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Abstract

An equation of shear Alfvén eigenmodes (AE) for Helias configurations is
derived. The metric tensor coefficients, which are contained in this equa-
tion, are calculated analytically. Two numerical codes are developed: the
first one, COBRA (COntinuum BRAnches), is intended for the investiga-
tion of the structure of Alfvén continuum; the second, BOA (Branches Of
Alfvén modes), solves the eigenvalue problem. The family of possible gaps
in Alfvén continuum of a Helias configuration is obtained. It is predicted
that there exist gaps which arise due to or are strongly affected by the
variation of the shape of the plasma cross section along the large azimuth
of the torus. In such gaps, discrete eigenmodes, namely, helicity-induced
eigenmodes (HAEy;) and mirror-induced eigenmodes (MAE) are found. It
is shown that the combined action of the weak magnetic shear and the low
plasma density at the edge may suppress the AEs with a wide region of
localization. In addition to AEs residing in the continuum gaps, global AEs

(GAE) are studied.




I. INTRODUCTION

It is known that shear Alfvén waves are weakly damped in low-3 Maxwellian plasma
(8 is the ratio of the plasma pressure to the magnetic field pressure) and, therefore, can
be destabilized in the presence of a rather small population of energetic ions, in particu-
lar, fusion-produced alpha particles. An Alfvén instability of a fusion plasma caused by
alpha particles was first studied by Belikov, Kolesnichenko and Oraevskij as long ago as
1968 [1]. The instability considered in Ref. [1] was associated with the non-equilibrium
velocity distribution of alphas. Later, in 1975, Mikhailovskij has considered an Alfvén
instability induced by the spatial inhomogeneity of alpha particle distribution [2]. Both
mentioned works were based on the local approach, which enabled to evaluate the growth
rate of the instabilities. However, the local approach is not sufficient because it does not
give an answer to the question what is the spatial structure of the modes and does not
allow to take into account all mechanisms of the wave damping involved; furthermore, it
is not clear from the local analysis whether a mode exists at all in a real inhomogeneous
plasma. Thus, a solution of an eigenvalue problem is required for reliable predictions.
The study of Alfvén instabilities with employing the eigenmode analysis was started by
Rosenbluth and Rutherford in 1975 [3]. Research in this way resulted in the prediction of
the instability of global Alfvén eigenmodes (GAE) in tokamaks [4,5] and a number of other
instabilities where destabilized modes were associated with the break of the poloidal sym-
metry of the magnetic configuration. In particular, the instabilities of toroidicity-induced
Alfvén eigenmodes (TAE) [6], ellipticity-induced and noncircular triangularity-induced
Alfvén eigenmodes (EAE and NAE) [7] were predicted. The mentioned eigenmodes have
frequencies that do not intersect the Alfvén continuous spectrum (which is determined
by the equation w = wa(r) = |kj(r)|va(r) with & the longitudinal wave number, v, the
Alfvén velocity, and r the flux surface radius), i.e., lie either in gaps of the continuum
or below the continuum, which minimizes their damping. The existence of the gaps for
TAE modes was shown earlier in Ref. [8], and for EAE modes, in Ref. [9]. An additional

gap containing beta-induced eigenmodes (BAE) is associated with finite 3 and arises due




to coupling at low frequencies between shear Alfvén modes and compressible acoustic
waves [10,11]. Taking into account the effects of non-ideal MHD (finite Larmor radius,
finite electron mass correction, viscosity) resulted in the discovery of kinetic Alfvén waves
with the local frequencies determined by the Alfvén continuum (KAE) [12], which can be
coupled due to toroidicity, producing kinetic toroidal eigenmodes (KTAE) [13] with the
frequencies inside the Alfvén continuum (just above the top edge of the TAE gap). When
the energy content of the energetic particles is comparable to that of the bulk plasma,
energetic particle continuum modes (EPM) [14] also known as resonant toroidal Alfvén
modes (RTAE) [15] can arise, with the frequencies being determined by the energetic
particles and close to their transit, bounce and precession frequencies. It was found that
destabilized AEs can result in severe loss of alpha particles even when the amplitudes
of the perturbed magnetic field are very low, being about 5 x 10™* of the equilibrium
magnetic field [16,17].

These theoretical predictions stimulated the experimental study of Alfvén instabili-
ties. Experiments on tokamaks have shown that the destabilization of Alfvén eigenmodes
(AE) may result in the loss of a considerable fraction of energetic ions (see, e.g., an
overview [18]), which, in turn, has led to further development of the theory, including
nonlinear studies, and codes for numerical simulations.

Alfvén instabilities in stellarator plasmas were also investigated both experimentally
and theoretically, see, e.g., Refs. [19-23]. However, they are studied much less than those
in tokamaks in spite of the fact that there must exist more variety of AE modes in the
helical devices because the symmetry of the magnetic configuration in these systems is
broken in both poloidal and toroidal directions.

Nowadays, AE modes are a subject of extensive studies (see, e.g., a recent conference
report [24]).

The purpose of this work is to investigate the shear Alfvén spectrum and the spatial
structure of AEs in Helias (HELIcal Advanced Stellarator) configurations of Wendelstein
line, first of all, in a Helias reactor [25-27]. A related problem was addressed in recent

publications by C. Niithrenberg [28,29], where eigenmodes in the stellarators Wendelstein
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7-X (W7-X) [30,26] and Wendelstein 7-AS (W7-AS) [31] were studied. In Refs. [28,29] the
analysis was based on the use of the CAS3D3 stability code [32,28]. In particular, it was
found in Ref. [28] that in the W7-X high-¢ high-mirror variant, which has many similar
features with the Helias reactor, there exist spectral gaps and gap modes in Alfvén and
sound continuum branches, exhibiting strong interaction of sound and Alfvén branches
in the lower part of the stable spectrum (note that in Ref. [28] the plasma density was
assumed to be homogeneous). In the present work we employ another approach, deriving
an equation which describes only shear Alfvén modes (in contrast to Refs. [28,29], which
treat the full ideal MHD equations) and then use the metric tensor coefficients found
analytically. The procedure of numerical investigation of AEs with the use of our equations
is much simpler and less time-consuming than that of Refs. [28,29]. On the other hand,
one can expect that the results based on the derived equations are sufficiently exact to
predict features of AE modes, at least, in the high-frequency part of the spectrum, where
the effect of the sound spectrum is negligible.

The structure of the work is the following. In Sec. II, a basic equation for the shear AE
modes is derived in flux coordinates in the framework of ideal MHD. In Sec III, possible
gaps in the Alfvén continuum and corresponding kinds of AEs are studied, and their
characteristic frequencies are determined. The width of the gaps in the approximation of
weak mode coupling is analyzed in Sec. IV. Also, the effect of multiple wave interaction
on the gaps is studied perturbatively in this section. In Sec. V the general pattern of
the Alfvén continuum in a Helias is studied numerically without using the assumption
that the coupling parameter is small. Equations for AEs, which describe helicity-induced
and mirror-induced AEs, are solved numerically in Sec. VI. In Sec. VII, GAE modes are
considered. Sec. VIII summarizes the obtained results and contains conclusions following
from the work. In Appendix A, the metric tensor components used in our studies of AEs
are calculated. Appendix B contains the substantiation of the equation of the Alfvén
continuum, on which the calculation in Sec. V is based.

This work represents the first part of the authors’ investigation of the frequency spec-

trum and the structure of the AE modes.




II. BASIC EQUATION FOR SHEAR ALFVEN EIGENMODES IN HELIAS

CONFIGURATIONS

—
~

In order to derive an equation describing AEs, we proceed from the equation V-5 = 0,
where j is the plasma current density associated with the Alfvén perturbations. This

equation can be written as follows:
V(o) + V-3, =0, (1)

where b = B, /By, B is the magnetic field; the subscript “0” refers to equilibrium quanti-
ties, whereas tilde refers to perturbed quantities; the subscripts L and || label the vector
components that are perpendicular and parallel to é[), respectively. Using the ideal MHD
approximation, we assume the longitudinal component of the perturbed electric field to
vanish, E‘” = 0. In addition, as we are interested in shear Alfvén waves, we take éll =0.
This enables us to express the perturbed electromagnetic field through the electric poten-

tial as follows (we suppose that the perturbed quantities vary in time as exp(—iwt) and

take A, — 0):
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I
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=W ¥ 4D, (2)
where

~ ¢

A=—-V|9, (3)

V,=V- SV”, V)= b- V, A is the longitudinal component of the vector potential (the
subscript || is omitted).
Now we find the perturbed currents, 3” and 7, in terms of ®. Using the equation

VxB= 47j /e, we obtain:

E 47['—_'

47 ~ 1 z > 1
=—V- (ABoJC - BOVJ_A) -+ E?Ju: (4)

?J” — BO
where K = (5-V)b = | By| 2V | (B2/2 + 47p,) is the magnetic field line curvature, p is the

plasma pressure. In order to find the perpendicular current, we proceed from a linearized
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equation of the plasma motion in the ideal MHD, where we neglect the perturbed plasma
pressure. Assuming that the equilibrium velocity of the plasma motion vanishes, we write

this equation as follows:
—iwepoti = jo X B+ x By, (5)

where p is the mass density. Then, using the Ohm law, E +@xB /c =10, we find:

-

& iwc? B
? i B 6
J1 4mivl + Joj| Be’ (6)

where vy = By/\/4mpo. Substituting Egs. (4)-(6) to Eq. (1), we obtain:

1 o = e 4 - =
BoVirpm [v - (ABoK - BoV.LA) + o, - B]

A1 =
=4l

+iwV - (%VJ_&)) + . VJ_M =0. (7)
U4 C

By

Note that the eigenfrequencies of Eq. (7) are real. To demonstrate this, we will consider
the case of vanishing equilibrium currents (which corresponds to Helias configurations).

