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Abstract

The behavior of magnetized plasmas concerning charge shielding, polarization
and ion confinement has been investigated by means of a PIC (particle-in-cell)
model. It is shown that the dimensionless ratio x = nym/(e,B%) being the di-
electric susceptibility (with the plasma density Ny, the mass m and the magnetic
field strength B) is the main parameter in the analysis. For small values of x the
plasma is not able to compensate additional test charges and shielding does not
occur. For high values the effect of the magnetic field vanishes and the electric
forces dominate.

Under the conditions of today’s fusion experiments the electrons are usually tied
to the magnetic field lines due to their small gyration radii p, which are comparable
to the Debye length Ap. The ions, on the other hand, have much larger gyration
radii p; > Ap and their ratio y; exceeds 1000. It is shown that for such high values
the effect of the magnetic field is so weak, that only electric forces are of importance
for the ion confinement in a plasma column.

1 Introduction

The behavior of magnetized plasmas is quite complex and often not accessible by analyt-
ical models. Whereas the problem of charge shielding in plasmas is described in detail in
every text-book on plasma physics, the same process of charge shielding does not allow
such a simple analytical treatment in the case of magnetized plasmas.

Hence, numerical modeling is required. For this purpose the PIC (particle-in-cell) code
PLAS was developed (Sec. 2) with the aim to model a plasma containing two species of
opposite charge state embedded in an external magnetic field. Several simulations have



been performed for a wide range of plasma parameters. It turned out that the ratio of
the gyro radius p to the Debye length Ap is the main parameter
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where m, and m; denote the masses of species ’e’ and 'i’, respectively, and ¢, is the
permittivity of free space. Note, that this ratio does not depend on the temperatures. In
the derivation of (1) the relation m(v?)/2 = kT'/2 was used.

For example, the parameter £ determines the shielding behaviour of a magnetized plasma
(Sec. A). In the case of a strong magnetic field and small mass (i.e. small value of )
the charged particles are fixed to the magnetic field lines so that a shielding across B
is not possible (it is, of course, still possible along B). If the gyration radius is much
larger than the Debye length (i.e. £ > 30) then the shielding is almost perfect as in the
magnetic-field-free case [1].

The second part of the paper deals with the confinement of electrons and ions in a plasma
column with an axial magnetic field. In the PLAS calculations the temporal evolution of
the plasma is calculated starting with a given density profile and with isotropic velocity
distributions, thus simulating a switch-on of a magnetic field at time ¢ = 0. No external
heating or cooling is considered. It is shown (Sec. 3) that the difference of the electron
and ion gyration radii leads to charge separation resulting in the origin of an electric
field. Under the usual conditions of plasma and fusion experiments the electrons are
confined by the magnetic field, whereas the plasma ions (as fluid) are held entirely by the
self-generated electric field. Whereas the electrons with their extremely small gyration
radii are relatively fixed at the magnetic field lines, the ions need this additional force
which ensures the nearly equality of the electron and ion density profiles to the required
high degree.

In fact, if a small plasma region with an extent of several Debye length is considered the
electrons are trapped in this small region after the magnetic field is switch on, since their
gyration radii are of the same order as the Debye length. However, the heavier ions with
their much larger gyro radii will leave this region after a short time, i.e. charge separation
occurs leading to electric field generation. Without density gradients adjoining plasma
cells are able to provide each other with the required in- and out-going ion fluxes in
order to sustain overall charge balance, but this is not possible if there is a density (or
temperature) gradient. [n this case, a confining electric field is required and is inevitable.

2 Model description

In the simulations two species of particles are used: negative charged particles with mass
m, and positive charged particles with mass m;. The subscripts e and ¢ are taken in the



e Figure 1: model geometry

X

following also for the denotation of other physical parameters such as temperature and
density.

A large number of particles N (up to several 10° particles for each species) is started
uniformly distributed on the plane (z,y) (see Fig.1) with a Maxwellian velocity distri-
bution generated using the method of Boz and Muller [2] which results in the following
initial velocity components

Ugo = \/kT&i/meyi\/—Zlancos(27TR2)

Uyo = \/kTe,i/meyi\/—Z In Ry sin(27 Ry)
Vo = 0 (2)

Ry and Rj are two random numbers, which are uniformly distributed over the range [0, 1].

The dynamics of the particles is determined by the fixed external magnetic field B =
(0,0,B) (Fig.1) and the internal electric field E. Cylindrical symmetry is assumed, so
that 0/0y = 0/0z = 0.

The motion of each single particle (i.e. for both e and ¢ particles) is calculated by means
of the equations

dr

v
=q¢[E+vx B], U:_dt’(

m r =z + yg) (3)

Both species are assumed to be singly charged (¢. = —e, ¢; = €). Eq.(3) is solved using
the "leap-frog’-method for the integration and the [v x B] rotation has been implemented
following Boris (see in [3] or in [2]).



