth rates for the ITG mode have been obtai-
ned. The Shafranov shifting of rising plasma pressure on the equilibrium is shown to
have a stabilizing effect by reducing the regions of negative curvature drift frequency
in ballooning space. Subtracting out the further effects of rising beta on the standard
normalization, it is found that the overall change of maximum linear growth rate and
corresponding wave length in physical units is negligible. Finite beta stabilization of
ion temperature gradient modes therefore is present in Helias reactor configurations
but has no direct observable effect on suppression of transport.

Our present ITG microinstability studies do not yet include effects of trapped
electrons, which can be expected to be of importance, and are radially local. Global
mode calculations in Helias geometry are currently being prepared by R. Kleiber for
linear resistive drift-ballooning modes [52] and by R. Hatzky for ITG modes [67].



Chapter 6

Drift-Alfvén wave turbulence

Direct numerical simulations of drift-Alfvén wave turbulence in actual three-
dimensional stellarator geometry are reported. It is found that the local me-
tric has significant influence on instability and transport and that local shear
contributes as the principal damping mechanism in low-global-shear field con-
figurations. The transition from simple tokamak to stellarator geometry and
effects on plasma edge turbulence and anomalous transport are investigated in
flux-tube models of the equilibria and suitable interpolations.

In stellarator experiments the plasma edge region is found to be dominated by
turbulent diffusion that shows similar transport properties like in tokamak devices [68].
Measured frequency spectra of plasma edge fluctuations are similar and were argued to
display universality in behaviour [69]. This comes to reason, as the basic mechanisms
of drift wave instability are fundamentally the same in tokamaks and stellarators alike
and independent from geometry. Gradients of density, electron and, sufficiently steep,
of ion temperature provide a source of free energy that may be tapped by dissipative
processes and Alfvén wave dynamics [36]. Damping effects, on the other hand, are due
to magnetic and velocity shear [70] and may differ for specific geometries.

The previous chapters as well as recent results in nonlinear simulations of drift
waves in shaped tokamak equlibria [72] show considerable influence of magnetic field
geometry on instability and transport. Field line shaping in a tokamak is usually due to
secondary properties like e.g. elongation of the plasma torus in vertical direction. Stel-
larators on the other hand generically show a non-trivial geometry from the first [71].

In this chapter we present the first direct numerical simulation of plasma turbu-
lence in actual stellarator geometries and show that the local metric indeed determines
instability and transport. This carries significant consequences: Our results suggest that
inclusion of the exact metric for drift-Alfvén simulations is an important ingredient.
Also in tokamak research care has to be taken especially when local shear is large near
an X-point of the separatrix. For advanced stellarators, turbulent transport may be
reduced by proper optimization of the magnetic field geometry and further enhance
the reactor prospects of these configurations.

51
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6.1 Direct numerical simulation of drift-Alfvén wave turbulence

For our studies on geometry dependence of turbulence we use a cold ion model for low
frequency plasma edge turbulence with electromagnetic, isothermal electron dynamics
[37], which represents the most basic model containing the principal interactions of
drift wave physics: free energy liberated from the background gradient is transferred
from pressure fluctuations to ExB eddies by coupling of both to parallel currents. Fluid
equations are used for both species. We apply drift ordering and retain advection by
the £ x B velocity and the contributions to the parallel gradient due to the perturbed
magnetic field as the only nonlinearities. The electric field is given by

E=-V¢- (1/c)6‘tA||b, (6.1)

where ¢ and A are the electrostatic and vector potential, respectively. The unit vector
b is parallel to the equilibrium magnetic field B, and we abbreviate 3/0t = 8,. The
dynamics is described by a conservation law for the total current J, a parallel equation
of motion for electrons, and a continuity equation for electron density n,. The parallel
velocity uy of the ions results from E)j, and their perpendicular velocity

u =vg+u, (6.2)

is the same v = (c/B?)ExB as for electrons with an additional u, = —(M;c?/eB%)(d,+
vg-V)V ¢ correction due to finite inertia. The nonlinear advective derivative is written
as Dy = 0; + vg - V, and the nonlinear parallel gradient is

