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Abstract:

The following paper discusses some problems of the island divertor in
the Wendelstein 7-X configuration and the Helias reactor (HSR)
configuration. These islands exist on the 1= l-surface at the plasma
boundary and will be utilised for impurity control in the Wendelstein 7-X
experiment. The structure of this island region depends on the plasma
pressure and the tendency is to become more and more ergodic with
rising plasma pressure. Thermal transport in the divertor region is de-
scribed by the transport equation, which is inherently three-dimensional.
By averaging along the helical geometry of the island this equation can
be reduced to a two-dimensional one describing the temperature distri-
bution on the poloidal plane. In this approximation there is a strong
similarity to tokamak geometry. Since the islands are modified by the
plasma currents a finite beta equilibrium is computed as the starting
point for the geometric analysis of divertor action. Anomalous transport
strongly affects the width of the scrape-off layer and the width of the
wetted area on the divertor target plates. The nonlinearity of the
radiation losses in the divertor region and the non-linearity of the
boundary conditions can lead to a bifurcation of the temperature
distribution and to multiple solutions. Some numerical examples of
temperature profiles and bifurcated solutions are given. In the appendix
the basic bifurcation phenomena are studied by using phase space
analysis.




1. Introduction

In the boundary region of stellarators magnetic surfaces, in general, do not exist. The
last magnetic surface is surrounded by magnetic islands and stochastic regions. Field
lines can be closed or cover a bounded region ergodically and several field lines are
intersecting first wall or divertor target plates. The temperature distribution in this
region is the result of cross-field thermal conduction and parallel heat conduction.
Furthermore, the radiation by impurities plays a large role in determining the tempe-
rature profile. It is well known that the non-linear temperature dependence of the
radiation function is the reason for bifurcation of the temperature profile and local
radiation maxima, called MARFEs. Another cause of bifurcation is the non-linear
relation between temperature and temperature gradients at the divertor target plates
originating from the physics processes close to the target plates. These issues have been
extensively studied in tokamak plasma, where axissymmetry reduces the analysis to
two-dimensional problems [1,2,3,4,5]. Some mathematical issues of the 3-D heat con-
duction equation have been investigated in [6].

The Wendelstein 7-X configuration is an advanced stellarator with reduced Pfirsch-
Schliiter currents [7]. The rotational transform is 0.84 in the plasma center and close to
one at the plasma edge. There are 5 magnetic islands at the plasma boundary, which are
scheduled to serve as divertor geometry. For this purpose target plates will be installed
at the backside of the islands and after crossing the last closed magnetic surface the
plasma will finally transfer its energy to the target plates. Computing the temperature
distribution in this region is one of challenges to be faced by theory. In a stellarator the
starting point is the three-dimensional heat conduction equation, however, it will be
shown in the following, how this equation in Helias geometry can be reduced to a two-
dimensional one. The following figure shows the boundary region in Wendelstein 7-X.
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Fig. 1: Plasma boundary region in Wendelstein 7-X (vacuum field, toroidal angle ¢
= 0). The numbers indicate the number of toroidal transits of the field line. The
starting point is 0. After three of four toroidal transits the field line arrives at the
backside of the island. The islands at 1 = 1 are utilised for divertor action.




The magnetic islands at 1 = 1 helically encirculate the plasma. If described in spatial co-
ordinates, the shape of these islands is not invariant, written in flux co-ordinates,
however, the shape is invariant. It is expected that temperature and density distribution
in the island region are almost invariant in helical direction, if target plates intersect the
islands at a fixed position in flux co-ordinates. Toroidal gaps between target plates may
introduce a perturbation, which must be analysed separately.

The concept of the island divertor makes use of the magnetic field structure in the
island region. The plasma crossing the separatrix diffuses into the island region and
after streaming parallel to the magnetic field lines it finally hits the target plates, which
are located at the backside if the islands. The width of the scrap-off layer is determined
by a balance between cross-field diffusion and parallel flow towards the target plates. In
contrast to tokamaks the problem is three-dimensional, however in the following an
attempt will be made to reduce the three-dimensional thermal conduction equation to a
two-dimensional one. Furthermore, a one-dimensional approximation will be discussed,
which allows one to compute the temperature profile along field lines, which are
bounded by target plates. This is a model similar the two-point model of tokamaks. Due
to the axisymmetry of the configuration the thermal conduction equation in tokamaks
reduces to a two-dimensional equation, while in stellarator configurations approxima-
tions are needed.

2. Magnetic Islands

As seen in Fig. 1, the boundary region in Wendelstein 7-X is characterised by a set of
magnetic islands around the 1 = 1 surface. There are five independent islands, which
close upon itself after one toroidal turn. The structure of these islands in the vacuum
field is shown in Fig. 1. The figure is symmetric with respect to the mid-plane, going
around the torus the islands helically encircle the plasma column. In case of finite beta
the plasma currents modify these islands which can be computed with the VEMEC code
[8]. The following figure 2 shows the island region at <p> = 4%. The region around the
island is highly stochastic and regular magnetic surfaces do not exist, except for a
neighbourhood of the O-point of the island. In particular the region of the separatrix is
highly stochastic. This feature, however, is irrelevant with respect to the plasma
transport perpendicular and parallel to the field lines, since after a few number of toroi-
dal turns the field lines intersect the target plates, while the stochasticity becomes
apparent only in the limit of a large number of turns.

Magnetic islands have an internal rotational transform, which is correlated to the size of
the island. The internal rotational transform grows with the size of the islands, which
can be seen by a comparison of Fig. 1 and Fig. 2. Furthermore, there is a shift of the
islands due to the plasma currents, the position of the target plates must be aligned to
the shape of the islands in the finite beta equilibrium and not to the islands in the
vacuum field.

