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Abstract. Parallel viscosity (B -V - IL;) as a function of radial electric field E, (or,
equivalently, non equilibrium poloidal rotation) in a tokamak is studied using the 5D (3D
in configuration space and 2D in velocity space) Monte Carlo code ASCOT. It is shown
that (B -V -II,) changes sign when the Mach number M, = |E, /v;By| is of the order of
unity. Here, v; is the thermal velocity and By is the poloidal magnetic field.

Introduction. In the standard neoclassical theory of tokamaks, the neoclassical
transport is automatically ambipolar and independent of the radial electric field E,. As
discussed in Ref.[1], this follows from momentum conservation and is valid only in the
absence of momentum sources. In the presence of forces, such as an externally applied
radial electric field [2] or torque by the orbit losses [3], neoclassical transport depends on
E,, and various expressions for the neoclassical ion flux and parallel viscosity have been
derived [4, 5]. When studying the L-H transition theory in Ref. [3], it was important
to expand the validity of the expression for the parallel viscosity to the region where
M, > 1. Here, M, = |E, /v;By| is the Mach number, By is the poloidal magnetic field, and
v, = (2kgT/m)'/? is the thermal velocity, where m is the ion mass and T the zeroth order
temperature (no poloidal variation). An expression for (B - V - II;) was derived assuming
an incompressible plasma flow and poloidally constant density (B is the magnetic field,
IT; is the viscosity tensor, and ( ) indicates a flux surface average). It was found that
the viscosity has a maximum at M, ~ 1 and decays to zero without changing sign when
M, increases. Similar result was obtained for (B - V - II;/n) in Ref. [6], where the effect
of poloidal variation of density n and compressibility were included. Here, the behavior
of (B-V -II;) was not investigated. Because (B -V -IL) is a frequently used quantity
in the literature and appears in a majority of formulations of rotation dynamics and
momentum balance in tokamak theory, the study of (B -V -II,;) including the poloidal
density variation is of importance. We show numerically that the standard expression for
the parallel viscosity changes sign when the Mach number increases, provided that the
variation of density in poloidal angle is taken into account consistently.

Model. The standard expression for the parallel viscosity in terms of pressure aniso-

tropy is

B-VB>’ (1)
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where p and p, are the parallel and perpendicular components of the pressure, respec-
tively. Various expressions for the pressure components and pressure anisotropy exist in
the literature. The analytic theory presented in Refs. [4, 7] includes poloidal variation
of the electrostatic field, density and temperature, and is based on full velocity integrals.
To simplify the problem, we here neglect the radial density and temperature gradients
as well as the poloidal electric field. Thus we can write the density as n = ng + n1(6),
where 6 is the poloidal angle.

In the numerical simulation, the 5D Monte Carlo code ASCOT [8] is used. The
guiding-centre orbits of the ions are followed in a tokamak geometry, and a binary collision
model is used to model ion-ion collisions. The collision operator conserves the number of
particles, the total momentum, and the total energy, quasi-locally. The parallel viscosity
from Eq.(1) is calculated directly from the code in terms of the statistically measured
pressure components p = [ m(v — u)*fd*v, and p, = [(m|v, —u,[?/2)fd’v. Here,
v and v, are the parallel and perpendicular velocity components, respectively, and w
and u are the corresponding flow velocities. All the flow velocity components, as well
as p and p,, are calculated from the code on a (r,0)-grid as time and ensemble averages
of particle velocities. Using the momentum conserving collision operator with a fixed
radial electric field and excluding other forces generates a test particle flow, U}, parallel
to the magnetic field to compensate the poloidal rotation. This mean flow velocity,
Uy = [u)(0)(R/Ro)fdb, is driven by viscous processes and its build up occurs on a
collisional timescale. Thus, in order to compare the results to analytic estimates obtained
for U = 0, the measurement has to be done before a significant mean parallel velocity
has developed.

Results. Parameters similar to those of ASDEX Upgrade, @ = 0.5 m, I, = 1 MA
and B, = —2.5 T, are used for the minor radius, plasma current, and toroidal magnetic
field, respectively. Since the analytic results were derived in the large aspect ratio limit
of a quasitoroidal configuration, a larger value (Ry = 3 m) for the major radius and
co-centric circular magnetic surfaces on a poloidal cross-section are chosen.

As an example of the importance of convection and compressibility in the calculation
of total parallel viscosity, in Fig. 1 we compare the numerically obtained total parallel
viscosity, i.e., the rate of change of the flux surface averaged parallel momentum density
dotted with B, to the standard parallel viscosity < B - V - II; > calculated numerically

from Eq.(1) and analytically from Ref.[3]. Here, the density is n = 5 x 10" m™3

, and
temperatures a) 100 eV and b) 200 eV correspond to the collisionalities v,; = 46 and
12, respectively, the first one being in the Pfirsch-Schliiter regime, and the latter in the
plateau regime. Both in the Pfirsch-Schliiter regime and in the plateau regime, for large
poloidal Mach numbers, the standard parallel viscosity < B - V - II; > has a different
sign than the total parallel viscosity, i.e., its effect is to resist the growth of the parallel
rotation which is driven by the other terms. The total viscosity remains positive definite,

which leads to the decay of poloidal rotation. Only when the poloidal density variation is

1498



27th EPSCCFPF 2000; J.A. Heikkinen et al. : Numerical Smulation of Particle Flux in a Poloidally Rotating ...

neglected, one obtains a positive definite result for < B -V -I1; > irrespective of the value
of M,. For a small poloidal rotation, the density perturbation is insignificant and the
standard neoclassical result is found with all methods. The effect of a poloidal electric
field has also been tested by running the ASCOT code by solving the poloidal electric
field from the assumption of quasi-neutrality and Boltzmann distribution of the electrons
on a magnetic surface. Again, the results were not changed qualitatively.

Although, according to the simulations, both convection and compression strongly
affect the parallel momentum balance for large values of M, the effect of convection,
in the case of zero radial current, can be shown to be weak in the poloidal part of the
momentum equation. In Fig. 1(c), the same comparison is done for the low collisionality
case, i.e., for a temperature 7' = 300 eV also with a density n = 2 x 10'® m™3, corre-
sponding to a collisionality v,; = 2.5. Again, we find that the parallel viscosity from the
code changes sign for large poloidal Mach numbers but, somewhat surprisingly, a fairly
good agreement can be found between the Shaing’s expression for the standard parallel
viscosity and the ASCOT result for the total parallel viscosity.

Conclusions. In the present numerical study of parallel viscosity, it was found that
the standard parallel viscosity changes sign when the Mach number is of the order of
unity. However, the present ASCOT simulations show that the total viscosity, including
the convection effect, remains positive definite for arbitrary M,, and thus leads to the
decay of poloidal rotation according to the known neoclassical expectation. Furthermore,
one should note that the qualitative behavior of the effective viscosity (B - V - IT;/n) used
in Ref. [6] is different from the behavior of the standard parallel viscosity (B -V - IT;) for
large Mach numbers. The latter expression is more common in the theoretical analysis,
although the effective viscosity is the quantity what is observed in experiments, when

rotation velocities are measured.
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Figure 1: < B-V -II; > as a function of the radial electric field for temperatures a) 100
eV and b) 200 eV, with the density n = 5 x 10*® m™3 and ¢) for low collisionality case
with T = 300 eV and n = 2 x 10" m™2 calculated with ASCOT (filled squares) and from
the expression of Shaing (filled circles). The total parallel viscosity including convection
is also shown (empty circles).
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