VH =b-V—B(b X VAH) - V. (6.3)

We define the ion sound speed ¢, = \/T,/M;, perpendicular scale lenghth L, and drift
scale p; = v/T.M;c/eB, and normalize ¢ to T,/e, n to ne, uy to cs(¢R/L1), Jj to
neecs(qR/L1), A to Bps( (QR/L_]_) and Q to p;?T,/e. V. appears as p,V, V| as
qRV| and 0; as (L1 /cs)0;. Terms small by factors of order the parallel /perpendicular
wavenumber ratio, &/, are dropped. In this normalization the system of equations
is

D) =V Jy - K(n), (6.4)
ADyJ| = ~B0: A + V(n = §) — waBB, Ay — ), (6.5)
Din = ~wady¢ + V() — uy)) — K(n - ¢), (6.6)
EDtU’H = —-VHTL + wnBayAH- (6.7)
with two auxiliary relations :
=piVie (6.8)

and
Jy=-Vi4. (6.9)
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The curvature operator
K=-L,(bx VlegB? - p,V (6.10)

is scaled by T'/e and normalized in terms of the local profile scale L, /c,. The parameters
3 = (4nnT,/B*)(qR/L.)% wy = L. /|Vinn| and 4 = m./M;(qR/L.)? are constants.
Numerically, we use a second order upwind finite-difference scheme [72]. Initialization
of the simulation is through a density fluctuation amplitude well above unity which is
driven nonlinearly [8] and then relaxes to a steady turbulent state. Static radial electric
fields and associated velocity shear are not included in our simulations, as they only
represent another free parameter that has to be put in by hand: turbulence alone is
not effective in spinning the shear flow up to substantial amplitude [72].

- n.’l) = 64p3

Figure 6.1. Part of a flux tube (left) and poloidal cut of simulated density fluctuation
for expected edge parameters in Wendelstein 7-X (in original size, right).
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6.2 Flux tube representation of stellarator geometry

Local alignment of the coordinate system to the magnetic field allows use of relatively
few grid nodes in the parallel coordinate z: The grid size in our simulations was 64 x
256 x 64 in (z,y, z) space with a computational poloidal domain in (z,y) of one p,
per grid node, what corresponds to about 4 cm x 16 cm for typical edge plasmas with
drift scale p; = /T.M;c/eB. An extension of the globally consistent flux tube model
[73] from an axisymmetric tokamak to a stellarator is in principle straightforward,
but not without fundamental obstacles. When in general the rotational transform
is irrational, the flux tube will not close in on itself. The code DALF3, which we
use, solves this problem by aligning the flux tube in a local approximation centrally
around a rational field line and corrects deformation in the perpendicular plane caused
by finite shear with an appropriate shear shift transformation. In a tokamak, this
approach is appropriate even for a high rational ratio « = m/n, as the geometric

- background properties only depend on the poloidal angle 6, regardless of the number

of toroidal circuits until field line closure. In a stellarator, however, the axisymmetry
is broken and helical variations of the metric become significant. The variations of
background geometry along the field line scale with the number of toroidal circuits
and field periods Ny, and so does the number of necessary parallel grid points. For
arbitrary rotational transform, the number of grid points evidently diverges rapidly.
Thus, for future quantitative simulations of stellarator turbulence, a 3D hollow flux
cylinder model will have to be developed instead of the present flux tube approach. For
our current purpose of qualitative identification of the relevant geometrical quantities
that determine drift wave turbulence in stellarators, we can take advantage of the fact
that the edge rotational transform of advanced stellarators like Wendelstein 7-X is
near unity: +(¥g) = 0.98 ~ 1 on the last closed flux surface ¥y. Of course, the surface
with ¢« = 1 is governed by generic island formation of the five-period Helias. When
we nevertheless assume a rotational transform of unity for the start, we hence do not
map the geometrical properties of Wendelstein 7-X or any other specific configuration
exactly, but still gain a quite accurate model of Helias type geometry.