In addition, we take py = 0, which enables us to write

~

. = A
ABK — ByV A= —|BOIQVL§-. (8)
0

Then Eq. (7) is reduced to

where
. b ’ v
M=V {BOV [BOVL (Bo)]}’ (10)

N=V. (lgvl) ; (11)

The operators M and N are self-adjoint, M being positive semi-definite, and N being
negative definite under fixed boundary conditions, which can be seen from the following

equations:




- . d
(%, 318) f TN1ddPe = f B2V, (VL!;"I’) il (VBL) &, (12)
0 0

(¥, ¥3) / lep V., &, (13)

where the integrals are taken over the plasma volume, V¥ is an arbitrary function vanishing
at the plasma boundary. Therefore, we can conclude that the eigenfrequencies of Eq. (9)

are real:

&, M&
w? = —(—,,’—Ai) g (14)
(2, NT)
For further treatment we have to specify the equilibrium plasma configuration. We

consider a Helias configuration with the magnetic field strength given by [33):

By = B[1+ (1) cos No + €, () cos (0 — N@) + () cos 8 + o(¥)] (15)

where 9, 0, and ¢ are the magnetic flux coordinates [34,35] (v is the toroidal magnetic
flux, 6 and ¢ are the poloidal and toroidal angles, respectively); €., €, €, and € are
small compared to unity, €, > 0, ¢ > 0, €, < 0, ¢ < 0; N is the number of periods of
the magnetic field. The second, third, and fourth terms in Eq. (15) represent the mirror,
helical, and toroidal harmonics of the magnetic field, the mirror harmonic being dominant
in the plasma core. The last term in Eq. (15) is associated with the finite plasma pressure.
The magnitudes and the radial profile shapes of €,,, €, €; in a plasma with finite 3 are a
little bit different from those in vacuum [36,37].

In the magnetic flux coordinates [34,35] the contravariant and covariant representa-

tions of the equilibrium magnetic field take the form

=V x VO+.Vep x Vi, (16)

By = By (1,0, $) V) + Bo(v) V8 + By(¥)V, (17)

where By, By, B, are the covariant components of the magnetic field, and ¢ is the ro-

tational transform. We restrict ourselves to a simple model of the equilibrium, which,
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however, is sufficient for studying Alfvén eigenmodes in the optimized stellarators of the
Wendelstein type. Namely, we take By = 0 because By is essentially the toroidal plasma
current. In addition, we neglect the effect of the plasma pressure on the equilibrium

by taking By = 0 and By = const and neglecting €y. Then we can write the following

relationships:
h h . - 0 0
B%J = =t = —, =—L, L=1—+— 18
J = const, b =1b"t Ry Vi Ry 59 T 3¢’ (18)
where h = 14¢,, cos No+e;, cos (Né — 0)+e€; cos 8, J is the Jacobian (J ! = V¢p-VOxV ),

R, is the large radius of the torus defined by By = BRy.
Using Eq. (18) and approximating the magnetic field line curvature as K=B"V,B ;
we obtain the eigenmode equation as follows (below tilde over perturbed quantities is

omitted):

D o s 9 (Vid)
Ve (ViLe) + VR A ="

(19)

where 27 = 1, 8, ¢; the subscripts and superscripts j label the co- and contravariant vector
components, 74 = B/(4mp) (note that here and below we imply summation over repeating
indices). Equation (19) can be presented in another form by expanding the perturbation

® in a Fourier series,
o = Z D, (V) exp(imb — ing — iwt), (20)

where m and n are the poloidal and toroidal mode numbers, respectively. Then, using

the fact that

(V) =3 (giji. — b"ik”h) B, n exp(iml — ing — iwt), (21)

0 ozI

where kj = (m¢ — n)/Ry is the longitudinal wavenumber, and substituting Eq. (21) to
Eq. (19), we get:

. 0 7 1 ij 0 . 7
)3 [ pu (9 I s thn%)

_szO_B_ L (zg bé— + hb’k”)} D, n exp(imb — ing — iwt) = 0. (22)
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Equations (19), (22) describe all shear Alfvén modes, but they neglect the influence
of the sound spectrum, which may be of importance in the low frequency range. These
equations are three-dimensional. In particular, in Eq. (22) the dependence on # and
¢ arises not only because of Fourier harmonics of B but also from the metric tensor
coefficients. However, for the most part, the O(e) terms weakly affect the Alfvén waves,
where € denotes both normalized Fourier harmonics in Eq. (15) and the corresponding
terms in the metric tensor component g¥¥, see Sec. III. The exception are those terms
in the eigenmode equation which involve 9?®/8%? because the coefficient of the second
derivative of @, as will be seen later, vanishes when w = kjv4(¥) and € = 0. Assuming
€ to be small, we reduce Eq. (22) to a set of weakly coupled one-dimensional equations.
With this purpose we use the expressions for the metric tensor components derived in
Appendix A, Egs. (A39)-(A44). The estimates of the magnitudes of the components
given by Eqgs. (A51) and (A52) show that the terms including g¥?, g%, and ¢?? in Eq. (22)
are R3/r? (r is the radial flux coordinate defined by the equation ¥ = Br?/2) times less
than those including ¢%¥, ¢%?, and ¢?. In our analysis, we neglect these terms and
retain O(e) contributions only in the g¥¥ component, which enters the terms involving
the second-order radial derivative of the wave function. Then, using Eqs. (A39)-(A44),

we write:

9" = 2p8Bhy, ¢" =0B/(2) ¢*' = g" = g" ~ g% 0,

hg =14 ") cos (uf — vN @), (23)
uv
B=Bh, h=1+Y €% cos(uf —vNg), (24)
TR%
where
e =¢n, &Y =e, 6%0) = €, (25)

i and v are integers, dg = do(k), k is the elongation of the plasma cross section, the
dependence of § on « and €*) will be specified later (in Sec. III). Due to these relations,

Eq. (22) can be presented as follows (d is assumed to be constant):
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2.0, {T o [( ;’—;) (1+ &) cos(uf — vNg))

m,n p,v

k
(uv) W N (wv) ™I _
+ dep U,24 cos (uf — vN ) — ieg o (vN — pt) sin (uf — vN¢) 3

M [(kﬁ i 3) (’;2 - 22) s %(rkh)’] } &, exp(iml — ing — iwt) = 0, (26)

r2

where primes denote radial derivatives, d/dr. We neglect the terms including the radial

derivative of k| since, as one can show, they are smaller by a factor of r?/RZ than the term
kifm?/r* if the radial variation of the rotational transform is weak, ¢(r) = to + t2(r/Ro)?,

which was assumed during the derivation of the metric tensor in Appendix A. Then,

proceeding to a new wave function, £ = ®/r, we transform Eq. (26) into the following

equation:

S5 {2 (5 -#) 0 4o cos o - vy

mn p,

2
- 46%‘”);)—% cos (uf — vNo¢) + ieg"”)z—ll(uN — ) sin (uf — VN¢)] Bﬂr

2 2
+ lr (;}—% — kﬁ) (1 — m2) + 72 (%) J} Epnexp(imf — ing — iwt) = 0. (27)

Equation (27) yields the infinite set of second-order one-dimensional differential equations

for the wave amplitudes E,, ,:

0 5 fw? )
Z {a,r ( - km,‘n) r + Qm,nEm

71
a w 6(’“’) ( v) 6(#”) aE ST
5 3 w e(w) i) ) g i
bkl _ 9l _kmn S g m—u,n—v —0. 8
o [vA ( 2 ‘B nkm—pn—yN 2 - 0, (28)
where k5 = kj(m,n),
w? o, 2 NCAY
Qma=T f)—g"“km,n (l—m)—l-r 52 ) - (29)
A A

The coupling due to helicity, toroidicity, etc. may involve sets of modes with different
mode numbers, in which case the sets are independent, i.e., one can consider independently
pairs of equations coupled because of the mirror modulation of the magnetic field, the
helicity, etc. However, this procedure is valid only when ¢, is sufficiently small. Otherwise,

a more complicated analysis is required to study AEs.
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III. KINDS OF ALFVEN EIGENMODES IN HELIAS CONFIGURATIONS.

CHARACTERISTIC FREQUENCIES.

One can expect that the presence of several Fourier harmonics in the magnetic field
strength of the Helias configurations and the strong non-circularity of the plasma cross-
section, which varies along the large azimuth of the torus, will result in several gaps in
the Alfvén continuum, where discrete modes can reside.

In this section we clarify what types of gaps and AEs are possible in a Helias. To
do it, we assume that the Fourier harmonics of the magnetic field strength and eg‘“’) are
so small that various kinds of AEs can be considered independently. In this case, the
gaps in the Alfvén continuum arise in the vicinity of the local Alfvén wave frequencies,
w(r) = |kj|va, at which the frequencies of two modes with different mode numbers would
coincide [wmn(Tv) = Winipntvn (r4), Where 7, is determined by the latter equation] if €,
i.e, the factor providing the coupling, were absent. In the presence of the coupling factor,
the branches wy,»(7) and w4y n4vn(r) unite above and below w(r,) in the vicinity of 7,
producing a gap with the width of the order of €#*). These frequencies and the charac-
teristic magnitudes of the rotational transform ¢, associated with the Fourier harmonics

in Eq. (15) are as follows (we consider w > 0):

miln . B0A - T for TAE 30
wm,n 2R0 3 l’* m + 1/2 or B 3 ( )
Nv L n+ N/2
m+1,n+N Ax *
] et 1 —_—— = * = — HAE . 31
“man 2R, ( N) T B iy 2or HAE (31)
Nugy, n+ N/2
ymntN _ 1V UAx == T B A 32
Wm 2Ry’ Ly - or MAE, (32)

where the subscripts and superscripts at w shows the mode numbers of the coupled modes,
V4« = v4(ry). The first of these equations determines the characteristic frequency of the
well-known toroidicity-induced Alfvén eigenmodes (TAE). The second one determines
the frequency of the helicity-induced Alfvén eigenmodes arising due to the presence of

egl) = €. We refer to this mode as HAE,;, where the first and second subscripts show

il




the magnitude of y and v, respectively. At last, Eq. (32) is relevant to mirror-induced
Alfvén eigenmodes (MAE) associated with the presence of €.

