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Abstract

The inductive current drive limits conventional tokamaks to pulsed operation, which
is unfavorable for a power producing reactor. For this reason, “advanced” tokamak
scenarios which avoid this problem have been investigated in depth throughout the
last decade. Unfortunately because of their special properties, these equilibria have
the disadvantage that they are susceptible to certain magnetohydrodynamic (MHD)
instabilities. Since these can deteriorate the confinement or even cause disruptions
a close examination of the observed dynamics is of interest.

This thesis analyses advanced scenario experiments performed on TEXTOR-94 and
on AsDEX Upgrade. Numerical simulations have been carried out and the results
compared to the experimental measurements. The observed instabilities have been
identified as double tearing modes, infernal modes, external kink modes or as a
combination of these.

In addition to comparing the experimental results and numerical simulations as a
mean to explain the plasma dynamics by the presence of a certain mode, this strat-
egy also presents a way to examine the influence of certain experimental parameters
such as a differential rotation of the plasma, the change of the magnetic structure
or the influence of the pressure on the mode’s growth.

The stabilisation of external modes by a conductiong structure in the vicinity of

the plasma surface has also been estimated for a kink unstable ASDEX Upgrade
equilibrium.
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Deutscﬁsprachiges Vorwort:

Ziel der fusionsorientierten Plasmaphysik ist die Nutzung der bei der Verschmelzung
leichter Nuklide freiwerdenden Energie zur Produktion elektrischen Stroms. Da-
raus ergibt sich die Notwendigkeit, ein heifles, ionisiertes Gas bei moglichst hoher
Dichte und Temperatur einzuschliefen und thermisch zu isolieren. Eine Moglichkeit
dafiir bietet der Tokamak. Dabei werden die geladenen Teilchen durch eine Mag-
netfeldkonfiguration eingeperrt, welche ineinandergeschachtelte Tori aufspannt. Ein
Gleichgewicht zwischen Magnetfeldkraften und dem kinetischem Druck des Plas-
mas wird jedoch bei konventionellem Betrieb aufgrund des induktiven Stromtriebes
nur transient erreicht. Da fiir einen spéateren Reakorbetrieb eine kontinuierliche
Stromproduktion wiinschenswert ist, ist die Entwicklung eines stationdren Tokamaks
von groflem Interesse. Als ein Konzept hierfiir werden die “advanced” Szenarien an
zahlreichen Experimenten untersucht. Dabei hat sich eine besondere Anfalligkeit
gegeniiber Instabilititen offenbart: Abweichungen vom Gleichgewichtszustand kon-
nen wachsen und den Einschluf verringern oder sogar das Kraftegleichgewicht zer-
storen, was zu einem disruptiven Ende der jeweiligen Entladung fithrt. Solche In-
stabilitaten bilden daher ein Hindernis sowohl fiir einen stationaren Betrieb als auch
fiir einen guten Einschlufl und einen hohen Plasmadruck. Damit erschweren sie den

Zugang zu einem brennenden Plasma.

Da folglich ein tieferes Verstandnis der auftretenden Effekte von grofiem Interesse
ist, untersucht die vorliegende Promotionsschrift verschiedene Instabilitiaten. Ver-
wendet wird dazu die Magnetohydrodynamik (MHD), welche das Plasma in einem
Einfliissigkeitsbild beschreibt. Das Model erlaubt sowohl die Berechnung des Gleich-
gewichtszustandes als auch die Ableitung von linearisierten Stabilitdtsgleichungen
fir Storgroflen, die auf ein Eigenwertproblem zuriickgefiihrt, mittels existierender
Computercodes gelost werden kdnnen.

Es werden advanced Szenarien an den Tokamaks TEXTOR-94 und ASDEX Upgrade
untersucht. Die vorgestellten Simulationen und der Vergleich mit Messungen ermog-
lichten die Identifikation der im Experiment beobachteten Aktivitdten als “Double-
Tearing-Moden”, “Infernal-Moden” und “Externe-Kink-Moden”, bzw. als Kombi-
nation dieser. Der Einfluss verschiedener experimentrelevanter Parameter wie einer
differentiellen Bewegung des Plasmas oder der Veranderung der magnetischen Struk-
tur, des Druckes etc. wurden untersucht.



¢
Dariiber hinaus ermoglichen die vorgestellten Rechnungen einen tieferen Einblick
in die, dem Verhalten der Instabilitdten zugrundeliegenden Mechanismen, insbeson-
dere in die Kopplung und Entkopplung verschiedener Moden. Damit tragen die
Untersuchungen zur Umgehung von Instabilitaten in zukiiftigen Experimenten und
damit zur Verbesserung des Einschlusses und einer weiteren Anndherung an die
Zindbedingung bei.

Neben der Optimierung von Plasmaparametern wurde die Stabilisierung externer

Moden mittels einer leitenden Struktur in der Nahe der Plasmaoberfliche angeregt.

Am Beispiel von ASDEX Upgrade wird die durch eine derartige Anordnung zu er-
wartende Stabilisierung abgeschatzt.

Stefan Schade im Mai 2001
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Chapter 1
General Introduction

Despite efforts to the contrary, technical progress and increasing wealth are likely to
cause a further increase of the world’s energy needs especially if developing countries
are accounted for. Though the supply of natural gas and oil is assured for at least
intermediate time periods, the extensive use of carbon based fuels and the accompa-
nied emission of C'O, into the earth’s atmosphere seems to affect the climate. Since
the consequences of the potential climate change can be regarded as a huge threat
it seems sensible to consider alternative sources of energy. Nuclear fusion presents
one alternative to the use of fossil fuels.

Nuclear power can be released through fission of heavy nuclei into middle weighted
fragments. As these contain a statistical number of nucleons one has to deal with a
mixture of many isotopes. Among these there are ones with extremely long lifetimes,
which gives rise to the problem of safely storing the nuclear waste for geological
timescales. Yet another problem emerges because current reactors contain the fuel
for very long time periods, so they have to be regulated artificially to be kept from
criticality. Since 1986 when the Chernobyl disaster occured, the public support to
this technology wanes. Fusion would also produce nuclear waste because neutrons
activate the structures they encounter, but by the use of materials with light nuclei
one can limit the production of long lived radioactive isotopes [1]. In contrast to a
fission reactor, a fusion reactor is continously fuelled thereby limiting the amount
of energy that could be liberated in the event of an accident. Renewable energy
sources also present intriguing alternatives, but as fusion itself they are not devel-
oped enough to provide a solution to the stated problems. It seems advisable to
follow different strategies to provide a supply of clean, reliable and efficient power.




’ <l
Terrestrial fusion has been inspired by the process in the sun. There the main

reactions are as follows:

p+p — D+e" +u, (1.1)
D+p — 3He+~ v (1.2)
SHe+2 He — *“He+ 2y (1.3)

Since the process 1.1 is based on the weak interaction the reaction is slow, which is
reflected in the sun’s long lifetime. Terrestrial plasmas are much smaller, therefore
a higher reaction rate is needed, ruling out weak processes.

For a fusion reaction to occur, the two nuclei have to “touch” each other by tunneling
through the repulsive coulomb wall. Therefore the fusion cross sections are energy
dependent and the process requires high temperatures (1 eVa 1.16 - 101°C). At
achievable energies (< 20 keV) one favours the reaction

D+T — *He+n+rvy | (1.4)

where the emerging a-particle has a kinetic energy of 3.54 MeV. The aim is an
ignited plasma, where all energy losses are compensated by a-particles from the
fusion reactions, which transfer their energy to the plasma while slowing down.

All thermal energy transport processes like diffusion, convection and others are
described by the energy confinement time

_ Ink (T;+T.) Pz
= - ,

TE (15)

where P is the total power, that has to be deposed in the plasma to sustain steady
state and n is the particle density. Thus the power loss is described by the thermal
energy over the confinement time %—n k(T;+T.)/Te. It turns out that the condition

for ignition can be reduced to a threshold for the so called triple product [2]:

keV
n7pT >3- 107522 (1.6)
m

Thus a hot and dense plasma has to be well insulated to ignite. There are different
approaches to fulfill this criteria: “inertial fusion” creates very dense plasmas for
very short time intervals, while “magnetic fusion” confines a relatively thin, hot
plasma for long times.
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Figure 1.1: The tokamak configuration consists of the vacuum vessel (gray), the
induction coil (red), and the toroidal field coils (sreen). The plasma particles in the
vessel are confined to nested tori providing a thermal insulation. (The axisymmetric
device has been cut open to exhibit all details.)

Tokamaks

The configuration of the tokamak was proposed by A. Sacharov and realised by
L. Artsimovich in Russia (1952). The name stands for “TOroidalnaya KAmera s
MAgnitnymi Katuschkami” (toroidal chamber with magnetic field coils). Though
further approaches like the non-axisymmetric stellarator exist, tokamak plasmas
present the method to get closest to the ignition condition (Eq. 1.6) in the labora-
tory nowadays. They exhibit the highest temperature gradients known.
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The structure of a tokamak is shown in Fig. 1.1. It confines the plasma by a
magnetic field: Poloidal coils are wound around the torus and produce a toroidal
magnetic field of a few Tesla. A toroidal current is driven in the plasma by induc-
tion generating a smaller poloidal field. The resulting field lines run helically on the
shown set of nested tori. As the charged constituents of the plasma gyrate around
the magnetic field lines each one is bound to a certain torus within one Lamor radius.
Thus the magnetic field provides an insulation, permitting central temperatures of
several keV in the plasma centre.

"The plasma equilibrium can be described with “magnetohydrodynamics” (MHD)
as described in Sect. 2.1. Sect. 2.2 presents how the force, caused by the kinetic pres-
sui"_e is balanced by the magnetic force. The stability of such an MHD equilibrium
to a perturbation is regarded in Sect. 2.3.

Throughout the history of tokamak research it was possible to improve the con-
finement by exploring various modes of operation, as will be described in Sect. 3.1.
The H-factor has been introduced to describe this advance. It is defined as the
confinement time (Eq. 1.5) of a particular discharge over the one of a reference shot.

T,
H==2E (1.7)
TL
where 77, stands for the energy confinement time of an “L-mode” plasma (Sect.

3.1.2). So called H-mode plasmas (Sect. 3.1.3) exhibit an improved confinement
H = 2 which is the reason for the name “H(igh energy confinement)-factor”.

The “normalised 5”7 gives the ratio of the energy, stored in the kinetic pressure
over the magnetic field energy. It is defined as:

>
~p-2 (1.8)

b = B1/2u,

Where a is the minor radius of the device, B denotes the magnetic field, < p > is the
average pressure, and [ is the plasma current. Since the generation of the magnetic
field is associated with high costs and a high pressure is desirable with respect to
the triple product (Eq. 1.6), a high value for By is wanted. High pressure equilibria
however give rise to numerous instabilities, some of which are described in Sect. 3.2.
These degrade the confinement and result in a reduced H-factor or a disruption of

4




the discharge, which terminates the equilibrium. Thus it is of advantage to maximise
the product Sy H. While maximum values of H approach 4, the product is reaching
optimal values of By - H ~ 9 at H-values below 3 [3].

Advanced Scenarios

The use of an inductive drive for the toroidal current limits the tokamak to pulsed
operation. As the output of a power plant should be continuous, this is a big dis-
advantage for a power producing reactor. A new mode of operation, the “advanced
scenario” (Sect. 3.1.4) tries to improve this situation using an intrinsic current that
is caused by the pressure gradient and does not depend on an external drive (this
“bootstrap current” is explained in Sect. 2.2.3). In addition this type of equilibrium
can be associated with a transport barrier yielding an improved confinement and
high H-factors. Optimising equilibria for a high bootstrap current, one is aiming
for an ignited “steady state” tokamak. The condition for ignition and the fraction
of the bootstrap current are therefore the figures of merit. They can be estimated

for future devices from empirical scaling laws. The energy multiplication factor ¢

scales like [4, 5]: ,

() (%) _ @—3—5 (1.9)
where g (...) is of the order unity, a represents the minor, R the major radius of
the tokamak and I the plasma current. For ignition Q — oo and H I R/a > 60.
With k denoting the elongation of the plasma cross section, the bootstfap current
fraction scales as [6]:

fos~ 01 Hfy VaR B (1+x) (1.10)
| [l

Designs for conventional ignition devices did fulfill condition 1.9 by increasing the to-
tal current. Since this would reduce the bootstrap fraction (see Eq. 1.8 and Eq. 1.10)
it is not a suitable strategy for advanced scenarios. The inverse aspect ratio e = a/R
does not leave room for many changes either, so the confinement parameter H is of

paramount importance for ignition.

Optimising the bootstrap current fraction by increasing term Il in Eq. 1.10 would
produce high costs as it represents the geometrical scale of the device. B is limited
by the magnetic fields accessible with superconducting toroidal coils (circa 10 T).

Finally the elongation s cannot be increased to much as it gives rise to a vertical



shift of the plasma, the “vertical instability”. Thus an optimisation of the H-factor

and the plasma pressure [y, represented by term | are important.

Magnetohydrodynamic Instabilities

The increase of the plasma pressure and Oy results in a stronger pressure gradient.
As mentioned, this evokes instabilities, which can cause transport and degrade the
confinement resulting in a reduction of the H-factor or even lead to a disruptive
end of the discharge. Other instabilities are caused by the current gradient. Due to
the special properties of advanced scenario type equilibria, instabilities constitute a
challenge already for current experiments, which are transient because the pressure
~is too small to generate enough bootstrap current. Thus it is essential to gain
further insight into the dynamics of MHD activities to combine high pressure and
good confinement. As shown, an improvement in MHD stability could be utilized

to a obtain either one, ore a combination of the following advantages:

e An increase of the bootstrap current fraction gives access to a steady state
tokamak.

e It would be possible to reduce the machine’s size and cost at no expense for
the plasma performance.

e Ignition could be reached more easily with a better confinement.

This is the reason, why careful analysis of the MHD activity in current ex-
periments, the exploration of means of stabilisation and a deeper insight into the
dynamics involved is of interest for fusion physics nowadays. In the work presented
here, the MHD activity in advanced mode discharges on two tokamaks is analysed
and means of stabilisation are discussed.




Chapter 2

Theoretical Review

2.1 Magnetohydrodynamics (MHD)

To deal with the many body problem of a hot, ionised plasma, a fluid picture offers
the easiest treatment of the ensemble. A closed system is derived from the velocity
moments of the kinetic equation for the ion and electron distribution functions. It is
used to describe many aspects of fusion plasmas, in particular magnetic waves and
macroscopic instabilities. There are however phenomena, that cannot be treated
within the fluid picture.

2.1.1 Derivation

Assuming high collisionality, the particles lose their individual identity and the tra-
jectories are randomised. This requires the mean free path, which depends on the
temperature (A o< 7), to be small compared to typical gradient scale lengths (Ly,1).
Generally hot tokamak plasmas are not dense enough to justify this approach, but
the presence of the magnetic field imposes a strongly anisotropic character on the
system: In the direction parallel to the magnetic field the mean free path is long
while the gradients are small resulting in a long gradient scale length (A < Ly),
whereas the perpendicular direction exhibits strong gradients. The resulting short
perpendicular gradient scale lengths (L), <« A) do not violate the fluid approxima-
tion, because the perpendicular movement of the particle is restricted to a region of
the Lamor radius (rp < L)) as it is gyrating along the field line. Thus a fluid like
behaviour can be assumed. Reflecting this, the first two velocity moments of the ion
and electron distribution function are taken. The temporal evolution of each mo-
ment depends on the succeeding one in the “hierarchy” of moments, so the system

7




has to be closed. This can be done by assuming the pressure to behave adiabatically.
One obtains an equation system describing the dynamics of an ensemble of charged
liquids.

Further appraximations are made:

1. The displacement current is neglected in Ampere’s Law:
1 0E
c? Ot
~——
w/c?2 Ex~0

+ud =V xB (2.1)

This excludes high frequency phenomena from the system. It constitutes a
sensible restriction because the transit time of a light wave through the physical
domain is small compared to the timescales of interest.

2. Since the electron mass is much smaller than the ion mass it is neglected and
the mass distribution is set by the ion mass and density. Electrons therefore
have no inertia and equilibrate instantly.