From local flux tube coordinates z* € (z,v,2), metric elements g¥ = V' - VI
are obtained. They are closely related to Hamada coordinates (i.e. unit Jacobian flux
coordinates) as outlined in chapter 2 via

9% = (1/4s)g>, g% = (1/2)g°* and g% = sg. (6.11)

All geometric quantities are assumed to depend only on z and to be constant on the
zy domain. The magnetic field takes on the particularly simple form B = ByVz x Vy.
In this representation the perpendicular Laplacian becomes

Vi =V V. =g"0+29702, + g"o2. (6.12)
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The curvature operator K = K?9, + K¥0, is expressed in terms of geodesic curvature

kg =Va-VinB - Axy, (6.13)
normal curvature
ky =Vs-VInB (6.14)
and A = ¢°*/¢*° is the local shear integrated along a field line. In detail we get
. (L./ao) 2
K* = —T[BXVInB]-Vx
= — (LJ'—/CLAO) (Vs xVa)xVInB]-Vs= Mg”mg, (6.15)
2\/sB 2,/sB
, L )
KY = (——%@l\/gg“ [KgA - /iN(ZB/g”)Q] : (6.16)

Here B = B/ B, has been denoted. To avoid grid deformation, a shear shift is introduced
into the metric: One choses y, = y — ax(z) such that g;¥ = 0 [72]. This is achieved
by a shift ax(z) = z}, and thus a}, = ¢®¥/¢®® evaluated at z = z;. Also changed are
gy = g% — al,g™ and K} = KY — a},K®.
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Figure 6.2. |B|?, local shear S and curvatures K* and KV along the field line oo = 0 for
a tokamak (dotted lines) and Wendelstein 7-X (solid lines), each with » = 1.
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6.3 The role of local magnetic shear in stellarator turbulence

We investigate the dependence on geometrical properties with an actual W7-X stel-
larator equilibrium, with a simple circular “tokamak”, and with suitable interpolati-
ons between both: The metric is gradually varied by separately adding either local
curvature or local shear properties to a tokamak configuration, corresponding to in-
creased swelling in a toroidally modulated bumpy torus metric or increased ellipticity
in a simple elliptic 1=2 stellarator model, respectively. These transition metrics ser-
ve solely to highlight and separate the qualitative distinctions between tokamak and
stellarator geometry; they need not represent actual MHD equilibria. For five field pe-
riods such configurations are shown in Fig. 6.3. Explicitly, the bumpy torus metric
is obtained by modifying the small radius r of a (in lowest order circular) torus as
r(p) = ro- Ep =19 [l + €p - sin(Ny)], which has the effect of adding N deforma-
tions along toroidal angle ¢ of scale eg. From this we can obtain all metric elements
and the magnetic field stregth. This configuration mimics for 0 < eg < 0.3 a smooth
transition of curvature properties from a tokamak to a Helias stellarator. In the li-
mit of a large aspect ratio (4g > 1) circular (Ep = 1) tokamak we regain the usual
form B ~ 1 — Agtcosn. Similarly, we can additionally model increasing local shear
by defining an 1=2 stellarator type metric with variable (0 < ¢ < 0.3) ellipticity by
T(n,¢) =19+ Ej =19 [1 —¢€ - cos(2n+ N)]. For all configurations we assume the same
W-T7X-like parameters: aspect ratio Ay = 10.6 and «(s = 0.95) = 1.

Figure 6.3. A simple circular torus (top) is divided into five periods. The geometry of
Wendelstein 7-X (a) is gradually approximated by metric models of a 1=2 stellarator
(b) and a bumpy tokamak (c). The elliptical elongation of case (b) leads to increased
local shear, wheras (c) causes a modulation of curvature only.
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By contrast to the axisymmetric case, it is no longer true that one field line is
representative for the whole flux surface. For N-fold toroidal symmetry, the field lines
labeled o = 0 — 1« = i/N (with o € [0...1]) are identical for i € [0,1,...,N]. To
cover a fair proportion of the flux surface with a representative choice, simulations
on four different field lines for o € [0...1/N] with N = 5 are usually sufficient. For
characterization of the turbulence level we will refer to the average fluctuation induced
particle transport I', = (v}, g-n). In Fig. 6.5 (bold line) we show the dependence I', ()
on the field line label for W7-X. Depending on «, we observe a significant inhomogeneity
of fluctuation amplitude and transport, with I, minimal for oo = 0.