Knowing the spatial positions of the particles 7 = (z,y) at a certain time the tempo-
rary density profile of both species n.; is deduced using the general neutrality condition
[ni(r)dV = [n(r)dV =nyV leading to

_ iV AN (r, ) n
Nmez AV

where AN, ; is the number of particles in the volume element AV = 27rAzAr at the
position r and at the time ¢. V}, is the plasma volume, Ar is the width of the cells in the
r-direction. The factor (nyV,/N™%) in (4) takes into account, that in the simulations
only N™ so called 'representive’ particles are used instead of the real number of particles
np Vi of the considered plasma. The plasma extension Az in the z direction has no effect
in the present calculations (Az = 1 m is taken in all calculations where it was necessary
to ensure the right units). Finally, n, denotes the plasma density. In the code the
point charges are assigned to its nearest grid point by linear interpolation (particle-in-
cell method).

The electric field F, (one-dimensional in radial direction) is determined by the charge
density distribution using the Poisson equation
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Vi = o+ o5 = - [ne(r) = mna(r)] (5)
0¢
B, = —5- (6)

(where ¢, is the permittivity of free space). The application of finite differences on a
uniform mesh leads to a tridiagonal set of equations, which is readily solved using Thomas
algorithm (see in [4]) with forward elimination and backward substitution. The electric
field force is also linearly interpolated for positions between two grid points, exactly as
in the charge assignment. In the calculation the cell size Ar is kept well below the Debye
length and the time step At in the particle moving calculations is chosen to satisfy the
Courant-Friedrichs-Lewy criterion 1 > (vJ'**At)/Ar > 0.1 [5].

The whole set of particles is followed in time by calculating Eqs.(3,4,6,5) with the bound-
ary conditions for the potential

99

élr=r =0 and ol = 0 (7)

r=0

where R is the radius of the vessel wall.

3 Linear plasma column

The PLAS code (Sec. 2) has been used to model a linear plasma column radially confined
in a magnetic field B = (0,0, B,) with the plasma radius 7. Contact of the plasma
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column with the wall has been not allowed by choosing a sufficient large radius of the
wall R, ie. R > 1, + 2p.

In the analysis three cases are distinguished: (i) both species have the same gyration
radius, p; = pe (Sec. 3.2), (ii) their gyration radii are different, p; > p, (Sec. 3.3), and
(iii) the parameter & is much larger than &, & > €, (Sec. 3.4).

The following idealizations are applied: (i) cross field diffusion due to collective transport
effects such a plasma turbulence is not considered, since the resulting change of the
density profiles in time would be much slower than the occurence of charge separation at
the plasma edge, (ii) the ion motion is considered only in the (z,)-plane perpendicular
to the axial magnetic field, (iii) the electric field and potential are calculated only for the
radial direction according to Egs.(6,5), (iv) effects caused by endplates are not considered.

3.1 Initial density profiles

In the simulations particles are started with a certain density profile ne;(r), which are
generated using random numbers. Generally, the radial profile n(r) is related to random
numbers Ry, which are uniformly distributed in the interval from 0 to 1, by

n(r)rdr
Ry, = (8)

n(r)rdr

o y|o— 3

For given Ry, (K runs from 1 to N%) Eq.(8) is to be solved in order to obtain the starting
positions 7. For example, an analytical solution is possible in the case of a step-profile

oy for 1<y
n{r) = { 0 for r>ry (9)

Substituting for n(r) from (9) the integration of (8) gives Ry = r}/r which leads to the

well-known relation ry = \/ R}, 1, generating a uniform density in the border of r,,.

More realistic profiles can be represented as
& B i\ 2
1) = iJ0<— ) —<—> Dt 10
n(r,t) i:21a =" exp[ i L (10)

where p; are the zeros of the Bessel function J, (for ¢ > 30 p; >~ n(i — 1/4)); rp is the
plasma radius and R is the radius of the chamber. Eq.(10) is the solution of the continuity
equation in cylindrical geometry [6]

1 on  0°n  10n
S A T g 11
D, 0t 8r2+7"8r (11)
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where the diffusion coefficient is taken constant D, = const. and the boundary condition
n(r = R,t) = 0 is applied. If the starting profile n(r,¢ = 0) is equal to n, for r <, and
elsewhere zero (i.e. given by (9)), the coeflicients «; are [6]

- 2 Rn r T 20 Iy (pirp/ R)
= mingp | 0% () = SR -

Density profiles calculated for three values of the diffusion parameter d = /Dt =1,3,10
mm are shown in Fig.2. The use of such density profiles allows to investigate the effect of

1.5 T T T R B S B S A B B D BN S R R S E L R R
>
=10 :
o Figure 2: Normalized den-
© sity profiles presented as
£ ] Fourier-Bessel series for dif-
0 0.5 1 ferent d = /Dt as indi-

cated in the figure.
0.0 e
0.04 0.05 0.06

a density gradient on the process of charge separation at the plasma edge. As mentioned
before, the diffusion process itself is here not the matter of consideration, i.e. these
density profiles serve only as a more or less realistic starting condition for the simulations
of the charge separation effect, which is expected to dominate the plasma behavior on a
much shorter timescale than cross-field diffusion does.