3. The velocities of the ion and the electron fluid are assumed to be of the same
order.

4. The pressure force is assumed to be much smaller than the Lorentz force.

5. Since even a slight separation of the ion and the electron fluid would give rise
to a large repulsive electrostatic force, the charges are assumed to be equally
distributed. The consideration is related to assumption 1, since this will cause
the current in Eq. 2.1 to be divergence free. Therefore the continuity equation

0
—a—zpcharge +V-J=0 <22)

prohibits the accumulation of a space charge. This concept is refered to as

. “quasineutrality”, it holds for low frequencies and macroscopic spatial scales.

Within one-fluid MHD, the mass density is represented by the scalar p, the plasma
velocity is given by the vector field v (/& V;pns). Although there is just one fluid, a
current density J is accounted for. Thus the first moment yields the mass continu-
ity equation, whereas the second moments of ion and electron distribution functions
yield the force balance equations, and — introducing a macroscopic resistivity to
account for the collision term and regarding assumptions 2 and 3 — Ohm’s Law.




The resulting system is supplemented by the adiabatic closure and the Maxwell
equations, neglecting the displacement current. It describes the behaviour of a neu-
tral conducting fluid immersed in a magnetic field, hence it is called MHD (Mag-
netoHydroDynamics). It applies to many phenomena encountered in a magnetised
plasma. Obviously kinetic effects like the “bootstrap” current (see Sect. 2.2.3) can-
not be described by this system.

2.1.2 One Fluid Resistive MHD Equations

moment equations:

Mass continuity 25+ V. pv =0 (2.3)
Momentum Balance  p (% +v- V) v+Vp—-JxB =0 (24
Ohm’s Law E+vxB-nJ =0

adiabatic closure:

Adiabatic equation of state  pk (%T + VVT) -(1-=v)pV-v =0 (2.6)

Maxwell’s equations:

Ampere’s Law od =V x B (2.7)
Faraday’s Law ~-2B=VxE (2.8)

Where p represents the plasma pressure, 7 is the adiabatic coefficient, E and
B denote the electric and the magnetic field, respectively. 7 is the resistivity of
the plasma, k denotes the Boltzmann constant, and T is the Temperature (p =
pkT'). Details on the derivation of this system can be found in many plasma physics
textbooks, e.g. [7].

2.1.3 Timescales of MHD

Although light waves were excluded from the system, there can be waves in the
plasma. If a fluid element is moved away from its equilibrium position, there is a
repelling force. This gives rise to two types of waves [8]:



I

“Compressional” Alfvén waves arise from compression and rarefaction of the
magnetic field lines. The disturbance does not bend the equilibrium field (B || Bo).
The resulting wave is longitudinal (v || k L Bg). It is related to the acoustic wave
in an ideal gas propagating with the sound speed:

YPo
zound = 7 (29)

v

Unlike there, the acting force (see Eq. 2.4) is not only pressure but also magnetic.
The resulting magnetosonic speed is given by

2 .2 2
'Umagnetosonic = Vsound + Va (210)

Where v4 represents the speed of a purely magnetical wave, the so called “Alfvén”

speed:=
v = —20 (2.11)
4 v/ HopPo .

The ratio of thermal to magnetic energy, described by the parameter § evaluates to:

(2.12)

Under usual tokamak conditions it is much smaller than unity. Consequently the

magnetic contribution determines the characteristics of Alfvén waves in tokamaks.

“Torsional” Alfvén waves are transverse (vy L k || Bg). They propagate along
the equilibrium field lines and are comparable to the wave running along a string
under tension. Their dynamics is based on the tension of the magnetic field line
counteracting curvature. There is no compression necessary for this kind of wave,
consequently there is no analogue in the ideal gas. They also travel with the Alfvén
velocity.

With a representing the typical length scale of the tokamak (e.g. the minor
radius), the Alfvén time is defined as the interval necessary for such a wave to
propagate through the domain of the plasma. It defines the fastest timescale on
which MHD effects can penetrate the system. Standard parameters yield a 74 of

some /8.

a

10




2.1.4 Resistivity and Flux Conservation

If the resistivity is negligible (n = 0) one speaks of “ideal MHD”. An important
consequence of this limit is that the plasma fluid is “frozen” to the magnetic field

lines. This implies that there can be no change in topology without resistivity.

Only when resistivity is accounted for, the magnetic field can change indepen-
dently of the fluid velocity as can be seen in the following: Taking the curl, the
equations 2.5, 2.7, 2.8, and v = 0 combine to yield:

Ho OB

AB =
n Ot

(2.14)
This has the form of a diffusion equation with the diffusion coefficient Dyqy = 1/ to-
The diffusion time over a characteristic length like the plasma radius is determining

the resistive time

i 02
TR =
n

For realistic parameters this timescale is in the order of seconds and might even

(2.15)

exceed the duration of the discharge. However the formation of an island for example
(see Sect. 3.2.1) requires reconnection of the field lines only within a very narrow
region (resistive layer) of approximately 1 cm. Therefore the instability can grow
within milliseconds which is still much slower, than the Alfvén time but relevant for

the experiment.

2.2 Equilibrium

2.2.1 From Force Balance to Toroidicity

If the plasma is in static equilibrium, there has to be an internal balance between
the pressure and the forces due to the magnetic field. Equation 2.4 yields:

Vp=JxB (2.16)

A simple realisation of this force balance is the “z pinch”. In this arrangement
there is an electric voltage applied to the ends of a plasma column. The resulting
current (j,) flowing through the plasma generates a cylindrical magnetic field (Bo)

that counteracts the internal pressure.

11
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Figure 2.1: The cylindrical coordinates consist of the axial coordinate Z, the major
radius R and the toroidal angle ®. The toroidal coordinate system is formed by the
minor radius p, the poloidal angel ¢ and the toroidal angle ®.

This arrangement proves to be unstable to contraction. Due to the “frozen flux”
theorem that has been described in Sect. 2.1.4, a contraction (reducing the area
while the magnetic flux is kept fixed) increases the magnetic field and thus enhances
the instability. Superposing an axial field (B,) improves the stability since it op-
poses a deformation of its field lines and thus provides a repelling force. For this
arrangement, the addition of the axial and the cylindrical field lines yield a twisted

structure reflected in its name: “screw pinch”

None of the presented arrangements is a full equilibrium since the force balance
is always violated at the ends. The solution to this problem is to bend the axial
field in such a way, that the two ends join up with each other and the plasma forms
a torus. Fig. 2.1 presents the coordinate systems used in this geometry.

By virtue of the periodicity in the poloidal and toroidal directions any field (X)
can be described by a Fourier decomposition into poloidal and toroidal harmonics,

X(p,0,) = Zan Un®-m®) (2.17)

where m and n are the poloidal and toroidal mode numbers. Specifying these, the

pitch angle of a helix winding around the torus is prescribed. The pair m/n is refered
to as helicity.

12




2.2.2 Toroidal Equilibria

The toroidal arrangement is the topologically simplest magnetohydrodynamic equi-
librium possible. It is realised in the tokamak concept which has been presented in
the introduction (Fig. 1.1): the helical field consists of a toroidal component, which
is generated by external coils - printed in green - and a poloidal component, caused
by the toroidal current running in the plasma. This current is generated inductively
by the red coil.

Flux Functions

It follows from equation 2.16, that B - Vp = 0. Therefore the tori spanned by
the magnetic field lines constitute surfaces of constant préssure. The current lines
are bound to these surfaces as well because of the symmetry between current and
magnetic field, displayed in the force balance. It is convenient to define the poloidal
flux function v as the poloidal magnetic flux lying within each surface. Due to this
definition v is a constant on the surfaces as well. It is therefore common to use the
following quantity as a measure of the minor radius:

_ ¥
Ppol = w(a) (2.18)

All quantities that just depend on p,q are called flux quantities.

Grad-Shafranov Equation
Assuming toroidal symmetry it is possible to describe the force balance of this
arrangement with a differential equation, the Grad-Shafranov-Equation [7]:

010 02
R0 T L Bpi) — 1B (W) () (2.19)

with f = RBg/po and ... = Vy, .... Solving this either with an ordering ansatz,
or numerically it is found, that inner surfaces are shifted to higher radii for high
pressure equilibria, an effect attributed to the magnetic “loop” force, which is trying
to straighten the equilibrium field lines. This shift is known as the “Shafranov shift”.

For the following examinations the HELENA code [9] has been used to derive
numerical solutions of this equation. The solutions account for the Shafranov shift
and non-circular shaping. Apart from the MHD assumptions toroidal symmetry, ap-
propriate boundary conditions and a static equilibrium are the only approximations
made.
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The Safety Factor, Magnetic Shear and (3,4

As mentioned before the magnetic field lines lie within the flux surfaces and wind
around the torus helically. The pitch of this helix depends on the ratio between the
poloidal and toroidal magnetic fields.

Depending on the average pitch, the field line either spans the whole flux surface
(2D) or runs back into itself (1D). The later case is refered to as a “resonant” field
line. Since a perturbation of the equilibrium will propagate along the field lines as
an Alfvén wave, a resonant surface will permit the formation of a standing wave,

obviously an especially crucial condition considering stability.

Since the pitch is of such an importance to stability the “safety factor” is defined
as the toroidal interval the field line has to span, to wind around the torus in poloidal

direction once. . o
—_— 2 .2
1 21 (2.20)

Taking into account the equation of the field line

Rd® Bs
the safety factor ¢ is given by the average ratio of the magnetic fields along the field
line. ) B
3
= — ¢ ——dl 2.22
1= 5. RBo (2.22)

A resonant field line is associated with a rational value of ¢. Since the safety factor
is a flux surface quantity one refers to surfaces with resonant field lines as “rational”
or “resonant” surfaces. The magnetic shear is defined as [10]:

P dg
§= == 2.23
10 (2.23)
An equilibrium can be further characterised with the parameter Bpq:
_IpdS/[dS
Brot = T2 I (2.24)

where the [dS is the poloidal cross section, I denotes the toroidal plasma current
and [ is the poloidal perimeter of the plasma.
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2.2.3 Bootstrap Current

It has already been pointed out that some effects cannot be described within a fluid
picture. One example is the “bootstrap” current, mentioned in the introduction. It
arises from the anisotropic distribution of particles, which do not stick to the flux
surfaces but follow more complicated trajectories through the tokamak’s inhomoge-
neous fields. Fig. 2.2 presents the path of such a particle, which has been followed
around the torus with the HAGIS code [11, 12] (I) and a sketch of the projection
of two such “banana” orbits (their shape accounts for the name) onto the poloidal
plane (). Instead of simply gyrating along the field line the particle is periodically
reflected as it tries to follow the field line to the inner domain of the tokamak.

The reason for this reflection is that the toroidal field falls off radially (Bs o< 1/R)
and is higher on the inside (therefore called: high field side - HFS), than on the out-
side (low field side - LFS). Since the magnetic moment (1 = mv? /2B) is conserved
v has to increase as the particle is moving inward. Because the total kinetic energy
is conserved, v) decreases and if the initial parallel motion was too slow, it will come
to a standstill before the HFS is reached. Thus “trapped particles” are reflected in
the “mirror” formed by the magnetic field.

flux banana
surface orbits

Figure 2.2: High energy particles do not stick to the fluid and follow more compli-
cated trajectories through the tokamak field. | plots an exemplary trajectroy of a
particle moving around the torus, It has been calculated with the code HAGIS [11]
[12]. |l shows the projection of the trajectory upon the poloidal plane. Due to their
shape, they are called banana orbits.
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With Braz/min denoting the maximum/minimum magnetic field along a field
line, the condition for a particle to escape this trap and become “passing” is:

<'U“ I@_—:O >2 > Bmaz - Bmin
'U_Li@=0 Bmz’n

(2.25)

Electrons and ions move in different directions. Due to the opposite charge the
currents associated with the trapped electron and ion motion along the banana are
parallel. In the presence of a density gradient (indicated in Fig. 2.2-ll) there are
more particles on the inner than on the outer banana. Thus the current pointing
downward on the outer orbit cannot compensate the opposite current on the inner
one. The resulting net-current is called the “banana current”.

Though the mechanism has been explained in the poloidal projection, the current
is mainly toroidal, as the pallrticle orbits follow the helical field lines (Bg < Bs).
(As stated before they are really deflected from the field line and the associated flux
surface by drift motions, which accounts for the finite width of the banana orbits.)
The banana current has been marked in Fig. 2.2-1l; it associates to an asymmetric
redistribution of the parallel velocity of electrons and ions in the domain of trapped
particles (set by 2.25) as can be seen in Fig. 2.3-I. Because passing particles are
not affected by the outlined mechanism, there are steep transitions appearing in the
distribution function. At these points, particle-particle interactions will wipe out
the steps for each species as shown for both electrons and ions in Fig. 2.3-1l. The
two resulting distribution functions are shifted against each other. This gives rise to
a current in the parallel direction, larger than the original banana current, that is
called the “bootstrap current”. Because the banana current is proportional to the
density gradient and the average thermal velocity, the current density depends on
the pressure gradient A simplified formula is found in [6]:

ce’? _dn

jn =g T (2.26)

With € = r/ Ry denoting the ratio of minor over major radius. The tokamak concept
requires a toroidal current, to form the poloidal magnetic field. Conventionally this
current is supplied by an external coil, as described in Sect. 2.2.2. The intrinsic
bootstrap current is a welcome contribution, which is indicated by the name. The

1

term “bootstrap”” is used to describe a situation where one gets something out of

!This goes back to the Baron von Miinchhausen, who claimed, that he could “pull himself up
by his bootstraps”.
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Figure 2.3: The distribution functions for ions and electrons exhibit steep transitions
in the distribution functions due to the banana current (1). Collisions wipe out the
sharp transitions and cause the bootstrap current (I1). [6]

nothing (compare the starting procedure of a computer, where the term “boot” is
a contraction of bootstrap). The utilisation of this current is the basic idea of the

“advanced scenarios” will be presented in more detail in Sect. 3.1.4.

2.3 Stability

2.3.1 Static Linear MHD

Linear stability analysis asks for the equilibrium’s reaction to an infinitesimal devi-
ation from the force balance (the displacement &), to see whether a repelling force
counteracts this perturbation, or an instability is evoked. The common linearisation
procedure is applied to MHD in many textbooks (e.g. [7]), all quantities are split
into an equilibrium part and a perturbation:

X = {ppT,v,§B}
X = Xg+X4 (2.27)
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Since a static equilibrium is treated the velocity just consists of a perturbed part

v =10 =wv; =&. An harmonic ansatz is opportune:

f(Xa t) = f(X)e_Mta f= (,01., Pl,Bl,Vl,fl) (2.28)

There is no initial displacement (i.e. the response of the equilibrium to an initial
velocity perturbation is examined). Still, for small times the velocity profile can be
interpreted as the spatial perturbation as well.

B, oc £, oc £,Im(N) (2.29)

The ansatz 2.28 is inserted into the the MHD equations (2.3 to 2.5). When dealing
with the onset of the instability one assumes the perturbations to be small compared
to the equilibrium quantities. Therefore terms of higher order in the perturbation
are neglected. This yields the linearised equations. In a physical sense it means that
there is no feedback of the evolving instability on the equilibrium. Therefore linear
theory is not able to access the full dynamics of a completely evolved instability or
to yield an amplitude of the perturbation.

static linearised MHD equation set:

/\,01 = -V- (povl) (230)
1 1
Apon = —kV (pOTl + plTo) + "/I— (V X Bo) X B1 + ,LT (V X Bl) X Bo (231)
0 0
Aol = —poviVTo+ (1 —7) poTo Vv (2.32)
)\B]_ = -V x Bg X Vi — V x nV X Bl (233)

The system of equations corresponds to a matrix equation in the following form.
LU=ARU (2.34)

with L and R being matrix operators, A being an eigenvalue. U = {ny,vy,71,B1}
represents the perturbed quantities. U does not contain the displacement &, but:

Opvi = 02¢ (2.35)
So the linearised momentum balance (Eq. 2.31) can be written as

npd2¢ = =V (noTy +mTp) + (V x By) x By + (V x By) x By (2.36)
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The RHS of this equation is the linearised force operator F'. It still contains the
perturbed magnetic field. Due to the frozen flux theorem this quantity can be
ascribed to the displacement. That does not work in the resistive case.

