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Abstract

Bifurcation and chaos in radiative edge plasmas are investigated on the basis of a periodically
driven reaction-diffusion equation which results from the time dependent 1d heat conduction
equation including a given periodically time-modulated impurity density. The temporal
problem shows the transition to chaos through the Feigenbaum route. In 1d and time
dependent plasmas Hopf bifurcation and intermittency phenomena are shown to exist. The
application to a carbon seeded plasma shows the existence of different oscillation regimes.
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1 Introduction

Temperature bifurcations in radiative edge plasmas are relevant mechanisms that
affect stability. They are caused by the non-monotonic dependence of the radiation
function on the temperature, and the non-linear relation between the heat flux to the
target plates and the temperature in high-recycling regimes [1] - [7].

In the frame of a bifurcation treatment low-frequency oscillations observed in divertor
plasmas of the ASDEX Upgrade tokamak [8] have been interpreted in [9] by the use
of [10]. These relaxation oscillations appear before marfe formation is initiated by
successively enhancing the plasma density where the marfe acts as a precursor of
the density limit caused by a radiative instability [11]. The simple 0-dimensional
model used in [9] considers impurity production by sputtering and the temperature
balance equation including heating and radiation processes. A variety of different
oscillation regimes for densities and temperature has been found. The measured
”small“ oscillations can satisfactorily be explained by this model [12].

In order to investigate radiative properties of edge plasmas we make use of the model
[9] and simplify furthermore by suppressing the equation for the density and assuming
a given relaxation-like temporal modulation of the impurity density. This gives us
the opportunity to arrange relaxation phenomena in a wider frame of temperature
bifurcations which may also lead to temperature chaos. We describe the density
modulation in the simple form of a periodic delta function behaviour that describes,
strictly speaking, periodically injected impurities. It is the goal of this paper to show
that this mechanism force temperature bifurcation and chaos in radiative edge plasmas.

Different to [9] heat conduction is taken into consideration. The model equation
used is the 1d and time dependent heat conduction equation which leads with the
given ansatz to a periodically driven reaction-diffusion equation [13] (sect. 2). At
first the temporal problem (sect. 3) will be considered which shows the transition
to chaos through the Feigenbaum route. In sect. 4 a short insight is given into
steady boundary value problems to be known (cp. appendix of [7]) for solving the
spatio-temporal task that will be treated in sect. 5.

2 Periodically driven reaction-diffusion equation

The starting point is the 1d thermal conduction equation for the temperature u(z,?)
using dimensionless variables (cp. [7]):

ou 0 ou
O = D w2t fwm ), 2 € fonyal, € lio ] (1)

k(u) = kou' (2)

k - heat conduction coefficient
f is the source function given by

flu,z,t) = H(z) — Q(u,z,t) — Bu (3)
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B3 - damping coefficient, H is the heating function,
T — * 2
H(z) = f,5(z) = fuexp {—%} (4)
f, its strength. @ is the loss function (with the strength f;) assumed to be given by

2 (u— u:;V]

Qu,z,t) = fyq(u,z,t) = f,0.(t) cm(2) exp [—— A

m=1

(5)

@ is proportional to the impurity density n, which is assumed to be time modulated
by the ©,(¢) function where 7 is the time period. We apply here the simple case of
§ function modulation which allows an analytical treatment of the temporal problem,
sect. 3,

) = Tf:5(t —17), O;50=1 (6)

Strictly speaking, (6) describes the impurity injection with 7 being the time period
between two subsequent injections. The limiting 7 — 0 represents the well-known case
of time independent radiation (7 = 0-case). With the ansatz (6) eq. (1) represents a
periodically driven reaction-diffusion equation [13].

3 Time dependent problem: Feigenbaum route

Now we are considering the time dependent problem (neglecting heat conduction) with
s(z) =1, ¢ = const:

du
P~ ) (M

3.1 7 =0-case
Applying the ezplicit Euler scheme to eq. (7) for ©, = 1 leads with

t—to
n—1"

to the iterated map

U1 = U; + Atf(uz) =1, At — 0 (9)

The rest points of eq. (7) which are identical Wlth the fix points of (9) for 7 = 0 can
be calculated analytically for 3 =0, ¢; =1 and M = 1! with the result:

u12:u1i1/Aq11n§,fs<fq (10)

Their stability follows from a linear perturbation analysis:

!The results can easily be generalized for M > 1.
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i

[d '(uo)} bu=0, du=u—u’oxe (11)

resulting in the eigen values (Lyapunov ezponents)

Liz=—fyq(ui,) = £

2/ fq
—A—(;: Aql In ﬁ— (12)

There are two singular points uf, for f, < f, of which first one is unstable and the

other one stable, cp. Fig. 1.
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Fig. 1: Roots eq. (11) and attractors of
the radiative map eq. (13) for 7 = 0.1
and parameters P1 (15).

