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Introduction. Modeling the dissipative equilibrium state of a toroidally confined, axi-
symmetric plasma as that of a compressible Newtonian fluid with scalar viscosity, resis-
tivity and thermal conductivity we derive a closed set of partial differential equations for
eight scalar functions describing the magnetohydrodynamic steady state. Implicitly tak-
ing into account an equation of state and V-B = 0, these functions embody the pressure
p, the temperature T, the electric potential ®, the velocity stream function Sy forced
by the expansion rate V-v # 0 and the poloidal fluxes (¥, ¥y,) and toroidal circulations
(C, Cyx) of magnetic induction B and mass velocity v. This set follows from an extended
analysis [1] of stationary nonideal MHD equations for momentum balance including iner-
tia, Ohm’s law and the conservation of mass and energy. The resultant Poisson problems
involve Laplace (A) and Stokes (A* = R?V-(R™2V)) operators: A acting on p, T, Sy,
and ®, and A* on ¥, ¥, C and Cy,.

We give a conclusive derivation of the equations and discuss suitable boundary conditions
to be imposed. Also an algorithm for their efficient solution is described and results of
its application are presented.

MHD Background. Momentum balance and Ohm’s law are assumed to be of the form

pv-Vv =V xBxB/u, — Vp — V-II (1)
vxB=V®+UVé+nVxB/pu, (2)

® is the electric potential, U the loop voltage of an externally applied toroidal electric
field. II is the deviatoric part of the pressure tensor with

1 a1
I~ —2uD D:§{Vv+(Vv)}—§IV-V (3)

where p is the scalar viscosity and D the deformation tensor for a compressible fluid.

The Effect of Scaling Dissipation. For a discussion of the effects of scaling the dy-
namic viscosity g and plasma resistivity n we temporarily nondimensionalize the equa-
tions (1) and (2) by introduction of a macroscopic scale length a, and characteristic
values for mass density, pressure and flow velocity. Then, with the viscous and resistive
Lundquist numbers

L, = a(popo)?/(uM), L, = prea(po/po)/*M/n (4)

1/2

where M = v, /(p./po)"
be written in dimensionless form as

is the Mach number, momentum balance and Ohm’s law can

L,(Mpv-Vv = VxBxB+ Vp)+2V-D =0 (5)
L,(V®—vxB)+VxB=0 (6)
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The limit £, = £, = oo describes ideal, in general compressible flow equilibria. Here,
for poloidal Mach numbers M, ~ v,/cs < B,/B (cs — speed of sound), (5) leads to an
elliptic boundary value problem for the poloidal magnetic flux ¥ [2], i.e. for the mag-
netic induction, whereas (6) determines the class of solution compatible velocity fields
algebraically. On the contrary, in the extreme limit £, = £, = 0, equation (5) must be
considered as responsible differential equation for v and (6) as determining B.

In this paper we concentrate on the case £, < oo and £, < oo both sufficiently low, so
that the described reversal in the determination directions of magnetic induction and
velocity field takes place and boundary value problems are obtained for B as well as for
V.

The Complete Set of Equations. Applying the Helmholtz theorem for the decom-
position of the velocity v into its irrotational and divergence-free parts and using flux
representations for the divergence-free part of v and for B we may write

V = VSy + VU, x Vé + Cy Vb (7)
B=VUxVé+ (Ve (8)

where ¢ = ¢/(2m) in right-handed coordinates (R, ¢,z). Sy is the velocity stream func-
tion Sy forced by the rate of expansion V-v # 0. Let us consider the conservation laws
for mass and energy and the equations (1) and (2) with the understanding that the
representations (7) and (8) have been inserted. With k being the thermal conductivity
and j = V x B/, the current density, conservation of mass and energy result in the Pois-
son equations (9) and (16) for Sy and T, where Qy and Ey are given mass and energy
sources. As to the remaining momentum balance and Ohm’s law, we refer to the table

Projection | Equation of Motion | Ohm’s Law
A Ap AD
V- AT, AT

V¢ -Vx A*A*Ty, A*C,,

and apply the operations V? =: A; V¢- and V¢ -Vx to (1) and (2). Focussing
attention upon the terms containing Vp and V&, we see that the only operation not
removing Vp from (1) and V& from (2) is A. The resulting equations (containing Ap
and A®) appear below as the Poisson problems (14) and (15).