F ideal MHD
g = €)oo e (237

F(¢,B1) resistive MHD

In the ideal case the force operator is Hermitian [7], consequently the solution of
the eigenvalue problem yields either a real or an imaginary eigenvalue. The former
indicates an oscillation around the equilibrium position and therefore stability, the
later indicates the growth of an instability. If resistivity is included the eigenvalue

is complex and there can be a combination of oscillation and growth.

2.3.2 The Energy Functional éW '

Apart from the numerical solution resulting in growth rates and eigenfunctions, the
force operator can be further examined to gain qualitative insight into the behaviour
of the system [13]. Multiplication of Eq. 2.36 with £ and integration over space yields

L [noXgdx=— [¢- () dx=ow (239)

the LHS of which represents the mode’s kinetic and the RHS its potential energy.
The sign of the functional §W determines stability: in an unstable system, there
are perturbations &, which reduce the potential energy (5W(§). < 0), in a stable
system, any physically allowable perturbation increases it (6W(€) > 0). The energy
functional can be split into contributions for plasma, surface and vacuum [2]:

SW = 6Wp + 6Ws + Wy (2.39)
2 2

with: 0Wp = 5 / <io B;,LO (V EL+2& - /i) ~+ Ypo (V . 6)2

—2(EL - Vpo) (k- £1) — ”“ (6L Bo) B1> (2.40)
B2
_ . By 2.41
SWe / ds ((n )’ n|py + o ) (241)
Wy = / av 2L e (2.42)
0

where k = Bg - VBy/By is the curvature vector of the equilibrium magnetic field
and n is the normal displacement of the plasma surface.
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e The first four terms in Eq. 2.40 are all positive and stabilising. They account
for the energy expense to evoke magnetosonic waves, the next one accounts for
the contribution when the equilibrium gives in to the pressure force. As it is
proportional to (k- &) it is stabilising on the high field side and destabilising
on the low field side of the torus. The last term describes the destabilising

influence of the current giving rise to current driven instabilities like the kink.

e The surface term (Eq. 2.41) vanishes if there is no normal displacement at the

surface.

e the vacuum part (Eq. 2.42) represents the transfer of energy into the perturbed
magnetic field outside the plasma

)

2.3.3 The Linear Stability Code CASTOR

The problem of linear MHD has been shown to be equivalent to the eigenvalue prob-
lem Eq. 2.34. It is solved numerically by the code CASTOR [14]. The equilibrium
fields entering the force operator are read in from a numerical solution of the Grad-
Shafranov-Equation calculated with HELENA (see Sect. 2.2.2).

Advantage of the toroidal symmetry is taken. All fields are represented by their
Fourier harmonics (Eq. 2.17). Neglecting the changes of the equilibrium that are
caused by the evolving perturbation, the toroidal symmetry is preserved in the linear
picture. Therefore modes of different toroidicity do not interfere with each other and
only one toroidal harmonic (n) at a time has to be considered. Since it is impossible
to solve for an infinite number of poloidal harmonics, one is limited to an interval

m = myq ... my. Therefore the disturbances take the form:

X(X) — Z men(p)ei(né—m@)ﬁ—/\t (2.43)

m=mji

the radial dependence X, ,(p) is represented by a list of discrete points.

As a result, the code returns the complex eigenvalue A = I' + 4 - w and the ra-
dial profiles of the included harmonics of the perturbed quantities. In principle one
would have to sum up the complex eigenfunctions for all harmonics and take the

real part of the resulting term to determine the spatial structure of the mode.
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2.3.4 Stability of a Rotating Plasma

Under certain experimental conditions (see chapter 4), the plasma exhibits a toroidal
flow that can yield an influence on the stability of the plasma. To account for this,
the linearised equations have to be supplemented by the terms containing the undis-
turbed velocity (vg) [15, 16], which were taken to be zero before.

linearised MHD for flow equilibria:

Apr = =V - (pov1) = V- (p1vo) (2.44)
Apovi = —kV (poT1 + p1To) pressure term
+1( X Bo) x By J x B term
+.-(V xB1) xBo
—p1(vo - V) Vo (centrifugal force)
—po (v - V) Vo inertia term (2.45)
—po (Vo - V) vy (coriolis force)
ApoTt = —pokvy - Vg — pokve - VI — pikve - VI
+ (1 =) pokToVvy
+ (1 =) pokT1 Vv + (1 — ) p1kTo Vg (2.46)
Ay = -V xnVxB;—VxBgxvy;—VxB;Xxvg (2.47)

Accounting for a radially varying toroidal rotation only, the equilibrium velocity
may be written in terms of the rotation frequency of the plasma and the cylindrical
coordinate vo = QR. Thus the “inertia terms” in Eq. 2.45 can be identified as
contributions to the coriolis force (o p{2) and the centrifugal force (o< p?). The
other contributions are easily recognisable by comparison with the MHD equations
(Eq. 2.3 to Eq. 2.8)

Toroidal rotation has been implemented into CASTOR  [16]. As resistivity did be-
fore, toroidal rotation results in a complex eigenvalue, the imaginary part of which
describes the rotation frequency of the mode. The calculation can either be based
on static or dynamic equilibria accounting for the change of the equilibrium due to
inertial forces to Eq. 2.19 [17]. The first case is limited to moderate velocities at
which the rotation energy stored in the plasma is small compared to the energy of
the kinetic pressure.
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Chapter 3

Tokamak Research

3.1 Modes of Operation |

In the history of plasma physics an improvement of the confinement has always been
one object of tokamak research. The discharge parameters encountered throughout

this development are generally put into four categories:

3.1.1 Ohmic Plasmas

The toroidal current not only generates the magnetic field, but also provides a source
of energy in a resistive plasma due to the ohmic power (I 2n). Since the resistivity is
dropping like 7 oc T 3/2 the efficiency of this heating mechanism collapses at high
temperatures and the plasma energy is limited [18].

3.1.2 L-Mode

Higher temperatures could be accessed by auxiliary heating mechanisms like the
injection of energetic neutral particle beams or of radio frequency waves. However
the power deposition in the plasma affects the confinement time (7z o< P~%%) [19]
pointing to minimum requirements for ignition, which are hard to realise. This
regime is called the “low confinement mode”.

3.1.3 H—NIQde

Early tokamak plasmas were bounded by material limiters, so the hot plasma is in
direct contact with a plate. Impurities are eroded and pollute the bulk plasma. To
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Figure 3.1: The poloidal cross

section of ASDEX Upgrade.
The limiter () and the di-

vertor plates (llI) are visi-

ble. For diverted discharges,
~ the flux topology (Ill) of
vacuum (a) and plasma (¢! do-

main are separated by the

separatrix (b).

avoid this the divertor, a special field geometry separating plasma and vacuum has
been developed.

An example for a limiter and an divertor can be seen in the poloidal cross section
of AsDEX Upgrade (Fig. 3.1), a mid sized tokamak sited in Garching, Germany. In
the plasma domain (Il ¢) the field consists of the usual nested tori, whereas the field
lines in the vacuum region (Ill a) are redirected against special target plates (ll). Thus
the inevitable sputtering process does not happen in the vicinity of the plasma as in
limited cased, but in a region, specially designed to prevent recycling. Particles in
the vacuum regions will follow the field line to the divertor plates. ASDEX Upgrade
can be operated with a limiter () as well.

The exploration of these edge geometries has already been one of the scientific
objectives of the present machine’s predecessor, ASDEX (Axial Symmetric Divertor
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EXperiment). It has been there, where a new operation mode, offering a higher
confinement (therefore called “H-mode”) has been found [20]. The divertor helps to
sustain high edge gradients and an improved confinement, however H-modes have
been found in limited plasmas as well [21].

3.1.4 Advanced Mode

One of the biggest problems of the tokamak concept is arising from the inductive
current drive, which limits the duration of the discharge. Being limited to pulsed op-
eration constitutes a huge restriction with respect to a power producing reactor as a
power plant should run continuously. Alternative ways to drive the plasma current,
Ip, e.g. the injection of a neutral particle beam (NBI) are generally so ineffective
that they can only assist, but not replace the main current drive. The bootstrap
current described in Sect. 2.2.3 is not depending on an outer drive and thus presents
a solution to this problem. If the equilibrium can be optimised in such a way that
the bootstrap effect is providing most of the current, slight corrections of the current
profile could be realised by ECRH (Electron Cyclotron Radiative Heating).

An equilibrium, optimised for a high bootstrap fraction Ig/Ip will look different
from a conventional one, as can be seen in Fig. 3.2: Being pressure gradient driven,
the bootstrap current is peaking off axis, which directly associates to a changed
current profile. As the current generates the poloidal field, the peak in the current
density is associated with a minimum in the safety factor (compare Eq. 2.22). A
falling safety factor is associated with a negative shear (Eq. 2.23), therefore these
q profiles are characterised as reversed shear, the minimum region is refered to as
low shear region.

Low and reversed shear gains access to the second stable region of ballooning
stability (see Sect. 3.2.4) stabilising high toroidal mode numbers (n — co) [22] and
suppresses turbulent transport [23, 24, 25, 26]. Thus an “internal transport barrier”
(ITB) is established which permits the sustainment of very high pressure gradients.
These yield a high bootstrap current (Eq. 2.26) giving rise to a positive feedback
between the current and the pressure profile. Establishing this however relies on
high pressure equilibria with a high value of 5,5 (Eq. 2.24). The special magnetic
structure and the high pressure account for a range of MHD activities making the
realisation of this feedback an ambitious goal.
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Figure 3.2: Safety factor and current density for a conventional (I) and
a reversed shear equilibrium (ll) are plotted along the mid-plane (Z = Z,
Ry —a < R < Ry + a) of the torus, where a denotes the minor radius.

The beneficial aspects of negative shear with respect to ideal and resistive MHD
stability have been long known [27, 28, 29]. While theoretical considerations of the
matter reach back to the sixties [30], advanced scenarios have been picked up as a
subject of expererimental research just throughout the last decade. These studies
are motivated by the possibility of a steady state tokamak, which is enabled by
access to a higher plasma pressure and by the reduction in size and cost of future

machines, whether they are designed for further research or power production [31].

There are several ways to generate the hollow current profile exhibited by Fig.
3.2-1l. Most common is the method of early heating [32]: As the discharge is start-
ing the inductively driven current does penetrate the cold plasma from the outside.
Since the process is depending on resistivity and therefore temperature (compare
Eq. 2.14) the current diffuses inward quickly resulting in conventional profiles (Fig.
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3.2-1). This can be prevented by early heating the plasma core (e.g. NBI) causing
a central hole in the current profile. Since the diffusion is thus just slowed, the
reversed shear is a transient feature, which is lost as the current diffuses inward.
Once the plasma current was fed off axis (ideally by a high bootstrap fraction) a
steady state can be achieved.

Reversed shear scenarios have been observed on many major tokamak experi-
ments: on the “Joined European Torus” (JET) at Culham, U.K. [33], the “Tokamak
fusion test reactor” (TFTR) at Princeton, U.S. [34], D-IIID at San Diego, U.S. [10]
and JT-60 Upgrade at Naka, Japan [35] as well, as at ASDEX Upgrade in Garching,
Germany [36] and TEXTOR-94 in Juelich, Germany [37].

3.2 MHD Instabilities

3.2.1 Tearing Modes (TM)

The Tearing Mode (TM) instability is driven by the radial gradient of the toroidal
current density. During its growth, the equilibrium field lines “tear” and rejoin

forming islands. This process has inspired the name.

The formation of the island constitutes a change in topology, as shown in Fig.
3.3, which projects the magnetic field minus the equilibrium magnetic field at the

Iy

x (radial)
x (radial)

x (radial)

LUAR

y (poloidal) y (poloidal) . y (poloidal)

Figure 3.3: All three graphs show the projection of B* = B—By|,, upon the poloidal
plane. The abscissa represents the poloidal angle and the ordinate is running in
radial direction focusing on an interval around the rational surface, which is indicated
by a dotted line. The first graph shows the equilibrium structure, the second an
ideal perturbation. The third graph exhibits the magnetic island, formed by the
TM after reconnection has been taking place around the rational surface.

26




rational surface (B* = B'— By|,,) upon a part of the poloidal cross section. This is

equivalent to the topology seen when viewing along the resonant field line.

In the left picture the equilibrium is sketched. Due to its definition B* vanishes at
the rational surface. The shear evokes a poloidal field contribution growing stronger
as the resonant surface is left behind. The poloidal field will change directions as
the resonant surface is passed. The central picture shows the change arising form
a resonant disturbance. So far complying with ideal MHD there is no change in
the topology. As resistivity is considered in a narrow domain around the rational
surface the field lines can break up and rejoin forming islands, as shown in the right
picture. While the instability is growing, there is a perturbed current flowing within
the resistive layer in direction of the resonant field lines.

The islands are emerging on a local resistive defusion time. Since the timescale
of ideal MHD, 74, is much smaller (see Sect. 2.1.3) the intermediate ideal plasma
is going to adapt to the disturbance attuning to a changed equilibrium state. The
current gradient around the rational surface does change, in the case of an unstable

mode feeding energy into the resistive layer.

Linear Theory

The mode has been discovered in a linear analysis of a pinch equilibrium [38]. The
idea of this approach is to separate the plasma into a layer around the rational sur-
face that has to be treated with resistive MHD and the remaining, ideal region.

For a large aspect ratio tokamak, the MHD force equation yields [39] the so
called “tearing mode equation”:

1d dp m? — mVije

rdr T T2 Bo(m — nq)

p=0 (3.1)

This differential equation determines the profile of the perturbed flux in the region
outside the resistive layer. Using appropriate boundary conditions it can be calcu-
lated from the core and the edge of the plasma independently up to the resonant
surface. Being the solutions of a linear equation, it is possible to match the am-
plitudes of the both branches. The perturbed current is visible as a kink in the

27



1.0 1_@'5
r
08 — - flattened pressure profile
208 -
e«
2 04 40 o
w origial profile
® 021 - 0.4
00 l | l L K L . ‘
-1.00 -.50 .00 .50 1.00 0.0 0.2 0.4 0.6 0.8
minor radius [a] Bpol

Figure 3.4: The reaction of a global change in plasma pressure of two TM unstable
Equilibria was analysed with CASTOR. The difference of the two equilibria is, that
in one case the pressure profile is locally flattened in a narrow region around the
rational surface. The resulting growth rates are plotted (normalised to the Alfén
time) against B, yielding a measure for the pressure.

resulting total profile. To characterise this, the parameter A’ is defined as

lim o (7)[7=7e TS
1 __ 6—0
A = e (3.2)

with § denoting the width of the resistive layer and rs being the location of the

rational surface. This parameter is a stability criterion for the TM growth. A’ < 0
is associated with stability, instability occurs for A" > 0.

The Glasser Effect

Initially the analytical models were based on ordering assumptions like a small pres-
sure. Extending them to finite pressure [40] and applying it to tokamak geometry
[41] it is found that finite pressure yields a stabilising influence on the TM growth.
This is caused by an interaction with the pressure dependent Pfirsch Schliiter cur-
rent, which is oriented parallel to the magnetic field.

JpsOC —_— (33)

Fig. 3.4 presents a calculation illustrating the effect on the TM growth. The reaction
of a global change in plasma pressure of two TM unstable equilibria was analysed
with CASTOR. In one case the pressure profile has been flattened around the location
of the TM as shown in the picture. It can be clearly seen from the scan that the
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decrease of the growth rate is due to the local pressure gradient at the position of
the mode. Because a disappearing pressure gradient gave rise to numerical problems
(accounting for the spikes in the right graph) the pressure gradient was not reduced
to zero in the flattened region, so the upper curve does also decrease somewhat.
The stabilising mechanism is called “Glasser Effect”. Owing to this effect most high
pressure tokamak 'equilibria are stable against classical tearing modes.

Tearing modes affect the confinement

As the fluid motion is bound to the flux topology, the nested surfaces provide the
thermal insulation of the plasma. Since the island structure short circuits two dif-
ferent radial positions the mode deteriorates the confinement.