3.2 Radiative map

Attractors
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Fig. 2: Attractorsand Lyapunov exponent
of the radiative map eq. (13) for 7 = 0.15
and parameters P1 (15).

Considering now the T # 0-case, eq. (7) can be integrated piecewise from one injection

time to the next one (using the notation of (8) with At = 7):

1 — e b7

— e foq(u;
57_ ftZQ( )

Uiy = e PTu + 7 s

(7 arbitrary)

(13)
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[fs = faq(ui)] (14)

This radiative map (13) is valid for arbitrary 7 and identical with (9) for At =7 — 0.2

In what follows we assume [ = 0.

Attractors
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Fig. 3: Attractors and Lyapunov exponent
of the radiative map eq. (13) for 7 = 0.2
and parameters P1 (15).
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Fig. 4: Attractors and Lyapunov exponent
of the radiative map eq. (13) for 7 = 0.25
and parameters P1 (15).

3.3 Attractors, period doubling and chaos

Here we outline the transition to chaos via period doubling phenomena. At first the
simple problem characterized by the following parameter set P1 will be solved:

1
ﬁ:§(5:0), M=1¢g=1u=1 Ay=01, f,=5,f =5a; a=0.1, (15)

where a acts as control parameter. I.e. we consider, for simplicity, the case of constant
heating and a radiation loss by a single-humped radiation function with homoge-
neous impurity density. In Fig.1 we show the roots of eq. (11) together with the

2There are some analogies of the well-known circle map, standard and dissipative standard map
(" periodically kicked rotator®) (e.g. [14]) (this was the reason to introduce the damping constant f)
with the radiative map (13) such that the latter can be denoted as ”periodically kicked radiator“.
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attractors of the radiative map (13) for 7 = 0.1. As can be seen, the upper branch of
the roots uf (11) is unstable according to (12) (L; > 0). Attractors exist only for a < 1.

The attractor and Lyapunov exponent calculations in Fig. 2 for P1 and 7 = 0.15 show
stable periodic solutions in the vicinity of @ = 0.6. Enhancing 7 further to 7 = 0.2
shows bubbles, Fig.3. To be seen are bifurcation points, Lyapunov exponent equal 0,
and super stable cycles where the Lyapunov exponent tends to —oo.

Enhancing 7 further to 0.25 (Fig.4) leads to chaos with open windows. The depen-
dence of the attractors and Lyapunov exponent on 7 for P1 with a = 0.4 are depicted
in Fig.4. This is the well-known Feigenbaum route with increasing 7.

The foregoing results are summarized by representing Lyapunov exponent contours
in Fig.6 depending on a (abscissa) and 7 (ordinate). The different regimes of super
stable, stable, quasiperiodic and chaotic regions can be seen; also stable oscillations in
chaotic regimes (windows) exist.

Attractors
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Fig. 5: Attractors and Lyapunov exponent of the radiative map eq. (13) in dependence of 7
for parameters P1 (15) with a = 0.4.
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Fig. 6: Lyapunov exponent

Contours of the Lyapunov exponent of the
radiative map eq. (13) in dependence of
a = 0 — 1 (abscissa) and 7 = 0.1 — 0.3
(ordinate) for parameters P1 (15).
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Fig. 8: Attractors and Lyapunov exponent
of the radiative map eq. (13) for 7 = 0.1
and parameters P2 (16).
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Fig. 7: Lyapunov exponent

Contours of the Lyapunov exponent of the
radiative map eq. (13) in dependence of
a = 0 — 0.5 (abscissa) and 7 = 0.1 — 0.5
(ordinate) for parameters P2 (15).
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Fig. 9: Attractors and Lyapunov exponent
of the radiative map eq. (13) for 7 = 0.4
and parameters P2 (16).
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We turn now to the case of a radiation function with two maxima, M = 2. This can be
realized e.g. by two impurities or a double-humped radiation function for e.g. carbon
(sect. 6). Here we consider a double-humped radiation function with equal fractions,
c12 = 0.5, parameters P2:

(6=0), M=2,¢,=05u =1, Ay =01, f, =5, (16)
¢ =05, us =2, Ay =01, f; =5a; a=0..1

K =

DN | =

There is one attractor in the range 0 < a < 0.1, and two for 0.1 < a < 0.5 (cp.