In order to find other kinds of AEs, we analyze the effects of the rotation and varying
elongation of the plasma cross section on the mode coupling. With this purpose, we have
to consider the metric tensor component g¥¥, which is contained in the coefficient at

02® /00, Using Eqgs. (A39), (A45), we write:

g% = 2Bo(4){0(¢) + A(¢) cos[20 — 260(¢)]}, (33)

where By(¢) = B[l + €, cos(N¢)] is the magnetic field at the magnetic axis,

KO +AB) o K(9) — k()
O Mg =-REERE

d(¢) = (34)

We assume that the plasma cross section rotates along ¢ in such a way that it turns by 7
in the poloidal direction for a field period (A¢ = 27/N), which is the case in W7-X [33]
and in a Helias reactor [25]. Then we can take 6y(¢) = N¢/2. In addition, we allow for
the fact that the elongation varies with ¢, being maximum at the toroidal angles where

the magnetic field strength is maximum. Then we can write

6(6) = b0+ drcosNg,  A(9) = do+ M cos N, )
where
1 1
(50 = 5(617:0.3: + 6m'i’n)v 61 = 5(6"“”3 - Jmiﬂ)’ (36)
1 1
Mo = =5 (Almas + Mmin), M = =5 (Almaz = Momin), (37)

the subscripts “max” and “min” refer to the maximum and minimum magnitudes of the

elongation, respectively. Using Egs. (33)—(37), we obtain:

g*% = 2B [1 + €V cos(Ng) + ") cos(20 — N¢p)

+ €2 cos(20 — 2Ng) + €29 cos(26)] (38)

3

where € = €, + 6,/6; > 0 is the factor producing the mirror mode coupling, Bt =

Xo/bo < 0 and € = ) /(260) < 0 are the factors producing the helical coupling, ¢, =
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A/(28) < 0 produces the ellipticity-induced gap. In particular, taking Km;, = 1.5,
Kmaz = 3.6, €n = 0.1, we obtain: dpin = 1.08, dpmaz = 1.94; |Almin = 0.42, |A|jpez = 1.66;
do = 1.51, &y = 0.43; A = —1.04, A, = —0.62. This yields ") = 0.38, e = —0.68,
€2 = 9 = 0.2,

Comparing the amplitudes of various harmonics in Eq. (38) with the amplitudes in
the Fourier spectrum of By (the dominant harmonic in the plasma core is €, ~ 0.1
[25,33]), we conclude that the rotation of the plasma cross section and the variation of
the elongation with ¢ are expected to produce stronger mode coupling than the harmonics
of the magnetic field By. Especially strong coupling is associated with the rotation of the
cross section, which is responsible for the harmonic with es(fl) coupling the modes with
m,n and m + 2,n + N mode numbers. We will refer to the modes that can arise within
the gap associated with (") as HAE,;. The variation of the magnitude of the elongation
contributes to the MAE gap and, in addition, produces the HAE,, gap (associated with
coupling of the modes m, n and m+2, n+2N) and the ellipticity-induced gap (with EAE
modes) known from tokamak research. Note that the nature of the coupling parameters
leading to EAEs in tokamaks and Helias systems is different: the u = 2, ¥ = 0 coupling
results from the cross-section elongation in tokamaks and from the joint action of rotation
and toroidal variation of the elongation in Helias systems.

The consideration above enables us to add the following characteristic frequencies and

rotational transforms associated with various terms in Eq. (38):

: Nuy 2t n -+ JN/2
N = == (1- =), w=——— for HAE,, 39
“m.n 2R, ( N)’ T Ty AR (29)
N?}A* Ly n+ N
gl AT R (1 — ﬁ) 1 dm=Es for HAE,,, (40)
LeUAx n
wg‘;z’“ = —RO—-, Ly = —1 for EAE. (41)

In general, when the modes m, n and m + y, n + v/N are coupled,

; * 2n+vN
wmtmnteN (N, m*)&q_ L = Tmi_ﬁ

42
m,n 2R(] 3 ( )
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Equation (42) can be useful because, in reality, the family of gaps and corresponding
characteristic frequencies of AEs in the Helias configurations are richer than those given
by Egs. (30)—(32), (39)—(41) for two reasons. First, Eq. (15) does not take into account
all Fourier harmonics, and g*¥ given by Eq. (38) does not include all possible terms (e.g.,
terms associated with the triangularity of the plasma cross section). Second, secondary
and higher-order gaps may be essential when e(**) is not too small. We mean the following.
When |kmn(74)| = |Emtpntvn(7+)]; the modes with m, n and m+pu, n+vN can be coupled,
and the gap would arise even in the case of ¢*) = ( provided that both these modes
were coupled with one or more other modes through some other coupling parameters;
for instance, these would be the case if €#/2¥/2) did not vanish, providing the coupling
through the m + u/2, N + vN/2 mode. The higher-order gaps have the width of the
order of €/ with o > 1 (for the secondary gaps, o = 2, which will be shown in Sec. V).
In particular, as egm) is relatively large, one may expect that HAE ;s gap will be rather
large; its width can be estimated as the square of the HAEy; width. The higher-order
gaps can have the hybrid nature. For instance, the modes with m, n and m, n 4 2v can
be coupled due to the presence of the helicity (e??) and ellipticity (¢/2”)); furthermore, in
this case the modes can be coupled through the mirror parameter, €,,. In order to refer
to hybrid modes we will use the notation “AE,,”, where the subscripts indicate that the
gap is associated with the intersection of the m, n and m + u, n + vN branches of the
cylindrical continuum. Note that the MAE gap (x = 0, v = 1) arises not only from the
direct interaction of the m, n and m, n + N modes through the coupling parameter €,
but also from the interaction via the m+2, n+2N modes due to the presence of the 1),
€ terms [(m,n) = (m+2,n+ 2N) — (m,n + N)|, which yields a correction to the
width of the order of €Ve22). Moreover, one can see that a joint action of the helicity
and ellipticity also contributes to MAE gap [(m,n) — (m,n+N) = (m—2,n) — (m,n)],
giving a correction of the order of €?9¢(?)). These corrections are essential because e is
rather large. Nevertheless, we will refer to the (0,1) gap and the corresponding eigenmodes
as “MAE” because it is ¢, that is responsible for the direct mode interaction.

The family of characteristic frequencies determined by Egs. (32)—(30) and Egs. (39)-
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(41) is presented in Fig. 1. We observe that the frequencies corresponding to different
kinds of AEs are well separated in a Helias reactor with ¢ ~ 1. But this fact is not sufficient
to understand whether the different kinds of AEs are really independent on each other
because the gaps corresponding to them may be large.

The weak magnetic shear of Helias configurations essentially restricts the wave num-
bers of the coupled modes. To find them, we use ¢, given by Egs. (30)-(32), (39)-(41)
and the rotation transform ¢(v) relevant to a Helias reactor (see Fig. 2) [25,37]. The
results are presented in Fig. 3. It follows from Fig. 3 that when the wave numbers are
small, typically only one pair of modes is coupled in Alfvén eigenmodes of a certain kind;
when the wave numbers are sufficiently large, few modes with successive numbers can be

coupled at different radii.

IV. GAPS IN ALFVEN CONTINUUM IN THE APPROXIMATION OF

WEAKLY COUPLED MODES.

Let us assume that the continuum gaps are narrow so that the AEs residing in different
gaps can be treated independently, in which case Eq. (28) is reduced to a pair of equations
describing two coupled harmonics in a gap. Later, after obtaining the equations, we will
see whether this assumption is justified.

Assuming that two modes with the wavenumbers m, n and m+ p, n+v N are coupled,

we obtain from Eq. (28):

2
o0 (4 -12) B e

o \@ 2 or
ad 3 w? Eg“v) (uv) G_E;#V) aE"m-l—,u,n+uN
+5T‘ % 5 2ep - km,nkm+#an+l’N 2 or = (43)
%, w? 3]
E?ﬁ (E B k3n+ﬂ,n+vN ) _% + Qmtpntvn Emspntvn
P w? (e 5 e 9E 5
D ) 0o

If eg and ¢, vanished, the modes E,,, and E,,;,n4 v would be decoupled. Then

Egs. (43), (44) would have singularities at wy = |k |04 and ws = |kmipntvn|04, respec-
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tively. These two equations determine two cylindrical Alfvén wave continua. In fact, the
presence of the terms with eg, ¢, breaks the cylindrical continua in the point where the
cylindrical branches intersect and creates two new continua. The Helias continua in the
approximation of the small gap width are determined by the equation D = 0, where D is
the determinant of the coefficients of the second order derivative terms in Eqgs. (43), (44).
Using the equation D = 0, we find that the relative half-width of the frequency gap at .,

where the cylindrical continua intersect, is

Aw eluw)
G= N Vo O 45
w(r*) €p 2 ] ( )

where Aw is the absolute half-width of a gap. Using this equation and the numerical
estimates of € given in Sec. III we find that G = 0.34 for HAE,;, G = 0.1 for HAE,,
and EAE, and G = 0.09 for MAE. The width of the TAE and HAE;; gaps cannot
be determined here because the corresponding contributions to the metric tensor is not
calculated in this work. Note that the contributions of the mirror harmonics of the
magnetic field strength and the metric tensor are of different signs; therefore, their joint
action reduces the gap.

Now we can clarify whether our assumption that the gaps are narrow is justified.

With this purpose we compare the half-width of the HAE,; gap, which is the largest,

and the distance between w*?"*" and its neighbors, in particular, w7tV (HAE)
and wjpn N (MAE). Taking into account that they weakly change in a Helias reactor and

neglecting the effect of the plasma inhomogeneity, we obtain:

HAE2;, m+2n+N HAFE9y, m+2n+N
m(—;i-l n+Nul m+2n+N ~ 2 En;nJrN = m+2,n+N st ( ol - 1) |Eg(;21)| . (46)
wWm,n’ — Wmn’ Wmn — Wmmn 214

For N =5, |e(921)| = 0.68, we find that the first ratio exceeds unity for ¢ < 1. Furthermore,
the second ratio also exceeds unity unless ¢ < 0.6. On the other hand, the distance
between the HAE,; and its low frequency neighbors, EAE and TAE gaps, is rather large
for « < 1, and, therefore, HAE,; and EAE weakly affect each other in this case.

We can conclude that the assumption made above that various kinds of AEs can be

treated independently, in general, is not justified for the Helias configurations. Moreover,
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a question arises whether any continuum survives when frequency gaps determined by
Eqs. (43), (44) for various u, v overlap.

To understand what happens with continuum gaps in this situation, at first, let us see
how the HAE,; gap will change under the influence of neighboring harmonics. With this

purpose we consider the interaction of the following harmonics:
m—-—2,n—N<<=mn<=m+2,n+N < m+4,n+2N. (47)

In this case the equation D = 0 is

2 m’ﬂ

Q'm—?,'n—N HmrQ,an 0 0
m,n 2 m+2,n+N
m—2,n—N Qm,n ,Hm,n 0

m+2,n+N 2 m+4n+2N
0 7_'1"1'11,71. ’ Qm+2,'n+N Hm+2,ﬂ+N

m+4,n+2N 2
0 0 Hm+2,n+N Qm—]—4,n+2N

where

(1)

T . [
)2

2 . 2 m+pn+q — 2 =2
‘Qm,n =W = km,nvA’ Hm,np = (w - km,ﬂkm+p:n+qv.4 (49)

We study the effect of the m —2,n — N and m + 4, n+ 2N harmonics on the gap at r, in

the vicinity of w]#>"*V perturbatively by seeking for a solution of Eq. (48) in the form:

w = wp + dw, (50)
where wy is the solution in the absence of the m+4,n+ 2N and m —2,n — N harmonics,

dw is the correction associated with their presence. Correspondingly, we write Eq. (48)

Aw) = Aw) (51)

where A = Q2, Q2 ., v — (H 2" V)2 X is the correction. The solution of Eq. (51) is

Awo)

5w=m (2)

with wy determined by the equation A(wp) = 0. Noting that w, 9, N = Wnianian, We

find:
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2 4 20\ /2 et
Wo = KspUa ___g_) i Ol = —k*h’i_)A-g—— + O g 5 53
o (5 L4 0(e) (53)

where k., = (N/2 —t,) /Ry, the subscript “h” meaning “helical”. It follows from Eq. (53)
that the multiple mode interaction displaces the HAE,; gap down, but this displacement
is rather small.

