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1. Introduction

In a previous paper [1], which is Part I of a two-part study of the shear Alfvén continuum
in general toroidal geometry, we derived a system of three linearized equations that govern
the modes of a pressure-less magnetohydrodynamic (MHD) plasma of arbitrary geometry.
The system is compact, and it is convenient to use when the shear Alfvén and ballooning
MHD continua are studied. In the present paper, Part II, of our study, we use this
system to explore the shear Alfvén continuum and its associated singularities for general,
pressureless, toroidal MHD equilibria. A basic assumption here is that such equilibria
exist, possibly in some approximate sense.

Continuum modes are tied to singular solutions of the linearized equations. As regards
the shear Alfvén continuum, the nature of these singularities has been the subject of
many past investigations for a variety of MHD plasma configurations. In configurations
with spatial symmetry, such as the planar sheet pinch, the cylindrical screw pinch and
the axisymmetric torus, the shear Alfvén continuum singularities occur about resonant
magnetic surfaces 1(r) = const that depend on the frequency w. A hyperbolic partial
differential equation that contains only derivatives along the equilibrium magnetic field
lines is solved over each magnetic surface, and the frequency is chosen so that solutions
of this equation are bounded and smooth. The allowed frequencies of the singular modes
thereby become functions of 1, i.e. w = w(1)). This expression can be inverted to locate
the singular magnetic surface as a function of w, 1 = vy(w). Because individual field lines
on magnetic surfaces with spatial symmetry are equivalent, the hyperbolic equation can
be solved along any field line to obtain the eigenmodes over the entire singular magnetic
surface 9)(w). The mathematical form of the singularity is derived by solving the complete
system of linearized MHD equations with respect to 1 in the vicinity of % (w). This can
be done with power series representions of the modes. Generally, singularities of the type
In(v) — ), (¥ — o)t or (¢ — o)™, (1 —1bo)" !, where 7 is a real parameter, are found.

In simple, one-dimensional geometry, such as the cylindrical pinch with coordinates
(r,0, z), Fourier modes are typically assumed with respect to the ignorable coordinates,
0 and z. For this case, the magnetic surfaces are surfaces of constant r, and the surface
eigenvalue w?(r) satisfies an algebraic equation. The radial dependence of the Fourier
modes, out of the magnetic surfaces 7 = const, can be described by a single second-order
equation e.g. for the radial displacement &, [2]. A singularity of the equation occurs if the
coefficient of the highest derivative vanishes. This happens where the mode frequency w
coincides with the Alfvén frequency wy or the cusp (or slow magnetosonic) frequency we
2], quantities which depend continuously on r. Here, w} = kfv} where kj is the wave
number parallel to the equilibrium magnetic field B. The Alfvén speed squared vy is
defined by v% = pop/|B|?, where g is the permeability of free space and p is the plasma



mass density. In addition, w% depends on the plasma pressure P and goes to zero for
vanishing P. For fixed frequency w the displacement &, develops a logarithmic singularity
at r = 7o, where 7 is defined by w? = w?(rg) or w? = w(rg).

In axisymmetric toroidal configurations, the surface eigenvalue problem along the field
lines reduces to an ordinary differential equation with periodic coefficients in the poloidal
angle after a Fourier decomposition with respect to the toroidal angle [3, 4]. The eigenvalue
w(x) must be chosen so that periodic boundary conditions are satisfied. In this case
the shear Alfvén and the cusp continua couple together [3, 4] if the pressure is finite.
In addition, Floquet theory can be used to show that gaps develop in the continuous
spectrum. If the effect of toroidicity is treated as a perturbation of a straight cylindrical
geometry the gaps are seen to form at radial positions where two eigenfrequencies of the
cylinder coincide [5, 6], so that “level crossing” is avoided. It was claimed originally that
the structure of the radial singularity is logarithmic [4] as in the sheet and screw pinches.
However, it was recently shown that this is not so in general and that the generic behavior
for the normal component of the displacement out of the resonant magnetic surface at
¥ = 1y is proportional to (¥ — 1p)’", where 7 is a real o-dependent quantity [5, 7). The
logarithmic law, however, remains valid under special circumstances, e.g. if the equilibrium
is up/down symmetric. _

Less is known about the continuum singularities of fully three dimensional configu-
rations with no spatial symmetry, i.e. nonaxisymmetric tori, asymmetric configurations
with finite-length magnetic field lines, or open-ended configurations without symmetry.
Previous investigations of these general cases have focused mainly on the ezistence of
continua in the absence of spatial symmetry. It has been established that the spectra of
modes, both in the shear Alfvén continuum and in the ballooning continuum, are again
determined by eigenvalue problems for w? which contain only derivatives along magnetic
field lines [8, 9, 10, 11]. However, unlike in the spatially symmetric configurations, indi-
vidual field lines in configurations without symmetry are not equivalent. The continuum
physics therefore is primarily connected with individual field lines. The existence of con-
tinua on asymmetric magnetic surfaces as a whole, therefore, is a problem which is related
[1, 8, 12, 13, 14] but not identical to the continuum problem on field lines. As regards the
shear Alfvén continuum, two general classes of solutions can be envisioned: modes that
are periodic and smooth over magnetic surfaces, and modes localized to individual field
lines with no smooth extension over magnetic surfaces. For applications to plasma heating
and current drive, the smooth and periodic eigenmodes could be the more important of
the two classes. However, this is an issue that requires further investigation. Regarding
the spatial dependence of shear Alfvén continuum modes in the vicinity of a singular

magnetic surface in configurations without symmetry, it is suggested in [9] and [15] that




the logarithmic singularity persists. As another possibility a power law was mentioned
in Ref. [16]. In Refs. [9, 15, 16] either no final conclusions were reached or no explicit
arguments for the claims were presented.

The present investigation is devoted to an analysis of the singular eigenfunctions of
toroidal pressureless plasmas without spatial symmetry. The focus of the investigation
is the class of shear Alfvén continuum modes that are smooth over magnetic surfaces.
It will be demonstrated that the logarithmic law In (¢ — %) is the generic singularity.
However, in exceptional cases a power law (1) — )%, where 7 is a 1) dependent constant,
might still occur. The nature of the singularity, apart from its relevance as a fundamental
phenomenon, is relevant for the coupling of external sources of energy into the plasma via
resonant absorption, as in the Alfvén wave heating scheme or, e.g., in the interaction of
the solar wind with the ionosphere.