In the following analysis we consider the magnetic field as given, although the currents
in the scrap-off will contribute in shaping the magnetic field. In particular, if parallel
currents between target plates exist, The may play a large role in modifying the
magnetic field. :




117.0
Jok=118 Z

595.D

Fig. 2: Poincaré plot of magnetic islands in Wendelstein 7-X at <> =4%.

Fig. 3: Island region in Wendelstein 7-X (without divertor target plates).

In figure 3 the indices denote the number of toroidal turns; to make the laminar
structure of the magnetic field more clear succeeding intersection points are connected.
The internal rotaional transform of the islands grows with rising plasma pressure,
which can be noticed by the reduced number of toroidal transits to reach the back side
of the islands (for comparison see Fig. 1). This implies that the connection length

between plasma surface and divertor target plate is decreasing with rising plasma
pressure.




3. Basic Equations

In general the plasma in the scrape-off layer can only adequately be described in a
multi-fluid model taking into account perpendicular and parallel transport of particles
and energy. In addition, neutral particle interaction contributes to momentum and
energy loss. However, to get:and overview on the specific problems of three-dimensional
geometry we restrict our investigation to the 3-D thermal conduction equation.
Summarising the energy equations of electrons and ions and neglecting the convective
terms this equation is

3ILET-—_V. x(x,T)OVT = H(x,T)—Q(x,T)

at Eq. 3.1
where H(x,T) is the heating term and Q(x,T) the radiation loss of the electrons. The
thermal conductivity is a tensor with a very large parallel conductivity.

;((x, T) =y, I+ (X" *Zi)b: b Eq. 3.2

The radiation losses are described by

Q(x, T) = nnzL(T) Fq. 3.3

n is the electron density and 7, the density of the impurity ion. b is the unit vector along
field lines. L(7T) is a bounded function of temperature which depends on the ion species.
Since L(T) is positive, continuous and bounded, it has at least one maximum at a
temperature T},q.. The density of impurities is a function of the spatial co-ordinate x. Its
special shape depends on the impurity species and the diffusion process of impurities. In
the present context we consider the density of the impurities as a given function.

In order to facilitate the following analysis we introduce dimensionless variables. Let a
be a characteristic length scale of the system, then all spatial co-ordinates are defined in
units of a (x -> x/a). Furthermore, let 7o be a reference temperature and o a reference
value of the thermal conductivity, then the temperature is measured in units of 7o (7" ->
TITy). Such a reference temperature is defined by Tmax, which is the temperature where
the radiation function L(7) has a maximum. Let N be a characteristic plasma density
and Nz a number to characterise the density of impurities, then the dimensionless
functions are n -> n/N and n, -> n./Nz. With L, as characteristic value of the radiation
the dimensionless radiation function is L(T) -> L(T)/L.. In dimensionless units we write
the heating function as H -> h = Ha2/T,.. In these dimensionless units the heat
conduction equation is

n%T— =V oz, T) VT =h(x,T)- }lp(x,T)

T Eq. 3.4
where A is defined by
. a® et Ao
he ZoTo Weinifi 5 3a’N Eq. 3.5
and p(x,T) by
Q(x,T) =4 n(x)nz (x)L(T) =:lp(x, T) Eq. 3.6

The parameter A is introduced as a variable or control parameter and the aim of the
analysis is to study how the solution T(x,A) depends on this control parameter. Either
the electron density N or the density N, of impurities can be interpreted as the control
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parameter A. The control parameter grows with the size of the system. Very often the
plasma pressure is considered as the independent parameter. If n7" ~ A, the function
L(T) is replaced by L(T)/T, where L(T) is of the order unity. The parallel thermal con-
ductivity is proportional to the 5/2th power of the temperature

2 =17 Eq. 3.7
which suggests to introduce a new dependent variable
U=217".. o T(U) = [1 U}m
7 : 2 Eq. 3.8
The stationary equation written in these variables is
Vo i (x7(V)) o V.U -V e biby, e VU = h{x,7(U)) - 2p(x,7(V)) -
with b = B/B and
2= x.(%1(U))1y el

In the boundary region volumetric heating is absent and only radiative losses occur
on the right hand side of the equation.
Ve xi(x.T(U))e V.U -V ebiby,*VU = ~ap(x.7(V)) i @i
This equation is applicable in a region of closed magnetic surface and also in regions out-
side the last magnetic surface where field lines terminate on target plates or the first
wall. The characteristic feature of this equation is the large parallel thermal conduction,
which is many orders of magnitude larger than the perpendicular thermal conduction.
In this first approximation we have neglected all convective terms of the heat flux, the
effect of these terms will be investigated in a later section

4. The Co-ordinate System

Because of the large asymmetry between parallel thermal transport and perpendicular
transport we expect almost constant temperature on field lines. This property suggests
to introduce a co-ordinate system with a parallel co-ordinate and two perpendicular co-
ordinates. In order to construct such a system in the island region we start from the
magnetic field in the form

B=VyxVo Bq. 4.1
v = const. are the magnetic surfaces and o = const describe the field lines on magnetic
surfaces. Since the field lines, in general, are not closed, the function o cannot be used
as a co-ordinate. For this purpose we introduce a function n with the property that on
magnetic surfaces all lines n = const. are closed after one poloidal and one toroidal
transit (period 1). The choice of this co-ordinate system is not unique, any function n
which has the period 1 in poloidal and toroidal direction can be used as co-ordinate sur-
face. The rotational transform of the field

B,=VyxVn Bq.4.2

is unity. The entire magnetic field is

B=VyxVn+6B ; 5B=Vw><\7(cx—n) Eq. 4.3




OB is an effective poloidal field, which describes the difference between the real field and
the reference field By with closed field lines.