If two modes of different helicity reside so close to each other that their islands
overlap, the consequence is an ergodisation of the field. So far the field lines were
resonant covering one dimension or rational spanning surfaces (2D) since even an
evolved island preserves discrete flux surfaces. But in the overlapping region, the
field lines loose this restriction moving freely in space. If major parts of the plasma
are ergodised the equilibrium is destroyed and the plasma disrupts [42].

If a single island exceeds a certain size the pressure profile will be flattened locally
because of the transport of particles and energy parallel to the field. One important
result is the rise of neoclassical TM.

Neoclassical Tearing modes (NTM)

The neoclassical bootstrap current has been presented in Sect. 2.2.3 as a helical
current being caused by the pressure gradient. If the pressure profile is now flat-
tened inside the island, the result will be a local “hole” in the bootstrap current
which is equivalent to a disturbed current in the opposite direction. Running in
helical direction this current interacts with the island current in such a way that the
TM is destabilised by high pressure and the associated bootstrap current in positive
shear [43] and stabilised for a falling safety factor [44]. It should be noted that the
calculation with the flattened profile (Fig. 3.4) has nothing to do with neoclassical
effects. The NTM is based on nonlinear physics not accessible to the linear code
CASTOR.

29




poloidal angle

poloidal angle

safety factor

[ )
(8]

[ 3]

1.5

02 04 06 08 1

normalized flux

Figure 3.5: Reversed shear ¢ profile (C)
give rise to the growth of two neighbour-
ing TM of the same helicity (B). (A)

presents a nonlinear cylinder calculation.

3.2.2 Coupling and Double
Tearing Modes (DTM)

The matching procedure outlined above
can be extended to deal with multiple
TMs at different locations in the plasma.
This was first done in a cylindrical [45],
later also in toroidal geometry [46]. As
the ideal plasma is split by resistive lay-
ers several times the matching conditions

- take the form of a matrix equation.

The formalism can also be applied to
an instability of importance in advanced
scenarios, the DTM shown in Fig. 3.5.
Due to the nonmonotonic safety factor
(C) rational surfaces (e.g. ¢ = 2) can ap-
pear at two radial positions (rs; < rss).
This enables two TM to grow. Owing to
the equilibrium structure the islands in
the falling g region have a different orien-
tation than the ones in rising ¢. There-
fore the disturbed currents in the topol-
ogy sketch (B) are oriented differently for
the two island chains. Since both islands
have the same helicity they yield a strong
mutual influence on each other that desta-
bilises the mode. In Fig. 3.5-A, a snap-
shot of a nonlinear evolution, taken from
a cylinder code [47] has been projected
onto the poloidal plane. The contours
represent B* and the colour the tempera-
ture topology which is changed by trans-
port.
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The magnetic flux perturbation is determined by the “tearing mode equation”
(Eq. 3.1) also for coupled TM. It can be expressed as [48]:

)= @51 + s (3.4)

while 97 is vanishing at the plasma centre and at the outer rational surface (1/;1 (rs2) =
¥1(0) = 0), 1, is vanishing at the first rational surface and at the plasma edge
(1ha(rsl) = 1a(b) = 0). Now the matching procedure is extended and each part, 7,
yields a A’ condition on each rational surface, i [48]:

r=rsi+§

r=rsi—0

(3.5)
b;(rs;)
where v%(r) = 0 for radii where the function is not defined. This allows to separate
the intrinsic instability of the -th mode A, from the influence by the neighbouring
mode j, Aj;. '

lim 9%(r)

1 __ 6—0

An analysis of the influence of the off axis contributions to A’ [49] reveals a
destabilisation, which becomes the bigger, the closer the modes are positioned. This
causes the mutual boost that has been mentioned above. It is easy to imagine,
that a differential rotation of the two mode locations will influence the coupling
behaviour. Indeed this question has been analysed both with analytical models [50]
and numerical codes [48].

3.2.3 Kink Modes

The physcial mechansim evoking the kink mode can be seen from the energy func-
tional (Eq. 2.39). The mode is ideal and primarily current driven. It is appropriate
to regard the low 8 approximation. Restricting the considerations to a large aspect
ratio (¢ = a/Ry <« 1) and small mode numbers yields [2]:

n 12

ow = %{ /ao ((7"V7~£r)2 + (m? — 1)§2> (— - = ) rdr

m q

(R-2)evm(z-2)) ) o

where the subscript a denotes the values at the plasma surface (r = a).
This equation yields insight into the stability properties of the system: The internal

kink (&, = 0) is stable for m > 1, since all terms become positive. The condition for
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equilibrium state

perturbed state

Figure 3.6: A simplified sketch of the kink instability: The helical magnetic field is
split into the the toroidal (horizontal, blue) and the poloidal contribution (red) Only
the toroidal field counteracts the shown perturbation, the poloidal field (associated
with the toroidal current) amplifies it.

external kinks however is less restrictive. If m/n > q,, the surface term becomes
negative and might compensate the positive contribution of the plasma term. Just
if m/n < qq, stability is certain, in other words: The plasma is stable to external
modes if the resonant surface is in the plasma. Wether a mode really becomes
unstable depends on the value of g, and the equilibrium current profile. Since the
internal inductance is defined as

_ 2 [y Bdrdr

L;
202
a*Bg,

(3.7)
it characterises the current distribution. Kink modes turn out to be especially un-
stable for low values of [; and a ¢, slightly below the mode’s helicity. The growth
rates and the unstable domain degrade with a rising mode number m.

The reason that the toroidal current density and the associated poloidal magnetic
field are yielding such and influence on stability can be seen in a heuristic picture
of the instability. Fig. 3.6 presents a simplified sketch of the mode’s topology. The
helical field is divided into the toroidal and the poloidal contribution. The magnetic
field is associated with a force pointing to the center of the plasma, since it has
to counteract the pressure. If the column is kinked, the poloidal field lines move
closer to each other on one side and away from each other on the other side. Thus
the magnetic force is amplifying the instability and since the poloidal field is not
bended, there is no repelling contribution. It is just the superposed toroidal field
that yields a stabilising contribution, since the field lines oppose the deformation.
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4
The shown picture also illustrates, why the internal kink is more stable than the
external kink. As in this case only the inner domain of the plasma is exhibiting the
described deformation, the kinked column is surrounded by the outer undisturbed
plasma. Thus the plasma needs to be compressed at the expense of free energy,
which yields a stabilisation on the mode. The external kink requires a vacuum

around the plasma, since a rigid wall would not permit the surface displacement.

Fig. 3.6 is simplified in that the direction of the displacement on the poloidal is
not varying along the toroidal angle. Such a topology would associate to the mode
numbers (n = 1, m = (). In an arbitrary (m, n) case, the structure would resemble
a screw-like twisted towel, which kinks due to the contracting force.

3.2.4 Ballooning Modes

The analysis of the current driven modes was focused on small modenumbers as
high n modes tend to be strongly stabilised by the energy required to perturb the
magnetic field. This stabilisation is vanishing around the rational surface associated
to the mode’s helicity as seen from Eq. 3.6 as ¢ = m/n. Therefore high n modes
are concentrated around their resonant surfaces. In the limit n — oo the number
of these surfaces becomes infinite and their separation zero, allowing a numerical
treatment of the modes [51, 52].

As the volume contribution (Eq. 2.40) to the energy functional has been discussed
it has been pointed out that due to the dot product of the curvature vector and
the pressure gradient the contribution is positive and thus stabilising on the high
field side (x || £1) and negative and destabilsing on the low field side of the torus
(x anti- || £1). Ballooning modes are therefore localised in the region of unvavorable
curvature. They limit the achievable § for a given shear. However a second stable
region permitting even higher pressures at a very low shear arises from the negative
local shear in the bad curvature region due to the Shafranov shift (Sect. 2.2.2) [22].
Both domains are connected by toroidicity and non-circular poloidal cross sections,
providing access to this operational range to shaped tokamaks. It is second stability
that surpresses ballooning modes in the low and negative shear region of advanced
scenarios. This mechanism is essential for the creation of a transport barrier and
hence for the advanced tokamak concept.
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3.2.5 Infernal Mb des

Manickam et al [27] pointed out that in regions of low shear, the standard ballooning
theory breaks down and low n modes can be destabilised. The emerging instabilities
were called “infernal modes”. The analysis was extended to non-monotonic profiles
[28] ascribing MHD activity ovserved in the JT-60 tokamak to the infernal mode and
showing that (3,4 in reversed shear profiles can be limited by this type of instability.
Extensive parameter scans based on the CASTOR code can be found in [53].
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Chapter 4

Decoupling of DTMs in
TEXTOR-94

This chapter refers to experiments performed at the TEXTOR-94 tokamak. Reversed
shear scenarios in this machine suffer from strong mode activity causing a flattening
of the central profiles, therefore called an internal disruption. The activity is found
in discharges with ohmic or RF (Radio Frequency) wave heating, however plasmas
which are heated by NBI (Neutral Beam Injection) are stable though the magnetic
properties of the equilibrium are similar.

On the basis of the experimental observation, which is briefly summarised in
Sect. 4.1, the mode activity is identified as a set of coupled DTMs (Double Tearing
Modes) of the helicities 2/1 and 3/2 in Sect. 4.2. Since a characteristic feature of the
discharges with neutral beam injection is a sheared toroidal rotation of the plasma,
Sect. 4.3 performs further studies on the influence of differential rotation and a vari-
ation of the distance of the rational surfaces on the growth of the instability. The
coupling mechanism, which acts as the main driving force of the DTM, is discussed
in detail.

Finally the numerical results are applied to explain the experimental observa-

tions in Sect. 4.4. It turns out that the stabilisation by NBI found in the experiment

can indeed be ascribed to the sheared rotation introduced by the tangential injection.
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4.1 DTM Activityin the Experiment

The experimental results are only briefly reviewed. More detailed information can
be found in [54].

4.1.1 The Device

TEXTOR-94 stands for “Tokamak EXperiment for Technology Orientated Research”.
It is sited at Jiilich, Germany, has a major radius of R = 1.75 m and a minor radius
of a = 51 cm. The plasma temperature is somewhat lower than on ASDEX Upgrade
and reaches approximately 1 keV.

The shape of the poloidal cross section is circular, and the plasma is limited by
a toroidally symmetric belt limiter. Poloidal limiters can additionally be inserted
into the plasma. Supplementing the ohmic power, radio frequency heating can be
supplied by two ICRH (Ion Cyclotron Radiative Heating) antenna with a maximum
heating power of 2 MW each. On top of that, there exist two tangential neutral
beam injectors providing up to 4 MW. The safety factor profile is measured by FIR
(Far InfraRed) polarimetry [55]. Since this requires a twofold inversion of line inte-
grated data, the accuracy of the profiles is limited to 20% - 30% at half radius and
even less in the plasma centre [56].

4.1.2 Reversed Shear Scenarios

The examination of high-7Z materials like tungsten and molybdenum as a possible
divertor material is part of the scientific program of TEXTOR-94. During. these
studies material erodes from test samples which have been inserted into the plasma.
It has been observed that these high-Z impurities accumulate in the centre where
they cause radiation and cool the inner domain; thus reducing the conductivity of
the core affects the current profile resulting in a change of the safety factor. It has
been shown by measurements that the change is sufficient to obtain a strong shear
reversal [56]. This presents an alternative way of generating this type of ¢ profile
to the more conventional strategy of early heating (see Sect. 3.1.4). It hinders the
current diffusion to the centre resulting in a hollow profile of the current density.
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Figure 4.1: The temporal evolution of TEXTOR-94 #78499: The central values of
electron density and the electron temperature versus time [54].

4.1.3 Internal Disruptions

Strange behaviour of the plasma was observed in the reversed shear scenarios: within
100 ms the electron density profile peaks, while the electron temperature and pres-
sure are flattened or even become hollow. After these changes, there is a rapid decay
in all profiles. The timescale of the final crash is less than 1 ms which rules out a
diffusive process (see Eq. 2.15). The ¢ profile is also changed during the crash as
seen in Fig. 4.3. This behaviour is similar to the sawtooth instability [57].

The temporal evolution of the ohmic discharge (TEXTOR-94 #78499) is pre-
sented in Fig. 4.1 to illustrate this behaviour. The accumulation of sputtered mate-
rial starts at ¢ = 0.6 s, as indicated by a drop in the central temperature. After the
reversed shear has thus been established a series of crash events occurs.

Further insight is gained from the signals of an array of Mirnov coils. Fourier
analysis allows one to separate the activity of the various mode numbers, as shown
in Fig. 4.2. Note that the time axis has been stretched substantially focusing on the
interval before one crash. The traces exhibit a strong activity of the helicities 2/1
and 3/2 evolving on the resistive timescale (Sect. 2.1.3) finally triggering the inter-
nal disruption. The following analysis will show that the activity is caused by DTM.
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#73272

Figure 4.2: The Mirnov Signal of the Activity preceding a crash (t ~ 2s) in the
ICRH heated discharge TEXTOR-94 #73272: Plotted are the Fourier amplitudes of
the signals for various poloidal and toroidal mode numbers versus time [54].

Internal disruptions are found in reversed shear scenarios whether they are gen-
erated by impurity accumulation or early heating. Neither the equilibrium structure
(i.e. the ¢ profile) nor the mode behaviour differs for plasmas with ohmic and ICRH
heating. For discharges heated with neutral beams the crashes are suppressed. This
is astonishing since the magnetic properties of the plasma are not substantially
changed by the choice of the heating mechanism.

4.1.4 Equilibrium Properties

Two sets of equilibrium profiles are shown in Fig. 4.3. The discharge #79424 is an
ohmic one but also represents the radiation heated experiments. #69876 has been
heated by neutral beam injection. The profiles exhibit slight differences between
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Figure 4.3: Experimental profiles of two TEXTOR-94 discharges. #79242 was purely
ohmicly heated, whereas #69876 was heated by NBI as well. The safety factor for
shot #79242 has been displayed before and after the crash.
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Figure 4.4: The toroidal rotation of the plasma in the TEXTOR-94 discharge #69876,
caused by the neutral beam injection is plotted versus the minor radius.

the two types. The flattening of the electron temperature and pressure are already
signs of the mode activity that is preceding the crash and has been described above.
The change however is too small to account for the difference in stability. It can be
seen that the g profile is changed during the crash. This change is ascribed to the
enhanced current diffusion caused by the DTM.

An additional difference of the two types of discharges is the presence of a strong
toroidal rotation imposed on the plasma by the tangential injection, as seen from
the radial velocity profile (Fig. 4.4). This results in a strong relative movement of
the resonant surfaces. Such a differential rotation damps the modes growth and thus
contributes to a stabilisation of the plasma as can be seen in the following analysis.
In both experiments the toroidal magnetic field was 2.229 Tesla.

4.2 The Plasma is Susceptible to the DTM

Linear calculations on the two shots presented in Sect. 4.1 have been performed.
They indicate a DTM growth on timescales comparable to the ones in the experi-
ment.
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4.2.1 Equilibrium Reconstruction

The stability analysis is based on a numerical equilibrium, i.e. a solution of the
Grad-Shafranov equation (Eq. 2.19). This solution has been generated using the
HELENA code presented in Sect. 2.2.2.

Instead of preparing two distinct equilibria, each one representing one of the
discharges and comparing their stability properties a different strategy is followed:
Utilising the common features of both shots one reference equilibrium has been cre-
ated. It is to be conceived as a typical TEXTOR-94 reversed shear scenario rather
than as the reconstruction of one particular discharge. Following this approach it is
possible to separate different features to attain a closer understanding of the effects
of mode growth and damping rather than just to reproduce the experiments.

The profiles of both shots are similar in shape, but not in the absolute values
of the ¢ and the pressure profile as seen in Fig. 4.3. #69876 has been chosen as a
reference, while #79242 is characterised by a a slight increase of the central pres-
sure and a lower minimum in the safety factor g, associated with a wider distance
between the rational surfaces.

Performing the stability analysis on the reference equilibrium it is still possible
to account for the difference in the safety factor. Since ¢ is determined by the pitch
angle of the helical field (Eq. 2.22) and thus by the ratio Bg/Be, it is possible to
change it by rescaling the plasma current that is generating the poloidal magnetic
field while the toroidal field is kept fixed.