Part II of this investigation is organized as follows. In Section 2 the linearized mode
equations in the form developed in Part I are presented again. The relevance of an
ordinary differential equation along field lines not only for the spectrum of the modes in
the shear Alfvén continuum but also for their spatial dependence is pointed out again.
Section 3 is devoted to the discussion of this equation, Eq. (16). Different types of
boundary conditions are considered. Emphasis is placed on modes which smoothly cover
the singular surface. Of particular relevance for the subsequent sections is the number
of linearly independent solutions which exist for one eigenvalue. An expansion scheme
for the radial dependence is introduced in Section 4. In the generic nonaxisymmetric
case it is found that the normal displacement out of the magnetic surface is governed by a
logarithm in 1/ — . Section 5 contains a discussion and the conclusions. Appendix A and
B are devoted to technicalities. In Appendix C, the case where the continuum equation
has two linearly independent eigensolutions per eigenvalue is explored. In these cases the
radial dependence does not necessarily follow a logarithmic law. The axisymmetric torus
is used as an example. The axisymmetric case is also pursued in Appendix D from the

standpoint of the theory of a general 3-D plasma.

2. Linearized MHD Equations of Pressureless Plasma

Our analysis is based on the equations developed in Ref. [1]. The equilibrium configuration
is pressureless with magnetic field B and current density J. Magnetic field line coordinates
(r',72,73) that satisfy

B-Vrl=0 and B-Vr’=0 (1)

are assumed. Force lines are labeled by the coordinates 7! and 72, while points along the
force lines are labeled by r3. In field line coordinates the magnetic field can always be
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expressed locally in the Clebsch representation [17],
B = f(r',r) [Vr! x V7Y, (2)

where f is an arbitrary function of its arguments, and div B = 0 implies the independence
of f on r3. By choosing the variables r! and r2 appropriately, the function f can always be
transformed to unity [17]. As in Ref. [1], we shall adopt this convention henceforth. The
contravariant and covariant components of an arbitrary vector a are denoted, respectively,
by ¢’ and a;, and the metric tensors g** and g;;, are defined by g%* = Vri. Vr* and
gik = €; - ey, where e; is the basis vector dr/dr*. The determinant of the matrix {9} is
denoted by g. Since 1/,/g = [Vr! x Vr?]- Vr3, Eq. (2), with f = 1, implies V9B® = 1.

In Ref. [1] the linearized MHD equations that govern the MHD dynamics of a pressure-
less plasma in general three-dimensional (3-D) geometry are reduced to a system of three
coupled partial differential equations for the two covariant components of the wave electric
field, £ and E,, and one covariant component of the wave magnetic field, b3,

. 0E, OFE B B

’L(.t)bg B3 (a 21 ﬁ) + E;—DEQ Bz DEl, (3)
0iwb B, . J-B

B3 87"13 - D (B*; ZCL)bg) = + (£21 E1 + £22 EZ) + HoT—=75 ,BP DEl, (4)
0iwb B, . J-B

B'—=>~D (izwbs) = = (LYEy + L2B) + o' B PP (5)

where D and £%* = L, for 4,k = 1 and 2, are differential operators that contain only
derivatives with respect to 3,
ik ik

0 ik — 39 2 9
D= B —8—3‘ and L :DIBIQD + Hopw IBP

(6)

From Ohm’s law, E + v x B = 0, and the linearized magnetic pressure p* = B - b, it
readily follows that F; = —v?, Ey = v! and p* = B®bs, where v! and v? are contravariant
components of the fluctuating plasma velocity v. Therefore, Eqgs. (3) — (5) can also be
transformed into an equivalent system of coupled equations that govern v!, v? and p*.
These equations are given in Ref. [1]. Our analysis of the continuum singularities will,
however, be based on the coupled equations for (Ey, Es, b3).

We now depart from general magnetic configurations and focus our investigation on
toroidal configurations with closed nested magnetic surfaces 1(r) = const. The configu-
rations need not be symmetric in any way. Since B - V1) = 0 by definition, and in view
of Eq. (1), we can identify one of the coordinates 7! or r? with 1. We take r! = ¢. The

second coordinate r® then labels magnetic field lines on the toroidal magnetic surfaces.




With this choice of coordinates, 8/0r' denotes differentiation normal to magnetic sur-
faces, while 3/0r% and 8/0r® denote differentiation within magnetic surfaces. The normal
derivative appears only in Eqgs. (4) and (5), while the surface derivatives appear in each
equation of the system. A matrix notation can be conveniently used to separate the nor-
mal derivative from the surface derivatives. Introduce a scalar function v and a column
vector w,
1wbs
v=FE and W= . (7)
Ey

Equations (3) — (5) can then be cast in the form

Av = BTw, (8)
0
E«—l_w = Dw + C’U, (9)

where A is a scalar differential operator that is identical to £,
11 11
9 2 4
A=D=—D+ W =——-. 10
The coefficients B, C and D are matrix differential operators that contain only derivatives
with respect to the magnetic surface coordinates 72 and 73,

0 B J-B
3 2
—B éﬁ‘i’D—lg—g 1 £21+,U'0 1B|2
B = ; C= 3 5 (11)
YN B p 0 B
IB’2 67’2 B3
D—B—1 L%
1 Bs
-1 E}D
3

where 9/0r® enters via the scalar operators D and L. Equations (8) and (9) form
a closed system of linear partial differential equations that governs v and w over the
toroidal plasma volume. Equation (8) contains only derivatives with respect to the surface
coordinates 72 and 73. Therefore, it simply relates w to v on a magnetic surface labeled
by 7. This relationship yields a formal expression for v in terms of w with r! a fixed

parameter,

v=A"1BTw, (13)



where A~ denotes the inverse of the differential operator A. Substitute Eq. (13) in
Eq. (9). The result is an equation that governs w over the toroidal volume,

9 1pT

Equatlon (13) provides v associated with any solution of Eq. (14). A key issue is the
existence of the inverse operator A~!, which is associated with the null space of A over a
given magnetic surface. The inverse of A does not exist if its null space is not empty, i.e.

if the homogeneous equation,

AV =0 (15)

has nontrivial solutions V°(r!, 72 r?) that satisfy suitable boundary conditions over the

toroidal surface labeled by r!. If nontrivial solutions exist, the magnetic surface is said
to be singular, and v and w have spatial singularities about it. These two specific issues,
the existence of solutions of Eq. (15) on a magnetic surface r§ = const and the spatial
singularities of v and w about r! = r{, form the central themes of this paper.