eparatrix

Fig. 4: Structure of the yn-co-ordinate system

The small correction field is the origin of the rotational transform inside the islands. The
temperature in the island region is written as

U =Uy(w,n)+Uy(v.n.1) Eq. 4.4

where [ is a co-ordinate along the field lines of Bo. The equation for U is

Ve i (% 7(V)) V. (V) - 2o(Bo + 5B) » Vé(go +8B)e VU =—Ap(x, 7(U)) Ba 45
Averaging this equation over the closed field lines of By yields

-<V -xi(x,T(U)) . VL(U) >—Yo <OBe V?;z-B s VU>=-1< p(x,T(U)) > Eq 4.8
The averaging procedure is defined by

<g>=§g§

0

Eq. 4.7

Neglecting U, against Up and the quadratic term in 8B in combination with U, yields the
equation for Up

. 1
-<V o;(l(x, T(UO)) . VL(UG) >—%, <OBe VEE)‘B oVU,>=-1< p(x,T(UO)) > Eq. 4.8
This two-dimensional equation is equivalent to the heat conduction equation of toka-
maks in the region outside the separatrix; in tokamaks 8B is the poloidal field and n is
the poloidal co-ordinate.

The width of the scrape-off layer is determined by a balance of thermal transport along
the poloidal field towards the target plates and perpendicular transport by the first term
in Eq. 4.8. The figures above show that the connection length from the plasma surface




to the target plates is a multiple of the toroidal length, which implies that the effective
poloidal field in the transport equation is small.

The variation of the temperature U along the closed field lines of By can be found from
the difference of Eq. 4.5 and the averaged equation 4.8, which in lowest order of 1/%o
yields

5o 2[5, 7(U0))+ V. () - 20( B + 5B vé&s e VU, +2p(x.T(U,))

Eq. 4.9
ZXOBO.V_B%BO.VUl 1

Because of 4.8 the solution U of 4.9 is periodic. Furthermore, the solution is of the
order o(1/x0) which justifies the ansatz for U a posteriori. It should be noticed, however,
that close to the target plates this ordering may break down. To avoid this situation we
assume that the target plates are aligned parallel to the field lines of the lowest order
field Bo. Together with appropriate boundary conditions Eq. 4.8 yields a lowest order
temperature distribution on the target plates, which is constant in By — direction. In a
next step, eq, 4.9 describes the variation of the temperature along the target plates.

5. The Model of Flux Bundles

In the 2-D equation 4.8 two competing effects shape the temperature distribution in the
island region: the first term on the right side describes an isotropic heat conduction in
radial y-direction, while the second term describes a heat conduction in the n-direction
towards the target plates. This term is proportional to x, and in spite of the factor 8B this
term causes fast heat conduction towards the target plates. As a result of this effect the
decay length of the scrape-off layer in y-direction is much smaller than the decay length
in n-direction. This property can be utilised to establish the model of a flux bundle.

Target Plate

Flux Bundle

Bulk Plasma

Fig. 5: Island with scrape-off layer and target plates. The flux bundles are indicated

by dark ovals.

In tokamak geometry this one-dimensional model often is used to compute the tempe-
rature distribution along field lines between two target plates [9,10,11]. In the following
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we will derive an equivalent equation for the field lines in the islands of a stellarator.
For this purpose we consider field lines in the islands which are displayed in figure 5.1.
The heat flux across the separatrix moves parallel to the field lines towards the target
plates. Because of the small internal rotational transform of the islands the field lines
need five or more toroidal turns before hitting the target plates. The width of the
scrape-off is small compared with the poloidal and parallel decay length.

Let us consider a flux tube in the scrape-off region, which is bounded by two surfaces F
as indicated in Fig. 5.2. Averaging the transport equation over this volume yields

_ ISJVLU o i(x. (U)o df - 2, ij VU «df =[] ap{x, 7(U) ' .

Fig. 6: Flux tube in the island region. The magnetic field is tangential
to the surfaces S and perpendicular to the surfaces F. The limits in
flux coordinates are y,y+dy and o,0-+00.

The first term is the heat flux through the boundary surface S and the second one is the
parallel heat flux through F. This term is the difference of the two integrals over S. The
magnetic field in the island region is close to a vacuum field and we may introduce the
magnetic potential ® as a co-ordinate along field lines. The surfaces F are defined by ® =
const. (@ = ®; and ® = ®2). The volume element is given by

i g 40 _ dydodd
B B Eq. 5.2

and the parallel gradient is

d
BeV=8—
) 90 Eq. 5.3
Note that o. is the poloidal flux function of the total magnetic field as defined in Eq. 4.1.
The cross section of a flux tube is defined by y,y+8y and o,a+30. Using these co-ordi-
nates leads to

FU
Vebby,sVU = B> —
e 0% 592 Eq. 5.4
Integrating over the volume of the flux tube yields
: *U
[ ] : L ] 3 —
j‘[jv b:by, s VUdx= 1 [[[ = dydodd B

9




In the limit ®2-®; = 8@ -> 0 the flux tube equation 5.1 becomes

, ol ids U dydo

—V Ue — - — =—|| Ap|x, T\U || ———

i Uexien B XoFo XD J;:[ p(x ( )) B Eq. 5.6

n is the normal vector on the flux tube. The line integral in the first term extends over
the boundary of F, it describes the heat flux into the flux tube with the length 3. The

average of U is defined by

T = [[vdyda......F = Ljdwda Eq. 5.7

This equation describes the variation of the average temperature in the flux tube,
however, the task remains to correlate the flux through the surface S and the average
radiation loss to the average temperature. In case of a narrow flux tube we may replace

the temperature U in the radiation function by its average value and the equation 4.6
reads

o 8 g0, dydo —
_iVlU oy ng- ~ ;{OF{,—;&? = —L[ n(x)n;(x) 5 L(T(U )) Eq. 5.8
The temperature in the scrape-off layer weakly depends on the perpendicular variable o
and it has a strong dependence in radial y-direction. Let us consider a flux tube, which is
bounded by the surfaces y and y +8y, o and a+3c.. The dominating term in the heat flux
on the left hand side of Eq. 4.8 is the flux through the surfaces y = const. The heat flux

into the surface y = const. is given by

gt Slhs,
qéa=- [VUeyen Eq. 5.9

y=consl

and Eq. 4.8 can be written as
27T J—
(alw +3v) - a{w))oa - mF. 2 2= Jjre)e(+) D22 1(7(0) S