T
1
-

( —

Figure 6.4. For . = 1, the thick (o = 0) and thin (o = 0.2 - 27) field lines in the (-0

plane are identical with respect to their geometric properties for the five-fold toroidal
symmetry of a Helias stellarator.

This difference in the level of turbulence becomes clear, when all relevant geometric
quantities along the field lines are examined. Most obvious is the perpendicular varia-
tion of normalized local shear S((,a) = (2s/t)0;A along the field lines. Comparison
of the inverse field-line averaged absolute value of local shear (dotted line in Fig. 6.5)
with the level of turbulence clearly suggest a suppression of transport on field lines
with large average absolute local shear. The local shear signature S(¢) of W7-X along
the different field lines shows three-fold pronounced maxima on the field line for least
fluctuations, whereas the most turbulent field line shows only two, less pronounced
maxima. For |B|, K% and K¥ no such significant dependence is evident. For both model
metrics there is much less variation with o compared to W7-X both in the metric and
in the turbulence.

Such an effective localization of turbulence due to local shear properties has not yet
been observed experimentally. There may be serveral reasons: At first, our assumption
of « = 1 is somewhat artificial. In reality, +(s=0.95) ~ 0.95 is not necessarily rational
in W7-X, and a field line does not connect to itself after a finite number of toroidal
circuits. The usually long parallel wavelenghts can thus connect regions of low and high
local shear and average out the transport levels. Also our treatment of the metric is
local in z and y directions. A nonlocal metric in perpendicular direction y may couple
the fluctuations for different field lines and also smooth the difference in amplitudes out
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Figure 6.5. Calculated transport I',(«) can be directly related to the mean absolute
local shear in the computational domain.
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Figure 6.6. Local shear S(n) along o =0, @ = 0.2- 27 and three intermediate field lines.
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to an average value, making the inhomogeneity significant only for large drift ratios
§ = ps/ag. Further, a poloidal rotation of the plasma, which has been neglected in
our calculations, may also have a similar effect by connecting regions of different local
shear. And finally, most present stellarator experiments operate with fixed diagnostic
locations, and a scan in poloidal directions on the relevant scales has to our knowledge
not been performed before. Nevertheless, the main point of our results is that they
point to the average over the full flux surface of the absolute local shear as a general
replacement for global shear in the overall dissipative effect on drift wave turbulence.

6.4 Transition from tokamak to stellarator turbulence

In addition it is possible to smoothly vary the model metrics by changing ¢, that had
up to now been fixed to ¢ = 0.2. A change from 0 to 0.3 on the field line & = 0
shows in Fig. 6.8 a continous decrease of turbulent transport for the 1=2 metric with
¢, which can also be attributed to the increase of local shear for more pronounced
elongation. In case of the bumpy torus, no change is observed up to an eg = 0.2. For
still larger swelling, the helical variation in curvature shortens the parallel connection
length between regions of positive and negative phase shift (n — ¢). This effectively
decreases the catalytic drive of the drift wave instability, and leads to a reduction of
turbulence amplitude.
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Figure 6.7. Error bars stem from time averaging of quantities (here I'y(t)) during satu-
rated turbulent state in the second half of the shown computation (values are printed
out only after each 200th time step).
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One has to keep in mind that the values depicted in Figs. 6.5 and 6.8 are time ave-
rages during turbulent steady state with a statistical uncertainty AT, /T, & 10% (see
standard deviation error bars). A comparison of the density fluctuation spectra Ey(ky)
in the Fig. 6.8 inset shows, despite the differences in amplitudes and transport as seen
above, a high degree of similarity between the various geometries. This seems to con-
firm an empirical similarity for measured fluctuations in different experimental devices
as found by Pedrosa et al. [69], in their case for frequency spectra after introduction of
a device specific, frequency dependent scaling factor called A.