Now we proceed to the study of the interaction between the gaps. We consider the
influence of HAE,, gap on the MAE gap arising from the intersection of the cylindrical
continua of modes with m,n and m,n + N. The presence of the term with 6521) in
Eq. (28) affects the MAE gap, first of all, through the interaction with the m+2,n+ N
and m=+2,n+ N £ N modes. The roles of these modes are different. The most important
are the m+2,n+ N and m — 2,n modes because their frequencies are closer to the MAE
gap (this follows from the fact that kyn = —kmatn = N/(2Rp), km—2n = —kmi2nsn =
(N/2 — 20)/Ro, km-an-n = —kmiznan = (1.BN — 21)/Ry for r = r.). Therefore,
restricting ourselves to the analysis of the four-wave interaction, we consider the following

modes:
m+2n+ N<<=mn<mn+N<= m—-2,n (54)

Then the equation D = 0 yields:

Q$n+2,n+N Hﬁjng’n_FN 0 0
Hﬂff’"“v szn,n M 0 .
. 0 (55)
ln+
0 M an,n—kN Hm—ln
0 0 HRNS Q.
where
) £01) £(01) \ i
M=w (QT — QEm) - g_Q'km,nkm,n+N?jA- (06)

Equation (55) can be presented in the form of Eq. (51) with A describing the influence of
the m — 2,7 and m + 2,n + N modes on the MAE gap. Then, neglecting the terms of

the order of (e{?)*, we have for r = r.:
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02
AMw)=Qp, — M?, Aw)= 2ﬂ2ﬁ (57)
m—2,n

where H = ", ,, = HH2"+N A solution can be found according to Egs. (50), (52).
m—2,n m,n

‘We obtain:
2
1002\ (€29) koo + &
Wo = ko g 0w = R T g Bk SR, T8 ] 58
’ A(1¢e§°1’/2i2em) EF Rk T ) (9

where k., = N/(2R,), the subscript “m” meaning “mirror”; k; = (N/2 — 21,)/ Ry, . is
given by Eq. (32). We conclude that the MAE gap is displaced up by the HAE,; coupling.
Taking N = 5, Egn) = 0.68, ¢, = 0.9, we obtain dw/(ksn?a) =~ 10%.

Thus, the influence of higher-order interactions on the continuum gaps is clear on
the qualitative level. The gaps “repel” each other, tending to prevent their overlap.
To understand the structure of the continuum gaps more definitely, we need to involve

numerical methods. This will be done in the next section.

V. STRUCTURE OF THE ALFVEN CONTINUUM IN HELIAS

CONFIGURATIONS

The aim of this section is to develop a method for finding the structure of the shear
Alfvén continuum in a general three-dimensional toroidal magnetic configuration. We
proceed from the general equation of the Alfvén oscillations, Eq. (19), which we can
re-write for our purposes as follows:

) 5 . ij
F [gf i (L@)} +wr2 2 (gl aq)) =) (59)

dxi |7t 8xi 0921 \ 93h1 Oxd

where gj‘f = g¥ — b'b.

An equation describing the continuous spectrum of Eq. (59) can be easily written
intuitively, using the similarity with the spectra of systems of ordinary differential equa-
tions described in the previous section (more rigorous substantiation of the equation to
be obtained is given in Appendix B). In the above examples of eigenvalue problems,
the continuous spectrum consisted of the values of w for which the matrix coefficient at

the highest-order radial derivative is degenerate at a certain radial point, D = 0, which
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typically results in singularity of solutions at this point. In other words, w belongs to the
continuum if it is an eigenvalue of the problem G(¢)® —w?C(1)® = 0 at certain 1, where
G(¥) — w?C(¢) is the matrix coefficient at the second radial derivative in the considered
system of differential equations, ® is understood as the column of the amplitudes of the
considered modes. Similarly, in a general case, one can conclude that w belongs to the
continuous spectrum of Eq. (59) if there is a radial point ¢ at which w is an eigenvalue

of the equation

L (*18) + PRI =
g + W Ry @ =0 (60)
A

with the natural boundary condition of periodicity. The linear differential operator en-
tering this equation is, in fact, the “operator coefficient” at the second radial derivative
in Eq. (59). One can say that Eq. (60) describes the propagation of Alfvén waves at a
“separate” flux surface. It includes only differentiation within the flux surface (by angu-
lar variables) with 1 considered as a parameter. Its eigenvalues are functions of ¢ and
produce branches of the continuum as % is varied.

Keeping only one oscillating harmonic in ¢¥¥ and B and presenting ® in Eq. (60) as
a sum of two coupled harmonics, one can easily re-obtain the continuum gap width given
by Eq. (45). Keeping more than two harmonics of @, one can arrive at Eqs. (48), (55).
However, when the configuration asymmetry is strong, the continuum gaps can be found
only numerically.

As an arbitrary wave harmonic (m,n) can interact only with harmonics with the mode
numbers (m + u,n+ vN), where p and v are integers, we take ® in the form

= Y @ explilm+ )8 —i(n -+ vN)d] (61)

P r=—00

and expand the coefficients of Eq. (60) in Fourier series:

1 & : ;
VY=g |1+ 5 > eé‘“’) exp(ipd — ch,b)} , (62)
B Y=—00
1 o0
g*h~t = g [1 +35 2 e exp(ipd —ivNg) |, (63)
U, y=—00
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where (=) = ) ((=m—) = )* and the superscript “+” denotes complex con-
jugate. Note that the complex quantity f_f,""’) is a generalization of the corresponding
quantity introduced in Eq. (23), coinciding with it when there are only cosine harmonics

in the Fourier spectrum of ¢g¥¥. Then Eq. (60) is reduced to the following eigenvalue

problem:
- G d,, = B C ® 64
Z o ey Py = W 7 Z RTINS (64)
py=—00 py=—00

where the infinite matrices G and C are given by the equations

1 — Vs —V =
O sy = (5u-ﬂ5v.u + 5‘5;“* o )) ky.v. L (65)

1
Covo i = O s + ieg#- —HV—V) (66)

and are Hermitian (Cupyw. = Ci 1 Guwisewe = G kw = kE+ w — vN,
k = mu — n; 6 is the Kronecker symbol. Note that the elements of G depend on m and n
only through %, and the elements of C do not depend on m and n at all. Thus, if modes
with different mode numbers are characterized by the same values of k for certain ¢, they
produce identical patterns of branches of the continuum spectrum at that . One the other
hand, any value of k can be reached with arbitrary accuracy by certain m and n (unless ¢
is rational). Due to this, we formulate the eigenvalue problem for numerical calculations
in terms of k£ and do not check all the time whether any given value of k correspond to
any integer m and n. Note that non-integer m and n can be interpreted as withdrawing
the periodicity condition and considering waves in an infinite periodic structure, which
enhances the similarity of the considered continuum gaps with Brillouin zones for the
electron waves in crystals. Some consequences of the restrictions that the periodicity
condition puts on continuum branches at rational flux surfaces will be discussed later.
To solve the eigenvalue problem (64) numerically, one can choose certain finite inter-
vals in p and v around p = 0 and v = 0 and calculate the eigenvalues of the resulting
finite-dimensional problem. If non-diagonal elements of the matrices are smaller than the

diagonal ones, one can hope that those several eigenvalues for which the corresponding
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eigenvectors have leading components in the central part of the chosen intervals are cal-
culated sufficiently exactly (which can be checked by varying the length of the intervals).

This described approach was implemented in the computer code COBRA (COntinuum
BRAnches). The code uses the QZ algorithm to find all eigenvalues of the generated
matrix pair. An attempt to use the QR algorithm was not successful as the algorithm
(or, at least, its available implementation) often fails near the rational values of ¢ with
small denominators, when the spectrum tends to multiple degeneration. Although only
one or two eigenvalues were obtained after solving one eigenvalue problem, the much faster
inverse vector iteration algorithm, which gives one eigenvalue at a time, was rejected since
it is hard to predict the frequency of the harmonic of interest when the perturbation is
strong. Probably, methods calculating a range of spectrum would be more efficient, but
they were not used for the lack of necessity (the calculation of one point of the spectrum
with the ranges —9 < u < 8, —5 < v < 4, which yielded quite sufficient accuracy < 10+%;
took less than a minute on a CELERON/400 MHz desktop computer).

The code has three modes of operation. First, one can carry out scanning in k and ¢ (or
1), calculating the frequency of the continuum branch that has the largest contribution
from the & harmonic. Such scanning fills the regions outside the continuum gaps for each
. and visualizes all existing gaps at once. Second, the program can calculate the limits of
the gap produced by coupling of harmonics with an arbitrary pair of “coupling numbers”
(1, v) at various radii. With this aim, the value of k for which the coupling takes place

(ie., ku = —k) is found at each radius, which is:
k8 (1) = (vN — i) f2. (67)

Then the calculations are performed for k = i ’")(L), after which the eigenfrequencies
corresponding to the two eigenvectors with the largest k component show the “banks”
of the gap at the given radius. Third, the code can find the frequency of the continuum
branch with the dominating (m, n) harmonic as a function of ¢, performing the calculations
for k = mu—n.

The obtained structure of continuum gaps for the Helias parameters is presented in
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Fig. 4, where the continuum frequency normalized by the local Alfvén velocity, wRy /74,
is shown versus ¢. As 7,4, in general, depends on the plasma radius, w after such normal-
ization, strictly Spea%(ing, shows the real size of the continuum gaps only for the case of
the constant plasma density. However, such presentation facilitates the understanding of
the structure of the continuum. As described in the previous section, it is assumed that
the mode coupling is caused by the harmonics of g¥¥ with the numbers (u,v) = (0,1)
(linked-mirror harmonic), (2,1) (HAE,; harmonic), (2,2) (HAEy; harmonic), and (2,0)
(EAE harmonic). In addition, a small (g, ») = (1,1) (HAE;;) harmonic (e{') = 0.05) has
been involved in the magnetic field strength to understand the relative position of the
expected (1,1) gap (qualitative analysis of the HAE,; modes will be done in the next part
of this work, where the corresponding harmonic of the metric tensor will be derived).