3.2 Case p; = pe

As initial density profile (at ¢ = 0) a distribution of type C (Fig.2, with d = 3 mm) has
been assumed for both species e and 7. The motion of the particles is then followed in
time. Since equal gyration radii are taken (p; = p.) the resulting density profiles (averaged
over some gyration times) are equal, n;(r) = ne(r), but due to the finite gyration radius
they are broader in comparison to the starting profile. Charge separation does not occur
and the electric field is zero. The results of the simulations are shown in Fig.3. As
expected, the mean rotation velocities of both species vg’i are obtained to be equal to
their respective ’diamagnetic drift’ velocity

B x Vp

lam — 13
vd nqB? (13)
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which gives in cylindrical geometry for constant temperatures
g () = o ) e gy = ST Onelr) (1)
¢ eni(r)B, Or ram ene(r)B, Or

The values of v%’  according to Eq.(14) are shown in Fig.3 by dashed lines. The origin
of this drift is illustrated in Fig.4 and can be understood by simply adding the gyrations
orbits in the presence of a density or temperature gradient. This drift is a ’fluid’ drift
in the sense that the diamagnetic drift velocity represents the azimuthal velocity of all
particles Tp(r) averaged in a certain volume element near r.

With the resulting drift around the main axis the particles have a total angular momentum

R
Le;= me,i/ne,i(r X v)dV =21 Azme, /neZ U;ZT2 dr (15)
% 0

Replacing the mean azimuthal velocity 75" by v%.  (Eq.(13)) yields

LEem = (16)

drme; Nz KT, ; 7 2kT, ;
— 2 J /neir P=———>=N
Qe,iBz

e,
we’




since [f(On/dr) r*dr = =2 f'nrdr. w, is the gyro frequency and N is the total number
of particles in the considered plasma volume (N = N, = NN;). L is positive for species e
(ge = —e), and negative for species i (¢; = +e€). The oscillating behavior of the angular
momentum and the radial currents are shown in Fig.5. It is caused by the periodic return

(x.y)-plane
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_____________ . >y
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ExB
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Figure 4: Model geometry with diamagnetic and (E x B)-drifts.

of all particles to their initial positions after each gyration time.

1.0x107"2 [

Despite the fact that the mean radial velocities (v&') and currents (j¢*) equal zero (Fig.3
and Fig.5) the mean angular momentums of both species are nonzero and are given
by relation (16). This gain of angular momentum, which was zero at the start of the

T

(e) Mongulvar momenthm

L e
HOoCurreny

(eJ: radial

current

time [s]

Figure 5: Temporal be-
havior of L.; and j&' =
qne v, The latter value
has been averaged over the
plasma volume for each
time step. (parameters as
given in Fig.3, gyration time
Toi = Tpe = 3 x 1077 s,
Lgiam — wai“m =9 10—13
kgm?/s)



simulation, is provided by the magnetic field force

R
dLei N 2
Sei— [(rx F)aV = [ 7% (juy x B)dV = 21 Az B, qug [ negver?ar (17)
1% 1% 0

T

The radial currents flowing during half the gyration time (Fig.5) can be estimated as
3¢~ (kToines)/(Borp) (3¢ = —7j) where the value for the density should be taken at
position 7, (in this analysis rp; ~ 0.02 m, Fig.3). Note, that the total radial current
jr = ji + j¢ is zero at all time moments, and subsequently the corresponding torque
[r x (j x B)dV also equals zero.

3.3 Case p; > pe

The results of the simulations for an intermediate case (p; ~ 4p. and & /& =~ 4) are
shown in Fig.6. Due to the different gyration radii charge separation occurs in regions
where a density gradient exists. Thus, an electric field arises which is directed inward,
preventing the outward motion of the positively charged particles (¢) with their larger
gyration radius. A large deviation of n;(r) from n.(r) is not allowed (Fig.6) but also not
necessary, since already a small charge imbalance inside the plasma radius (rp, = 0.02
m) is sufficient to generate an electric field of about £ = —1300 V//m as obtained in the
simulation at position 7, (see Fig.6).

The required averaged charge imbalance n, = (n; — n,) can be readily estimated using
Gauss’s theorem

/ divEdV = / Mdv - 75 EdS (18)
v v ©

which leads to enqﬂrglAz/ €0 = E,2mrp Az and following

B 260Er|,:,~p, 26 1300V/m .

Ng =

= 10" m~3 19
€T pl €0.02m (19)
This excess of ’e’-particles inside 7, is two orders of magnitude smaller than the plasma
density in this calculations (n, = 10 m™?).

