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Resistive magnetohydrodynamic equations,
stability and nonlocal perturbations in
three-dimensional geometry
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Max-Planck-Institut fiir Plasmaphysik EURATOM Association, D-85748 Garching, Germany

Abstract

A simplified set of resistive MHD (magnetohydrodynamic) equations is
derived which describes the joint effect of pressure-driven (interchange and
ballooning) and current-driven (tearing) perturbations in arbitrary three-
dimensional geometry. These equations are shown to contain, as special cases,
several sets of previously derived equations. Stability is investigated by intro-
ducing appropriate Liapunov functionals and studying their time dependence.
In particular, it is shown that toroidal configurations (tokamaks and stellara-
tors) are always unstable (though not necessarily exponentially unstable) with
respect to ballooning perturbations, and that these perturbations do not have
to be radially localized, but can extend over large plasma regions.




I. INTRODUCTION

The purpose of the present paper is to study the stability of general toroidal
configurations in the presence of resistivity, focusing primarily on nonlocal pertur-
bations which can extend over a considerable region of the plasma. Here, the region
of interest is the outer plasma, where the plasma beta, 8 = 8mp/ B?%, with p the
plasma pressure and B the magnitude of the magnetic field, is small. While for two-
dimensional configurations there are already high-developed numerical methods for
studying linear and nonlinear dissipative instabilities, and the related transport,
this is not yet the case for three-dimensional configurations, in particular as far as
nonlocal perturbations are concerned. Although there are promising approaches to
fully integrate the three-dimensional geometry in the calculations [1], it is especially
for three-dimensional configurations, and, in particular, for nonlocal perturbations,
that analytical investigations such as the present one can provide important results.
In this sense, the results concerning two-dimensional configurations are a kind of
by-product of the general calculations.

As it is well known, resistivity decouples the plasma from the magnetic field
and removes the stabilizing effect of “frozen” magnetic field lines. This leads to
tearing mode instability of a plasma with finite toroidal current [2, 3, 4], and to
resistive interchange [4] and ballooning modes [5]-[10]. The usual ballooning mode
theory is characterized by small perpendicular wave lengths; in this paper it will be
shown that this is no restriction, and that the plasma may become unstable for any
perturbation initially localized to the region of unfavorable curvature.

In stellarators experiments without net toroidal current, tearing modes and dis-
ruptions do not occur in the beta regimes explored so far. However, there are local
parallel currents which grow with increasing plasma beta, and these currents could
lead to tearing instabilities. In the following theory, tearing mode equations will be
derived which are valid in general three-dimensional equilibria with finite parallel
currents.

In Sec. II, the basic resistive equations used are presented. In Sec. III, these
equations are linearized, and a basic set of simplified equations is derived by making
plausible approximations. In Sec. IV A, useful operators are introduced and their
properties are investigated. By making use of these operators, the basic equations
are written in a concise form in Sec. IV B. In Sec. IV C, global integral relations
describing the time evolution of the perturbations are obtained. The stability of
toroidal equilibria with respect to nonlocal, pressure-driven perturbations is studied
in Sec. V A. In Sec. V B, approximate equations describing localized, pressure-
driven, resistive and ideal interchange and ballooning perturbations are derived.
The equations describing tearing perturbations in three-dimensional configurations
are obtained and discussed in Sec. V C. The results are summarized in Sec. VL



II. RESISTIVE EQUATIONS

The equations given in this section are well-known. However, since they are the
basis of the following investigations, it is useful to present them here in a concise
way. An exhaustive discussion of these and many other related equatlons can be
found in a recent book by A. B. Mikhailovskii [10].