The problem is to correlate the radial heat flux to the average temperature in the flux
tube. Let us consider a flux tube in the scrape-off layer, which is bounded by the
separatrix and the outer boundary of the SOL. The poloidal width of this flux tube is
determined by the internal rotational transform of the islands. This flux tube (denoted
by 0 in Fig. 4.1) maps onto 1 after one toroidal turn and onto 2 after the next turn and so
on. After several toroidal turns the flux tube intersects the target plate. Since the lower
boundary of the flux tube is close to separatrix the input flux is known: g(y) = gin(). The
upper boundary is defined by q = 0, since the whole input flux has left the scrape-off
layer by parallel heat conduction or by radiation. In this approximation the parallel
transport equation is

—x.E %;% = qm(q))&x - _[:[ n(x)nz(x) du};czia L(T((_f))

The geometry of this flux tube is sketched in the following figure.

Eq.5.11
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Fig. 7: Flux tube in the scrape off layer. Plasma inflow q occurs from the lower side.

These approximations have reduced the heat conduction equation to a one-dimensional
equation in standard form. The variation of the magnetic field along the flux tube has
eliminated by introducing the magnetic potential as independent variable. The approxi-
mation in Eq. 4.11 can be slightly improved by assuming a linear y-dependence of q(y).
Let A be the width of the SOL in y-coordinates, then we get

(a(v +0v)~4(v))oer = %5"’5"‘ Eq. 5.12

and the transport equation becomes

-xoz;z—l ( )‘_ﬂn() () Wda (T(U)) Eq. 5.13

This approximation implies that the power deposited in all flux tube is the same.

The solution of this equation 5.13 requires boundary conditions, which are defined by
the physics processes in front of the target plates. In general these boundary conditions
are a non-linear relation between the temperature and the temperature gradient on the
boundary.

g(U’VU) =0 Eq. 5.14
Special cases of such boundary conditions are
oU —, oU —
XOE iu_ aU (0) ) xegll"' ﬁU (1) Eq. 5.15

s is a constant, which in case of constant pressure along the flux tube is s = 1/7. o, are
constants, which are determined by the transition process at the divertor target plates.

6. Anomalous Transport

In the preceeding section convective losses have been neglected. However, it is a well
known from divertor experiments that the width of the scarpe-off layer is dominated by
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anomalous perpendicular transport rather than by classical thermal conduction. The
reason is stationary or turbulent convection, which has not been retained above. Often
this anomalous transport is simulated by an effective perpendicular thermal conduction
in numerical studies, since the origin of this anomalous transport is convection, this
approximation requires a careful justification. In order to obtain a rough estimate about
the influence of convective turbulent transport we start from the transport equation
including the convective term.

~Ve y(x,T)e VT +V ¢ 5Tnw = b, T) - ip(.T) -
nv is the turbulent particle flux perpendicular to magnetic field lines and the convective
transport along magnetic field lines. The plasma parameters are written as a time-
averaged and a fluctuating term

b=b+6b ; n=n+dén ; vav+d ; E=0E Eq. 6.2

The perpendicular turbulent flux is the time-average over density fluctuations times the
fluctuations of the velocity v.

1
nv, = <éndv> = §<&L5EXB> Eq. 6.3

Here we assumed that the electric drift of the plasma particles causes the turbulent flux.
The convective term along magnetic field lines is Tnvy,, which must be computed from
the momentum balance along field lines [12]. Magnetic fluctuations may also contribute
to anomalous transport, in particular, at the beta limit MHD-instabilities are to be
expected giving rise to 8B - fluctuations. The perpendicular component of these
magnetic fluctuations has the same effect as the steady state poloidal field. Together

with the large parallel thermal conductivity these fluctuations may lead to a strong
perpendicular thermal transport.

If there are no ionisation and recombination processes in the divertor region the equa-
tion of continuity yields

Ve<nuv> =0 = <VeTnv> = <nv>eVT Eq. 6.4

The time average of the first term in Eq. 6.1 is

2
g (53)
<Vex(x,T)evT> =V-xi(x,T(U))onU~V-x0 <A >eVU -Vebyibyg, VU
Where the transition from T to the variable U has been made.

Also magnetic fluctuations can be the reason for enhanced perpendicular conductivity

oo
=%, <——>
AT B? Eq. 6.5
As an example we consider the boundary region of Wendelstein 7-X and assume a tem-
perature in the order of 100 — 300 eV. The parallel thermal diffusivity of electrons in this
region is shown in Fig. 8.
The ion thermal diffusivity is smaller than the electron diffusivity; it is in the order of
108 m?/s. The results show that magnetic fluctuations in the order of 6B/B=10* can lead
to an effective perpendicular thermal conductivity of the eletrons in the order of 1 m?/s.
The effective ion thermal conduction is smaller by two orders of magnititude. The deri-
vation shows that magnetic fluctuations can be described by an enhanced thermal
conductivity, which is in contrast to the effect of electric perturbations.
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Fig. 8: Parallel thermal diffusivity  of electrons in the temperature regime from 100 to
300 eV. The density is (1 — 4) 102° m-3. The thermal conductivity is x=nx.