In the case of small gyration radii in comparison with the density decay length (p;, pe <
M) the mean rotation velocities of both species can be represented as the sum of the
diamagnetic drift velocity and the (E x B)-drift velocity

. ExB B
yoi - EXB B x(Vp)

20
9 B2 ngeB? (20)

which gives
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Figure 6: Mean radial profiles of n, F, ¢, v, and vy for both species e and 7. (parameters:
R=005m, ny =10 m™>3 B=0227T,T, =T; = 10 eV, m; = 4, m, = 0.2 amu,
& =4,&=09, pi =3, po = 0.7 mm)
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The (E x B)-drift velocity is equal for both species. Hence, the rotation velocity of the
’e’-particles is enhanced due to the action of the radial electric field, but the ’i’-particles
are slowed down (Fig.6).

The resulting angular momentum of species i’ is a factor of two smaller than L™ =
—7.8 x 107 kgm?/s (Fig.7) and L, ~ 2 x L%™  As already decribed in Sec. 3.2 the
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o SN ] . :
X-2F N T Figure 7: Temporal be-
o4t N T 3 havior of L.; and j2* =
N gnevet.  The latter value
0.6 — T e — has been averaged over the

ioourrey

plasma volume for each
time step. (parameters as
given in Fig.6, gyration time
7,0 =12x10"%and 7,, =
6 x 1078 s)

o005 10 15
-6
time [s] x10

4" x B-force provides the torque resulting in a change of the angular momentum, but
it acts independently for each species, which was found in the calculations. This means,
that there is no transfer of momentum from one species to the other. The oscillation of the
radial current j¢ is characterized by the corresponding gyration frequency f. = 27/7,,,
but this is not the case for species ’i’, where j¢ changes with a higher frequency than

fi = 27T/Tp’i.
3.4 Case§ > €&
Taking electrons as species e’ the following conditions can be fulfilled:

Pe K pi, pi K )‘n = ’I’L{d?’b/d?"]_l ) ge < 57, (22)

Due to their small mass and subsequently small gyration radii the electrons are tied
strongly to the magnetic field lines. In order to save computer time the motion of the
electrons is determined by the diamagnetic and (E x B)-drift only. The results of such
calculations for the parameter region (22) are shown in Fig.8. As seen the density profiles
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ne(r) and n;(r) are almost equal. The remaining small charge imbalance which is too
small to be distinguished visually in the figure leads to occurence of a radial electric field.
In the region r < 0.03 m this electric field is equal to

E(r) = e:zT(lr) 8TZ7§T)

(23)

since the force due to the ion pressure should be balanced by the electric field force at
each radial position
on;(r)
or
Note, that this relation holds only at radial positions where the mean rotation velocity
of the ions is zero (Fig.8). In this rather large region (0 < r < 0.03 m) which extends
over almost the whole plasma column the ion diamagnetic drift is exactly cancelled by
the (E x B)-drift. The electrons, on the other hand, double their rotation speed in this
region (for the considered case of T, = T;, Fig.8).

en;(r)E(r) = Vp; = kT;

(24)

With other words, there is no time left for the ions to establish their diamagnetic drift
during one gyration time, since this is prevented by the arising electric field on a very
much shorter time scale going with the plasma frequency.

3.4.1 Ion trajectories

Without an electric field ions move in magnetic fields on circular orbits. For illustration,
four ion trajectories are shown in Fig.9, where the ions are started from the same position
in different directions.

With an electric field E, (E, = E, = 0) the ions describe cycloidal trajectories due to
the additional (E x B)-drift, where the shape of the trajectories depends on the starting
direction. Further, the resulting density distribution of ions started at the same position
zg with a Maxwellian velocity distribution is changed due to the action of this electric
field. Note, that the maximum of the distribution remains at the starting position, but
its center of gravity is shifted by [7]

vg _ Eym;

Az = — = = —0.00044 25
! w;  eB? " (25)

(vg is the (E x B)-drift velocity and w; is the ion gyration freqency) which was proved
by integrating Az = [z n(z)dz/ [ n(z)dz — z5. This inward shift compensates the local
outward shift Az, caused by the ’broadening’ of the density profile due to finite ion gyro
radii (see in Fig.3).

Az, = p* /A, (26)

with the density decay length A, = n|dn/dr|™!, so that Az + Az, = 0.
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Figure 9: Density distributions of ions started at a fixed position zg = 0.02 m without
(left figure) and with an electric field (right figure) B, = —2000 V/m. The magnetic field
is directed out of the plane toward the reader. The trajectories of four ions are shown.
(parameters: B = 0.22 T, T; = 10 eV, m; = 1 amu). Note, that after each time period
all particles meet again in one point.