3. Shear Alfvén Continuum Equation

Equation (15), where the operator A is defined by Eq. (10), governs the singular magnetic
surfaces. The operator D = B -V = B39/9r3 = |B|d/d¢, where £ is the arc length along
a magnetic field line, renders it a coordinate invariant ordinary differential equation along
that field line,

Bl (IVW V9L g

BP

=0, (16)

_VO
Be P > + Hop”

where the field line coordinates r* = r} and r? = r2 are fixed parameters for the integra-
tion with respect to £. In Eq. (16), w? is an eigenvalue parameter that is to be chosen such
that the solution V? satisfies appropriate boundary conditions. For open-ended magnetic
field configurations, see e.g. Refs. [10, 18] for some geophysical applications, boundary
conditions are dictated by the physics at the ends of the field lines. In the present analy-
sis, which deals with toroidally closed magnetic surfaces, “most” of which are irrational
and support infinitely extended magnetic field lines, different “boundary” conditions are
required. Essentially two types may be envisaged.

Type I boundary conditions: on irrational surfaces, and hence on surfaces with infi-
nitely long field lines, V°(£) is bounded; on rational surfaces, and hence on surfaces with
closed field lines, V°(¢) is periodic. Hameiri, in Ref. [8] advocates this approach quite
generally. Here, we consider type I conditions only as an intermediate step. It permits us
to obtain information about the spectrum and the eigenfunctions of Eq. (16) that is also

7




relevant for our principal but more restrictive boundary conditions, namely those of type
IL.

Type II boundary conditions: V° is smooth everywhere on singular surfaces, and
hence bounded and periodic around poloidally and around toroidally closed paths. These
boundary conditions were applied e.g. in Refs. [11, 13, 14] and will be applied here, as
well. We thus restrict our analysis to modes which smoothly cover the whole, singular
magnetic surface. To make this point clearer, consider an irrational magnetic surface.
Equation (16) determines the solution along a field line. The integration starts at some
arbitrary point £ = £y, where the values of V' and its derivative dV°/d¢ are prescribed,
and continues without bound. As [ increases the entire surface will eventually be covered.
Provided the magnetic field and the geometry of the configuration are smooth enough
and w? is chosen properly, a smooth bounded solution V°({) might exist everywhere
along this whole field line. Nevertheless, V', when considered as a function of a poloidal
and a toroidal angle, is, in general, not smooth on that surface. It may vary significantly
from one point on the surface to a neighboring point that is connected to the first one
by many toroidal circuits of the field line. Type II boundary conditions exclude this class
of non-smooth solutions and also solutions of Eq. (16) that are exponentially “localized”
on a field line, see below. Type II conditions, therefore, are more restrictive than type I
conditions. By imposing smoothness and periodicity of the solution on the whole surface,
however, we are permitted to perform partial integrations wherever this may be useful.
From a practical point of view smooth, surface covering solutions may be more relevant
than non-smooth solutions as regards e.g. Alfvén wave heating of plasmas. Still, localized
modes could after all be of some experimental relevance. Singular surfaces with rational
rotational transform, i.e. with all field lines closed but different from each other in 3-
D configurations, are excluded from our consideration as well since it is unlikely that a
common eigenvalue w? of Eq. (16) could be found that is valid for all those different field
lines.

An important issue later in the analysis concerns the existence and number of linearly
independent solutions of Eq. (16) that satisfy type II boundary conditions. In order to be
doubly periodic the required solution would have to depend on £ in the form V°(6(£), ¢(¢)),
with V0(0, ¢) = V°(0 + 27, ¢) = V°(0, ¢ + 27), where 0 and ¢ are, respectively, poloidal
and toroidal angle-like, but otherwise arbitrary, coordinates on the singular magnetic
surface. In order to bring out the implications of these conditions more clearly, it is useful
to pick e.g. the coordinate # as an independent variable along the field line and to make
use of the freedom in € and ¢ in such a way that the field line becomes straight in these
coordinates. With

d d
}Bld—g = Bf’@, d¢ = ¢dé, (17)



along the field line, where B = B- V0, B = B-V¢ and ¢(¢) = B®/B?, Eq. (16) assumes
the form

d d 0 2 0 __
0 (Po((?,qﬁ) Al ) + popw Qo(0,¢0) V" = 0. (18)

Here Py = (V)?BY/|B|? and Qy = (V4)?/(B?|B|?). The coefficients Py(f,¢) and
Qo(6, @) are 2m-periodic in each of their two arguments. For irrational values of g, such
functions, with ¢ = ¢f, are commonly denoted as “quasiperiodic” with respect to #. In
this terminology type II boundary conditions require that the solution V°() be quasiperi-
odic with the same periodicities as the coefficients Py and @, i.e. V°(9) = V°(6, ¢f) where
V9(8, qf) is 2m-periodic in both arguments. Equation (18) can be put into a more stan-
dardized form. We apply a Liouville transform from the independent and the dependent
variables # and V? into z and W,

¢ do

AT LM OF (19)

T =
where a(6,¢0) = |V¥|/B, B = |B|/B, and B = BY/By. For normalizing purposes,
By = |By| is the modulus of the magnetic field at some arbitrarily chosen point on the
singular surface. If BY goes through zero somewhere along the field line, an analogous
transformation with the roles of  and ¢ reversed should be applied. With these trans-
formations, Eq. (16) becomes a generalized Hill’s equation,

W
oz TP - U@e@)lW =0, (20)
where
2
_ Popw _15d (5,da(b,9)
—_— = e — Y 2
V2B e = By (FEGD)| @)

and U(z,qz) is a real 27 quasiperiodic function. Our type II boundary conditions are

equivalent to the requirement
W(z) = W(z,qz), (22)

with W (z,qz) 27-periodic in both arguments. Equation (20) also corresponds to the
Schrédinger equation with potential energy U and total energy £ = A.

The theory of quasiperiodic differential equations is far more involved than that for
differential equations with periodic coefficients. It is often treated in the context of the so-
called almost periodic differential equations, which are slightly more general. Two reviews
are given e.g. in Ref. [19]. While there does not seem to exist a complete spectral theory
for Eq. (20) with boundary conditions of type II, pertinent analytical results are available
for large values of w?. Indirect evidence from analytical studies with type I boundary
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conditions and from numerical solutions [13, 14] are also helpful. In Ref. [20], analytic
results were obtained which, when specialized to our present situation, are as follows.
For sufficiently large values of w? or for sufficiently small nonaxisymmetry, provided ¢ is
sufficiently irrational and U(z, ¢z) is real analytic and bounded, Eq. (20) has solutions of
the Bloch form