In order to assess the effect of electric fluctuations we assume that temperature fluctu-
ations are negligible. The poloidal components of the fluctuating E-field contribute to
radial transport and to a widening of the scrape-off layer. It should be noted that
anomalous transport cannot be interpreted in terms of an anomalous thermal conduc-
tivity, because this depends on the first order derivative of the temperature, while the
conductive term has second order derivatives. Transforming the temperature T -> U
yields the convective term

SbnveVT =bnve aT VU
dU

Eq. 6.6

which has to be added to the conductive term. The sum of the anomalous fluxes is then

2

(¢B)
—%o < gl >eVU + SnULT(U) Eq. 6.7
Experimental observations in the boundary region of current experiments suggest that
the anomalous transport is much larger than the classical transport and the classical
perpendicular transport is negligible in Eq. 6.3. The transport equation reduces to

2
(552) > VU =V by 1oy « VU + 500 VI(U) = 2. 7(U)) - 26{x.T(U)) gq 64

Ve <

Often in the literature the ansatz is made that the anomalous transport flux is propor-
tional to the local temperature gradient or the density gradient. This would introduce
another first order derivative in Eq. 6.1, but not a second order derivative. Describing
the effect of electric fluctuations in terms of an effective thermal conductivity is not

13




justified. In contrast to electric fluctuations the influence of magnetic fluctuations can be
replaced by an effective perpendicular conductivity.

q: The Two-Point Model

In chapter 5 an one-dimensional equation describung the temperature along a flux
bundle has been derived. The result was Eq. 5.13

~Xo— (;;_ L, (@ H dwda L(r(0))

Eq. 7.1

As shown in chapter 6, a parallel convective term must be added in order to describe the
temperature profile correctly, however, in order to study the bifurcation phenomena of
this equation, these convective terms may be neglected for simplicity. This plasma model
is applicable to a flux bundle between two divertor target plates of Wendelstein 7-X.
since flux bundles go around the torus several times before ending on target plates, they
begin and end on different target plates. Consequently the boundary conditions on the
two endpoints can be different leading to asymmetries of the temperature profile. Also
the power input into the flux bundles can destroy the symmetry. The non-linearity of
the radiation function is the reason for multiple solutions. In the following some
numerical examples will be given, which illustrate the spectrum of possible solutions and
their dependence on radiation function and the non-linear boundary conditions.

A simple example of a non-linear heat conduction equation is

2L o))

in the intervall [0,1]. The model of boundary conditions is
[ P _
T =T Eq. 7.3

€ and xp are constants. Setting € to zero would yield the standard Dirichlet boundary

conditions. Then bifurcation is only possible due to the non-linearity of the radiation
function. This is modelled by the following equation.

pT.r)= g(r‘)[exp[—l—ji(T ) J +F exp[—w—(T ) )] Eq. 7.4

This radiation function has two maxima (at Tmaxi and Tmax2), the width of the two maxi-
ma is determined by wl and w2. g(r) stands for the product of electron density and
impurity density. In principle a diffusion equation is needed to compute the density of
impurities, here we consider the distribution of g(r) as a given function. The heating
function is symmetric around ro=0.5 and has the form

b{r) = hexpl =) 1] Bq. 75

Example 1: Constant heating on flux tube
In the first example we model a radiation function with one maximum only and keep

the heating power over the whole region [0<r<1] equal to a constant. The radiation
function is shown in the following figure, the function g(r) is constant, too
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Fig. 9: Radiation power L(T) vs temperaure. The parameters are: Tmax1= 1, w1 = 0.1,
g(r) = const.

esl ol bifurcation
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Fig. 10: Test of boundary conditions. Crossing the zero line determines a solution.

A shooting method is applied to solve the differential equation together with the
boundary conditions. For this purpose the equation is converted into two first order
equations, which are solved by Rung-Kutta integration. The integration starts at r = 0
with the slope of the temperature T as a variable parameter. This slope is the x-axis in
Fig. 10. The temperature at r = 0 is given by the boundary condition. Integrating the
equations until the right boundary r = 1 is reached yields the temperature and its
derivative on the right hand side. These data are used to test the boundary conditions on
the right hand side. Every time the test function in Fig 10 is zero, the boundary
conditions are satisfied. This method yields all solutions of the differential equation, the
stable and the unstable ones. In this respect it is superior to methods, which solve the
time-dependent heat conduction equation; these only provide the stable solutions.
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Temperature

r-Axis

Fig. 11: Temperature profile in the flux bundle between target plates. A =
20, F=0, Tmax1 = 1, w1 = 0.1, x =0.5, ¢ = 0.016, xp = 2.333. Heating
independent of r, g=1, ho =8

Radiation profile
2.5_..,!...!.s.!..,E

Radiation power [arb. units]

r-Axis

Fig. 12: Radiation profiles for case of Fig. 11.

Some of the profiles are asymmetric although the heating function is symmetric.
There are 5 solutions, which are caused by the various non-linearities; an analytical
study of this effect is given in the appendix. The radiation function in this example has
one maximum in temperature, this would provide one or three solutions, if the
temperature is fixed on the target plates (Dirichlet boundary conditions). Due to the
non-linear boundary conditions two further solutions exist. Such a temperature drop
between two target plates, connected by a flux tube, can give rise to plasma currents
between the target plates.
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Example 2: Peaked heating on flux tube

In the next example the heating is inhomogeneous and peaked in the centre of the flux
tube. The heating profile and the boundary conditions are symmetric with respect to the
middle of the flux tube. This case has some similarity with the SOL in a tokamak with
an X-type divertor on top and on bottom where all conditions are symmetric to the mid-
plane. The power input into the flux tube has a maximum around the mid-plane.