Fig. 8). Attractors and Lyapunov exponent for P2 and 7 = 0.1 are shown in
Attractors Attractors
St ' ' 3F - ' T <J
2k S
5 % | ]
1F J—
' ‘ . 0 ‘ . .
000 0.10 0.20 0.30 0.40 0.50 010 020 030 040 050
a T
Lyapunov Exponent
1.07 1.0] ' ‘ ‘
051 . 05f
- 00 o 0.0
-0.5 - y -0.51
SR R ] _10t SRR
0.00 0.10 0.20 0.30 0.40 0.50 010 020 030 040  0.50
a T
Fig. 10: Attractors and Lyapunov expo- Fig. 11: Attractors and Lyapunov expo-
nent of the radiative map eq. (13) for nent of the radiative map eq. (13) in de-
7 = 0.5 and parameters P2 (16). pendence of T for parameters P2 (15) with
a = 0.35.

Fig.8. The two attractor branches correspond to the two maxima of the radiation
function. Their strengths are determined by the relevant fraction ¢;. For P2 those
ones are approximately equal. Analogous to the M = 1 case, Fig. 1, there exist two
repellors, where the lower one connects the two attractors. Perturbing this repellor
e.g. periodically may lead to relaxations between the two attractors. Fig.9 shows
bubbles for P2 and 7 = 0.4. Chaotic results can be seen in Fig. 10 (P2 and 7 = 0.5).
There are some open windows which allows a variety of stable periodic solutions. In
Fig. 11 the double Feigenbaum route with increasing 7 can be seen for a = 0.35.
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In Fig.7 the Lyapunov exponent contours are displayed in dependence of a (abscissa)
and 7 (ordinate). Compared to Fig.6 the contours show an analogous behaviour but
are multi-layered due to the two maxima of the radiation function.

4 Steady problem

The reason to discuss the steady problem (7 = 0)? is that we are concerned with the
solution of spatial boundary value problems and their temporal evolution. The steady
heat conduction equation follows from eq. (1) for 9 /9t = 0:

d du
Zl;/s(u)zl—g; - f(u,m) = 0, z€[zo,2n] (20=0, z,=1), O, =1 | (17)
The following mixed boundary conditions are imposed:
du
[mw);l—ﬁao,nuﬁoyn} =0 (18)

where Dirichlet’s and Neumann’s conditions are contained as special cases.

We investigate bifurcation phenomena by using phase plane analysis, l.e. we try to
find solutions of (17) in the (u, u)-plane where z is the curve parameter.

The topology of the phase space portraits is determined by the parameters of eq.
(17), and is dependent on the fact whether or not this equation has singular points.
These points can also be calculated analytically for the simple case considered above
for the temporal problem, egs. (11), (12)*:

fs > f, — no rest points

fs < f, — two rest points Py (P = (u,uz) - phase plane point) with the eigenvalues
L2,
P, (saddle):

P, (vortex):

1 2)s
ug:u;—}—MAqlln%, Uy = 0, Lg;:i-z\/;—wi_m% (20)
s gl s

Thus, for fs < f, we have an island structure, for f, > f, we have none. Hence,
the equation f; = mae = fg defines a bifurcation point in the control space. This
result can easily be generalized for the case of several impurities M > 1 where chains
of M saddles/vortices may appear. Different from the temporal case (12), here the
eigenvalues are also determined by the heat conduction coefficient xo.

3Cp. [1].

4The temporal problem is of first-order, the spatial of second-order.
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We solve the boundary value problem
oon = 1.6, fon,=0.5 (21)
for P1 (15) with a = 0.2...1.2.

b

Fig. 12: Phase plane portraits (u,u;) for parameters P1 (15) with a = 0.2...1.2 as control
parameter together with the boundary value curves according to (18), (21).