W(z) = " P(z, qz), (23)

with P(z,qgz) 2n-periodic in both arguments and g = p(A) real in an infinite sequence
of A intervals. The forbidden gaps between the intervals are centered approximately
around A = (m + ng)/2, where m, n = 0, £1, £2, ..., etc.. Away from the gaps the
functions W (z) and W*(z), where the asterisk denotes the conjugate complex, are linearly
independent solutions to the same eigenvalue A. These results are the straightforward
generalization of the result for Hill’s equation with real periodic U(z) [21], where the
forbidden gaps, for |U| small enough, are situated approximately around A = m/2. In
Ref. [22], it was shown that under conditions similar to those given above, the analogy to
Hill’s equation goes even further. At both edges of the gaps, u assumes the same value
Pomn, Where fn, = (m + ng)/2. One of the solutions at each end is still of the form of
Eq. (23), while the second linearly independent solution is secular. For even values of
m and n, Ly, assumes the value M + Ng, with M = m/2 and N = n/2 integer, so
that the factor e** becomes properly quasiperiodic, e#* = eMz+Ngz) At each end of
“even” gaps, therefore, there exists one quasiperiodic solution with period 27 for z and
gz. Thus, although each such solution develops, so to speak, along an ergodic field line,
it fits together smoothly across the windings on the whole surface. The two quasiperiodic
solutions per gap have the same number of zeros in the poloidal and toroidal directions,
respectively, but different eigenvalues, A\ = A1, and A = A9, In axisymmetry, the
m-gaps are caused by the equilibrium quantities not being independent of the poloidal
angle, either from the bending of a cylindrical configuration into a torus, and/or by non-
circularity of the cross section. Analogously, the additional splitting up of the m gaps into
(m,n)-gaps comes from the nonsymmetry in the toroidal direction. In the periodic Hill’s
equation it can happen for very special cases of U(z) that one or more gaps shrinks to zero
with the consequence that two periodic linearly independent solutions coezist [21]. The
analogous situation might occur also in the nonaxisymmetric, quasiperiodic case for very
special configurations. The likelihood for this to occur, however, seems to be quite small
[22]. For the following sections, therefore, it is important to keep in mind that, in the
generic weakly nonaxisymmetric case, there is only one smooth solution per eigenvalue
for our type II boundary conditions.

If the nonaxisymmetry of the configuration is large enough and/or the modulus of the
frequency w small enough, spectral theory for Eq. (20) with type I boundary conditions
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predicts that in general the type of the spectrum and of the eigenfunctions changes [19].
Instead of the Bloch type solutions of Eq. (23), which exist “undamped” in —co < z <
oo, localized eigenfunctions occur which decrease exponentially on both sides of finite z
intervals and are accompanied by a point spectrum instead of the continuous spectrum
of the Bloch eigenstates. In Ref. [14], this transition was observed numerically. A mode
satisfying type II boundary conditions, with fixed m and n numbers, was observed with
increasing amount of nonaxisymetry, measured, say, by a parameter F. As F increases, the
mode develops steeper and steeper ridges until at a particular value of F' the mode ceases to
smoothly fill the surface and turns into a localized mode along the field line. We speculate
that such localized modes in the shear Alfvén spectrum, described by Eq. (16), could be
signatures of a possibly new class of eigenstates of the full MHD equations. They would be
analogous to the localized “gap” modes whose footprints can be observed within the gaps
of the continuous ballooning spectrum. Analytical [19] and numerical [14] results suggest
that the localized states of Eq. (16) usually fill a finite frequency band. This distinguishes
them from the gap modes which only occur as isolated points in the spectrum. The
issue of possibly new modes is an important one which has potential implications e.g.
for rf heating and current drive. It requires a thorough examination. A coexistence of
localized and extended shear Alfvén continuum modes in a nonaxisymmetric, though not
quasiperiodic, configuration was observed analytically in Ref. [23]. As a further special
case, if ¢(¢) is irrational but well approximated by rationals (“Liouville number”), the
spectrum may still be of another type, called “singular continuous”, with eigenstates
which have chaotic properties [19]. For our type II boundary conditions these moderately

irrational v surfaces must also be excluded.

4. Singular Modes

In this section, Egs. (8) and (9) are solved in the vicinity of a singular magnetic surface
labeled by r! = rj(w). On this surface, by assumption, Eq. (15) has nontrivial period
solutions for V?. Our solution technique is based on a self-consistent ordering scheme
for v and w and their derivatives, as already applied in the axisymmetric case [7]. We
introduce a small quantity e that parameterizes the order scheme, and we introduce the
notation O(---) to depict the order of the enclosed quantity with respect to €. Because
Eq. (15) is satisfied when 7! = r}(w), we make the ansatz that in the vicinity of ri(w), v

is order 1, while Av is small quantity of order e,
v~ O0O(1) and Av~ Ofe). (24)
Equation (8) then implies that B7w must also be of order e,

BTw ~ O(e). (25)
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A second ansatz that we make is that the orders of surface derivatives of w and v are
identical to the orders of w and v respectively. Equation (25) then implies that w is an
O(e) quantity, while dw/0r! is an order 1 quantity,

w ~ O(e), (26)
% ~ O(Cv) ~ O(1). (27)

Because w is of order ¢, Eq. (27) implies that normal differentiation 8/0r! is of order
e'. The ordering scheme defined by Egs. (24) — (27) can be made explicit by introducing
scaled variables y and w,

rt—ri=ey and W = €W, (28)

where y and w ~ O(1). The derivative of w with respect to 7! then becomes,

ow Ow
=~ . 2
Ot By 0(1) (29)

Substitute Egs. (28) and (29) in Egs. (8) and (9),

Av = eBTw, (30)
2v‘v =Cv + eDw (31)
oy '

Assume now power series expansions for v and W with respect to e,
v = /J‘O(y)VO(TQ’ Ts) + € (y)V1 (TQ) TB) Ty (32)
W= wy)Wrr?) +ean(y)WHr r¥) + - | (33)

where the factors u;(y), Vi(r?, %) and v;(y), Wi(r?,7%),i= 0,1, - - -, are to be determined.
In addition, we expand the scalar operator A and the matrix operators (BY,C, D) about
y = 0 in the following form

A(rt,r? %) = Ao(r?, r®) + ey Ay (r%, rd) + - (34)

An analogous notation is adopted for the expansions of (B7,C, D). The spatial variations
of v and w in the normal direction, and therefore the spatial singularities, are contained
in the factors u;(y) and v;(y), respectively. Substitute these power series expansions in
Eqgs. (30) and (31) and order terms according to powers of e. This yields equations that

determine the expansion coefficients of v and Ww. The results at order 1 are
/‘I’OAOVO = OJ (35)
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dl/o

WO = pCo V. 36

dy Hoto (36)
If pop # 0, Eq. (35) yields AgV? = 0 which is identical with Eq. (15), considered at
r! = rl. This equation was amply discussed in Sections 2 and 3. It implies that the
magnetic surface is singular. According to our type II boundary conditions, we accept
only such V°(r2, 73) which are smooth and satisfy periodic boundary conditions. Equation