The modes we will study are primarily current gradient driven, the pressure en-
ters just via the stabilising “Glasser effect” (see Sect. 3.2.1). Since the pressure is
low, the stabilisation is limited, and the slight difference between the two discharges
is negligible.

Fig. 4.5 offers a comparison of the experimental profiles of safety factor and pres-
sure with the reconstructed ones. The profiles agree well with the one exception of
the behaviour of the safety factor on axis. Here it should be noted that ¢ cannot
have a gradient on axis (see Sect. 2.2.2) and that the diagnostics measuring it is less

reliable deep inside the plasma as already mentioned in Sect. 4.1.1.
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Figure 4.5: A comparison of the profiles for safety factor and pressure obtained from
experimental data with the ones of the reference equilibrium shows good agreement.

HELENA solves the equilibrium in axisymmetric toroidal geometry. The result-
ing flux surface topology is presented in Fig. 4.6. The spatial coordinates X and Y
are normalised to the minor radius of the plasma and span the poloidal plane. In
the lower part of the picture the current density and the normalised flux are plotted
along the symmetry axis (Y = 0, —1 < X < 1). The Shafranov shift (Sect. 2.2.2)
relocating the inner flux surfaces to the low field side is clearly visible in both plots.

The circular shape of the plasma surface agrees with the actual shape in the
experiment. Yet the use of a static equilibrium indeed implies a simplification. This -
will be justified before the effect of toroidal rotation on the mode’s growth is actually
examined.

4.2.2 Linear Calculations Yield DTM Activity

The linear stability of this reference equilibrium has been examined using CASTOR.
This code solves the linear MHD eigenvalue problem (Eq. 2.34). It has been de-
scribed in Sect. 2.3.3.




HELENA EQUILIBRIUM

normalised flux  current density [a.w.]  safety factor
0. .0
0. .0
0. .0
0. .0
0. .0

X [rmin]

Figure 4.6: The flux topology and the ¥(r)/¥(a), ¢ and jg profiles of the recon-
structed equilibrium. The current density, safety factor and the value of the nor-
malised flux are plotted along the midplane of this domain (Y =0, =1 < X < 1).
The Shafranov shift is visibile in both plots.
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All calculations in this chapter consider 11 poloidal mode number; (m). Higher
harmonics do not yield relevant changes since the amplitudes fall of quickly with the
mode number (see Fig. 4.8 and Fig. 4.17). Neglecting the changes of the equilibrium
that are caused by the evolving perturbation the toroidal symmetry is preserved in
the linear picture. Therefore modes of different toroidicity do not interfere with each
other. Accordingly the cases for toroidicity n = 1 (associated with the 2/1 mode)
and n = 2 (associated with the 3/2 mode) have been treated separately.

The calculations have been carried out with free boundary conditions permitting
external modes. A fast growing internal activity has been found. Displaying the
characteristic structure of the eigenfunction and a resistivity dependent growth rate,
the mode is identified as a DTM that has been described in Sect. 3.2.2.

The value of ¢, has been varied as described in Sect. 4.2.1. Thus shifting the
q profile up and down, the distance between the two ¢ = 2 surfaces changes as well.
The response of the growth rate I' = Re()) to this change is shown in Fig. 4.7.
Plotted are the growth rates of two toroidal mode numbers n = 2 (gray/green) and
n = 1 (black/red) against the minimum value of the safety factor.

To allow a certain DTM to evolve the associated rational surfaces have to be
present in the plasma, so each mode is limited to the region where the minimum
safety factor does not exceed the mode’s helicity (¢min < m/n). In these regions the
distance between the correspondent rational surfaces can be read from the upper
scale. It is common to use the value of pp, (Eq. 2.18) as a measure for the minor
radius. Instead of the physical length the difference in this quantity Ap,, will be
used to characterise the space between two points of that domain. It is simply ref-
ered to as distance in the following.

For a low gmin =~ 1.2, the ¢ = 2 and ¢ = 1.5 rational surfaces are very far apart,
so both modes are relatively stable. As the g profile is lifted, the 3/2 surfaces draw
nearer to each other. The two tearing modes lock and begin to destabilise each
other. Once the modes are very close, the rational surfaces approach the bottom
of the g structure. Since the valley is associated with a maximum in the current
density (comp. Fig. 4.6), the current gradient at the mode location providing the
drive of the tearing mode (see Sect. 3.2.1) decreases and the mode is weakened. The

pressure profile can also contribute to this effect: As the transport barrier is asso-

44



=1.5 g=2.0
9.4 0.3 .2 0.5 0.45 .4 .35 .3.25
6000 —- i} : . ; —_—
5000f ., "
% 40001 P
© f 2/1-mode
< 3000} o (n=1)
o i
S 2000f o
/ﬁr
&
1000! »

qmin

Figure 4.7: Plotted are the linear growth rates of 3/2 and 2/1 DTM activity, as
obtained with the CASTOR code for varying ¢ profiles. On the upper scale one can
see the distance of the mode locations, that changes as the safety factor is scaled up
and down.

ciated with the low shear region (see Sect. 3.1.4) the Glasser effect can contribute
to a stabilisation. In our example however there is no distinct barrier visible in the
pressure (see Fig. 4.5). AS gunin = 1.5 is reached the correspondent rational surfaces
are expelled from the plasma and the mode activity disappears.

From here on we will regard the 2/1 mode since this is the fastest growing in-
stability. Since the ¢ = 2 surfaces are still quite distant to each other there is a
narrow region of relative stability 1.5 < g, < 1.6. Passing that, the 2/1 mode
becomes suddenly more unstable to exhibit a strong activity over a wide region of
parameters 1.6 < g, < 1.9. The growth rate increases as the mode locations move
closer because the mutual influence of the modes is growing. Since the equilibrium
gradients differ for different radii, there is an additional structure superposed upon
this rise. Around g, = 1.9 the growth rate decreases as the two DTM islands melt

together. The mode vanishes completely as the rational surfaces disappear.
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The DTM instability has been found to be a robust feature of reversed shear
scenarios at TEXTOR-94 as long as there are small m rational surfaces at a low
distance to each other present in the plasma. So far the stabilising influence of the
rotation, caused by NBI has not been taken into account.

4.3 Decoupling Mechanisms of the 2/1 DTM

The 2/1 branch has been picked as the subject of further examinations. The reason
for this choice is threefold: App,; is bigger for this helicity resulting in a higher dif-
ferential rotation, which suggests a key role in the stabilisation by the neutral beam
injection. In addition the wider separation implies that the fully evolved modes
short circuit a wider interval of the minor radius and are therefore essential for an
explanation of the observed transport (see Sect. 3.2.1). Finally the sudden change
of the growth rate around g, =~ 1.6 in Fig. 4.7 is an interesting feature.

Two ways of stabilising the DTM are examined independently. One is to spatially
separate the mode locations and therefore weaken the mutual coupling, the other is
to introduce a sheared toroidal rotation prohibiting the locking of the modes. The
results permit an insight into the coupling mechanisms of the DTM, they are of a

general nature and can be at least qualitatively applied to other helicities as well.

4.3.1 Decoupling by Distance
The Spatial Structure of the Mode

Fig. 4.7 has shown the reaction of the 2/1 modes growth rate to a variation of the
distance of the rational surfaces. The sudden change at Ap,, ~ 0.5 is associated

with a change of the mode’s spatial structure. This rearrangement will be referred -

to as a shift between even and odd phase. A case whithout a fixed phase will be
called unlocked. The effect, the topology yields on the growth rate will be separated
from the increassing mutual boost, the approaching modes yield on each other. This
boost will be refered to as coupling. The distinction made is artifical but convenient
for the further discussion, which will show that both effects are related and result

from the off diagonal matrix elements of A’ (Eq. 3.5).
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The transition between odd and even state can be observed on the eigenfunctions
shown in 4.8-1-11-1ll. Presented is the real part of the complex eigenfunction of the
radial displacement plotted against the minor radius for three example distances.
The imaginary part is omitted since it is very similar as long as there is no rotation
involved. Within the linear picture, the graphs can also be taken as a plot of the
plasma displacement &, itself.

In the upper case the modes are very distant resulting in an even state. In the
second example the modes are closer, so the DTM is fully evolved. The third picture
displays the structure for very closely positioned modes.

Fig. 4.8-a-b sketches the projections of the field lines onto a section of the poloidal
plane exhibiting the island structures for an even and an odd DTM. The growth of
the instability is associated with the so called “Rutherford” current flowing around
the rational surfaces [58]. The direction of this disturbed current is indicated in the
O- and X-points.

Intermediate Distances Yield the Typical Odd DTM Structure: Fig. 4.8
[l depicts the typical features of a DTM eigenfunction. Each resonant surface in the
plasma is associated with a jump in the corresponding helicity, indicating an island.
chain. The dominant structure is the m = 2 helicity. Although the other poloidal
numbers contribute, the plasma topology will be dominated by the two islands of
helicity 2/1.

The structure of the mode can be derived from the mode profiles shown by the
use of Eq. 2.43. In principle it is necessary to evaluate the sum over the poloidal
harmonics and to consider the real and imaginary part of the profile. However the
consideration can be restricted to the dominating m = 2 contribution. If we choose
the poloidal cross section at a toroidal angle of ® = 0 we are left with a rather

simple expression for the physically relevant real part of the disturbance:

€ (Ppots 0) ~ Re(&a(ppot)) + coS (—20) — Im(£2(ppor)) - sin (—20) (4.1)

Following the eigenfunction in Fig. 4.8-1 the plasma topology schematically
sketched in Fig. 4.8-b is obtained. First we regard an poloidal angle of ©O-m=20
corresponding to the baseline of the topology picture. The cos function yields unity
while the sin is vanishing, therefore the displacement can be read directly from the
real part of the eigenfunction.
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The displacement starts negative, corresponding with a shift to the left. It grows
stronger, as the rational surface is approached and changes sign there. This is how
the island is formed. Now the displacement remains positive, so the intermediate
flux surfaces are all shifted to the right. The X-point is formed in a corresponding
way. As the helical angle is changed to —© -m = 1/2, the cosine yields -1 so there
is first an X-, then an O-point.

Tt should be noted that the ordinate of the topology plot represents the product
of the poloidal angle and the poloidal mode number (m = 2 in this case). It is
therefore misleading that its scale spans an interval of 27, the range covered is

really just one half of the physical domain, so there follows a second pair of islands.

At Small Distances the DTM Disappears Again: Figure 4.8-1l shows the
eigenfunction for close distances between the rational surfaces. Since the minimum
in g is associated with a peak in the current density (Fig. 4.6), the current gradient
at the mode location is reduced. The dominating structure is now the single tearing
mode at the inner ¢ = 3 surface which has moved to a higher pya. Nevertheless, the
DTM is still essential for the growth of the instability since this arrangement can
be stabilised by a sheared rotation, as shown later on.

For Great Distances the Mode Topology is Even: Fig. 4.8- shows the struc-
ture of the even mode. Essentially, the left part of the m = 2 component changed
its sign which corresponds to a shift of the inner island indicated in Fig. 4.8-a as

can be easily reconstructed with the considerations related above.

The modes yield a force on each other: For the even case the modes have
the same phase in the poloidal plane, so the O-points of neighbouring islands are
placed at one poloidal angle. This implies, that the Rutherford currents are run-
ning opposite to each other. The magnetostatic force between the two O-points is
therefore repelling, while the X-points of one and the O-points of the other island
chain attract each other since they are associated with parallel currents.

The Transition: Each of the two cases (even and odd) presents a valid solution of
the eigenvalue problem of linear stability (Eq. 2.34). The fact that only one solution
is found numerically does not imply the non-existence of the other. The eigenvalue

of the even solution is usually very small because the mode has to couteract the
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repelling force between the two disturbed currents. If the modes are moved fur-
ther apart and the magnetoscatic force between the island chains is weakened, the
growth rates become comparable. Therefore the even solution “masks” the odd one.
Starting a nonlinear simulation from the even case it is found, that one island chain
shifts and the parity becomes odd [59].

The Growth Rate

The transition between the two geometries and the associated sudden change of
the growth rate exhibited by Fig. 4.7 is also visible in Fig. 4.9, which is another
representation of the same data. Here, the the real part of the eigenvalue has
been plotted against the distance between the two 2/1 modes. The abscissa values
decrease to the right side to preserve the main features of the graph, otherwise it
would. have flipped over since a low gmi, matches a big Apy,.

The sudden change in the growth rate results from the topology change:
The point of the increase in growth rate (Apps = 0.5) constitutes the borderline
between the regime of odd and even mode activity. It can be seen from linear theory
[50] that the transition inverts the effect of the off-axis elements of A’ (comp. Sect.
3.2.2). While the mutual influence of the island chains, which is described by this
term, destabilises an odd mode, it stabilises an even one. A less formal argument
can be obtained from an energy consideration. As the force between the O- points
is repelling, the shift from the odd to even parity requires the islands to do work
against each other and reduces the free energy of the mode, thus weakening its
growth. Finally one can assume that the growth rate of a decoupled mode with no
off-axis contribution to A’ lies halfway between the coupled and decoupled values.
The prediction of the decoupled growth rate at App, ~ 0.5 is marked in Fig. 4.9.
Thus the contribution of the coupling (i.e. A';;) to the growth can be separated from
the “intrinsic” growth of each mode (i.e. A';).

In the nonlinear stage, an additional contribution arises from magnetic tension.
It is easier to bend the undisturbed flux surfaces between the shifted island chains
as can be seen in Fig. 4.8-b, than to compress the same surfaces between two island
that are in even phase like in Fig. 4.8-a. This reduces the free energy of the system
and is stabilising in the latter case. Since the linear stability problem only considers

the onset of the mode, the islands can be regarded as infinitesimal small and the
above described effect is not accessible to linear calculations.
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As the Modes Draw Closer, the A';; contribution grows stronger: The
coupling between the two islands depends on their distance, therefore the growth
rate is rising as the distance between the modes is reduced (0.3 < Ap,, < 0.5).

The A';; contribution is weakened for small distances: As the modes move
closer, the rational surfaces approach the minimum in the safety factor and the local
current gradient is reduced (comp. Fig. 4.6). As the TM is a current gradient driven

mode, this weakens the intrinsic growth of each island chain described by A/;.
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Figure 4.9: The 2/1 DTM growth rate I', as found with CASTOR in 1/s vs. the
distance of the ¢ = 2 rational surfaces (Ap,y). The drastic increase at Apye = 0.5
marks the transition between odd () and even (Il) parity. This allows an estimate
of the contribution of the mutual coupling to the growth. The resulting prediction
for the growth rate of an decoupled mode at Ap,, ~ 0.5 is marked. The succeeding
rise is due to the growing coupling between the approaching modes wich yields an
increase of Aj;. Finally the growth rate is reduced because the local current gradient
is reduced which weakens the intrinsic growth at each surface (AY;).
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4.3.2 Decoupling by Differential Rotation

The poloidal orientation of the modes was found to yield a big influence on the sta-
bility of the plasma. In a plasma with a sheared rotation the modes can be deterred
from obtaining a fixed phase by the drag of the bulk plasma. The following examina-
tions are therefore devoted to the effect of differential rotation on the DTM’s growth
and frequency. At least the rotational decoupling of toroidally coupled classical TM
in a monotonic shear has been subject to analytical [60] as well as numerical studies
[50]. The formalism is applicable to DTM as well [49]. This application has just
recently become subject of numerical studies [61, 16].

The magnetostatic force between the disturbed currents binding the islands to-
gether depends on the distance between the modes and oposes the disconnection.
It is therefore expected to be the harder to unlock the islands, the closer they are.
In Sect. 4.3.1 it has already been described that the force influences the free energy
and the growth rate. The frequency of the mode will reflect it’s co-movement with
the plasma.

The static equilibrium approximation

Given a substantial toroidal rotation the equilibrium will change because the static
MHD force balance (Eq. 2.16) is complemented by an inertia term. One consequence
is that the mass distribution will be shifted to the low field side of the torus by the
centrifugal force, so that density and thus the pressure are no longer flux functions
[17]. Though considering toroidal rotation, the following calculations have been car-

ried out on a static equilibrium which can only be justified up to a certain velocity.