Dots in Fig. 4 show the results of the scan in + and k with steps 0.005 and 0.1,
respectively. One can see that w does not depend continuously on £, leaving noticeable
gaps in the spectrum. The coupling numbers responsible for each gap can be easily
identified. Black solid lines in the same figure, showing the calculated “banks” of each
gap, indeed separate the gaps from the filled region, which proves that the identification of
the nature of all visible gaps is correct. The wide grey lines show the places where the gaps
would be located if the perturbation amplitude were infinitely small, wRy/54 = |[k¥")|
(for comparison).

The calculations show that the actual width of the gaps is less than that expected from
Eq. (45). In addition, most gaps are shifted upward or downward from their expected
position, which qualitatively agrees with results of the analysis of a four-mode system in
the previous subsection. The relative magnitude of the “compression” and the shift is
the strongest for the gaps located near the HAEy; (2,1) gap, which indicates the strong
influence of the (2,1) gap on its neighbors.

Nevertheless, if the characteristics frequencies of some gaps for the infinitely small
coupling parameters, i.e., wﬁfgﬂ’”*”” given by Eq. (42), do not cross, the gaps remain
separated by continuum “walls” even when the coupling parameters eg‘fc") are enough

high to result in their strong displacement. Each “wall” consists of the branches of the
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continuum for which % lies between two functions k¥*’(1) with (u,») corresponding to
the two gaps that the “wall” separates.

An interesting feature of the spectrum in Fig. 4 is the presence of gaps with coupling
numbers (i, v) which are present neither in g¥¥ nor in h nor in the combination g¥¥h=*
as they are taken for this calculation. The most probable mechanism of their formation
is the three- (or more) mode interaction involving intermediate harmonics. The creation
of gaps by such interaction, the possibility of which was mentioned in Sec. III, can be
explained by the following example. Let the parts of the matrices C and G describing the

interaction of the modes k = koo, k = I::m.,l, and k = 15#2,,2, have the form

1 e 0 k2, 0 0
C=|lalel| 9=|01£k, 0 [ (68)
0 e 1 0 0 k,,

where €; and €, are arbitrary small non-zero numbers describing the coupling (for the
sake of simplicity, we assume that G is diagonal). If kg = fé#m, one can see that the
interaction of these two harmonics via the I::,u, », harmonic splits the corresponding eigen-
values by ~ €€, although their direct coupling is absent. An example of such gaps is the
rather wide (4,2) gap in Fig. 4, which probably results from the three-mode interaction as
the combination (2,1)+(2,1). Other examples are the (4,3) gap, probably arising as the
combination (2,1)+(2,2), and the (0,2) gap. The width of the latter seems too wide to be
accounted for by the most obvious (0,1)4(0,1) interaction; probably, the (2,2)-(2,0) com-
bination also contributes to this gap. The large magnitude of the (2,1) harmonic of g*¥
leads to the fact that even gaps of third order in €, (6,2) and (6,3), are quite noticeable.
However, one should have in mind that the real width of these gaps may differ from what
is calculated here as the corresponding harmonics may appear in next-order corrections
to B and g¥¥.

Figure 5 shows examples of the calculated continuum branches, each dominated by the
harmonic with k£ = m¢ — n for a certain pair of the mode numbers (m,n). As expected,

the branches have discontinuities as they cross the calculated gaps. Due to the periodicity
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of the configuration, the harmonics can be divided into three families, n = 5s, n = 55+ 1,
and n = 55+ 2 (where s is an arbitrary integer), harmonics from different families not
interacting with each other. For this reason, all the selected harmonics belonged to the
same family (n = 5s 4 1). The main aim of the calculation presented in Fig. 5 was the
following. When obtaining the gap structure presented in Fig. 4, we did not see to it
that the wavenumber of the dominant harmonic k corresponds to any integer m and n.
When ¢ is irrational, any k can approximated with arbitrary accuracy by m:—n for some
m and n. At a rational-. flux surface, however, k is always a multiple of 1 /1, where [ is
the least denominator of .. As, in fact, harmonics with very large m and n are of little
practical importance, one could expect that those gaps for which ¥ is not a multiple
of 1/1 are effectively wider in the vicinity of this flux surface because no branches with
small m and n approach the “banks” of the gaps. The calculations were intended to
check if such an effect of rational ¢ really takes place in the analyzed Helias configuration.
The rational points with the least denominators in the ¢ range of interest are 1 and 5/6.
Figure 5 shows that the selected branches (all with m and n not exceeding 10) closely
surround each gap so that no significant widening near rational points is possible. The
only exception is the MAE gap which increases by three times at « = 1. However, this
widening is noticeable only at ¢ > 0.96 if the modes with m < 10 are considered. Thus,
Fig. 4 correctly represents the structure of the continuum gaps, which is important, in
particular, for studies of the continuum damping of Alfvén eigenmodes.

Finally, it is worth discussing why the gaps observed here are not clearly seen in recent
calculations with the CAS3D3 code [28,29]. The difference in employed equilibria (we used
a simple analytical approximation of the metric tensor, whereas numerical simulations of
Refs. [28,29] used much more exact numerically calculated Helias equilibria) can hardly
account for this (the physical mechanism producing the gaps is so transparent that there is
almost no doubt that qualitatively the same picture would be observed in our calculations
if we took the exact metrics). A possible explanation is the following. As mentioned above,
the subroutine used to solve the eigenvalue problem in COBRA calculates all eigenvalues

for a given matrix pair. As long as we plotted all the calculated eigenvalues, we obtained
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false continuum branches crossing the gaps so that narrow gaps could not be visible at all.
Analysis showed that the false branches were dominated by harmonics whose “partner”
for the coupling responsible for the gap is absent in the mode set used by the code. Adding
new harmonics to the mode set prevents these branches from crossing the gap but does
not help in general since even more new branches crossing the gap appear. It seems that
such false continuum branches can be found in spectra presented in Refs. [28,29]. The only
solution to this problem we have found is to select the eigenvalues dominated by central
harmonics of the matrix, which, of course, increases the time required for the calculations.
In other words, the mode set used by the code must depend on the dominant harmonic
of the branch under consideration to represent the structure of the continuum correctly.

This should be taken into account when studying the continuum damping.

VI. DISCRETE EIGENMODES: HAE;; AND MAE MODES

In this section we will clarify whether and when discrete modes can exist in HAEs,
and MAE gaps. Note that till now the MAE modes and even the MAE gap have not been
known. The HAE,; modes were observed numerically in W7-X in assumption that plasma
is homogeneous [28]. Here we consider both homogeneous and realistically inhomogeneous
plasmas.

To solve the eigenvalue problem, we have developed the BOA (Branches Of Alfvén
modes) code. The code is intended for solving the eigenvalue problem obtained by re-
stricting Eq. (28) to a certain finite mode set. The problem is reduced to a generalized
eigenvalue problem for symmetric matrices by replacing the radial derivatives with finite
differences, which is solved numerically with the QZ algorithm. This code was tested on
the well-known case of a TAE mode in a homogeneous plasma of a tokamak with the
safety factor ¢(r) = 1+ r?/a®. The results are presented in Fig. 6. The shown picture
coincides with that given in Ref. [38].

Let us proceed to study of the eigenmodes in a Helias reactor with the parameters

given in Refs. [25,37]. In particular, we will use the ¢ profiles shown in Fig. 2 and the
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plasma mass density profile given by

p(r) = p(0) [1 + (ﬁ) m] _1, (69)

n
where z, is a parameter which will be taken either of the order unity or equal to infinity
(which corresponds to homogeneous plasma), a is the plasma radius (in flux coordinates).
In order to choose the wave numbers, we will employ Fig. 3. The magnitudes of the
coupling parameters €#*) will be taken according to Sec. III.

We begin with the HAEy modes. As €{*") exceeds other coupling parameters, we
neglect the effect of other kinds of AEs. In addition, we restrict ourselves to analysis of
the two-wave interaction [the (m,n) and (m + 2,n + N) modes]. Then we can describe
HAE;; modes by Eqgs. (43), (44) with 4 = 2, v = 1. Results of the calculations are
presented in Figs. 7-9. Tt follows from Fig. 7 that the gap width is rather large. The gap
is open for the homogeneous plasma and the inhomogeneous plasma with x,, = 0.9, but it
is closed for z, < 0.85. This implies that the gap is open provided that n(a)/n(0) > 1/6.
Note that the gaps for all considered z, coincide in the region z, < 0.5. We found
that there are discrete modes inside the gap. For the case of the homogeneous plasma,
two eigenmodes with the radial structure of the global character are shown in Fig. 8:
their normalized eigenfrequencies (A = wR;/v,4) are shown in Fig. 7. The eigenmode
components with the higher and lower A have the same phase and the opposite phases,
respectively (in contrast to the even [39] and odd [40] core-localized TAEs). Figure 9
shows the radial structure of HAE,; in inhomogeneous plasma with z,, = 0.9. This mode
has approximately the same eigenfrequency as in Fig 8, which lies just below the lower
tip of the gap. The fact that the eigenfrequency intersects the continuum manifests itself
only in small spikes near the plasma edge. The mode with lower )\, as in Fig. 8(b), must
be strongly damped because the calculated amplitudes have large spikes in the region of
continuum, see Fig. 9(b). Lowering z,, i.e., the ratio of n(a)/n(0), we found that when
z, < 0.9, global smooth eigenfunctions disappear.

Now we proceed to the study of the MAE modes. This requires taking into account

the interaction of more than two waves because the MAE gap is essentially affected by
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other gaps (see Secs. IV, V). As in Sec. IV, we consider the four-wave interaction in
accordance with Eq. (54), where we add the terms describing the coupling due to €2

(EAE-like coupling). Correspondingly, we use the following set of equations:
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The MAE gap determined by Egs. (70)—(73) is shown in Fig. 10. In order to demon-
strate the effect of coupling due to the helicity and ellipticity parameters, ¢! and €29,

the gaps obtained when both these parameters or one of them are neglected are also shown
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in this figure. We observe that the interaction of the main modes, (m,n) and (m,n+ N),
with the (m —2,n) and (m+2, n+ N) satellites essentially affects the width and location
of the MAE gap. On the other hand, comparing Fig. 10 with Fig. 4, we conclude that
adding these satellites enables us to reproduce the actual width of the gap with sufficient
accuracy, which justifies using Eqgs. (70)—(73) in our calculations. Figure 11 demonstrates
two examples of MAE modes with different mode numbers in the homogeneous plasma.
Only the the main MAE components [(m,n) and (m,n + N)| are shown. Like in the
case of HAEy;, we obtain a pair of eigenfunctions (with opposite and coinciding phases
of the main components) for each set of mode numbers. Calculations carried out for in-
homogeneous plasmas have shown that any realistic inhomegeneity kills MAEs of global
character.