(36) can be separated to yield equations that connect WP to V° and v to po,

WO — CoVO, (37)
dy,

At order ¢, the following equations appear,

,Ll,leVl + y/,L[)Alvo - VoBgCOVO, (39)
d
diylw1 — GV + yuoCi VO + poDoCoV?, (40)

where Eq. (37) was substituted for W°. Equation (39) determines V' in terms of V°.
However, because the operator Ay has no inverse, the equation can be solved only if
appropriate solvability conditions over the singular magnetic surface are satisfied. The
number of solvability conditions agrees with the number of linearly independent solutions
of Eq. (16) at fixed eigenvalue w?. Introduce the operator Ag. that is adjoint to Ao,

(a, Aob) = (Ao.a,b), (41)
where (a, b) designates an inner product over the singular magnetic surface that we define
as

(a,b) = 75 dS—— a*b. (42)

VY]

In Eq. (42), dS is the differential surface element, and the asterisk denotes complex conju-
gation. With this definition of the inner product and with type II boundary conditions it
is easily seen that the operator £ defined by Eq. (6), and therefore the operator A = £,
is self-adjoint, see Appendix A.

As has been shown in Section 3, Eq. (15) has in most cases only one linearly inde-
pendent solution in the generic three-dimensional case. In the rest of this section we
consider this case only. In Appendix C the non-generic case is also briefly investigated.
Let U° be any null vector of A, = Ao which need not be identical to V0. The solvability
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condition for Eq. (39) is obtained by taking the inner product of Eq. (39) with U° and
using Eqgs. (15) and (41). The following expression results,

dy,
y—a—;— = oly, (4‘3)

where

(U, BIG, V)

: 44)
(U0, 4,V0) (
Equation (43) determines vg. If o # 0, its integral can be expressed as
Vy = 99— ya7 (45)
. g
where ¢ is the free integration constant. If o = 0, Eq. (43) reduces to
dl/o
—— =0. 46
v dy (46)

The implication of Eq. (46) is that vy(y) is a distribution proportional to the delta function,
vo(y) ~ 8(y). In order to obtain a non-distributional solution for 14(y), it is necessary to
modify the expansions of v and W [7]. In place of Egs. (32) and (33), we introduce the

generalized expansions,
v = V(y) {Vo(rz, ) + eV r®) + - ]

+ ev(y) [kO(TQ, ) + eykt(r? r3) + - - ] , (47)

w = u(y) [WO(T2,T3) + ey W2, %) _|_]
i (y)y [EO(TQ,TB) + eyl (r® ) + - ] 7 (48)

where the added terms contain the expansion coefficients k*(r%,7%) and £(r2,r%). If
Eqgs. (47) and (48), and the matrix expansion defined by Eq. (34), are substituted in
Egs. (30) and (31) and the resulting terms are ordered according to ¢, in the same man-
ner as in Ref. [7], v(y) is found to be a logarithm [7],

v(y) =coo+co Iny, (49)

where cpp and ¢y are free integration constants.
Let 8 denote the numerator and « denote the denominator of o in Eq. (44),

= (U° BICV"), (50)
o= (U, A4,V°). (51)
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To simplify the notation the subscript 0 and the superscript 0 in the integrands of Egs. (50)
and (51) will be henceforth omitted. From the definition of the matrices B and C in
Eq. (11), there results 8 = fy + B, where

o= (U [BB (i - iﬁ) L

or2 ~ 9r B; ) B
d B, 0
(Y 22 Y
L (aTQ .Bgar3>]‘/>’ (52)
8 0 B)\.0
= * 3 ___._______2 A —
m"<U[B<&d 8HBJU&3
o (8 B, o
_spl (9 B0
oB or3 (87"2 Bg@ﬁ’)] V>' (53)

Here, (a) is defined as §dSa/|V| and & = J - B/|B|% Since ¢ depends only on 1, see
Eq. (B.11), it may be factored out of the surface integration in Eq. (53). The remaining

terms in the integrand cancel, resulting in
Br=0. (54)

Hence 8 = fq.

In order to evaluate By in more detail, it is advantageous to employ Boozer coordi-
nates [24]. In Appendix B some of their relevant properties are summarized. For ease
of notation, we denote Boozer coordinates by (v, 0, ¢), although the same symbols are
employed in Section 3 in various ways for more generally defined poloidal and toroidal
coordinates. In Boozer coordinates, By = 0 holds, see Eq. (B.3), so that § simplifies to

o 1 0
o * 3 12 12 Va
ﬁ*—@]<Béﬁzﬁ£ +L 53>x> (55)

With Egs. (A.4) and (B.9) the operators B39/0r? and L' in the first and the second
terms, respectively, may be transferred to the factors preceding them. This results in

oU* oV
8= < <£12V> 573 . (,CHU*) w>

It has been assumed above that there exists only one linearly independent, doubly periodic

(56)

solution to AgV? = 0. This implies
U =cV, (57)
where c is in general an arbitrary, complex constant. With Eq. (57) there results

g=0. (58)
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We thus find that in nonaxisymmetric toroidal configurations the shear Alfvén continuum
is connected in general with a logarithmic singularity.

As mentioned above, non-generic plasma equilibria without symmetry might exist in
which the equation AyV° = 0 has two instead of one linearly independent solutions. This
case is explored in Appendix C. It is shown that, under these circumstances, [, in general,
is not zero, implying thereby a power law singularity with an imaginary exponent o.

The logarithmic singularity in the general asymmetric case is in contrast with the
axisymmetric case [7] where, generically, § does not vanish, and a power law with imagi-
nary exponent o is normally the rule. In the next section we comment on this distinction
between the general 3-D case and the axisymmetric 2-D case from a physical point of
view. In Appendices C and D o in the 2-D case is derived from the fully 3-D expressions.

Tt follows from Eq. (52) and the definition of £'* in Eq. (6) that § always vanishes if
orthogonal field line coordinates exist. Orthogonality of coordinates implies that g'> =0
and from Eq. (D.5) in Appendix D a shear-free magnetic field. Existence of orthogonal
field line coordinates is treated in detail in Ref. [25].

It is pointed out here that Eq. (58) complements a result reported in Ref. [26] in that
the exponent p, which corresponds to —io in the present study is in most cases zero.