The second and third operations reflect the requirement that the toroidal and poloidal
components of (1) and (2) must balance. Altogether, the following eight equations are
obtained for Sy, ¥, C,Cy, Uy, p, ® and T:

1 L d(p, Uy)

i i |
ASy = —~Vp-VSy + ~( .
b p prV 5w+ /)Q“ i 2rpR O(R,z) )
l ()(qj,qj\q) - }
A = U T Y8,V 1
/ . { TR o) (10)
RGO/ ) _ACRED o
A*C = —Vi-VC — , . JOAS, (11
A0 = =NV = S T AR IRy T reCAS (1)
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'l ()(q}’ ({) VSu-VCy

AT O = ~27uR O(R,2) e R (12)
awy = R AR ACROY o o
pATA*, = 217/’0{ IR, ) + IR 2) Vu-VCy (13)

. 1 0(/),\111\4)} J(ASy, 1) o , 5
CiiQu + —=—+-—F7 —2rR——7-—+ “Vou-V(Cy/R*
0 Qut g | - arR =l g RIS,V (C /R

1 9 ~ 2
—Ap = ———{(A"W)? + VI-V(A"W) + CA*C + [VC[*} + 2V (V-(uD))  (14)
4m2R2p,

_ 1 A K 1A K 7 7 (" 7 7 (Y 1 d((‘“ ]///u’o B SM)

AP = 4WR:((‘”MA ¥ — CA*U,, + VU.VCy — VU,,-VC) + SR (R (15)
kT k . ,
RAT = —Vr-VT + —Qu + ~pv- VT —0j* + pASy — Qo (16)
m(y—1) m(y—1)

where A*U = R*V-(R™?VVU) and (da,d3)/0(R,z) = 2aR(VEXxVa)-Vé. The terms

describing the nonlinear effects of plasma inertia have been omitted here for brevity.

Boundary Conditions. We use the nota-
tions 0F/0s = (t-VF)|0D and 0F/on =
(n-VF) |9D for any of the functions F un-
der consideration, where D is some two-
dimensional domain in a poloidal plane,
n is the outward pointing normal on dD,
s the poloidal arclength along dD and t
= 2nRV¢ x n the tangent vector in clock-
wise direction. In discussing (9) for given
p and Qy boundary conditions for Sy may
be of Neumann or Dirichlet type. They

are related to the normal and tangent com-

ponents of the velocity on dD by

Vn = 0Sy/0n + (1/(27R))OWy /Os Figure 1: Left: Contour plot of the expansion

! rate Sy as solution of (9). Right: Field lines of

vi = 0Sy/0s — (1/(27R))0W/On poloidal flow with lower and upper stagnation
points.

The fourth order operator appearing in (13) due to V¢ -Vx applied to (1) has the form
A*A*Wy,. Splitting the latter into two of second order by introduction of the toroidal
circulation of the vorticity C, as an auxiliary variable

Vxv=VCuxVo+Cy,Ve Cy = RV x VU xVh = —-A*T,, (17)

This way the boundary conditions in connection with (13) are equivalent to such on
Cy when solving (13), and others on ¥, when solving A*W¥,, 4+ Cy, = 0. With Dirichlet
conditions on both S, and W, the normal derivatives of the resultant solutions can be
calculated, and, using the expressions given above, also v, and v;. Conversely, when the
latter are given, these expressions can be used for getting Dirichlet conditions on Sy and
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Uy in terms of v, and v¢. Fig.1 illustrates a solution of (9), where for some mass den-
sity, mass source and vortex distribution Sy|0D was determined such that the resulting
flow satisfies the no-slip boundary condition vi = 0. The boundary conditions on the
remaining quantities C, Cy, Cy and ¥ are usually of Dirichlet type. Except for equation
(10) which we consider as a free-boundary value problem for the poloidal magnetic flux
U describing a magnetically confined plasma in an external vacuum magnetic field, we
assume all conditions to be imposed at a common control surface dD.

Solution of the Partial Differential Equations. For the efficient solution of the second
order problems for both Neumann and Dirichlet boundary conditions a method was

developed which generalizes an approach given in [3]. Let the problem to solve be
Ad = w(x), ®|ID = ®(s) , where s is the arc length on 9D, and w and ®(s) given. It is
solved by considering two simpler problems with homogeneous boundary conditions on
an auxiliary region R D D:

Ady = w(x), ¢5|0R =0, Ad =w'(x), P|OR =10 (18)

where w* is a suitable extension of w into R which, on the basis of the solution &g,
is constructed such that ®|9dD has the desired value. The Poisson problems with the
Stokes operator A* as well as Neumann boundary conditions have been handled in a
similar manner.

The solution Sy presented in Fig.1 (left) was obtained by embedding D in a rectangular
region R and then solving (18) using a cyclic reduction algorithm. Results obtained
in this way have been compared with such from applying the multigrid methods of
Mitchell [4] and Bank [5]. They have been found to be in good agreement for comparable
region discretizations, where the embedding algorithm has turned out to be much faster.

Conclusions. Dissipative MHD equilibrium states with compressible fluid flow can be
described by a group of partial differential equations, which for sufficiently low viscous
and resistive Lundquist numbers requires the solution of certain number of elliptic Pois-
son problems. Unlike ideal equilibria there is a full set of prescribable physical boundary
conditions and differently from steady MHD states with incompressible Navier-Stokes
flow the vorticity-stream function problem of hydrodynamics does not exist. Depending
on the competition between the source and the vortical flow terms in the mass conser-
vation equation (9) complex poloidal flow patterns with source, saddle and stagnation
points are observed (Fig.1), which separate confined from unconfined regions of the
plasma.
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