One can note that the asymptotic behavior of the obtained eigenfunctions at r — 0
is oscillatory (the eigenfunctions change the sign with radial wavelength decreasing when
r — 0), which is especially well seen for the HAE;, eigenfunctions. This behavior, which
never was observed for TAEs, is associated with the fact that the coupling parameters
producing the eigenmodes studied here, €?* and '), does not vanish at r = 0. To show
this, we write the system of equations for two coupled harmonics, Eqs. (43), (44), in the

matrix form:

d (4 dE B
d_r(r AE)+TQE—U, (74)

where E = col(E}, E,) are the wave functions of the two coupled modes,

aj1 €ap2 2 =
A= = A+ Agr + Agre+..., (75)

€d12 Qa2

ai (1 —_ m%) 0 9
Q= = Q) + Quyr + Quyr + ..., (76)
0 agg(l — m%)
my and m; are the poloidal wavenumbers of the modes. Looking for solutions in the form

E = r%col(ey, €2), where ¢; = PRl ejwr', 7 = 1,2, we obtain the following equation for

:
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|’YA(0) + Q| =0, (77)

where v = a(a +2).
When € = 0, Eq. (77) yields the asymptotics for the two equations considered inde-

pendently:
fy:m%ﬂ—l, = —I:tml,g. (78)

In a general case, omitting terms of the order of !, we obtain:

2 2 2 2\71/2
S1t+382 4 012(0)(31 +38) |1 2 2 ‘112(0)(51 + 53)
= T4 —1 4 — (51— 82) + 20y — 1 79
2 (0) 2|.A(o)| 9 ( 1 '2) (0) IA(0)| 3 ( )
a=-1+(1+)", (80)

where 515 = m?, — 1. Now we recall that |A] = (w? — w})(w? — w3)/v}4, where w; > are
the roots of the equation |A| = 0. Hence, |A()| < 0 when w lies within the gap, and we
conclude that + and, thus, & become complex when the second (negative) term under the
square root dominates. This means that the asymptotic of the wave function becomes

oscillatory,
E oc r°® expliay In(7)], (81)

where ap = Re(a), oy = Im(a).

In the considered cases of MAE and HAE,,, the width of the gaps weakly changes
with the radius, whence e%o) /| A@| is of the order of unity, increasing near the tips of the
gaps. In particular, in the case of MAE, the expression under the square root in Eq. (79)
is always negative because s; = s5. We conclude that eigenfunctions may well manifest
oscillatory behavior in the considered cases, and the asymptotic behavior of the MAE
eigenfunctions is always oscillatory. On the other hand, « is always real, and oscillatory
asymptotics are not possible when ¢ — 0 at r — 0.

Thus, the appearance of the oscillatory eigenfunctions indeed correlates with the os-
cillatory character of the asymptotic behavior of solutions of the considered equations.
However, further studies are required to be certain that this phenomena are really con-

nected and to understand the nature of the obtained oscillatory solutions.
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VII. GLOBAL ALFVEN EIGENMODES

We have shown above that the plasma inhomogeneity tends to make closed the gaps
in the Alfvén continuum and, thus, tends to prevent the existence of eigenmodes of the
global character (i.e., the modes with the perturbation covering almost the whole plasma
cross section). On the other hand, the so-called “global Alfvén eigenmodes”, GAEs, which
are not associated with the gaps, can exist only in an inhomogeneous plasma. The GAEs
exist even in the cylindrical geometry and have the frequencies close (just below) to the
minimum of wx(r). The mentioned minimum is located at ry determined by the following

equation:
n I
— t(ro) + 2L, (ro)¢ (7o) (82)

where L, = —(p'/p)~", prime means the radial derivative. It follows from Eq. (82) that
sgn(mn) > 0 for L, > 0 (which is normally the case) and ¢/ > 0. The location of the
minimum of w4(r) in a Helias reactor with the density profile given by Eq. (69) is shown
in Fig. 12.

To study GAEs in a Helias reactor, we restrict ourselves to the cylindrical approxi-
mation, i.e., neglect all coupling parameters ¢*). Results of the numerical solution of
Eq. (28) with low m, n in this approximation are shown in Figs. 13, 14. It follows from
Figs. 13, 14 that there are discrete solutions, as one could expect. But, on the other
hand, we observe that the continuum curve is rather flat, which is a consequence of the
small shear and the rather flat profile shape of n(r). This indicates that the magnetic
well responsible for the existence of the eigenfunctions is rather shallow. Therefore, the
solutions must be sensitive to the shear. To verify this, we have added the small terms
neglected in Eq. (29), i.e., replaced @y, by Q,(,,ﬂn,

k‘2 1‘3
Q'Ei)n e Qm,n + L (
3 60

- k2 o | = kmar? (3K, + 7k" ) (83)
63‘! m,n m,n m,mn m,mn/*

We have found numerically that there are no GAE modes in this case. Thus, a question

arises why it happens. The analysis below is aimed at answering this question.
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First of all, we note that GAEs are really global (and justify their name) only when
m — n = 1. When the wave numbers exceed unity, they become localized near ro. We
use this fact by assuming m,n > 1 and expanding w4 to second order in r —1g (we follow

the approach of Ref. [41]):

w2 = who + (1/2) @A) (r — 10)? = who (1 + 22/ L?) (84)

where L2 = 2w?,/(w2)l, = = r — 19, the subscript “0” indicates that a quantity is taken

at ro. Taking into account that z is small, we write an approximate equation for GAEs

in the form
9 wio 2 w3 2 2
%T"L?ﬁio( +A?) =22 |y —m?+1 L”( +A?)
2 I
—’1"2 ( ) + k” (37’ k” + ‘T'sk )] Em,’n = 0, (85)
3 r=ro

where A2 = L2(w?, — w?)/w}, > 0. To proceed further, we transform Eq. (85) to a
Schrodinger-like equation by introducing a new wave function, U = /FE, where F =

r3 (wao/ L) (z? + A%). Introducing the dimensionless variable y = /A, we obtain:

V(@) +[E-V@IY(y) =0, (86)
where
k¢ 2_1 il b L2 L23/ + 1ot
_ (5 _m L) Ae _ _ e Wk LN

The constant £ and the function V (y) can be considered as the effective full energy and
the effective potential energy, respectively. When b <0, V (y) has no minimum at finite
y, which means that there is only a continuous spectrum. Discrete modes arise when
b > 0: in this case there are two minima of V(y) for 0 < b < 2, V (y) and one minimum
forb> 2,V (y).

Using Eq. (82), we transform b to the form:

I# 1o
b= ~57 o (1+ - ) (88)

It follows from Eq. (88) that a necessary condition for the existence of discrete spectrum

is sgn(/t”) < 0. This condition is not satisfied for a Helias reactor, where ' > 0, whereas
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¢ < 0. On the other hand, if the shear terms are neglected in Eq. (83), b = L?/(r,L,) > 0,
and, thus, discrete modes exist. This explains the different results obtained numerically
when Qp,, was replaced by Q) .

As mentioned in Sec. II, the metric tensor was derived in the assumption that the

shear is of the order of 2/Rj. Then the shear term in the equation for AEs is of higher
order. This implies that GAEs are likely to exist in the Helias configuration. However,
further investigation is required for a reliable conclusion. Note that such a problem does
not arise in tokamaks because the shear term is absent when the rotational transform is

produced by the plasma current (it is canceled by the term associated with the current).

VIII. SUMMARY AND CONCLUSIONS

In this work, we derived an equation of shear Alfvén waves in Helias configurations,
which describes all kinds of shear Alfvén eigenmodes in the framework of ideal MHD. The
metric tensor components entering this equation were found analytically by means of the
expansion of the equilibrium magnetic field in the vicinity of the magnetic axis. Further
work in this direction is required to find more exact expressions for the metric tensor,
which will provide a possibility to study the whole family of AE modes in Helias systems.
Two numerical codes were developed. One of them, COBRA, calculates the structure
of the Alfvén continuum in Helias configurations. Another one, BOA, solves the set of
equations for AEs, giving eigenfrequencies and eigenfunctions (radial structure) of Alfvén
perturbations.

The results of investigation of AEs carried out with the use of the mentioned codes
and analytically can be summarized as follows.

We have found that the presence of several dominant harmonics in the Fourier spec-
trum of the magnetic field strength results in the MAE, HAE,;, and TAE gaps. In
addition, we have found that the variation of the plasma cross section shape along the
large azimuth of the torus is an important factor affecting the Alfvén frequency spectrum.

It strongly contributes to the MAE gap and leads to coupling of the modes with other
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mode numbers than those determined by Fourier harmonics in By. In particular, it leads
to the HAE,;, HAEs,, and EAE gaps. Especially large is the HAE,; gap associated with
the rotation of the non-circular plasma cross section. The large magnitudes of coupling
parameters, first of all, e®!), results in appearance of rather essential secondary and higher-
order gaps in the vicinity of the frequency determined by |k, »|va(74) = |Emtpnton|va(rs)
formed due to interaction of more than two waves when direct interaction between the
modes with the numbers m,n and m + p,n + vN is not possible (i.e., when ) = 0).
Furthermore, large magnitude of the coupling parameters significantly affects the gaps
arising due to direct interaction of two waves; namely it displaces the gaps and changes
their width. These effects were investigated analytically and numerically by means of
the code COBRA. As a result, the Alfvén continuum structure in a Helias configuration
relevant to W7-X and a Helias reactor was obtained.

Using the code BOA, we have shown that there exist discrete HAE,; and MAE modes
due to coupling of the modes with m, n 4> m+2, n+ N and m, n <> m, n+ N, respectively.
MAESs were obtained by solving a set of equations consisting of four equations to take
into account the multiple-wave interaction, which is essential in this case. It was found
that the radial structure and even the existence of HAE;; modes and, especially, MAEs
depend on the radial profile shape of the plasma density. In particular, it was found that
global eigenmodes, i.e., perturbations covering the whole plasma cross section or the large
part of it, disappear when the plasma density at the edge is sufficiently small.