5. Discussion and Conclusions

This investigation is devoted to the existence and the properties of shear Alfvén contin-
uum modes in arbitrary, nonaxisymmetric, toroidal MHD equilibria with zero pressure.
A key assumption is that such 3-D equilibria exist. Shear Alfvén continuum modes are
commonly characterized by a radial singularity when the distance to a “singular” mag-
netic surface 1 = 1y, say, shrinks to zero. We consider this type of behavior, and we
assume that the modes smoothly fill in that surface. Our main result is as follows. Such
shear Alfvén continuum modes, which are well known from axisymmetric or plane config-
urations, exist as well in nonaxisymmetric configurations, but they have characteristically
different properties.

The first difference concerns the singularity behavior. It is found that the dominant
generic dependence of the normal velocity v, = v - V¢ of the modes, out of the singular
surface, is a logarithm in 1 — 1o, while in the axisymmetric case it, generically, is a power
law with imaginary exponent, i.e. an oscillatory singularity [7). The second difference
has to do with the way the modes fill the singular surface. In axisymmetry, no matter
how contorted the poloidal cross section may be, the modes always fill in smoothly the
resonant surface. With sufficiently strong nonaxisymmetry, some or all modes in a finite

frequency interval may lose this property. Instead, they turn into “localized” modes, with

16



an exponential localization along a magnetic field line only, and corresponding infinite
gradients within the magnetic surface, perpendicular to the field line. Such cases require
a different treatment, which we have not persued here.

At the first glance, it may seem strange that an arbitrarily small amount of non-
axisymmetry should change the radial dependence of the modes discontinuously from
vy ~ (1) — 1g)"", with 7 a real and not necessarily small number, into Uy ~ In (¢ — o).
The reason behind this qualitative change is the fact that the axisymmetric case is de-
generate, with two linearly independent eigensolutions per eigenvalue, while in the non-
axisymmetric case, however small the asymmetry may be, the degeneracy is removed,
and only one eigensolution remains. An additional consideration may also be helpful.
Both radial dependencies, i.e. the power law and the logarithm, are derived under the
assumption of a steady state of the plasma. If one considers an axisymmetric plasma to
which a small nonaxisymmetric perturbation is applied, it will take some time, At say,
until a new steady state and a new, modified set of modes are reached. Changes in the
phase of a mode are transmitted with the propagation of the mode itself. Equation (16),
with w? replaced by —82/0¢%, e.g., is a wave equation that plays an important role in
that process. Noticeable effects in the mode structure can be expected if the difference
between the new phase and the original one becomes of the order of 7/2. The weaker is
the nonaxisymmetry in the configuration, the longer it takes until such a phase difference
accumulates during the wave propagation. In that sense the transition from axisymmetry
to nonaxisymmetry is not as discontinuous as it first seems since the transition period At
gets longer and longer the smaller the asymmetry is. An analogous situation is well known
e.g. from the theory of Bernstein waves which propagate perpendicularly to a constant
magnetic field Bg. However small By may be, there is no Landau damping of the modes
while for By = 0 Landau damping is present. A qualitative explanation of this effect lies
again in the temporal evolution of the modes. For finite By, the mode amplitude oscillates
periodically in time with period ~ 1/By. For By — 0, the oscillation period therefore
goes to infinity, and it takes an infinite amount of time until a steady state is reached [27].

Our results show that a logarithmic singularity is the genuine generic property of shear
Alfvén continuum modes in toroidal configurations of moderate nonaxisymmetry. In such
cases the logarithm prevails whether or not the configuration has additional symmetries,
such as e.g. stellarator symmetry [28]. The logarithmic law is familiar also from much
simpler geometries such as the cylindrical screw pinch. The causes behind this common
law in the three-dimensional case and in the one-dimensional case, however, are quite
different. In configurations with less than the full 3-D topology, as in axisymmetric or
in straight configurations, the eigenvalues are degenerate, and this, in general, leads to
an oscillatory singularity [7] of the form (v — 1))*", where the value of 7 depends on the
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form of the poloidal plasma cross section. In special cases, in particular if the poloidal
cross section is deformed continuously into an up/down symmetric shape, 7 continuously
goes to zero and ﬁlﬁimately the logarithm emerges. In that latter case the logarithm is
not genuine, but simply the result of a particular symmetry [7].

Appendix A: Self-Adjoint Operator L%
The operator £* defined by Eq. (6) can be written in the form
L* =B.-Vp*B -V +¢*, (A.1)

where p* = ¢** /|B|? and ¢** = popw?p™*. In arbitrary coordinates (r',r?,r%) the covariant
expression for the surface element dS on the 7! = const surface is dS = /g |Vr!|dr®dr?,
where 1/,/g = [Vr! x Vr?] - Vr®. On irrational magnetic surfaces, field line coordinates
(rt,7?) are not convenient to apply periodic boundary conditions and to carry out integrals
over magnetic surfaces. For these purposes a more convenient set is given by arbitrary
angle-like poloidal and toroidal coordinates 6 and ¢, such as were already used in Section
3. In order to avoid confusion with the coordinates (r!,r?,r%), we introduce the notation

1
(Vi) x V] - Vo = i (A.2)

The index “B”, which in this appendix has no real significance, is chosen, for later pur-
poses, to refer to Boozer coordinates, see Appendix B. Since divB = 0 one may write

(a, L*b) = fdsﬁlﬂ a*Lkp = fde d¢ /g5 a* [B- Vp*B- Vb + ¢*b] =
- j{de d¢ /g5 a* [div (Bp*B - Vb) + ¢*b] = (A.3)
= fde d¢ /g5 div [Ba'p*B - Vb| + j[dedqs\/j,; [-p™ (B Va) (B - Vb) +a*q"b|.

Taking into account the periodicity of the integrand in 6 and ¢ the first term in the
last line of Eq. (A.3) vanishes since /gp divu = 0(,/gp u)/00 4 0(\/g5 u)/0¢, implying
that the integrand consist of total differentials in 6 and ¢. If now the same procedure is
inverted, but with the roles of ¢* and b interchanged, there results

(a, L) = fde d¢ /g5 [B- Vp*B - Va* + ¢*a*] b= (L*a,b). (A.4)

This proves L£¥* = L.
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Appendix B: Boozer Coordinates

Boozer [17, 24] has shown that coordinates (r!,72,r3) exist such that MHD equilibrium

magnetic fields can be written in both, contravariant and covariant form as
= [Vr! x V7% = yVr! + V73, (B.1)

where (r) is determined by plasma currents and need not interest us here. From
(r!,7%,73) it is possible to transform furthermore to coordinates (1,6, ¢) such that the
coefficients in the transformation are purely functions of ¢ [24], according to

rt=1,
=6-q7(9)9, (B-2)
P = I(1)0 + G (1)