To estimate at which velocity the static equilibrium approximation breaks down
we compare the kinetic energy stored in the plasma rotation with the energy of the
kinetic pressure. This relation is given by the square of the Mach number:

_minR2a
KT R

Here m; denotes the ion mass and n the particle density. €2 is the frequency of the

M? (4.2)

toroidal rotation and R is the big radius. The ion sound speed is given by:

nkT _ b (4.3)

nm; Pm

& =
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So M, is given by the fraction of the rotation velocity on axis over cg:

M, = Jor (4.4)
Cs

Inserting the experimental plasma parameters from Sect. 4.1.4, an ion sound speed
of cg =~ 253 km/s is obtained. The experimental rotation of vy, &~ 150 km/s yields
a Mach number of M; ~ 0.18.

This number already justifies the use of a static equilibrium, but in order to rule
out any inconsistency arising from the consideration of a high absolute rotation, a
profile different from the experimental one has been used. Since the crucial parame-
ter for the stability of the DTM is not the absolute speed of a mode, but the relative
movement between the mode locations a step profile corresponding to a moving core
plasma containing the inner mode and a resting shell containing the outer one has
been chosen. To ensure numerical stability, the transition between the two regions
is smooth.

The profiles are presented in Fig. 4.10, where the amplitude is given in units
of the Alfvén frequency. For the physical and geometrical parameters discussed its
highest value corresponds to a rotation of the plasma center of ~ 50 km/s. Using
these profiles, the examination can be restricted to moderate velocities similar to the

differential rotation seen in the experiment. This results in a lower Mach number of
M, < 0.06.

Additionally the various positions occupied by the two rational surfaces as gmqn
is swept have been marked to verify that neither of the rational surfaces enters the
region of sheared rotation. The therefore independent adjustment of mode distance
and the differential rotation offers a separation of both effects and constitutes yet
another advantage over the use of the experimental profile. A simpler profile pre-

vents contradicting effects interfering with each other and yields a clearer result.

Linear Growth Rate of the Mode

Extending the scan of Apy,, that was presented in Sect. 4.3.1, the central rotation
has been varied as well. Thus the rational surfaces perform a relative movement

with the speed wgs. Fig. 4.11-a projects the results in the plane formed by the
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Figure 4.10: The plot visualises the velocity profiles used for the analysis. As
the range of g profiles is swept by changing g, the rational surfaces take various
positions. These are indicated by vertical lines.

growth rate and the mode distance. In Fig. 4.11-b three example trajectories are
projected into the I-Awg s plane. Representing the rotationless case, the known
relation between the mode distance and the growth rate (Fig. 4.9) reappears as the
boldly plotted gray/green curve in Fig. 4.11-a. It displays the known sudden change,
that was ascribed to the parity change of the islands. As the rotation increases this
feature disappears and the whole curve drops to a saturation level.

The second diagram permits one to judge how fast the saturation occurs. Out
of the many distances examined three representative cases have been selected:

e small Appy, accordingly highly coupled modes with the highest growth rates

e intermediate App,, weakly coupled with lower growth rates

e large distance between the rational surfaces, therefore even modes with the
lowest growth rates

In the first case of high coupling, rotation reduces the growth rate. The satura-
tion level is reached at vgpr < 20 kTm The weaker coupled mode is also stabilised,
though the total effect is smaller - the saturation level is reached at vgsr < 10 kTm
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Figure 4.11: The distance of the rational surfaces and the velocity of the core plasma '

have been scaned seperately. (a) is a projection of the data into the Apyy-growth
rate plane. (b) is a projection of three example trajectories into the vgy-growth

rate plane.

In the third case, rotation yields no stabilisation but provides a source of free energy
destabilising the system in agreement with theory [61]. The presented shape of the
first and second case agrees well with analytical models based on the A’ formalism,

describing the influence of a sheared velocity on the growth of coupled TMs [62, 48].

Both plots are projections of a two dimensional scan in distance and differential
rotation. The complete surface is shown in Fig. 4.12 from two different view points
to exhibit all details.

In the upper plot the sudden drop, which was associated with the topology
change is clearly visible. This structure disappears quickly as the central plasma
starts to rotate. The loss of this feature is due to the fact that the initial poloidal
orientation of the two island chains becomes irrelevant, as the islands start to move
with respect to each other. The mutual influence formerly dependent on their rela-

tive position is now averaged over the full circle.

The two island chains do not exhibit a relative movement for all values of distance
and toroidal rotation. Especially for small distances and small rotation velocities,
the islands counteract the movement of the bulk plasma and the growth rate does
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Figure 4.12: The distance of the rational surfaces and the velocity of the core plasma
have been varied independently. The plots show the resulting surface from two
different angles to exhibit all details. The dashed line separates the surface into

one region where the modes are locked and unlocked region. Its strict definition is
derived from the mode oscillatory behaviour in section 4.3.2.
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* not change compared to the static case. The reason for this is the magnetostatic
force arising from the Rutherford currents which binds the two island chains to-
gether. In Sect. 4.3.1 it was alleged that this force depends on the distance of the
rational surfaces, a statement that is confirmed by the following analysis.

The growth rate drops to the saturation level as the central plasma is rotating
with a velocity of Avgps ~ 20 ﬁ;ﬂ At this point, the magnetostatic force cannot pre-
vent the islands from being unlocked anymore. Once the modes are thus separated
a further increase of the sheared rotation does not affect the growth rate anymore.
The transition from locked to unlocked islands is marked by a dashed line in the
plot. Its strict definition is derived from the mode oscillatory behaviour in Sect. 4.3.2.

The lower diagram of Fig. 4.12 exhibits the mode behaviour at small distances
between the rational surfaces. Again the dashed line separating the locked from
the unlocked domain is visible. Saturation is reached above Avgyy =~ 20 k—s@ As
the trajectories of a fixed distance pass the point of saturation, the growth rate
increases again. The rise is evoked by the rotation, which increases the free energy
of the system [61]. It can be seen, however, that the amount of this growth is small
compared to the influence of the decoupling mechanisms discussed in this section
and can be therefore neglected.

damping

Now the same data has been projected in a different way. All the growth rates are
normalised to the growth rate without any rotation, so the influence of the varying
profiles on the eigenvalue is excluded. The resulting quantity describes the reduction
of growth by the rotation and will be called damping.

Fig. 4.13 portrays the damping against the known parameters. Again there is a
dashed line separating the region of locked modes from the one after the unlocking.
This time the distance scale does not contain the point Ap,, = 0.5 because around

this point the mode is even and the decoupling cannot yield a stabilisation.
Also in this representation, the saturation above vgirr =~ 20%”1 can be seen. In

the saturated domain, the projections onto the Apyy-I' plane fall monotonically
towards small distances. From this it can be concluded that a reduction in mode
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Figure 4.13: The damping, i.e. the growth rate, I', normalised to the value
without rotation, is plotted against the distance of the rational surfaces and the
velocity of the core plasma (i.e. the differential rotation between the two surfaces).

Big distances (Apps > 0.5) are omitted since no damping is observed for these
parameters.

distance is not only associated with a stronger magnetostatic force, and accordingly
with an amplification of the mutual drive of the mode. Since also for the lowest
distances the decoupling is significant, the eigenfunction shown in Fig. 4.8-11l is still

a DTM activity, although the mode picture suggests a single tearing mode character
of helicity 3/1.

Also the dependence on distance of the binding force is confirmed by this dia-
gram. Just around vg; sy ~ 8’“—3"—‘, Appor = 0.4 and again at vy =~ 15’%’” and minimal

Appol, there is a shoulder-like formation visible in the rising slope.
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Figure 4.14: (a) is a projection of the damping into the Ap,,-T'/T
a projection into the v p-T'/Ty,,, =0 plane.
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The projections of the decoupling are shown in Fig. 4.14. Regarding diagram
a, the rotationless data can be recognised as the top line equal to one (since the
growth rates have been normalised to this case). The lowest line represents the
saturated state, which falls nearly monotonically with decreasing distance between
the two ¢ = 2 surfaces. The intermediate lines represent states with increasing dif-
ferential rotation, some of which exhibit an increase of the normalised growth rate
with decreasing Ap,y. This increase indicates that modes with a greater distance
between the rational surfaces are already disconnected while closer ones are still
bound together. The structure corresponds to the shoulder of the three dimensional
graph, Fig. 4.13. Accordingly the transition to the saturated state clearly starts at
the higher distance.

Fig. 4.14-b represents the projection in the other plane. All the curves start at
unity to drop to a a saturation level at a certain position. It can be plainly seen,
that the later the drop occurs, the greater it is and vice versa. Rational surfaces
that are far apart are easy to disconnect, but the reduction in growth rate is limited,
while nearby modes are harder to disconnect but offer a massive drop of the growth
rate.
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Figure 4.15: w versus Apy, and vgpp: For each curve of a fixed Appy, & maximum
has been estimated by interpolation. The position of these maxima has been marked
with a set of blue dots and connected with a dashed line. This line marks the point
at which the islands unlock.

Mode Oscillation

The rotation of the bulk plasma induces an oscillation of the mode. The eigenvalue

is complex anyway since we solve for resistive MHD, but the rotation dominates the
imaginary part.

For 0 — oo The mode picks up the frequency of the plasma at the location of
the driving mode [60], but the result for finite €2, shown in Fig. 4.15, turns out to
be more complicated. The mode is driven unstable by the outer rational surface,
which is at rest (compare Fig. 4.10). Still the movement of the central plasma yields
a drag on the DTM, that accelerates the mode. This drag is not surprisingly the
bigger, the closer the surfaces are to each other and the faster the plasma core ro-

tates. Still, when the drag becomes too large, the island chains disconnect and the
mode oscillation relaxes again.
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Figure 4.16: Plotted is the speed which is necessary to decouple the islands vs.
their distance (Apyy). The curve is monotonicaly falling untill the shaded domain
is reached. The evolution of the growth rate has been superposed to illustrate that

this is the domain where the island topology changes due to the large distance.

Since the outer mode supplies the drive, the reaction to an accelerating plasma
core is first a co-movement and then a deceleration as the modes are disconnected.
Thus the velocity at which the islands unlock can be defined as the maximum of the
mode oscillation for a fixed distance. In Fig. 4.15 the points above the surface are
the maxima of a spline interpolation and the dashed line connecting them separates
the region of a connected DTM from the one of disconnected modes. It was this

border line which was shown in the previous plots (compare Fig. 4.12 and Fig. 4.13).

Projecting this line to the plane formed by the two parameter axes yields the
velocity necessary to decouple two modes as a function of their distance (Fig. 4.16).
The graph is monotonically falling up to Appy &~ 0.5, which is complying with the
stated reduction of the binding magnetostatic force with an increase of the distance.
The reason this trend does not hold for greater distances is, of course, that here the
mode is already even in the static case. Therefore there is no force counteracting
the unlocking leaving the decoupling speed meaningless. To illustrate this, a copy of
Fig. 4.9 is superposed, showing that this is indeed the position at which the modes
change parity.
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Figure 4.17: Real and imaginary part of the radial displacement &, are projected vs.
pPpol- The sheared zone has been extended to a tenth of the minor radius to obtain
a clearer picture.

Mode Structure

Finally, the structure of the eigenfunctions is examined. Unlike before, the imagi-
nary part differs substantially from the real one because the rotation amplifies the
non-hermitian character of the system. Again, the perturbation topology can be
derived from Eq. 2.43. This expression shows, that exchanging both graphs corre-
sponds to a mere shift in poloidal direction.

The outer mode is the one surviving the decoupling as could be seen from the
oscillatory behaviour. The eigenfunction of the rotational case is shown in Fig. 4.17.
One of the branches persists to exhibit the typical DTM character, whereas the other
is changed by rotation. The right half of the profile is not altered, so the topology
of the outer island chain does not change. However, the inner island is deformed by
the relative movement with respect to the outer region. Since there is still a jump
visible, an island will continue to exist.

The preceding examination allows a comparison of the different stabilisation
mechanisms in the linear A’ theory (comp. Sect. 3.2.2). Fig. 4.18 presents the sta-
bilisation yielded by rotation and an increase of the distance. The growth rate I" has
been plotted against the distance of the two surfaces for the rotationless case and
the one with a substantial differential rotation yielding the described stabilisation.
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Figure 4.18: ' vs. Ap,y: Without rotation the islands are either out of phase
(case a; Appo < 0.5) or in phase (case ¢; Apye > 0.5). Rotation forces the islands
to unlock and slide past each other without a fixed phase (case b).

As rotation prevents the modes from coupling, the later case relies purely on
the intrinsic instability of the two islands described by Al;. The difference to the
rotationless case is indicated by the dark gray/ green surface (l). It represents the
influence of the coupling associated with the off axis elements Aj;. It can be seen
that the Aj; is the bigger, the closer the modes are, which is sensible since the
coupling between the islands decreasses with distance. Furthermore the coupling
acts stabilising for even and destabilising for odd modes as predicted by theory [50].

As pointed out before, the fact that the modes change parity at Appy ~ 0.5 is
not physical. In reality both solutions, the odd and the even one, exist. As the
fastest growing one, the odd mode is going to govern the characteristics of the in-
stability. For numerical reasons the odd solution is “hidden” behind the even one
for large distances. It is possible to estimate the growth rate of the hidden branch,
because theory predicts that the growth rate of the even mode is reduced from the
intrinsic growth rate as it is increased for the odd mode and vice versa. With the
uncoupled growth rate given by the rotational case it is thus possible to estimate
the hidden branches as sketched in the plot.
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As already marked in Fig. 4.9, the growth rate for a decoupled mode is expected
halfway between the one for odd and even topology. This is confimed by a com-
parison of the growth rates in the marked parameter range around Ap,; =~ 0.5
in Fig. 4.18. Since the mode distance is almost fixed for the points within this in-
terval, the difference in stability is purely caused by a change of the mode’s topology.

Case a represents an odd phase of the islands, as indicated in the topology sketch.
A;; acts destabilising in this case and stabilising in case c. For rotationally even
modes the fixed phase between the islands is lost as in case b. Both topologies alter-
nate, resulting in an intermediate growth rate which is equivalent to a surpression
of the-mutual coupling.

Now it becomes apparent why the modes with a low value of Ap,, were reaching
the lowest values in Fig. 4.13. As the intrinsic growth is already reduced the mode
depends on the coupling and could be stabilised to values around 20% of the initial
growth rate as can be seen from Fig. 4.14. For cases with a greater distance between
the resonant surfaces (Ap,e = 0.4) the stabilisation could only reach 60%.

It has been shown that even a sheared rotation of moderate differential velocity
is able to unlock and decouple the DTM. The saturated growth rate depends on
the value of A’ at the most unstable surface that has to be calculated by solving
the ideal MHD equations in the external regions. This result confirms the analytic
theory of standard tearing modes [62] that also applies for DTM in reversed shear.
The statement, that DTM can be “readily stabilised” by a sheared flow [61] seems to
be too general and depends on the equilibrium profiles. The examination presented
before rather relates a behaviour similar to results for standard tearing modes [48].
It should be remarked, that CASTOR does not account for viscosity. Viscous forces
can be expected to further reduce the speed that is necessary to yield an unlock-
ing. The resulting growth rate of the rotational case is not expected to be reduced
substantially [63].

4.4 Application to the Experiment

The considerations have been motivated by the unclear “internal disruptions” in
TEXTOR-94. The observed activity could indeed be identified as a set of coupled
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DTMs since the equilibria are unstable to this instability and the observations (fast
crashes, change of the safety factor profile etc.) can be explained with the presence
of magnetic islands. Furthermore it has been found that NBI can easily decouple
the modes and possibly yield a stabilisation.

4.4.1 The Plasma is Unstable to DTM
The used Equilibria Represent the Discharges:

With the experimental uncertainty in the ¢ measurement of at least 20% it is of no
avail to study the differences of the safety factor between the particular discharges
exhibited in Fig. 4.3, especially since the characteristic features of the profiles of the
discharge #72942 are already caused by the presence of magnetic islands.

The uncertainty of the measurement has also to be kept in mind when one regards
the central disagreement with the safety factor profile of the reconstruction shown
in Fig. 4.5. The variation is induced by the necessity of a vanishing gradient on the
magnetic axis (i.e. ppo = 0).