Both HAE,; and MAE modes belong to the high-frequency part of shear Alfvén spec-
trum. They are characterized by such longitudinal wave numbers that they can interact
with circulating alpha particles having the energy £ > 1 MeV in high-3 plasmas of a He-
lias reactor (note that the fraction of circulating particles in Heliases is much greater than
that in tokamaks because of the difference in the aspect ratio of these systems; therefore,
circulating particles constitute a vast majority of energetic alphas in a Helias reactor).
In contrast to this, TAE modes can hardly interact with these particles. In order to see
it, we allow for the fact that circulating a-particles interact with Alfvén waves mainly

through the resonance w — (kj£¢/Ro)v) = 0, where v is the particle velocity along the
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magnetic field. It follows from the resonance condition that a particle interacts with the

waves provided that its parallel velocity is

-1
es 2"’*

The magnitude of v** determined by Eq. (89) depends on the kind of AEs. In particular,
|vfi*/val = 1 or 1/3 for TAEs; when N = 5, ¢ = 0.9, Eq. (89) yields vj®/va = 1.56 and
0.64 for MAE modes, (e /va = 2.28 and 0.64 for HAE,; modes. Therefore, the particles
with v > vy can be in the resonance with MAE and HAE,, modes. On the other hand,
va/vi = BM;E[/(2M,T), where v, is the alpha velocity, T is the plasma temperature,
M, and M; are the masses of an a-particle and a background ion (M; should be taken to
be equal to 2.5 deuteron mass for a 50-50% deuterium-tritium plasma), respectively. We
obtain from here that v,/vs = 1.8 +3.3 for a-particles with & = 1+3.5MeV in the Helias
reactor with 7'(0) = 15keV, (0) = 15% [25]. Thus, due to Eq. (89), the resonant pitch
angles of these particles, x"** = v[*/v,, lie in the range 0.5 < x™*° < 0.9 for MAEs and
0.7 S x" < 1 for HAE,;. The obtained magnitudes of the pitch angles are relevant to
circulating particles, as one can see from the condition "¢ > \/A__IT/E, where A =~ 10 is
the aspect ratio of the torus. Therefore, we conclude that both HAE,, and MAE modes
(but not TAE modes) can interact with 1 =+ 3.5MeV circulating alphas in the plasma
core. Note that the considered AEs can also play an important role in W7-X, where the
energetic ions will be produced during neutral beam injection and have the velocity less
than Alfvén velocity.

In addition to the eigenmodes residing in the continuum gaps, the GAE modes are
considered. It has been found that the magnetic well responsible for their existence is
rather shallow when the magnetic shear is small and the plasma density profile is flat.
This requires especially accurate analysis to make reliable predictions concerning GAEs

in Helias configurations.
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APPENDIX A: METRIC TENSOR OF THE FLUX COORDINATE SYSTEM

The aim of the calculations presented in this appendix is to derive analytically the met-
ric tensor of the Boozer flux coordinates in a general stellarator configuration. The deriva-
tion employs the near-axis expansion of the plasma equilibrium suggested in Ref. [43],
where it was used to analyze the Fourier spectrum of the magnetic field strength. The
expansion uses the average radius of a flux surface (or, more exactly, the ratio of it to
the other characteristic lengths, first of all, to the curvature radius of the magnetic axis)
as a small parameter. An advantage of the expansion is its simplicity, but its serious
disadvantage is that one has to get to the second order in order to study any effects of the
magnetic shear. However, this shortcoming does not seem serious when we are interested
in weak-shear configurations like Wendelstein 7-X or the Helias Reactor.

Following Ref. [43], we write the spatial position of a point, 7, as a function of the flux

coordinates (v, 0, ¢):

~
—

71,0, 8) = 7o(¢) + X (1,0, Q)R(6) + Y (¥, 0, 9)b(¢) + Z(1,0, $)7(9), (A1)

where 7 is a flux surface label (the toroidal magnetic flux enclosed in a flux surface); 6
and ¢ are specially chosen poloidal and toroidal angular coordinates; 75(¢) is the spatial
position of the magnetic axis; %(qb), ::c'(qb), and g(qb) are the tangent, normal, and binormal
(the Frenet unit vectors) of the magnetic axis, respectively. The unknown functions

X(1,0,0), Y(,0,0), and Z(1,0, ¢) are assumed to satisfy the condition X (v = 0) =

Y (1 = 0) = Z(» = 0) = 0. Then they are presented as power series in £ = ¥!/2,
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X(wa 9: ¢) = EX(I)(H-: é) 4= EzX(2) (91 ¢) B3 ESX(S) (97 QS) F s aan (AQ)

and the same for Y (v, 0, ¢) and Z(¢, 0, ). Note that the coefficient numbers in a]] power
expansions in ¢ is denoted within this Appendix as subscripts enclosed in parentheses to
avoid confusion with numbers of Fourier harmonics etc. If the function Y(Z) is analytic,
as well as 6(Z) and ¢(Z) aside from 3y = 0, the Fourier series of X(;(6, ¢), Y)(0, ¢), and

Z1)(f, ) in @ can contain only first harmonics,

X1)(6, 9) = X1)s(¢) sin(8) + X(1ye(6) cos(8); (A3)

those of X(3)(0,9), Y2)(0,¢), and Z(0, $), zeroth and second harmonics; those of
X@3)(0,0), Y3(0,0), and Z3)(0,6), first and third harmonics; those of X(1)(0, ¢),
Yi4)(0, ¢), and Z4) (0, ¢), zeroth, second, and fourth harmonics; etc. [43]

Expressions for the covariant base vectors €, = 97/dv, é = 07/d0, and €y = OF/0¢

can be obtained by differentiating Eq. (A1):

(A4)

o 1 (0X. oY 07,
e¢_26 o Oc BET’

(A5)

= [0X dl dl\ - )4 L odl\ >
¢*(—+Y’T +ZIC—)E+(8¢—ATd¢)b

0z dl A
+ (—-i— - —XlCd—) T (A6)

where /() is the distance along the magnetic axis, dl/d¢ = |diy/dg|, K = K(¢) and
T = 7(¢) are the curvature and torsion of the magnetic axis, and the Frenet formulae
[44] have been used to find the ¢ derivatives of the Frenet unit vectors. Note that K here
denotes the curvature of the magnetic axis rather than the curvature of magnetic field
lines, as in the main part of the work, but this usage will not lead to a confusion since we
will not be interested in the curvature of magnetic field lines within this appendix.

In Boozer coordinates the magnetic field, B , can be written in the two following forms

(the covariant and contravariant ones):
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-y, Le
B= /7 g+ 7 b
= By(¥,0, ) + By(¥)e’ + By(v)e?. (A7)
Here
V3 = [Bo(¥) + 1(1) Bo(v)) B2 (4, 6, ¢) (A8)

is the determinant of the metric tensor; €¥ = Vi, €% = V0, and €% = V¢ are the
contravariant base vectors of the coordinate system; ¢(¢) is the rotational transform;
By(1) and By(3) are, in fact, the toroidal current inside a flux surface and the poloidal
current outside it (up to a constant factor); the By, term is the contribution of generalized
Pfirsch-Schliiter currents (it vanishes in the absence of the pressure gradient, Vp).

The equilibrium equation, Vp = j_"x B /c, is reduced in the Boozer coordinates to the
combination of the equation of the flux-surface-averaged pressure balance,

dB, dBy  dpBy+ B,
o 8 Wi o WY 1 . i, Bl S
d¢+d1/)+ ﬂd¢ D) 0, (A9)

where

§d¢ §d0,/gB> 472

B?) = = A10
(B%) $do $db/g $do § dOB~2 (A10)
is the average of B2 on a magnetic surface, and a relation between By and dp/dy,
0By, 0By (B?) 47(By + tBy) dp
B _ L 1
96 o0 ( B YTy a (ALD)

which enables us to determine the Fourier spectrum of By, in terms of that of B~2. Namely,

if
11
BX(,0,¢)  (B?)
X {1 + > [Pmne(¥) cos(ng — mb) + Apns (¥) sin(ne — mB)]} (A12)
n|+|n|#0
then
_ d_p B¢ + LBg 1 ) .
Bolt0,8) = trgE St B Dol sin(ng = m0)
- A‘irnﬂs("nb) COS(”‘QS - ma)] : (Al’?’)
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It is assumed that
B7*(1,0,9) = (B™)(0)(¢) + (B~*))(6; d)e + (B™) ) (6, 4)e> + ... (A14)
By (4,0, ¢) = By()(¢) + Byq)(8, ¢)e + By (9, ¢)e + .. (A15)
W) = yo) + L2 + et + ..., (A16)
By(¥) = Byo) + By)e® + Bype + ..., (A17)
(A18)

By (?,!)) - Bg(2)52 + 39(4)54 +...,

with the Fourier spectra of (B72)(;(6, ¢) and By ;) (6, ¢) obeying the same rules as those

of X(,:) (9, ¢>)
(A19)

The procedure of calculating the parameters of equilibrium proposed by Garren and
Boozer [43] is as follows. Equations (A9), (A12), (A13), and the equation

EL€g+€ — By€px€, —Bg€ X€y — B é'_;xé'a:O,
(4] P ] ¢~ Cy oty

(1l

which is just another form of Eq. (A7), are expanded in powers of € and analyzed order
by order. Another useful equation, which also follows from Eq. (A7) and provides a
(A20)

convenient way to find B(v, 0, ¢), is
5 CAENTA
B(%.6,4) = (By + tBp)?’
We have found it convenient to organize the calculations as follows. First, it turns out that
the equation (X (l)fé + }’(1)3) -é(,;) = 0 enables one to express Z;1) in terms of X(;) and Y-
The obtained expression is substituted for Z(i+1) in the equation (Y(l)fé - X (1)12;') -é(,-) = 0.
The obtained equation for of X() and Y(; is analyzed together with 7 f(i_l) = (0. When

doing this, relations obtained by expanding Egs. (A9), (A12), and (A13) are used as

required. We proceed to performing this procedure.