In Eq. (B.2), # and ¢ are, respectively, poloidal and toroidal coordinates normalized to
the interval [0, 27]. They constitute a particular example of angular coordinates, in terms
of which the magnetic field lines are straight, as mentioned in Section 3. The functions
I1()) and G (%) correspond, respectively, to the equilibrium toroidal and poloidal currents,
and q(1) is the safety factor. It readily follows that B! = B? = ( and

B]_ =7, BQ - 0, B3 = 1, (BB)
so that
B} =[Vrl x VrY.vrd = Lo |B|> = B®B;. (B.4)

NZ

From Egs. (B.2) it readily follows that

0 0 0 1 0 0 0 1 (0 0
— - (g _1= — = B.
ort oy’ 0or? R <G89 8(;5) ' 9r3 qR ( ng) (B-5)
where R(¢) = G(¢) + 1(v)/q(v). Similarly, it is straightforward to show that
1 1
BY=0, B'=—— B= , By=G, By=1I, B.6
9/95 N ? (B.6)
so that
|B|>= BBy + B’By = R — (B.7)
V9B
which relates \/gp with the modulus of the magnetic field, and
0 0 1 0 0
B-V= 39 7 B?— < ) B.8
8¢ 4./95 q5¢ (B:8)

19



It is easily seen in Boozer coordinates that, for arbitrary doubly periodic functions
a(, ¢) and b(6, ),
0 0
3 3
(aB*55b) == (bB° 55 a). (B.9)

This follows from
8 9
3____ 3__ — it T = —
<a,B b j{dedgb,/—gBaB b= fdedqsa (Gag a¢>b

o 9 9
— _fde dp b~ (G% - 6¢> —~(bB*50), (B.10)

where Eq. (B.4), the periodicity of the integrand and the pure ¢ dependence of the
coefficients were used.
A further relevant relation for the present pressureless case is most easily evident in
Boozer coordinates, see Eq. (26) in Ref. [24], namely
0 J-B 0J-B
— - - - T = B.11
o2 [BP ~ &% |BP (B-11)

Appendix C: Two Eigensolutions per Eigenvalue

Here, we show how the method of Section 3 to determine the singular 1) dependence has
to be modified when the spectral equation AyV°? = 0, Eq. (35), with real operator Ay,
has two instead of one linearly independent doubly periodic solutions per eigenvalue. For
plasma configurations without axial symmetry, this would be a non-generic case. Let

Uy (r!,r?) and Us(r,72) be two linearly independent doubly periodic solutions to
AoU = AgU = 0. (C.1)

In the general case these two functions would not be related to each other in any obvious
way. Of course, V0 in Eq. (39) of Section 3 is a linear combination of U; and U,

V0 = Uy + ayls, (C.2)

with constant coefficients a; and a. We take the inner product of Eq. (39) with U; and Us.
As a consequence of Eq. (C.1), terms containing AoV* vanish and, with Eq. (C. 2) a system
of two homogeneous equations for the coefficients a; and ay results. The determinant of

this system must vanish. For i, £ =1, 2, we define
Qg = <Ui,A1Uk>, Bir = <UnB CoUlc> (C.3)
With ¢ = (dvy/dy)y/ve, see Eq. (43), a quadratic equation for o emerges,

o?det{ay} — o Q + det{Bi} =0, (C.4)
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where

Q = 11022 + azfin — a2 b2 — a1fa. (C.5)

The two solutions for o are

o= ﬁé%a—k} (@ (0" - desfon) desfpu)) "] (C.6)

Repeating the steps from Eq. (55) to Eq. (56) for S, one finds
ou; ou,

_ 12 “Yi 1277+ Y“YE

Pir = < (ﬁ Uk) Or2 (L Ui) Or2 >

This shows that B = —f;,;, which implies that £;; and (5 are imaginary. Also, keeping

(C.7)

in mind that the operator A; is the ¢ derivative of the operator A taken at r' = rj, it
follows from the self-adjointness of the operator A that a;; = aj;, implying that a;; and
Qg are real . With these relations, @, det{w;} and det{f;} become

Q =1 [o11 SPaz + 02 P11 — 23(0,012)], (C.8)
det{ai} = anam — |anl’,  det{Bi} = —(SPu) (Sh22) + |Bi2]? (C.9)

where & denotes the imaginary part. If () does not vanish, it is an imaginary quantity,
while det{c;;} and det{f;}, are real quantities. This renders the first term in Eq. (C.6)
imaginary and the first term in the radicand negative. The properties of the second
term in the radicand, however, are not obvious in general. Without going into further
details, it cannot be excluded, therefore, that the exponents o, which governs the spatial
dependence of w ~ (¢ — 1)9)?, have both real and imaginary parts. This leaves open
the possibility that nonaxisymmetric configurations of the non-generic type which are
discussed here might show a combination of a power low with a real exponent together
with an oscillatory behavior, in the vicinity of the singular surface.

An example for which two linearly independent solutions U; and U, exist and for which
o+ can be fully evaluated is the axisymmetric torus. The result for this configuration is
already known [7]. The imaginary exponent o from Ref. [7] is recovered with the present
technique in the following way. Introduce coordinates (¢, 0, ¢), where 6 is an arbitrary
poloidal coordinate and ¢ is the toroidal angle. Because of axisymmetry, Fourier modes
in the toroidal direction decouple, and the ansatz ~ e*"? with n denoting the toroidal

Fourier mode number, can be made. Let
Vo8, ¢) = VO(h) e (C.10)

denote a doubly periodic solution to Eq. (C.1). Since A and hence Ay are real operators
the conjugate complex function V°*(0, ¢) = V°*(0) e~ of V° must satisfy Ag V°* =0
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as well. The functions e™® and e~™® are, however, linearly independent provided n # 0.
This proves that in the axisymmetric case, for n # 0, there always exist two linearly
independent solutions, V° and VO* to the same eigenvalue(s) w? of the real operator A.
The gaps in the spectrum, which are opened up by nonaxisymmetry, see Section 3, shrink
to zero in the axisymmetric case, and the corresponding pairs of separate eigenvalues
degenerate into double eigenvalues. Possible choices for U and U, thus are U, = VO(f) e®
and Uy = V*(#) e=™9. Since § dpe*?m? =0 for n # 0, it follows that oy and B vanish

if ¢ # k. Furthermore, by inspection, it is clear that ax = on and By = —f11. As a
result, Eq. (C.6) simplifies to
oy = Lhn ;ézﬂ, (C.11)
a1 105)
Hence o, and o_ are imaginary with oy = —o_. This comes from the fact that the

functions U; and U, together include the pair of mode numbers (n, —n). In the pressureless
axisymmetric case, opposite signs of n correspond to opposite signs of o, as follows from
Eq. (D.6) below, or from Ref. [7].