Fig. 12 shows phase plane portraits (u,u;) for parameters P1 (15) with a = 0.2...1.2
as control parameter together with the boundary value curves according to (18), (21);
the curve parameter is # € [—0.5,0.5]. Solutions of the considered boundary value
problem are only those trajectories which start and end on the respective boundary
value curve. As can be seen there is only one solution for @ = 0.2...0.6 and three
solutions for @ = 0.8...1.2. The solution of boundary value problems can lead to a
non-trivial phase plane structure resulting in rather complicated solution manifolds
which shall undergo ’chaotic impacts®.
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5 Spatio-temporal chaos

Having discussed Feigenbaum routes to chaos by considering the temporal problem in
sect. 3, and shortly bifurcation properties of steady systems with respect to boundary
value problems, let us now turn to chaotic phenomena in 1d plasmas, i.e. look for
solutions of the fully time dependent 1d heat conduction equation (1) on the z domain
[0,1]. We consider the time evolution of temperature profiles due to a localized heat
source and radiation loss by an M = 1 radiation loss function, and apply a simple
Dirichlet boundary condition which is not so sensitive to imposed changes (aon =
0, Bon > 0). The following parameter set P3® is used:

1
R=g M=1La=1Lu=1 =01 f, =17, 2" =05, A, =0.05, f, =15 (22)

At first the steady problem P3 with ©, =
1 is considered. As it can be understood

Temperature Profiles u(x)

2.0
: TN by the explanations of the foregoing sec-
1.5 Fap— \\\ . tion, the temperature profile calculations
[ e ~oN ] in Fig.13 show that there are three so-
s 1.0f //‘,,/" AR : lutions for the boundary value problem
Y "\1\\ ] where the middle (unstable) solution acts
osf 0 N as repellor, the two others are attractors.
L7 Ny ] Thus, dependent on the initial profile one
0.0 . ‘ : N of the two attractors will be attained. The
o0 02 04 06 08 10 corresponding three radiation profiles are

also displayed.

] In what follows we solve the spatio-
sl ] temporal problem P3 for different ini-
] tial profiles and increasing 7. We com-
pute spatially extended attractors, and
the time evolution in the centre (z = 0.5)
of the z domain. For the present the radi-

ation loss function is assumed to be non-
localized (¢; = const in P3 (22)).

In Figs. 14, 15 attractors (the dotted
lines are the initial profiles) and the tem-
. perature evolution at z = 0.5 are dis-
Fig. 13: Steady temperature profiles (attrac- plaved starting at different initial profiles.
tors: da,she‘d and full line, re.pellor:' d_ot— As compared with the steady solutions,
ted dashed line) and corresponding radiation Fig. 13, each attractor splits into two, .
profiles for parameters P3 (22). the (local) fix point changes via limit cy-

cles (Hopf bifurcation) to oscillations which show intermaittency.

Enhancing 7 further the two starting attractors can not be separated. In Fig.16
temperature attractors are shown for P3 (22) and 7 = 0.1 They have a weakly spatial
structure. Also shown are the corresponding radiation envelopes. The temperature
evolution together with a phase space representation are shown in Fig.17 for the

5See the discussion of bifurcation and hysteresis effects in [3]
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same parameters. To get this simple overview the time delayed method is used by

representing the phase plane trajectories [u(t), u(¢t47/4)]. The time-chaotic behaviour
is obvious.
Clearly, enhancing 7 further leads to unsolvable boundary value problems.

Up to now we treated only spatially homogeneous radiation sinks. At last we consider
impuritieslocalized near the edge of the z domainat z = 0.2 (¢; = 2.5for 1.5 <z < 2.5
and 0 otherwise). It results a radiation peak at z = 0.2 with attractors and oscillations
there that can be seen in Fig. 18.

Attractors Atftractors
3 r T T ! T : 3 : T - ' i

Temperature Evolution
: T T T 3T

Temperature Evolution

Fig. 14: Attractors for 7 = 0.05 in depen-
dence of z (the dotted line - initial profile)
and temperature u as a function of ¢ at
z = 0.5 for P3 (22).

Fig. 15: Attractors for 7 = 0.05 in depen-
dence of z (the dotted line - initial profile)
and temperature u as a function of ¢ at
z = 0.5 for P3 (22).
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Fig. 16: Attractors for 7 = 0.1 in de-
pendence of z and corresponding radiation
function for P3 (22) and 7 =0.1.
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Temperature Evolution
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Phase Space
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1.0} » .

u(t+71/4)

0.5 ]

0.0L._ : , )
0.0 0.5 1.5 2.0

1.0
u(t)
Fig. 17: Temperature u as a function of ¢

and phase space representation at = = 0.5
for P3 (22) and 7 = 0.1.