The €% order of Eq. (A20) yields:
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(A21)

dl B0

do By(¢)’

axis, L: L =

which enables us to relate Byp) and the length of the magnetic
By § do B(‘fﬁ(qb). Using Eq. (A21), we can transform the equation 7 é(g) = 0 to the

(A22)

form
Y X 2
¢ A ) S
W59 ~— a9 By

which is a mathematical expression of the fact that the square of a flux surface depends

-,
.

on ¢ as B~1. Finally, it follows from the equation (X(l)fc' + Y1yb) 'é(g) =0 that Z;) =0

and, thus, Z = O(e?).
Then we consider the first-order equation (X(l)f:c' + Y(l)g) . é(l) = 0, which yields:

B

9¢

By d 0
) l (X3 +YE) + w5 (Xt +Y0) | +
To proceed further, we need to specify the dependence of X(;y and Y(1) on 6. As

Loy = — fiis
@ 4By
mentioned above, both are linear combinations of sin(f) and cos(f) [cf. Eq. (A3)]. We

take them in the following form satisfying Eq. (A22):

1/2
Xay = (ﬁ) { K2(8) cosfy(6)] cosld — Bo(6)]
— &7Y2(¢) sin[y(¢)] sin[0 — 6o (9)]}, (A24)

(_2_) 8 { &/%(6) sinly(¢)] cos[f — 6o(#)]
B)(9) p \
+ £ Y2() cos[y(¢)] sin[f — 6o ()]} (A25)

Equations (A24), (A25) include three parameters: #(¢), the elongation of the cross sec-

tion, o(¢), the poloidal angle of one of the main axes of the ellipse, and v(¢), the angle

between the ellipse axis and the normal to the magnetic axis.
Substituting Z», X;, and Y; given by Eqs. (A23)-(A25) into the equation (X(l)f:' +

é(l) = 0, we arrive after some algebra at the following equation for the rotational

Yyb) -
transform:
dfy 2 dy By ( Bamﬂ
T TP) Herz )l A26
d¢  B(o) (@) 2 (A26)

|

‘O 35 T k@) +(9)
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Now we can calculate the components of the covariant and contravariant metric tensors
to the lowest order. Using Eqs. (A4)-(A6), we obtain the components of the covariant

metric tensor g;; = €; - €;, where 4, j = 1,0, ¢:

1 [[ax\* (ov\® (0z\’ .5
Guv = 13 [(35—) + (‘5;) + (g) =0(e7), (A27)
1 (0X0X 0oYoY 0Z0Z
gyo = Goy = ( w0 Taeam g%) = 0(e"), (A28)

B

£ B(O) By
( B¢(o>)
By
32 0Z . Byo) B@(ﬂ))] 0
- — - XK—= O(e"), A29
T % (395 Bo) Byo) ) (429)
ax\’ A gy 5
Goo = (W) + ( ) (‘3—9) = O(e?), (A30)
_ . _oX [(oX By(o) By(o)
9o = 340 = "5p (aqs "Bo a By,
+ % (a— X7 B(g)
0Z (0Z By B¢(0)) 5
| g Y s HOY . o2y A31
90 (a¢ By Byo) 2 e

9X . B B
9¢¢=( Ly B0 | e Boo ¢(0))

9¢ B By
oY B¢(0))2
+ | == — X1
( 06 Byg)
0Z . By B¢(0)) 0
+ + — XK = "], A32
(3¢ By By ) (832)

where we have taken into account that X = O(g), Y = O(e), Z = O(&?).
The components of the contravariant metric tensor, g/ = €*- €7, where 1, j = 1, 0, ¢,

can be expressed in terms of components of g;; by means of the relation ¥ = G¥/g,
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where Gii are the corresponding minors of the matrix g;;. Using Eqgs. (A8), (A27)-(A32),

we find:
2
906960 — 9
g¢¢' = __ﬂ.g—ﬂ = B(Qn)ggg(g)82 + 0(63), (A33)
9o Gype — Gypod
gVt = gt = Fee p WI0% — — Blygve) + O(€), (A34)
GyoGop — Guodoo BEI 0) 3
g¥? = g% = = 52 (900 900(2) — vs(0)900(2) + O(€°), (A35)
g $(0)
2
GyypGee — 9 - _
" =TT e — B guuaye S+ O(eT), (A36)

g

4
g" = g% = Juwodve — Gy 96 _ Bio)
9 Bl

(9u00)Iws(0) — Fww(-2)90s2)) + O€),  (A37)

4
Gyp 900 — gy B
g% == w_%ymwmm—%w+md (A38)
0

Finally, we substitute the expressions given by Eqgs. (A23)-(A25) for Z(), X(1), and Y1)
in Eqs. (A27)-(A38) and use Eq. (A26) to exclude 7. After straightforward calculations
(which, however, are rather cumbersome for the g%% and ¢%% components) we obtain the

lowest-order approximations of the metric tensor components:

g¥* = 2B (9) P[0, 6, 5(9)Je* + O(°), (A39)

g*? = ¢ = B()()Q(6, ¢) + O(e), (A40)

= 7 = ~209) (5,,00,) + BuwPI0, 67 (@) £ + O, (A0)
5 = B0y 4 k() + 0, (A22)

Bio)(¢) {B ()

0 _ 00 _ 20 (0)

g =9 LO—B¢0Q(9,¢)
Bso) | B @ ©

- B0t 6,01} + 00) (a13)
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= B, + O(e), (Ad4)

where
P8, 6, k) = = +2’“_1 e _2"“1 cos[20 — 260(6))], (A45)
a(6.¢) = M=) ujop  ogy(4)) (Ad6)

The physics of the form of g¥¥ given by Eq. (A39) is clear. In the absence of ellipticity,
when P =1,

g%¥ = 2B (¢)¢ (A47)

(at leading order), which is a mathematical expression of the conservation of the toroidal
magnetic flux inside a flux surface. Indeed, if the radial dependence of the magnetic
field is weak then the radius of a flux surface, r(¢), is associated with 1) by the equation
¥ = B(g)(¢)r*(¢)/2. This is sufficient to reproduce Eq. (A47):

2
G = V= WY gz, A48
d (0)

r

Therefore, one can expect that Eq. (A39) correctly represents the modulation of g¥¥
associated with the linked-mirror harmonic of the magnetic field (m = 0, n = 5) in the
whole plasma cross section, at least, for not too large /3, when the radial dependence of
the linked-mirror harmonic is weak.

It is worth noting that the ordering of the metric tensor components in £ given by
Eqs. (A39)-(A44) characterizes their asymptotic behavior at 1 — 0 rather than the rela-
tive magnitude of the corresponding terms of Eq. (22). The reason is that the expansion
parameter used within this appendix is the ratio of the local radial coordinate to the major
radius of the device. In the main part of the work, we assume that unknown functions
can undergo variations of the order of unity over the cross section. Therefore, we use as
a small parameter the inverse aspect ratio understood as the ratio of the characteristic

cross-section radius, T, to the major radius. This is the same as long as we deal only
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with equilibrium (one can find that terms of different order in £ appearing in the same
component of the metric tensor always differ by a factor like KC, 7, B/ By, etc.). However,
to estimate the contribution of the components to Eq. (22), we should find their order of
magnitude, assuming that r ~ (21)/Bg))"/? ~ ren. Assuming also that 8 ~ r2,/R§ and
having in mind Egs. (A13) and (A26), we conclude that

(0)

gL P A

B2 Go Ry’ (A49)
dB Ry 1

BMO) dr Teh Rg ( O)

Then Eqgs. (A39)—(A44) yield the following order-of-magnitude estimates:

¢ ~ BY2, ¢~ B, ¢"~1}2, (A51)
Br? 1 |
Vo ., Zch o 06, —_ a9 A52

Proceeding with the calculations, we can find next-order corrections to the metric
tensor, which take account of the Shafranov shift and are necessary for correct treatment
of TAE modes and HAE modes associated with the m = 1, n = 5 harmonic of the
equilibrium magnetic field. Results of these calculations will be presented in the second

part of this work.

APPENDIX B: SUBSTANTIATION OF THE EQUATION FOR THE

CONTINUOUS SHEAR-ALFVEN SPECTRUM.

It was shown in Ref. [45] that the continuous spectrum of the system

Av = Buw, g—z = Cv + Duw, (B1)

where A, B, C, D are linear differential operators within the flux surfaces (i.e., the deriva-
tives are in directions within the flux surfaces), which depend linearly on A, v and w are

vectors describing the state of the system, is determined by the eigenvalue equation
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I

A, \v = 0, (B2)

where 9 serves as a parameter. The eigenvalues of Eq. (B2) depend on v and describe
continua when 1 is varied.

Equation (9) can be written in the form

g . 0® o
where
2 Yyt 2 2 QW
A=L(g"L®) +w Roﬁim@, (B4)

and the operators £ and M are certain linear differential operators in angular variables, |
the exact form of which will not be of importance. The only thing we need to know about
them is that £ and M, as well as A, depend linearly on w?.

Now we introduce the new (vector) variables

i) 0]
v = g—d), w = 3 (B:'))
ad
Az
and the operators B, C, D acting on the variables as follows:
wy v wy 0
B =Why Cp = g D = : (B6)
Wwa Lv Wo Muws

Then Eq. (B3) takes the form of Eq. (B1), where w? plays the part of A\. Hence, the
continuous spectrum of Eq. (B3) [and, thus, Eq. (9)] is described by Eq. (B2), which is

equivalent to Eq. (60) for the operator A given by Eq. (B4).
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FIG. 7. The HAEy; gap for the coupled m = 3, n = 1 and m = 5, n = 6 modes in
homogeneous and inhomogeneous plasmas. 1, n(r) = const; 2, z, = 0.9; 3, z, = 0.85, 4,
T = 0.7; z,, is a parameter in p(r) = p(0)[1 +7/(zra)]~!. Crosses show the eigenfrequencies in

the homogeneous plasma, A\; = 1.4406 and Ay = 1.9464, normalized to 74 /R,.




0.12

0.08

0.00

A=1.9464

m=3,n=1

0.20 0.40 0.60 0.80
r/a

FIG. 8.

1.00




0.12

0.08 —

0.00

A=1.4406

1.00

FIG. 8. The radial structure of the HAE5; mode with the same mode numbers as in Fig. 7

in the homogeneous plasma. (a) A = 1.9464; (b) A = 1.4406.
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FIG. 9. The radial structure of the HAE; mode with the with the same mode numbers as
in Fig. 7 in the inhomogeneous plasma with z, = 0.9; (a) A = 1.9892, (b) A = 1.4433. The
spikes near the plasma edge indicate that the modes with higher and lower A undergo weak and

strong continuum damping, respectively.
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FIG. 10. MAE gap associated with the intersection of the cylindrical Alfvén continua with
m =4, n=1and m = 4, n = 6 in the homogeneous plasma. Solid line, the effect of the
coupling parameters e ¢(1) and €29 is taken into account; dot-dashed line, the effect of
coupling parameters ¢21) and €20 is taken into account; dashed line, two-mode approximation

with €@ =£ 0. Crosses show two eigenfrequencies in the solid-line gap.
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FIG. 11. Radial structure of MAE modes. (a) m=4,n=1and m =4, n=6; (b) m =5,
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FIG. 12. Location of minimum of the local Alfvén frequency versus n/m in a Helias reactor

with the inhomogeneity parameter z,, = 0.7.
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FIG. 13. Cylindrical Alfvén continua for the same inhomogeneity parameter as in Fig. 12

and 3 = 5%.

64




U.20 ==

0.16 =

0.1.2 ==

m=n=1

mn

0.08 —

0.04 —

0.00

m=n=2

0.00

0.20

I
0.40

I
0.60

|
0.80

1.00

FIG. 14. Radial structure of GAE modes in a plasma with the same parameter as in Fig. 12

and B = 5%.




	IPP_III_261 Deckblatt
	IPP_III_261 Text