In the present case of axisymmetry one can proceed also in a different manner, which
treats modes with one particular sign of n only. Details of this alternate method are in
Appendix D.

Appendix D: The Axisymmetric Case

With (1,0, ¢) coordinates the operator A in Eq. (10), which governs the shear Alfvén

continuum, can be written in the form

A= (Be%_}_B(ﬁ > ]?3]2 (BG + B? 8¢> + popw I%‘Z, (D.1)

where 6 is an arbitrary poloidal coordinate and ¢ is the toroidal angle. We make the ansatz

that the modes are proportional to ¢ with n denoting now a fixed toroidal Fourier mode
number. As in Eq. (C.10), a doubly periodic solution V0(9, ¢) of the spectral equation
(35) is again written in the form V°(6, ¢) = V°(6) e™¢. With this ansatz, the operator A
can be cast into an alternate form, A — A, where

N
A= (Ba— + an¢) g (BQE— + mB¢> + pgpw? (D.2)

99 B\~ o6 \B|2

For n # 0, A is a complez operator. For periodic boundary conditions, A and the other
analogously defined operators £* are still self-adjoint, L = L% This readily follows
e.g. with Boozer coordinates, analogous to the derivation of Eq. (B.9) in Appendix B.
Since A is complex, V°* is not an eigenfunction of Ay, in general. At a fixed value of n,
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the operator Ay, generically, has only one periodic eigensolution with respect to 6 and ¢
per eigenvalue w?. In contrast, Ay has two independent eigensolutions corresponding to n
and —n. We now sketch a derivation of § using the single eigensolution of A. The known
result, with pressure neglected, will be recovered [7]. In the axisymmetric case, Eq. (55),
with £2 replaced by £'2, is still valid, but the operator £'2 is now complex, for n # 0.
We then have, in place of Eq. (56),

5= ( (£7) Gz =~ (E20") 5) = 213 (£*V) Gz ). 0
Here, U = cV was taken, since U, the solution of the adjoint equation AU = AU =0,
is linearly dependent on V. Without loss of generality, the arbitrary complex constant c
has been set equal to unity since it cancels in 0 = /. Equation (D.3) contains terms
with w? in £'2. They can be eliminated by making use of the relation L'V = AV =0
which also contains w?. We then find,

g“ ov'* >

B ° (P 50 (D.4)

0= ~2i\s<

s=—-D=—. (D.5)

Evaluation of the local shear § = [V xB]-curl [V x B]/|V|* [29] in field line coordinates
shows that s is identical to 5. Transforming to coordinates in which the field lines are
straight, e.g. with Egs. (B.5) and (B.8), one obtains

1 50 g's
—=v el 89fB!2> (D)

After a tedious but straightforward evaluation of the terms under the 6 derivative, it is
found that Eq. (D.6) agrees identically with Eq. (57) in Ref. [7].

ﬂ:in<

23




References

[1] A. Salat and J.A. Tataronis, IPP-Report 111/263, July 2000.

[2] K.Hain and R. Liist, Z. Naturforsch., 13a, 936 (1958), W. Grossmann and J. A. Tata-
ronis, Z. Phys. 261, 217 (1973), K. Appert, R. Gruber and J. Vaclavik, Phys. Fluids
17, 1471 (1974).

[3] J. P. Goedbloed, Phys. Fluids 18, 1258 (1975).

[4] Y. Pao, Nucl. Fusion 15, 631 (1975).

[5] C. E. Kieras, Ph.D. thesis, University of Wisconsin, Madison, 1982.
[6] C.E. Kieras and J. A. Tataronis, J. Plasma Physics 28, 395 (1982).
[7] A. Salat and J. A. Tataronis, Phys. Plasmas 6, 3207 (1999).

[8] E. Hameiri, Commun. Pure Appl. Math. XXXVIII, 43 (1985).

[9] J. A. Tataronis, J. N. Talmadge, and J. L. Shohet, Comments Plasma Phys. Con-
trolled Fusion 7, 29 (1982).

[10] E. Hameiri, Phys. Plasmas 54, 4156 (1998).

[11] A. E. Lifshitz, Phys. Lett. 122, 350 (1987).

[12] B. Inhester, J. Geophys. Res. 91, 1509 (1986).

[13] A. Salat, Z. Naturforsch. 37a, 830 (1982).

[14] A. Salat, Plasma Phys. Contr. Fusion 34, 1339 (1992).
[15] E. Hameiri, Phys. Fluids 24, 562 (1981).

[16] J. A. Tataronis and A. Salat, Proceedings of the 2nd Joint Grenoble-Varenna Inter-
national Symposium on Heating in Toroidal Plasmas, Como, Italy, 1980, edited by
E. Canobbio, H. P. Eubank, G. G. Leotta, A. Malein, and E. Sindoni (Commission
of the European Communities , Brussels, Belginm, 1981), Vol. II, p. 665.

[17] W. D. D’haeseleer, W. N. Hitchon, J. D. Callen and J. L. Shohet, Fluz Coordinates
and Magnetic Field Structure (Springer Verlag, Berlin, 1991), p. 100.

[18] A. L. Krylov and A. E. Lifshitz, Planet. Space Sci. 32, 481 (1984).

24




(19] B. Simon, Adv. Appl. Math. 3, 463 (1982); J. Bellissard, Matematisk-fysiske Med-
delelser 42:3, 35 (1989).

[20] E. I. Dinaburg and Y. G. Sinai, Functional Anal. Appl. 9, 279 (1976); H. Riissmann,
Ann. N.Y. Acad. Sci. 357, 90 (1980).

[21] W. Magnus and S. Winkler, Hill’s Equation (Interscience Publishers, New York,
196691).

[22] J. Moser and J. Poschel, Physica A 124, 535 (1984).

[23] A. Salat and J. A. Tataronis, Phys. Plasmas 4, 3770 (1997).

[24] A. H. Boozer, Phys. Fluids 24, 1999 (1981).

[25] A. Salat and J. A. Tataronis, J. Geophys. Res. A 105, 13055 (2000).
[26] A. Salat and J. A. Tataronis, Bull. Am. Phys. Soc. 44, 79 (1999).
[27] D. E. Baldwin and G. Rowlands, Phys. Fluids 9, 2444 (1966).

[28] D. K. Lee and J. H. Harris, Nucl. Fusion 28, 1351 (1988); R. L. Dewar and S. R. Hud-
son, Physica D 112, 275 (1998).

[29] J. M. Greene and J. L. Johnson, Plasma Phys. 10, 729 (1968).

25