From our simulations we conclude that this scaling factor is independent from the
geometry of the different experiments. As other causes for the variation of A we rather
suggest device specific plasma parameters and differences in poloidal plasma rotation
and velocity shear profiles. These have not yet been included in our simulations.
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Figure 6.8. Decrease of the turbulent transport through a transition from circular magne-
tic field geometry (¢ = 0) towards Wendelstein 7-X configuration via an 1=2 stellarator
(solid line) and bumpy torus metric (dotted). Inset: Note that wave number spectra
E,(k,) for the various configurations show a high degree of similarity despite the quite
different transport levels
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6.5 Zonal flow dynamics

As an intrinsic part of the turbulence dynamics zonal E x B flows are generated via
Reynold stress by coupling of eddies to flows with both ky, =0 and k; = 0.

By a decorrelation of vortices and transfer of energy from eddies to the flow the
turbulence amplitude is effectively lowered. For tokamak geometry the suppression
effects have been shown to be a relevant part of the overall dynamics [74].

When zonal flows are switched off in computations by setting the flux surface
average Reynolds stress vg - VV2 ¢ set to zero, the level of transport was found to be
higher by a factor of 2-5 in toroidal geometry [75].

For stellarator geometry (oo = 0) and otherwise same parameters as in Ref. [75],
the damping effects are also clearly demonstrated in figure 6.9 over a range of various
levels of collisionality 7.
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Figure 6.9. The nominal transport I, (dark line) for various collisionalities  in stella-
rator geometry is effectively lowered in comparison to the case with the flux surface
averaged vorticity set to zero (dotted line). Zonal flows are, similar to the tokamak
case, an essential part of the turbulence dynamics.




62 Drift-Alfvén wave turbulence

6.6 Absence of helical ballooning

Linear drift wave theory in Helias geometry suggests, that the parallel structure of the
mode is governed by a combination of helical and toroidal ballooning.
In our nonlinear turbulent simulations, however, no helical ballooning is observed.
The drift wave structure limits itself to long parallel wavelengths, which average over
the magnetic structure. We note especially a lack of asymmetry along the field line
when the normal curvature departs from the simple sinusoidal form of a tokamak.
Fig. 6.10 shows minor variations in the turbulence amplitude along the field line,
following more from the local shear than the normal curvature. Here the code parame- ;
ters are set to more collisional tokamak-like resistive edge values because of the greater
relevance of ballooning at these values (2 =5, f=1,0=4,¢ = 18350).
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Figure 6.10. Turbulence mode structure in a flux tube along z of potential and density
Auctuations averaged over the perpendicular (z,vy) plane (top), compared to |B| (dotted
line, bottom) and ky (solid line, bottom).



Conclusions 63

6.7 Conclusions

Using direct numerical simulation of drift-Alfvén wave turbulence in actual stellara-
tor geometry, we have shown that the local metric significantly influences turbulence
amplitude and transport. Local shear was identified to play an important role in tur-
bulence suppression and in effective localization of fluctuations on a flux surface. In
contrast to the usual expectation that global shear is the more important quantity for
drift wave stablity, we found that for situations of low global shear, the absolute local
shear provides an effective substitute. Global shear is of course the average of the local
shear, but the important quantity is apparently the average of the absolute local shear.

A stellarator allows, to some extent, for flexibility in design of the magnetic field
structure. The existing Helias geometry is a result of optimization in MHD stability
and neoclassical transport properties. Here local shear is found largest at the tips of
triangular and elliptical shaped cross sections. The strong local deformations of the field
geometry that alternate with more even regions arise as a side effect of the strategy to
allow particle trapping mainly in regions with low field curvature. A minimization of
turbulent “anomalous” transport may be achieved by explicitly accounting for a further
increase of absolute local shear in the deformed regions, and for frequent penetration
of a field line through these regions. The latter implies for example preference of a
high number of field periods (e.g. 5 compared to 4) when the same total rotational
transform is assumed. The quality of such a transport optimized configuration will
then again have to be evaluated by means of numerical simulations.
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