5.00

4.00 -,,,_,..‘. SUISEEIPIE: I - g -

o] ARy A, O SR S P I L [ e LI

LI 1} SRR i, o AN CHPESS fo NS SRS 1yl ST IR SRS 1 I ;._._,,\ SR L S

0.00 . i i i i
0.00 0.20 0.40 0.60 0.80 1.00
r-Axis

Fig. 13: Heating profile in the two-point model of flux bundle. ho=20, w=0.2. xo = 0.5

f‘l’emperature Profile |
00 —
Maximum T: 2.88 i
T Maximum T: 2.97
Maximum T: 2.88
Maximum T: 4.44

4000 .
800 . e Bl

20088 i

1.00

0.00 | o T . o=
0.00 0.20 0.40 0.60 0.80 1.00
r-Axis .

Fig. 14: Temperature profiles. Radiation function 1: A =35, Tpaun =1, w1l =0.1, F =0, x =
1l
e = 0.025, xp = 2.333. The solution with the lowest temperature is not shown.
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Example 3: Asymmetric heating

If the heating profile is asymmetric this also causes the temperature profiles to show
similar asymmetries.

ITemperature Profile l
5.00

Maximum T: 2.53
T [ Maximum T: 3.16
" Maximum T: 345
- Maximum T: 4.32

P00 S S . NI - . ire-sisio (secc/vant Y,

soofl /7

2.00

LEL L] PR S S (SR e

.00 i i i i PR |
0.00 0.20 0.40 0.60 0.80 1.00
r-Axis

Fig. 15: Temperature profile with asymmetric heating. he=20, w=0.2. xo = 0.4. The
other parameters are the same as in Fig. 14.

Example 4: Radiation function with two maxima

In case the radiation function has two maxima this can give rise to two more solutions.
Together with non-linear boundary conditions a total of 7 solutions may exist. This is
shown in the following example. In computing the temperature profile the power depo-
sition is kept constant in the domain r = 0 to r = 1. The radiation function is double-
humped.

fadiation_function ]
au°=

P(T)

X

Temperature

Fig. 16: Radiation function vs temperature. Parameters: Thaxa = 1, Thax2
=2 12=14,F=05wl=w2=0.1
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5.00 5.80 6.80 7.70 8.60 0.50

Fig. 17: test of the boundary conditions, there are 7 solutions

H emperature Profile )

Maximum T: 0.987
T Maximum T: 1.43
Maximum T: 1.83
Maximum T: 3.35
Maximum T: 3.84
Maximum T: 4.24
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5.00

3.00 Leereagln
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Fig. 18: Temperature profiles. Double-humped radiation function. Input
data:
e=5107xp=17 A=14.

Since the radiation function depends on the temperature its spatial dependence is fixed
by the temperature profile alone. At low temperature the maximum of the radiation is
centered to the middle of the flux bundle. With rising temperature the maxima are
shifted more towards the target plates
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Radiation Profile
2.00 —

Radiation Power: 152
P Radiation Power: 130
Radiation Power: 105
I Radialion Power: 36.4
Radiation Power: 19.5
Radiation Power: 9.94
L. Radiation Power: 1.53

1000 (e

Fig. 19: Radiation profile vs spatial co-ordinate r.

In these examples the control parameter A is fixed. Considering this control parameter
as a variable shows the regions of multiple solutions. There exist region of 3 solutions, 5
solutions and 7 solutions as shown in the next figure.

Maximum temperature Const. healing prolile

Radiation Power Const. healing prolile =
' ' ! L y
T T T T T

[arb. units]

Radiated Power

0 f— e

' T g T
9 10 11 12 13 14 15 16 17 9 10 11 12 13 14 15 16 17

Control parameter 2 Control parameter I

Fig. 20: Max. temperature (right 20b) and radiation power (left 20a) vs control
parameter A .

These figures show the spectrum of possible solutions vs the radiation factor A. In a
region of A between 13 < A < 15 7 solutions exist. Outside this domain 5 solutions or 3
solutions exist. The solution is unique if the control parameter is small enough (smaller
than 9). The figure 20a shows the radiated power vs the control parameter. The branch
with the highest temperature is independent of the control parameter. The temperature
(20b) lies above the maximum radiation temperature T... and therefore the solutions
are nearly unaffected by the radiation losses, the radiation is nearly zero (see lower
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branch in Fig.20a). There are 6 bifurcation point in the A-regimes, these are the points
where two solutions approach each other and merge.

Example 5: Peaked radiation profiles

The boundary conditions are zero temperature on both sides (Dirichlet boundary
conditions). The domain of integration is r = [0,1]. The heating term h(r) depends only
on the space coordinate and not on the temperature. We model a density of impurities,
which are peaked in the plasma center and choose a distribution according to the
following equation

g(r) = n,e(r)ng (r) = ..}.--exp[—(r — rl)zl a] Eq. 7.6
Ja
The model peaks the radiation around r = r, . The purpose of the normalising factor is
the following: variing the width a allows one to model the peaking of impurity ions and
keeping the total number constant. The integral
1

f "'e(’")”z(")d’ Eq. 7.7

0

is kept fixed under the variation of a. The density of impurities has a maximum at r =
0.5, which is the center of the flux bundle. In the following we consider the effect of
variing the peaking faktor a at fixed control parameter A.