A DTM Activity has been Found. It can Account for the Observation:

A linear analysis yields a strongly growing DTM activity for most values of gmin.
Only in a narrow region of parameters is there a gap indicating a relative stabil-
isation (Fig. 4.7). The reason for this gap is that the code converges to the even
solution shading the odd one, which is of physical evidence. The result is of interest
anyway since the it allows to compare the odd and even case with the rotational de-
coupled mode, which has no fixed parity, as done in Fig. 4.18. The 2/1 DTM is not
studied below Gmin = 1.5 because there the 3/2 mode is destabilised contributing to
the further growth of the 2/1 DTM by nonlinear coupling which is not accessible by

our simulation.

For experimental values of g, both the 3/2 and the 2/1 branch are unstable.
These helicities are also seen in the diagnostics as shown in Fig. 4.2. The growth
of two helicities implies 4 island chains. Since the islands short circuit the confine-
ment as related in Sect. 3.2.1, they can cause the flattening of the central profiles of

pressure and density.
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4
If these islands overlap, they cause ergodisation, which can account for the
crashes, which have been observed. However the saturated island size is not ac-

cessible to linear theory so it cannot be decided whether the islands overlap.

Also the observed flattening of the safety factor profile during the instability
(Fig. 4.3) can be explained with DTMs. It has recently been shown that the island
structure associated with a DTM accounts for a diffusion of the current density.
This process can cause a flattening of the ¢ profile [44].

4.4.2 Differential Rotation can Contribute to a Stabilisation

A sheared toroidal rotation has been shown to be capable of unlocking the two modes
and thus damping the growth. A comparison of the speed (Fig. 4.16) necessary to
decouple modes at a certain distance and the experimental velocity profile (Fig. 4.4)
shows that both helicities, the 3/2 and the 2/1 can be expected to be decoupled.

The decoupling resulted in a decrease of the linear growth rate. The remaining
activity still exhibits a strong growth, which has not been observed in the exper-
iment. This growth is caused by an unfavourable value of A’(rsy) at the outer
rational surface. Though associated with a certain radius this stability parameter
depends on the complete equilibrium, especially on the complete radial evolution
of the current density and therefore the g profile. Due to the uncertainty of the
measurement, precise agreement could not be expected. A lower value of the safety
factor on the axis could possibly change the stability behaviour.

Because of the high rotation frequency, the islands are not directly accessible to
the diagnostics in the presence of the neutral beam. A slower growing but persisting
instability can still prevent the islands from overlapping and thus account for the
observed suppression of the crashes.

Thus the calculations indicate, that the velocity profile imposed on the plasma

by the NBI accounts for the stabilisation of the modes and the suppression of the
crashes in the experiments.
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Chapter 5

MHD in ASDEX Upgrade

Advanced Scenarios

This chapter examines MHD events in reversed shear scenarios at ASDEX Upgrade.
The special structure exhibited by this type of discharge accounts for a variety of
activities, which deteriorate the improved transport or cause disruptions.

The instabilities found in the experiment could be identified as double tearing
modes (Sect. 5.3), infernal modes (Sect. 5.4), and a combination of infernal and
external kink modes (Sect. 5.6). It will be discussed how these activities affect the
equilibrium and how their dependence on a variation of the experimental parameters

can be explained. Means of stabilisation will be proposed.

To gain access to a higher value of the volume averaged pressure — and thus
an increased Oy — it is preferable to push the internal transport barrier outwards
increasing the domain of the hot plasma. As shown in Sect. 5.5, such a change could
invoke external kink modes.

Theory predicts a stabilisation of external modes by a conducting structure in
the vicinity of the plasma surface. Sect. 5.5.2 will discuss where a partial wall is
best positioned to stabilise the external kink mode. The possible reduction in growth
rate is estimated for axisymmetric ASDEX Upgrade geometry. These examinations
are of special interest since the external kink in conjunction with the infernal mode

accounts for disruptions in current experiments as shown in Sect. 5.6.
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5.1 Experimental Background

This is a brief review of the experimental results, upon which which the subsequent
discussion focuses. More information on reversed shear at ASDEX Upgrade can be
found in [36].

5.1.1 The Device

A picture of the poloidal cross section of ASDEX Upgrade has already been pre-
sented in Fig. 3.1. The device is sited in Garching, Germany and is a successor to
the tokamak ASDEX, which was operated from 1980 until 1990. The name stands
for “Axial Symmetric Divertor EXperiment” (compare Sect. 3.1.3). ASDEX Upgrade
has a toroidal field of 2.5 T, a major radius of R ~ 1.65 m and a minor radius of
a ~ 0.5 m. It is strongly shaped (elongation of the poloidal cross section ~ 1.6),
providing access to the second stable regime of ballooning modes (see Sect. 3.2.4).

The ions are heated by 4 neutral beam injectors (NBI) providing a total power
of 20 MW. Up to 1.2 MW of ECRH (Electron Cyclotron Radiative Heating) can
be provided by three gyrotrons. As a consequence temperatures in ASDEX Upgrade
advanced scenarios can well exceed 10 keV.

The plasma can be analysed with a wide range of diagnostics, amongst which the
Mirnov Coils and the SXR, (Soft X-Ray) diagnostic give access to a the MHD modes
[64]. The ECE (Electron Cyclotron Emission) diagnostic is operated at various
lines of sight. A topological analysis yields profile information of the associated
temperature fluctuations [65]. The ¢ profile can be derived from the 10-channel
MSE (Motional Stark Effect) polarimeter [66] if at least one beam PINI (Positive
Ion Neutral Injector) of the NBI is active.

5.1.2 ASDEX Upgrade Advanced Scenarios

The AsDEX Upgrade reversed shear discharges considered below were achieved by
the method of early heating, described in Sect. 3.1.4. During the ramp-up phase
5 MW of NBI were injected resulting in a reduced current diffusion to the core and
a strong shear reversal with initial g values on axis (gp) exceeding 6. The steep edge
pressure gradients of an H-Mode plasma evoke a neoclassical current in that region
and reduce the internal inductance (Eq. 3.7). In a reversed shear plasma, this would
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cause MHD modes and subsequent disruptions, therefore this type of discharge has
to be kept in the low confinement mode artificially. To prevent an L-H-transition,
the plasma is kept in contact with the inner limiter on the high field side. Large
pressure gradients (= 100’“—?, a denoting the minor radius) and a high bootstrap
current fraction (up to fgs = 50%) have thus been achieved.

As the current is only partially driven by the bootstrap effect the reversed fea-
tures of the profiles are transient. Though the diffusion process has been slowed
down, the inductive current will still penetrate to the centre establishing a conven-
tional current and ¢ profile (comp. Fig. 3.2-1). The safety factor is therefore con-
stantly changing throughout the discharge, as can be seen in the time traces of an
example shot in Fig. 5.1-b. The whole profile is flattened and sinks to lower values
until finally the reversed shear is lost.

As the g profile passes rational surfaces various MHD instabilities occur. They
terminate virtually every shot by either destroying the I'TB or even causing a disrup-
tion and constitute an obstacle for the further development of advanced tokamaks.

5.2 Technical Remarks

All theoretical investigations rely upon an accurate description of the real plasma
configuration. The experimental measurements are therefore used as an input to the
code CLISTE (Complete Interpretive Suite for Tokamak Equilibria), which calculates
the solution to The Grad-Shafranov Equation that exhibits the smallest disagree-
ment to the measurements [67]. The reconstructed equilibria are generally available
for many shots and time points. They can be re-calculated with HELENA and thus
be used as the basis of a linear stability calculation with CASTOR.

As one can specify the profiles of the pressure gradient and the function f (com-
pare. Eq.2.19) in HELENA it is possible to set up an iteration loop to realise a
certain g profile [68]. Furthermore the safety factor of a fixed equilibrium can be
rescaled to higher or lower values prior to the stability calculation with CASTOR as
already described in Sect. 4.2.1.

For the following calculations, the experimental resistivity was estimated by the

well known Spitzer formula [69, 2]. This estimate is sufficient in this context. The
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growth rates exhibit a sliéht change with resistivity but the physical mechanisms
would not change for a slightly different value.

5.3 Double Tearing Modes

5.3.1 Experimental Observations

Fig. 5.1 shows the time development of a NBI heated ASDEX Upgrade reversed
shear discharge. a shows the central value of the temperature of electrons and ions,
b presents the evolution of the safety factor. Passing the rational surface, its mini-

mum value rests for some time at ¢ = 2. c gives the Mirnov signal for this interval.

It can be seen from the safety factor evolution that the whole ¢ profile is moving
downwards throughout the discharge. As the minimal value of the safety factor
approaches 2, the onset of n =1, m = 2 activity can be observed in the Mirnov
coils. It starts as fishbone activity!. It constitutes the otherwise stable internal kink
mode of helictiy 2,1 that is driven unstable by the fast ion population arising from
additional heating [70]. Afterwards a continuous mode appears at about 0.68 s. It
is only transient and disappears again as i, falls below 2. In Fig. 5.1-a it can be
observed that the continuous mode deteriorates the improved transport and yields
a reduction of the central temperatures. The electron temperature is lower because
the neutral beams predominately heat the ions and an improved electron confine-
ment does not automaticly result in high electron temperatures. Nevertheless the
activity is visible in both channels as a temporary drop.

If central ECRH is added to discharges similar to the one described above high
continuous electron temperatures (7. ~ 7; = 10 keV) can be achieved as well.
An interesting feature is that the n = 1, m = 2 instability observed before, is now
suppressed. The mode does not appear at all if the ECRH was provided before the
expected onset, or disappeares as soon as the electron heating is switched on.

5.3.2 Identification of the Mode

A stability analysis with CASTOR was done on the reconstructed equilibrium at
t = 0.72 s. The most unstable mode found is a m = 2, n = 1 resistive mode. The

1The name accounts for its appearance in the Mirnov signal.
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Figure 5.1: The temporal evolution of a purely NBI heated discharge: a shows
the central value of the temperature of electrons and ions, measured with the ECE
diagnostic, versus time. b presents the evolution of the safety factor on axis (qo),
near the edge (qos) and in the minimum (gm,). The minimum value of ¢ stays fixed
for ~ 0.1s as ¢ = 2 is passed. c gives the Mirnov signal for this time interval, that
has also been marked in a and b.
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Figure 5.2: Dependence of the linear growth rate of the DTM on resistivity: At
low resistivities, single tearing mode scaling (I'" oc /%) is found, whereas for large
resistivities DTM scaling (I" o n'/3) applies.

dependence of the growth rate I' on resistivity 1 can be seen in in Fig. 5.2. It is
characteristic for the DTM. For low resistivities, the coupling between the two ra-
tional surfaces is weak, resulting in a single tearing mode scaling (I" 77%) [38]. For
larger resistivities, the growth rates, DTM scaling (I o 73) [45] applies.

The eigenfunction found with the CASTOR code exhibits two jumps and asso-
ciates to the typical phase shifted island structure of an evolved DTM, as has already
been described in Sect. 4.3.1. A comparison with the eigenfunction derived from the
temperature fluctuations measured by ECE is presented in Fig. 5.3. Though the
radial range of the diagnostic is limited, there is convincing agreement between the

measurement and the linear calculation.

5.3.3 Discussion of the Mode Dynamics

It has been stated before that the DTM is associated with a pair of islands, which
short circuit the thermal insulation of the nested flux surfaces. The presence of two
island chains can thus account for the deterioration of the confinement observed in
the central temperatures.
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Figure 5.3: Eigenfunction of the 2/1 double tearing mode: | shows the result of a
linear stability analysis with CASTOR, |l shows the ECE measurement (A’fe /VT.).

To understand the transient character of the mode, calculations have been per-
formed in which the ¢ profile has been moved up and down to account for the
temporal change exhibited by Fig. 5.1-b. In Fig. 5.4 the resulting growth rate has
been projected against the minimum value of the safety factor. The DTM is limited
t0 gmin < 2 since the rational surfaces have to be present in the plasma. Below ¢ = 2

the growth rate quickly reaches its maximum to be reduced again as the profile is




1.5 1.6 1.7 1.8 1.9 2
minimum value of the safety factor g

Figure 5.4: Dependence of the DTM growth rate on the minimum value of the safety
- factor as the profile is scaled up and down. The fluctuation of the growth rate in
the shaded area is caused by the coupling to an external mode which appears as the
edge value of g approaches a rational number.

lowered further. The reason for this behaviour is a reduction of the coupling between
the two resonant surfaces as their positions are moved apart. The effect has been

studied at length for a different case (compare Sect. 4.3.1) and is a general property
of the DTM instability.

Performing nonlinear cylinder simulations [47] Q. Yu was able to explain the
local clamping of the ¢ profile by the current diffusion across the island. Thus the
safety factor profile is flattened around the minimum implying a growing distance
between the islands even for a virtually unchanged value of gmin. In conjunction
with this result the transient character of the mode is explained by the calculation:

The increasing distance of the rational surfaces spatially decouples the mode.

It has been reported that the DTM has been found to be stable for cases with.
- additional electron heating [36]. The increased temperature accounts for a decreased
resistivity at the inner surface, which weakens the resistive mode and could decouple
the two island chains. The calculations presented in Fig. 5.5 however did show the
effect on the growth rate to be too small to cause the stabilisation in the experiment.
An explanation for the observation was given by S. Glinter [44]: As the islands in
the negative shear region are differently orientated (comp. Fig. 3.5-B) the island

74



/s

@

=

3500 <
5

@

. E

2

3000 @

2,108 6.108 11077
central resistivity / QOm

Figure 5.5: The variation of the resistivity at the inner surface does not yield a
drastic change of the linear growth rate of the double tearing mode. (Note that
the point I' = 0 is suppressed.) Thus the stabilisation in the experiment has to be
caused by a different mechanism.

current is flowing in different direction for the inner, than for the outer island chain.
thus the bootstrap current yields a stabilisation of the mode in inversion to the

destabilisation of single tearing modes found in positive shear (comp. Sect. 3.2.1).

5.4 Infernal Modes

5.4.1 Experimental Observation

The temporal evolution of the central electron temperature is compared for two
heating mechanisms in Fig. 5.6. #12229 was purely NBI heated and exhibits the
temporal loss of confinement caused by the DTM, as discussed above. It was re-
ported that this mode is suppressed as ECR heating is switched on [36]. This can
be observed in the time trace of the discharge #12224. If the heating however is
provided too early, the plasma disrupts (#12458).

Shortly after the steep gradients have been established in the electron channel of
412229 there appear sudden drops of the central temperature indicating an addi-
tional MHD instability. It is also of 2/1 helicity, but grows on much faster timescales
(T < 40us) revealing an ideal nature. It does not destroy the transport barrier as
the temperature drop at ¢ = 1.03 s is caused by switching off two of the three ap-
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Figure 5.6: The evolution of the central electron temperature measured by ECE for
a discharge with NBI heating (#12229) and two with combined NBI and ECRH
(#12224 and #12458). It can be seen that fast modes (7 < 40us) set in. If
the ECRH is applied early (#12458) they terminate the discharge, if it is applied
at later times (#12229) the modes appear repeatedly (0.9s < t < 1.1s) without
deteriorating the transport barrier or destroying the equilibrium. In #12224 similar
activity causes a disruption at ¢ ~ 1.1 s. The shaded area gives the number of
gyrotrons in operation during discharge #12229

plied gyrotrons. In discharges with an earlier application of ECRH however the
same instability has caused disruptions (e.g. #12458). Also the purely NBI heated
shot was terminated by a disruption that was triggered by a closely related activity,
analysed in 5.6.

5.4.2 Identification and Discussion

A linear stability analysis has been carried out finding an internal 2/1 mode. Re-

maining unstable for vanishing resistivity it constitutes an ideal instability.

To further characterise the activity, the equilibrium has been parameterised as
indicated in Fig. 5.7-1. The safety factor profile was kept fixed, while the transport
barrier in the pressure, P was modeled by a Gauss distributed pressure gradient
(dP/di). The setup was varied in two ways:

76




b

g,

N

safety factor

6
5
4
3
2
0
E
)

1 -1.4 -1 magnetic
shear

Figure 5.7: | shows the parameterised equilibrium. The pressure gradient (dP/dt)
is presented by a Gauss distribution resulting in the pressure profile, P. The safety
factor profile ¢ is kept fixed, while the pressure gradient is changed in amplitude
and position. |l presents the response linear growth rate found with CASTOR to
a change in amplitude, Il to a change in position, where the abscissa denotes the

value of the magnetic shear at the position of the maximal pressure gradient.