4 ’Electric’ confinement of ions

In the case of & > 30 the ions are confined in a plasma column by a radial electric
field. Ton confinement means in this sense that the ion density profile should almost be
equal to the electron density profile, since large deviations are not allowed. The initial
diamagnetic drift of the ions is exactly cancelled and the resulting mean rotation velocity
is zero, i.e. the term (j; x B) also vanishes in the global force balance. Considering the
global behavior of the ion the effect of the magnetic field is therefore negligible and the

approximations
ep(r
ni(r) = Cpnp €XP <— i’;)> (27)

or

o(r) = —Ling [ﬁ@] (28)

(& CnTpl

can be used (see in [8] and [1]) and are valid for a Mazwellian velocity distribution under
steady state conditions. The constant ¢, is determined by the plasma neutrality condition

R

[1atr) = ne(r)irdr =0 (29)

0

Substituting for ¢(r) and n;(r) the calculated values of the ion density n; (r) and potential
¢(r) (as shown in Fig.8) the validity of the relations (27-29) is demonstrated in Fig.10.
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Good agreement could be achieved using ¢, = 0.0059, where deviations occur only in the
outer region of r > 0.03 m.
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It is interesting to check in which region of plasma parameters such a simple description
of the ion density profile (Eg.(27)) can be applied. Rearranging (1) a ’critical’ value of
the magnetic field B can be presented as a function of the plasma density

1 NpiMe,;

Bcrit — (30)

crit

el €o

This value has been calculated in a wide range of n, for both plasma species using two
fixed values of €% = 1 and €% = 30 (Fig.11). The parameter regions of interest (B,ny)
for plasma and fusion experiments are indicated in Fig.11 and are located beneath the
line corresponding to deuterium plasma ions and & = 30 but above the line regarding to
the electrons. For almost all plasma conditions met in plasma experiments the parameter
¢ for electrons is about unity, the respective parameter for deuterium ions is larger than
30. This means, that in contrast to the electrons the plasma ions are only insignificantly
affected by the magnetic field and thus the approximation (27) can be used.

Substituting for n;(r) from (27), the Poisson equation gives

826 19¢ . CCnTlp exp <_ eqﬁ) ene(r)

Z T = 31
or?  ror € kT; €o (31)
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Figure 11: B* vs plasma density n, calculated for electrons, deuterium and argon ions.

where n,; denotes the electron density at r = 0, i.e. ne(0) = ny. This non-linear
differential equation together with the boundary conditions d¢(r = 0)/0r = 0 and ¢(r =
R) = 0 can be solved by iterations. Excellent convergence is achieved by applying in
addition the method of successive underrelaxation. For this a linear combination of the
old value and the value given by the new step is taken, so that

<anew — nqscalc 4 (1 . 77)¢Old (32)

Underrelaxation means 7 < 1. During each iteration step the ion density profile is
normalized, i.e. the constant c, is obtained according to Eq.(29),

Taking for the ion temperature a value of kT; = 2 eV the profiles of the ion density have
been calculated for different plasma densities (Fig.12). The corresponding profiles of the
potential and the electric field are shown in Fig.13. With increasing plasma density the
profiles of n, and n; become almost equal (Fig.12). The remaining small charge difference
establishs a negative electric field which holds the ions inside the plasma column. At

higher densities the electric field at the plasma boundary converges to its maximum
value (Table 1).
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Figure 12: Normalized profiles of ion density varying the plasma density n, =
10'3,10',10' m=3. The electron profile is obtained using Eq.(10) with d = v/D,¢ = 3
mm (rp = 0.02 m, R = 0.06 m, case of x; > 1000).

Table 1: Calculated electric field E, at position 7 = r,; = 0.02 m as function of plasma
density n, and diffusion length d (k7; = 2 eV).

| d=+/Dit| ny =10"[m=®] [ 10™ [ 10" [ 10 [ 107 | 10° |
Lmm | B, =—465V/m | —998 | —1280 [ —1228 [ —1219 | —1218
3mm | B, =-32TV/m | —434 | —409 | —405 | —405 | —405
10mm | FE,=-135V/m| =78 | =128 | —127 | —127 | —127

A stronger electric field is required if the ion temperature 7; increases (Fig.14). As already
mentioned in Sec. 3.4, instead of the numerical solution of Eqgs.(29,31) the same result
can be obtained from the simple force balance

E(r)zeiﬁ) argy) and  @(r) = / E(r)dr (33)

However, usually the exact ion density profile is unknown - without solving Eq.(31).
Nevertheless, quite accurate estimations (at least for F) are possible by taking the electron
density profile instead. Results of such calculations are shown in Fig.14 (dashed lines).
Deviations occur again in the outer region since the use of relation (33) by replacing n;(r)
with n(r) gives exact results only for n, — oo.
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Figure 13: Electric field and potential distributions with the plasma density (n, = 10" —
101" m=3) as parameter (d = /Dt =3 mm, kT; = 2 V).