netr)nl{r)
8+ ' i i
7 L. J—o002)... S
- —0.05 .
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i / o.oz\; ]
= : : z ]
s ; ]
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o
T 5
< 3 1
o S A B om0, V1 A i
1L+ L 1
0.2 i : \
0+ : | | i
0 0,2 0,4 0,6 0,8 1

r-Axis

Fig. 21: Radial distribution of n,(r)n,(r). The parameter of the curves is the width a.
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Fig. 22: Temperature profile of example 5. Peaked radiation profile, a = 0.05, r1 = 0.5.
Heating function: ho = 35, ro = 0.5, width w = 0.2. Radiation function 1: L = 64, Twax=
0.8, width wl = 0.4. Radiation function 2: F = 0.3, Tmae = 2.0, width w2 = 0.1
Conductivity: ¥ = 1. Boundary conditions: eps = 0.0, xp = 2.333.
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Fig. 23: Heating profile and radiation functions. Data as in Fig. 22
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|Temperatu re Profile l
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Fig. 24: Temperature profile of example 5. Peaked radiation profile, a = 0.02, r1 = 0.5.
Heating function: ho = 35, ro = 0.5, width w = 0.2. Radiation function 1: A = 64, Twaxa=
0.8, width w1 = 0.4. Radiation function 2: F = 0.3, Tmax2 = 2.0, width w2 = 0.1.
Conductivity: x = 1. Boundary conditions: eps = 0.0, xp = 2.333.
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Fig. 25: Heating profile and radiation functions. Data as in Fig. 24

This example shows how a hollow temperature can arise if the radiation loss is larger
than the heating power.

23




8. Conlusions

In the present paper an attempt has been made to reduce the three-dimensional heat
conduction equation in the boundary region of a Helias device to a two-dimensional one.

This has been achieved by averaging the transport equation over the coordinate parallel
to the 1=1-island. For this purpose a reference field Bo =VyxVn (Eq. 4.2) has been de-
fined, which has closed field lines everywhere and a rotational transform of unity. The
real field is then By +8B, where 8B plays the role of an effective poloidal field, which
creates a small modification of the rotational and the stochasticity around the separatrix
of the island. In lowest order the temperature is a function of the two flux variables y
an 1), and, by averaging the three-dimensional heat conduction equation along the field
lines a two-dimensional equation for the temperature T(y,n) can be derived. By this
procedure a two-dimensional analogue of the equivalent equation in axisymmetric
tokamaks can be obtained. 8B corresponds to the poloidal field in tokamaks. This
equation allows one to impose boundary conditions at the target plates and to compute a
two-dimensional approximation of the temperature distribution in the divertor region.
Application, however, is limited by the discrete nature of the divertor target plates. Since
these target plates in reality are located only at specific toroidal regions and are
separated by gaps, the two-dimensional approach only applies to the middle region of the
target plates. At the end of the target plates a three-dimensional computation of the
temperature is mandatory.

Anomalous transport in the divertor region can lead to the beneficial effect of widening
the outflow channel and thus reducing the power density on the target plates. Magnetic
fluctuations have the same effect as the static poloidal field 8B: together with the large
parallel heat conduction they generate an effective perpendicular thermal conductivity.
Electric fluctuations, however, introduce a convective term <dndv>VT, where <dndv> is
the anomalous particle flux density in the divertor region. Even if the particle flux is
assumed to be proportional to density or temperature gradients, this convective term
introduces first order derivatives into the transport equation, which implies that the
anomalous thermal flux cannot be represented by an effective thermal conductivity.
This ansatz, which often is made in the literature, cannot be justified by the rigorous
transport equation.

In tokamak geometry often an one-dimensional model is applied, which computes the
temperature along field lines starting poloidally in the midplane and ending at the target
plates. Boundary conditions at the target plates are derived by a sophisticated model of
the plasma interaction with the target plates. In a double-null divertor there i1s an up-
down symmetry, which facilitates the computation of the temperature. In a stellarator
such a symmetry does not exist and the field in the divertor region begin and and end on
target plates. Asymmetric heating of such a flux bundle as well as the asymmetry of the
magnetic field lead to asymmetries of the temperature distribution along the flux bundle
and to different temperatures at the anchor points on the target plates. As a result of
these asymmetries currents can flow between target plates. Some model computations
show these asymmetries and the bifurcation phenomena, which are caused by the non-
linearity of the radiation function. Non-linear boundary conditions also increase the
number of possible solutions. It should be noted that these multiple solutions are
computed which a fixed density profile, the reaction of the temperature on the transport
equation of plasma density has not been retained. The coupled system of particle and
heat transport may exhibit a different bifurcation behaviour and therefore the
computations presented above are only a part of the truth, however, it must be
expected, that the boundary condition do not uniquely determine the temperature
distribution in the divertor region. The analytical model discussed in the appendix
illustrates the various bifurcation events and helps to gain a better understanding of the
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numerical examples. In particular, the occurence of asymmetric profiles — even if the
heating and the boundary conditions are symmetric — is more clearly pointed out.

9. Appendix

In the previous sections numerical solutions of the thermal conduction equation have
demonstrated how bifurcation of the solutions occurs. In general analytical approaches
are not possible since plasma density and impurity density are functions of the spatial
coordinate. In order to understand bifurcation phenomena of temperature profiles in
radiative edge plasmas let us consider in more detail some solutions of the steady one-
dimensional heat conduction equation for the dimensionless temperature u as a
function of the spatial coordinate x

d d
D)2+ ofa)-afr) =0 , wefion] (s=05,=1)

Ry
s(x):zj;ex —(xj‘—x-—)u ’ Eq A2

s

s K(u) = K'Oué- Eq A3

s - heating term, q - radiation loss function (M - number of impurities), x - heat
conduction coefficient. These quantities are assumed to be defined by the model
functions given above.

du -
K(U)-——- + ao’nuﬁﬂ,n

=0
dx ;

Eq. A4

X=Xpn

In the following mixed boundary conditions are imposed, where Dirichlet's and
Neumann's conditions are contained as special cases. We investigate the bifurcation by
using a phase plane analysis, i.e. we try to find solutions of Eq. Al in the (w,ux)-plane
where x is the curve parameter. The topology of the phase space portraits is determined
by the parameters of Eq. Al and it is depending on the fact whether or not this equation
has singular points. These can be calculated analytically for the simplified case: kK = ko =
const, M = 1, ¢; = 1 (one impurity), A—> (constant heating), i.e.

o)
s=foalsf=fon 5| Eq A5

q

The result is an autonomous system of first-order.