® a The pressure gradient was scaled up and down. The resulting growth rate
is plotted against the maximum value of the pressure gradient in Fig. 5.7-I1.
The units of the abscissa are given in kPa per minor radius (a). As men-
tioned above, ASDEX Upgrade transport barriers exhibit even higher values
(= 100 kPa/a).

e 3 The centre of the Gauss distribution has been shifted radially keeping the
normalised plasma pressure constant. Thus the magnetic shear at the maxi-
mum pressure gradient has been varied. Fig. 5.7-1ll projects response of the

linear growth rate to this change.

The scan shows that the mode is ideal and pressure gradient driven, and depends
on the magnetic shear. This agrees with the experiment: The mode has been ob-
served either shortly after the additional heating was established (e.g. #12458) or at
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later times, when the current diffusion has flattened the g proﬁlé implying a lower
magnetic shear (e.g. #12229). The growth rate that associates to the experimental
timescale has been marked in Fig. 5.7-l1-11l with horizontal lines. These characteris-
tics identify the mode as the infernal mode, described in Sect. 3.2.5.

The examinations have shown the mode to be most dangerous, when high pres-
sure gradients coincide with low shear. Therefore it should be avoided to have
rational surfaces close to the low shear region in the plasma. Since this can not
be realised with the non stationary experimental profiles it is of interest to avoid
very high pressure gradients in the low shear region. At this point MHD activity
might prove to have an advantageous side. It can be seen in Fig. 5.6 how #1222 is
suffering form low amplitude activity in the time interval 0.9s < ¢ < 1.1s. It neither
destroys the transport barrier, nor causes a disruption. The reult of this activity is
the desired limitation of the pressure gradient in the most crucial region. Without
this activity the gradients steepen further causing a stronger mode, resulting in a
disruption (e.g. #12458).

Thus MHD can contribute to the attainment of quasistationary discharge con-
ditions. This positive feedback is well known for other instabilities. For example,
the m = 1, n = 1fishbone prevents the accumulation of impurities in the centre and
ELMs (Edge Localised Modes) limit edge gradients in a similar way. Therefore it is
advisable to continue the experiments and explore how to control the infermal mode
with central heating.

5.5 External Kink Modes

5.5.1 External Kink Modes Limit Sy in Advanced Scenarios

It has already been pointed out in the introduction that a high value of By is es-
sential for the steady state tokamak concept. As this parameter depends on the
averaged pressure (see Eq. 1.8) it is of advantage to extend the domain of high
pressure by pushing the ¢ minimum and the associated transport barrier outward.
Unfortunately such a change gives rise to external kink modes.

Fig. 5.8 illustrates the problem. A represents an AspEX Upgrade like equilib-
rium. Using HELENA, a series of equilibria has been calculated. As seen they
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Figure 5.8: The ASDEX Upgrade like equilibrium A has been changed into the model
equilibrium B, by pushing the ITB and the associated ¢ minimum outward. This
gives rise to external kink modes of increasing growth rate. | presents the transition
between A and B in the pressure, |l in the safety factor profiles. The resulting
increase in [y is associated with a drop of the internal inductance as can be seen in
[Il. The times given in this diagram are growth times of the external kink modes.

constitute a successive transition to the model equilibrium B. During this change,
the minimum structure in the safety factor has been pushed out as seen in Fig. 5.8-1.
As the edge value of ¢ constitutes a crucial parameter for kink stability (compare
Sect. 3.2.3), it has been kept fixed during the transition. The domain of high pres-
sure gradients has been pushed to higher values of p,o correspondingly (Fig. 5.8-1).
Techinicaly the transition was achieved rescaling the input profiles of the equilib-
rium calculation. The (bootstrap-)current is thus not self-consistently derived from
the pressure profile.
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Figure 5.9: CASTOR calculations show, that the equilibrium B is unstable to the
external kink mode. The most prominent of 15 contributions to the eigenfunction
for the radial displacement velocity, €, have been projected. The mode activity is
localised at the plasma surface. ‘

The resulting increase in By can be seen from the diagram below (Fig. 5.8-111).
A more pronounced internal transport barrier would yield an even bigger gain. As
the safety factor profile is linked to the current distribution the change reduces the
equilibrium’s internal inductance (I;) substantially. It is found that this drives ex-
ternal kinks of the helicity (m = 6, n = 1) unstable. The growth time of the mode
is denoted on the diagram. While the first equilibria are stable, there appears an
instability of increasing growth rate as the ITB is pushed outward. Thus the exter-
nal kink mode constitutes an obstacle for the increase of Sy.

5.5.2 Wall Stabilisation

The eigenfunctions of the external kink mode arising in equilibrium B are projected
in Fig. 5.9. The eigenfunctions exhibit a strong peaking at the edge. The associ-
ated flux perturbation at the edge would not be possible in the presence of an ideal
conducting shell at the plasma surface, therefore the modes can only be found, if a
vacuum region between wall and plasma is accounted for. A conducting structure
of finite resistivity would slow down the mode growth to the penetration time of
the wall. The process is described by Eq. 2.14 and realistic parameters result in a
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wall time of the order of milliseconds [7]. On these timescales a control by an active
feedback system is possible.

In reality the stabilising structure is limited by geometrical constraints. Heat-
ing and diagnostics need access to the plasma and a direct contact stabilising wall
with the plasma would lead to a pollution with sputtered impurities. Therefore the
influence of a partial wall and the dependence of the stabilisation on the size and

distance has been examined for the geometry of the ASDEX Upgrade wall.

The kink unstable equilibrium B has been analysed using 15 poloidal Harmonics.
The plasma is surrounded by a vacuum region, which is bounded by the mechanical
structure of the vacuum vessel and the Passive Stabilisation Loop (PSL). In addition
the yellow shaded stabilising structure has been put on the mid-plane of the low-
field-side, while the toroidal symmetry is preserved. Prior calculations have shown
that the kink mode is most sensible to a stabilisation at this point, which results
from the “bad curvature” discussed in Sect. 3.2.4. Modes of ballooning nature are
therefore localised here. Although the kink instability is primarily current gradient
driven, it will be enhanced by any negative contribution to the energy functional
OW (compare Eq. 2.39). The poloidal width of the structure and the distance from
the plasma have been varied. « is defined as the poloidal angle spanned by the
partial wall, so o = 360° indicates a closed shell. The distance to the plasma is
characterised by a factor d, where d/a = 1 is equivalent to a structure in direct con-
tact to the plasma. The shape of the partial wall agrees with the one of the plasma
boundary, just scaled up by d.

Fig. 5.10-11 shows the stabilisation provided by a closed shell in dependence of
the distance. It can be seen that a wall close to the plasma surface prevents the
growth. Fig. 5.10-I confirms, that the activity is centred on the low-field-side, so the
stabilisation is most effective there. As the poloidal range taken up by the partial
wall reaches the Stabilisation loops the stabilising effect saturates as can be seen by
comparison with the point at d/a = 1.1 in Fig. 5.10-1l. The work has been continued
in a Diploma-thesis by P. Lauber [71], where it was shown, that the rapid transition
between stability and instability in Fig. 5.10-1 reflects that at a certain point the
mode does not fit between the wall segments anymore. Also more complicated
arrangements like several segmented partial walls and a non toroidally symmetric

arrangement have been considered.
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Figure 5.10: Dependence of the external kink growth rate on the presence of a
stabilising structure: Il shows the plasma boundary, the vacuum region and the
perfectly conducting wall. The general shape complies with the ASDEX Upgrade
geometry. How the stability changes if the shaded structure is put near to the
plasma has been studied. Its shape is defined by the plasma boundary, but scaled
by a factor of d, so that d/a = 1 is equivalent to a structure in direct contact to the
plasma. Il shows the reaction of the growth rate to a change in d for the case of a
poloidally closed shell. As the modes turn out to be most sensible to a stabilisation
on the mid-plane of the low field side, the structure is centred around this poloidal
angle. The angle spanned by the structure (o) has been changed as well. The
reaction of the growth rate on a variation of a with is projected in I. (PSL denotes
the mechanical structure of the “Passive Stabilisation Loop”)
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Figure 5.11: The safety factor profile of the discharge #12224 at two times, as
reconstructed with CLISTE. The first time point (¢ = 0.72 s) was during the DTM
activity, the second (¢ = 1.05 s) was shortly before the disruption.

5.6 Coupling Between Kink and Infernal Modes

As already pointed out above, the plasma not only disrupts in the case of early
auxiliary heating. Also in the purely NBI heated shot #12224 shown in Fig. 5.6, a
fast growing mode was observed which locked to the wall and caused a disruption
about 10 ms after its onset. This behaviour is characteristic and typically appears

for ¢ > 1 s and qg5 close to a rational value.

Fig. 5.11 compares the g profile shortly before the disruption to the one at an
earlier time, which has been analysed in Sect. 5.3. Both profiles are taken from the
CLISTE equilibrium reconstruction, including data from the MSE diagnostic. At the
time ¢ = 0.72 s, the equilibrium was found to be unstable to the DTM, at ¢ = 1.05 s,
the rational surfaces are further apart, the shear is lower and the edge value of the
safety factor is approximately 4.

It has already been shown that low shear is favourable for the growth of infernal
modes and a low order rational value of q enables external modes to develop. The
ECE measurement of the temperature fluctuations confirms these suggestions. Fig.
5.12 compares the measurement with the structure of the eigenfunctions found in a
linear stability analysis with CASTOR and exhibits good agreement.
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Figure 5.12: The mode structure exhibits a good agreement between calculation
and measurement |: Eigenfunction of the displacement velocity &, as given by the
CASTOR code. It can be seen, that the external kink mode (m = 4) couples with
the infernal mode (m = 2) through the intermediate m = 3 component. |I: An ECE
measurement of the Temperature fluctuations immediately before a disruption. The
contributing poloidal mode numbers can not be separated.

The calculated eigenfunctions (Fig. 5.12-1) reveal the coupling mechanism: The
m =4, n =1 external kink modes couples to the m =2, n =1 infernal mode
through the intermediate m = 3, n =1 component. The external part is essen-

tial for the observed locking to the wall and the subsequent disruption.

The described activity illustrates the importance of a wall stabilistation not only
for future plasma with higher Sy, but also for experiments nowadays.
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Chapter 6

Summary and Conclusion

6.1 The Work Contributed to an Understanding

of the Experiments

The linear calculations with the resistive MHD code CASTOR did contribute to an
interpretation of the observations at two tokamaks.

6.1.1 TEXTOR-94

The activity responsible for the internal disruptions in TEXTOR-94 reversed shear
scenarios has been identified as a set of coupled Double Tearing modes (DTMs) of
the helicities 2/1 and 3/2, each of which modes being associated with two island
chains.

e The equilibrium has been shown to be susceptible to this instability for a wide
range of parameters.

e During the crash changes were observed in the experiment. They can be

explained by the presence of various possibly overlapping island chains:

— The loss of confinement (comp. Fig. 4.1) results from the improved trans-
port across the islands.
— The change of the safety factor profile (comp. Fig. 4.3) can be explained

by the enhanced current diffusion across the islands.

The stabilisation by the Neutral Beam Injection (NBI) found in the experiment
is explained by the rotation imposed on the plasma by this heating mechanism.
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Since the differential rotation in the experiment (comp. Fig. 4.4) exceeds a distance-
dependent threshold (comp. Fig. 4.16), the differential movement of the bulk plasma,
forces the two island chains to unlock. The unlocked island chains move against each
other without adopting a fixed phase. In agreement with theory it is found that this
prevents the mutual coupling of the two tearing modes and thus yields a reduction
of the linear growth rate (comp. Fig. 4.18).

The diagnostics cannot tell, whether the mode disappears for the NBI discharges
or whether its amplitude is just reduced preventing the islands to overlap. The cal-
culations suggest a continuing activity, but it has to be pointed out, that it relies on
the equilibrium properties measured by the diagnostics. A future comparison would
be of interest.

1

6.1.2 ASDEX Upgrade

The bootstrap current in current reversed shear experiments is not sufficient to
obtain a stationary current profile. Therefore AsDEX Upgrade advanced scenarios
exhibit a temporally changing profile of the safety factor g. As it changes, the dis-
charges suffer from a range of MHD activities. They deteriorate the internal trans-
port barrier (ITB) or even cause disruptions, terminating the discharges. Various
shots have been analysed and different instabilities have been found.

Double Tearing Mode: As the minimum of the non monotonic ¢ profile is reach-
ing the value 2, an activity can be observed for a time interval of ~ 0.1s. It could
be identified as a 2/1 DTM. The reason for the mode’s transient character is the
decoupling of the two islands by the increasing distance of the rational surfaces as q
is lowered. Comparing the code output with the measurement, there is convincing
agreement found in the mode structure (comp. Fig. 5.3). The measured decrease of
the electron temperature and the transient destruction of the transport barrier are
ascribed to parallel transport across the island. It was shown, that the reduction
of the central plasma resistivity does not affect the DTM growth enough to explain
the experimentally observed stabilisation of the mode by central radiative heating.

(The observation was explained with neoclassical theory by S. Giinter [44].)
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External Kink Mode: To gain access to plasmas with a higher volume averaged
pressure it is desirable to shift the ITB outwards. It is shown, that this change drives
external kink modes unstable. External modes would couple to the wall and result
in disruptions, therefore this activity limits the achievable pressure and presents an
obstacle for further progress of the advanced scenarios.

To overcome this limitation it has been proposed to put a conducting structure
in the vicinity of the plasma surface. A closed, perfectly conducting shell would
stabilise external modes completely, but in reality one is restricted to a partial wall
at a finite distance to the plasma surface. The expected stabilisation yielded by
such an arrangement has been calculated.

Infernal Mode: A fast (7 < 40us), and therefore ideal activity which can lead to
disruptions was observed in the experiment. A model equilibrium has been found
to be unstable to an ideal instability, which is pressure driven and depends on the
magnetic shear. The instability is identified as an infernal mode. It is pressure
driven and can cause the plasma to disrupt.

Coupled Infernal and Kink Mode: In shots without the additional heating the
DTM did appear transiently. In a later phase, disruptions have been observed. They
occur as the shear is weakened by current diffusion (comp. Fig. 5.11) and as the edge
value of the safety factor approaches rational values. The shear dependence suggests
the influence of an infernal mode and the rational geqg. indicates the influence of an
external mode. The analysis has shown the plasma to suffer from a combination of
Infernal and Kink Mode. As already in the case of DTMs, there is an impressive
agreement of the mode structure found between the ECE measurement and the code
output. It has therefore been shown that even current ASDEX Upgrade plasmas
disrupt due to external modes. This stresses the importance of wall stabilisation for
experiments nowadays.

6.2 One can Recomend Strategies to Avoid Ac-
tivities

MHD instabilities present a challenge for future experiments devoted to a progress in
the advanced tokamak concept. On the basis of the presented work recomendations
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Figuré: 6.1: Optimised profiles for safety factor and pressure. There is no ¢ = 1.5

surface and only one g = 2 surface in the plasma (1). The remaining one is located
where the pressure gradient is low (4). If it is not possible, to keep the safety factor
below 2 on axis the rational surfaces should be far apart (2). gmin and the associated

ITB are far outisde (5) and not coinciding with a rational surface (3).

for the design of optimised profiles (Fig. 6.1) can be given.

1.

As far as possible, low n rational ¢ profiles should be avoided (in particular
2/1 and 3/2).

It double rational surfaces ¢ = 2 cannot be avoided in the plasma, they should
be far apart to weaken the coupling of a DTM. The presence of a sheared
rotation can be advantageous to unlock and decouple the islands.

- The minimum in the safety factor and the associated transport barrier present

a crucial arrangement for the infernal mode. Therefore this structure should

be kept away from low order rationals.

. The outer rational surface (positive shear) should be at a radial position, where

the pressure gradient is low. This excludes the neoclassical drive of the outer
island that would further destabilise a DTM.

The ITB should be as far out as possible to obtain a high By. Since this can
give rise to External Kink Modes wall stabilisation might be necessary.
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