5 Discussion and Summary

There is one dimensionless ratio e
pl
= 34
connecting three parameters: the plasma density n,;, the mass of considered species m
and the magnetic field strength B, which characterizes the behavior of a magnetized
plasma. It determines the processes of charge shielding (Sec. A), polarization (Sec. C),
confinement (Sec. 3,4) and wave propagation since this parameter x can also be presented

as

P> Jpol o, Density ¢

e 2::—: j— — T 5 35
X=¢ A% €, 0F/0t “ Tension v} (35)

where ¢ = 1/,/€l, is the speed of light. The velocity vq = {/B%/(u,Mny) is known as
the Alvén velocity and describes the propagation of transverse waves in analogy with the
vibrations of mass-loaded elastic strings under tension B?/pu, [8]. Further, this ratio is
the main parameter in the analysis of the complex phenomena in the electric sheath near
a plasma-material interface.

Despite of the large variety of plasma devices in many experiments the corresponding
parameter  for the electrons is about unity and x for the plasma ions (usually hydrogen
or deuterium) is larger than 1000 (& > 30 — 40). As shown in Sec. 4 this is a fortu-
nate situation since then a very simple description is possible instead of time-consuming
computer simulations. The point is, that in this case the global behavior of the ions is

18




100 , : . ;
— 50} .
_ of
.0 L
$ —-50
>-100F gev  __ — 1 Figure 14: Electric field and
Yo ) P T I potential distributions for d =
1000_‘""“""“"""'“"""': VDt = 3 and different k7} but
0Ff 1 the same ny, = 10 m~2 in com-
= : parison with the analytical results
£ —1000 [ .
> : (dashed lines, Eq.(33)).
= _2000} ‘ , ]
L N \\ 8eV ’;’f ]
~3000 | P A D
—4000

0.000.01 0.02 003 0.04 0.050.06

r [m]

determined only by an electric field arising due to charge separation in regions with a
pressure gradient (Sec. 3). In this process a tiny fraction of the kinetic energy of the
plasma is converted to potential energy of the electric field.

The force balance for the ions at a certain radial position in the plasma colum is given
by

and for the electrons
—neeE — neefvg x B,] = Vp, (37)

(note £(r) < 0 and v§ > 0). Substituting for E from Eq.(36) yields

,Ue(,r.)___ Vp; _ Vpe
07 eny(r)B,  en.(r)B,

(38)

This leads to the same relation 7 x B = Vp as derived in the simplified MHD theory,
but the current is supplied by the electrons only and is not the sum of the electron and
ion diamagnetic currents.

In the MHD theory (see in [9]) the terms with n,(r) = n;(r) —n.(r) are cancelled, but the
electric field remains in the equations. For example, by having additional informations
about the ion rotation velocity the correct electric field can be deduced using the ion
momentum equation. With known electric field the charge imbalance n,(r) can then be
estimated using the Poisson equation. However, by considering steady-state situations it
is not possible to distinguish whether there is an electric field or a corresponding rotation
velocity or both.
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The advantage of PIC simulations is demonstrated in this paper since all important
parameters such as n,, F, vj and v§ have been self-consistently obtained (for different
ratios p;/pe) by modeling the time evolution of the plasma. It is shown, that for the same
starting conditions (zero plasma momentum), for the same boundary conditions and using
the same numerical solution strongly different results are obtained by changing only the
ratio p;/pe. It is verified in the simulations, that the observed change of momentum is
caused by radial currents supplying a torque.

The charge imbalance is indeed small, many orders of magnitude smaller than the plasma
density, but sufficiently large to generate the electric field confining the plasma ions. The
motion of single ions is still strongly affected also by the magnetic forces, but the ions
act in their global behavior independently of the magnetic field in the case of x; > 1000
and one could speak of ’electric ion confinement’. Only in the case of equal gyration radii
of both species the usual inward j x B-force due to the diamagnetic currents of both
species balances the outward force from the pressure gradient.
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A Appendix: Charge shielding

The reaction of a plasma on a imbedded test charge is a fundamental problem in plasma
physics. The distance over which the field from such a charge is shielded out is the Debye
length which was first derived in the theory of electrolytes by Debye and Hiickel. The
assumption that the electrostatic potential energy is much less than the mean thermal
energy, is part of the commonly known derivation (e.g. see in [8]) of the Debye length

\p o €K1 KT; (39)
PN e (KT, + KT3)

(see in [10] for a more detailed description, e.g. considering also the effect of fast moving
particle). Note, that the smaller temperature of both species defines Ap. In particular,
ideal shielding (Ap — 0) occurs in a cold ion plasma (7; ~ 0).