Result:

f; > f; — no rest points

f; < f; — 2 rest points P12 (P:=(u,uy) - phase plane point) with the eigenvalues A(-2
(calculated in a linearized approach)

P1 (Saddle):
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1 26 -

——’Al— o (1: w2 Sds 4 dd.

U, =u nj u, =0, 4 KO\/—-nfs ‘ | G
P2( Vortex):

. % (1) 1 2 = 0
Uy =u —4|A, In=", u, =0, 5 =%4i |——F=In—
V Je ‘ Ko 1/A Js - Eq. AT
q

Thus, for f; < f; we have an island structure, for f; > fq we have not. Hence, the equation
fs = Qmax = fq defines a bifurcation point in the control space. This result can easily be
generalized for the case of several impurities M > 1 (M = 2 see below) where chains of M
saddle/vortex may appear.

1.0

0 fs=1.01 3

Fig. A 1: Phase plane portraits (u, ux) for f; as control parameter and Eq. A9
Let us consider the example E1:

]. 1 * *
K=Ky=—, M=2, ¢ :c2:§,j;=1, w=Lu,=2,4A,,,=01

2 Eq. A8
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If we assume the solutions u(x,fs) bounded on [-e0,0] they have at least one maximum,
say at X = X, where u = un, ux = 0. Let us start there and solve this initial value problem
for x —> %o for u, € (0,00). Thus, we obtain all possible solutions and their resp. phase

plane trajectories, depicted in Fig. Al, which have a bifurcation point at fs = Qmax = 1/2.
Hence, we can decide whether or not boundary value problems with conditions (Eq.A5)
are solvable. E.g., we can answer the question how many umax exist for one parameter
set (hysteresis) and how bifurcation occurs. The boundary conditions (Eq.A5) as
relations between temperature u and its gradient ux. at the boundary points of the
domain [xo0,%.] represent curves in the phase plane. If one phase plane trajectory starts
with x = xo at the first boundary curve and attains the other one at x = x, this proves the
respective u(x) to be one solution of the boundary value problem under consideration.

Let us consider the two kinds of phase plane trajectories, i.e. (i) no rest points (no
islands) and (ii) rest points (islands), and assume the boundary value curves to be well
behaved. (i) The phase plane trajectories are monotonic above and below the u-axis.
Then each boundary value curve crosses one phase plane trajectory only once. If these
intersection points belong to the boundary points, one has one solution. Multiple
solutions are possible (hysteresis; see Figs. A2, A3).

Example E2: Boundary value problem,

1

A g
%n=4 Pon=3 Eq. A9

1 1 . .
K= —é-, M =2’ Cl — 1’02 :—2—,]; =9, lll = 1,112 = 2, Aq.l,Z =01

Phase plane (u,ux)

Eq. A 10

Fig. A 2: Phase plane trajectories
together with the boundary values
curves (dashed) for E2.

Fig. A2 shows phase plane trajectories
for x = 0-1, xm = 0.5) together with the
boundary value curves. Each of them
has 5 intersection points, i.e. there are 5
solutions to the boundary value problem
which are represented together with the
radiation profiles in Figs. 3

Radiation Profiles g(x)

T

PRSI I PO 7 R T Bt L B

0.0 0.2 0.4 0.6 0.8 1.0

X
Fig. A 3: Profiles and radiation profiles for E2.
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(i) The appearance of the islands destroys the monotonicity and changes the phase
plane trajectories such that one boundary value curve intersects one phase space
trajectory several times. The results is that different profiles belong to the same phase
plane trajectory. Asymmetric solutions to an otherwise symmetric problem may appear
[13] (See also Fig. 11). The reason for this is the appearance of island structures in the
phase plane.

Example E3: Boundary value problem,

,, = 2.947, B, = 0.429 it

l * *
K-=E, M:]_, CIZI,f;ZS,f.q =2():, ul =1,u2:2, Aq_Lz:O.l‘ Eq.AIQ

Phase plane (u,ux)

10 II{I41IEII|JIEI1II[IIII!III|!l}[|l![|
-
-

ux

— 10 gr s by errnrnnabrnpnnnnni i Treaanen

G 1 2 3 L

u
Fig. A 4: Phase plane trajectories together with the boundary values curves (dashed) for
E2

Fig. A4 shows phase plane trajectories (|x| large) together with the curves of the
boundary values. It can be seen that one phase trajectory intersects each boundary
value curve 3 times. If one starts at one of these intersection points with x = 0 arriving
at another one at x = 1 one gets one solution. In this case one obtains 2 solutions to the
boundary value problem which belong to the same phase plane trajectory. This is
displayed in Figs. A5.

The asymmetry effect is stronger in the Neumann problem, where the boundary value
curves are straight lines parallel to the u-axis.
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Fig. A 5: Phase plane trajectories, u—profiles, radiation profiles for E3.

(ii") The boundary value curves are such that they penetrate islands and intersect closed
phase space trajectories. In addition to the types of solution mentioned above the
existence of spatially periodic solutions is possible. This can be seen in Fig. A6 where one

periodic solution is shown for example E4:

ao’n = 4, ﬁo]n = 0-5

x=%, M=1¢=1f=10%f =2x10% u; =1, A, ,, =01

Phase plane (u,ux)

iy
o

Eq. A 13

Eq. A 14

Profiles u(x)
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Fig. A 6: Periodic solution for E4.
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