Temperature Evolution

Fig. 18: Attractors for 7 = 0.1 in dependence of ¢ and temperature v as a function of ¢ for

P3 (22) at z = 0.2.
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6 Application to Carbon

Let us now applicate our results to a car- Attractors
bon seeded plasma with parameters of the 15[ ' ' ‘

divertor plasma of the ASDEX Upgrade
tokamak, cp. [9]: For a power input [
Py, = 0.95 - 10°W into the divertor re- 10+
gion of a volume Vi, = 6-10°cm?® we have = |
B = Py, / Vi = 1.583 - W/cem?®, resulting >

in f; = 2= with the electron den31ty given 5F ,’\_\_/
by n. = nZ + Zn., n; - ion density. All the /
densities are now parameters. The radia- | ’

tion loss term is given according to eq. (5)
with the radiation function () given by the
ADPAK data [15] (neglecting the effect of
the neutrals). Fig. 19: Attractors of the radiative map eq.
Parameters P4: (13) for Carbon with parameters P4 (23).

0.0 0.5 1.0 1.5 2.0 2.5
a

n; =0.5-10"em™>,n, = 0.5-10'%, 7 =107%s, f, = p —a, a=0-—2.5 (23)
31,

u now is the temperature in eV, 7 the time period in s.

Attractors
Here n, << n. (clean plasma). Comput- 15] ' —
ing the attractors for P4, Fig. 19 shows the
typical behaviour in dependence of the pa- I ]
rameter a as seen above: There are only 101 g T
attractors in the low temperature regime I
S 10eV for ¢ = 0 — 2.5. For a in the [
vicinity of 1 we obtain the regime of small 5F
relaxation oscillations [9]. I

Parameters P5 (dirty plasma): /(\q_c_
0

u(eV)

0] 60
a

Fig. 20: Attractors of the radiative map eq.
(13) for Carbon with parameters P5 (24).

n; =0.5-10%em™3,n, =0.96-10'3, 1 =6-107%s, f, = 3£a, a=0-50 (24)

Te

The attractors to P5 are shown in Fig. 20. They are rather chaotic with some bubbles.
There are a variety of oscillation regimes. For 7 < 3us there are no oscillations.

Of course, the connection to the relaxation phenomena of [9] is important®, also a
spatio-temporal description analogous to sect. 5.

This will be discussed in a forthcoming paper [12].
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7 Summary

Bifurcation phenomena of the temperature are of great importance in radiative
edge plasmas of tokamaks and stellarators. In the frame of a bifurcation treatment
low-frequency relaxation oscillations observed in divertor plasmas of the ASDEX
Upgrade tokamak [8] have been interpreted in [9] by the use of a simple 0d model. In
order to investigate radiative properties of edge plasmas we make use of the model
[9]. But we assume a relaxation-like temporal modulation of the impurity density
with the time period 7 given and investigate its effect on the temperature governed
by the heat conduction equation only. The density modulation is described in the
simple form of periodic delta function behaviour. This gives us the opportunity to
take an arbitrary modulation of the impurity density into consideration that can
drive a bifurcation leading to chaotic temperature behaviour. '

Before investigating the routes to chaos in the spatio-temporal system we consider
at first the time dependent problem. Our ansatz allows to derive a simple radiative
map which shows the routes to chaos via period doubling phenomena. Attractors
and Lyapunov exponents are calculated for a variety of parameter sets. The main
parameters varied are the power input and the time period 7. It was shown that
increasing both parameters forces chaos.

By solving the time dependent 1d heat conduction equation we are concerned with
spatial boundary value problems that give rise to bifurcation phenomena and multiple
solutions, sect. 4. We consider a simple Dirichlet problem having two attractors and
one repellor as steady solution profiles (7 — 0). The effect of density modulation by
increasing 7 is an attractor splitting which leads via Hopf bifurcation and intermit-
tency to temporal chaos, and at last to unsolvable boundary value problems. The
attractors have also a weakly spatial structure. An example of a spatially localized
density profile is also given.

Our results are applicated to a carbon seeded plasma with parameters of the diver-
tor plasma of the ASDEX Upgrade tokamak, cp. [9]. The mentioned low-frequency
relaxation oscillations are found in a clean operating regime. Enhancing the impurity
density (dirty regime) forces chaos. An 1d treatment remains.
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