In order to describe the effect of an external magnetic field on the shielding behaviour
of a plasma it is sufficient to consider a plasma box of length L. This means that all
particles are started in the simulation uniformly distributed along the axis z with velocity
components given by (2). Periodic boundary conditions for the potential (¢z—g = ¢e—1)
are applied as well as for the particles, i.e. particles leaving the calculation region at
one side (x = 0 or x = L) are set back to the other side. The electric field E(z) (one-
dimensional in the z-direction) is determined by

_9¢
ox’

=T € @) - mi(a) (40)

0z? €,

E, = Vi

Since the assumed magnetic field has only a B,-component, the particles gyrate on the
(z,y)-plane.

In the case of a strong magnetic field the particles are tied to the magnetic field lines.
Their motion across B is restricted. Simulations have been performed for different values
of £ = p/Ap which is the ratio of the gyration radius p to the Debye length. The masses
and the temperatures of both species are taken equal, only the magnetic field B, = B
is changed. Fig.15 shows the potential distribution if a test charge of @, = 5 x 10%°
ions/m? (given as a surface charge) is immersed in the center of the calculation region.
The corresponding density distributions are shown in Fig.16. These are the results of a
simulation using the following parameters: L = 0.02 m, ny =104 m™3 T, =T, =2 €V,
me = m; = 1 amu (this choice of parameters serves simply as an example).

Charge neutrality in the analyzed plasma region is ensured in the simulation, i.e. the sum
of the positive field charges, represented by the particles of species 4, and the positive test
charge balance the negative field charges (species e). The dimension of the plasma L has
been changed in the simulations to keep the grid step Az always smaller than the Debye
length. According to the Courant-Friedrichs-Lewy criterion (see Sec. 2) the timestep At
has been changed as well. Further, a plasma which is disturbed at a certain time moment
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usually starts to oscillate. This behaviour is observed also in the modeling, so that the
presented results are obtained by averaging over time.

For p < Ap (i.e. £ < 1) the plasma can not shield the perturbing charge (Fig.15 and
Fig.16, the different values of B and ¢ are indicated in the figures). In this case, the
potential distribution is mainly defined by the test charge and the boundary conditions
and becomes similar to the potential distribution corresponding to a situation where only
the test charge @ is located in the center of the region (i.e. without plasma)

. Qsx/(2¢,) for 0<z < L/2
o(z) = { Q.L[1 — (25 — L)/I]/(4e,) for L/2<z<L (41)
For small values of £ < 1, i.e. strong magnetic field, the gyrating charged particles are
not able to overcome the magnetic field force and remain at their initial positions (Fig.16,
¢ = 0.2). Thus, the particles surrounding the test charge cannot balance it as they do in
the magnetic-field-free case (Fig.16, £ = c0).

On the other hand, for p > 10\p, the magnetic field affects only marginally the motion of
the charged particles and the potential distribution is almost equal to the magnetic-field-
free case (¢ = co) where the potential decays with the Debye length (here Ap = 7.4x 107
The next question to be addressed is what happens if the mass of one species is much
smaller than the mass of the other species, e.g. m. < m;. The lighter species is strongly
bound to the magnetic field lines in case of small &, but the heavier species might not
if its corresponding parameter &; is much larger (&;/€. > 10) under the same conditions
(npi, B). Since a compensation of the test charge is possible by acting of only one species,
the behaviour of the plasma is determined by the heavier particles, which are less affected
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by the magnetic field. These particles are able to shield the test charge (if & > 10) and
the same strong decay of the potential characterized by Ap is observed as in the case of
& = & > 10. A more detailed description of the shielding problem in magnetized plasmas
is given in [1].
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B Appendix: Scaling rules

Since the Debye length is the natural scaling length of the charge shielding problem, the
potential distributions do not change, for example, if the plasma density is varied but
the normalized system length L/Ap remains the same. The results of such calculations
similar to those described in Sec. A are shown in Fig.17. The only differences between
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the two curves, occuring at larger distances from the test charge (Fig.17), are caused by
statistical errors. Obviously, the electric field itself depends on ny;, but the product £-Ap
does not. Note, that the total number of charged particles is not equal for both cases,
only the normalized box length L/Ap is the same.

Keeping the plasma geometry (for example the width of the plasma region), the mass
and the charge of the plasma species unchanged the following scaling rules can be applied
by comparing two different sets of plasma parameters. The conditions

n;l:fn'npla Té,i:fn'Te,ia BI:\/f_TL'B7 (42)

(where f, is a constant factor) ensure the equality of X = Ap and p; = pe;. Thus, the
the potential and the electric field are related to each other according to

¢,:fn'¢7 EI:an (43)

Note, that it is not sufficient to satisfy only &, ; = &
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C Appendix: Dielectric properties

Using a PIC-model (Sec. (2)) the plasma is treated as a collection of charged particles
moving about in their own internal fields. In another approach a plasma can be described
as a dielectric medium by considering only gross macroscopic properties (such as the
dielectric constant) and not the particle motions themselves.

C.1 The ’plasma capacitor’

The two different treatments can be readily demonstrated by calculating the energy stored
in a simple capacitor. This quantity can be presented as
1e€e,S '
W=eW,=-—2-U? 44

o 2 d ( )
by using the dielectric constant € characterizing the dielectric behavior of the used filling.
V = Sd ist the volume enclosed by the capacitor plates with the area S and the distance
between them d. U is the applied voltage difference and W, denotes the stored energy
for the ’empty’ capacitor. In this sence, the dielectric constant € is defined as the ratio of
the electrostatic energy stored per unit volume for a capacitor with material to the same
capacitor with only a vacuum as a dielectric.

On the other hand, the stored energy of a capacitor is given in general by

1
W= / B4V (45)
Vv

but the use of Eq. (45) requires the knowledge of the electric field distribution E(z)
between the two capacitor plates. It is obtained in a simulation by using the same
geometry as described in Sec. A, but instead of the zero boundary condition for the
potential at the borders now a voltage U is applied which leads to ¢(z = 0) = —U/2 and
¢(z = L) = +U/2. Further, the capacitor is filled with the 'material’ plasma extended
over the region L/4 < x < 3L/4 between the plates, so that the plasma is kept away
from the boundaries in order to avoid the complex interaction at the plasma-electrode
interface.

The initital density distributions of particles e and ¢, which are chosen to have charges of
opposite sign but the same masses and temperatures, are shown in Fig.18 together with
the corresponding distributions of the electric field and potential. The assumed equalities
of m, = m; and T, = T; ensure the equality of the gyrations radii p. = p; preventing,
therefore, the occurence of the 'natural’ electric field (see Sec. (3)). As expected, the
electric field between the plates is constant |E| = U/d = 120V/0.04m = 3000 V/m
(Fig.18) and W = W,,. -
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Figure 18: Initial distributions of n;, n., ¢ and E between the two plates of the capacitor.
(parameters: U = 120 V, d = 0.04 m, ny = 10®* m™, B =02 T, T, = T;, = 10 €V,
mi=me=1amu, & =6 =2, p; = p.=1.6 mm )

In the simulation the motion of the particles is then followed in time and steady-state pro-
files are established after some gyration times. As seen in Fig.19 the density distributions
of the charged particles are smoothed at the plasma boundary due to the gyration and
are shifted towards the plates, i.e. the particles ¢+ with ¢ = +e are attracted towards the
negatively charged plate (z = 0) and the particles e with ¢ = —e towards the other plate
(x=L). The occurrence of this charge separation leads to a substantial distortion of the
potential distribution (Fig.19), the electric field is no longer constant and the integration
according to Eq.(45) gives W = 1.8 W,. So one can conclude, that the dielectric constant
of the ’plasma filling’ under the analyzed consitions is equal to € = 1.8. By varying the
magnetic field the main parameter in this analysis £ o< 1/B was changed. The results of
these calculations are listed in Table.2. As seen, for strong magnetic fields e — 1, i.e. a
highly magnetized plasma does not act as a dielectric.

Table 2: Dielectric constant € as [€]025]05 ] 1 [15] 2 |
a function of £ =& = .. [e]101]1.05]1.24[1.48]18]

It is important not to mix the two different aproaches, since as long as the motion of
particles in their own fields is considered only €, appears in the Poisson equation (5) and
not €e,.
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C.2 Time-varying electric field

Usually, the dielectric constant of a magnetized plasma is deduced by considering the
plasma reaction on a time-varying electric field. The effect of a slowly varying electric
field is the addition of the so called polarization drift velocity [8]

m OF

a=—=2 46
Upel qB? 0Ot (46)

where E and vy, are perpendicular to the magnetic field B, for example £ = Ey, vpo =
Upol @0d B = B,. Upy is in opposite direction for charges of opposite sign so that the
polarization current density in the z-direction is given by

(neme + nzml) 8Ez

'oz: 47
Tpol, B2 ot (47)

which is dominated by the ions. This current can now be combined with the term €,0E /0t
which appears on the right-hand side of Maxwell V x B equation yielding
OFE  neme+mnm; OF  OF

€o— = €€
0 O@t

MeMme 1 MM; 05 4
o T B o (48)

with the dielectric constant

e=1+ =G =14 Xt X (49)
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(usually m, < m; and € =~ 1 + £2).

In order to prove this relation several plasma simulations have been performed. For a
plasma without density gradients and with periodic boundary conditions the validity of
relation (49) could be verified.

But the comparison of (49) with the results listed in Table 2 shows a clear disagreement.
This means, that at a plasma boundary with strong density gradients (as used in the
calculations of the "plasma capacitor’) the relation (49) cannot be used, since in this case
the gyration radii are comparable to the density decay length and the derivation leading
to (46,49) is not longer valid. Further, for a correct comparison the capacitor should be
entirely filled with plasma.
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