Expressed in Gaussian units using the standard notation, and assuming that
resistivity is small, the equations of resistive MHD considered here are the following.
The rate of change of the velocity is given by the equation of motion

d 1. A
—E=—-Vp+—,]><B. (1)
dt c
The equation of continuity is
op
2
N +V-(pu)=0. (2)
The rate of change of the magnetic field B is given by Faraday’s law
10B
-—— =-VXE. 3
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Since V - B = 0, Eq. (3) yields
10A
=-V 4
c ot tE= ®, (4

with A and ® the vector potential and the electric potential, respectively. The
current density j is given by Ampere’s law
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The pressure p and the mass density p are related by the equation of state

i[_p_}zo, (6)

dt p’YH

with vg the ratio of the specific heats. By combining Egs. (2)and (6) one obtains
the equation for the evolution of the pressure

dp
- — 7
dt—}-’)qu 0. (7)

The relation between the current density and the total electric field is given by
Ohm’s law

=E+%u><B . (8)




Note that resistivity has been kept only in Ohm’s law, for reasons explained
below. For simplicity, n is considered to be constant. It has also been assumed
that it is so small that the dissipative equilibrium flows associated with it can be
neglected.

The component of the current perpendicular to B can be obtained from Eq. (1).

By inserting the resulting expression into V- j =V - [3 L+ j“] = 0, one obtains

B d
v-{cﬁx[vpm—&%}r[j-%h}:o. (9)

Scalar multiplication of Eq. (8) by B and insertion of E from Eq. (4) yields the
parallel component of Ohm’s law,

10A } . (10)

| B=-B:|-“—+V
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An expression giving the perpendicular velocity u, as a function of the electromag-
netic fields is obtained from Ohm’s law by crossing Eq. (8) with B. This yields

u; =

B 10A
c Ot

B .
C'BFEX ———]—V(I):!-}-CT]E;XJ. (11)

Equations (7) and (9)-(11) are the basic equations used in the following analysis.

III. LINEAR EQUATIONS

A. Basic equations

All quantities are now expressed as a sum of equilibrium and fluctuating con-
tributions by making the replacement B — B + 6B, etc.. It is assumed that the
equilibrium is static, i.e. u = 0, and that it is described by the pressure p, the mass
density p and the fields B and j. By keeping only the linear terms and taking the
relation V - j = 0 into account, Eq.(9) yields V - T’(c{])i - (5j)“] = 0 in the form

|.B d(du),y B _ . . B
v [CBZX(V5p+p——6t ) B2X(JX5B)+<5J-§> B} . (12)

Linearization of Eqs. (10) and (11) yields the parallel component of Ohm’s law
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and the perpendicular perturbed velocity

. c 10 B _ ..
(5u)J_=§5B><V5<I>+§5£[BX(5A)J_]+c77—B—2><6J, (14)
respectively.
The evolution equation for the perturbed pressure is obtained from Eq. (7).
Since the equilibrium pressure is constant along B, and thus ((5u)“ . V) p =0, one

obtains

06
a—f+((5u)J_-V)p+7HpV-5u=0. (15)
Scalar multiplication of the equation of motion by B yields the equation
,82%U _ _B.Vép—Vp-sB. (16)

ot

Derivation of this equation with respect to time, subsequent multiplication by 1 /B?
and derivation along the equilibrium magnetic field yields the equation of the per-
turbed motion along B in the form

p% [(D-V-(su),] = B-V {B}—Q [B -V [(6u), - Vp] - %(53 - VP)”
pB -V B VD] | (17)
with
§D:=V -éu, (18)

and where the relation V-éu = V- (éu), +(B- V) [5u||/B] and Eq.(15) have been
used. '

B. Simplified equations

Considerable simplification of Eqgs. (12)-(17) is achieved with the following ap-
proximations.

The (small) resistivity is taken into account only in the parallel component of
Ohm’s law, Eq. (13), to make a parallel electric field (§E), possible. This is the
basic mechanism to decouple the plasma from the magnetic field and to allow for
breaking and reconnection of magnetic field lines. In the perpendicular component
of Ohm’s law, Eq. (14), 7 is neglected since a perpendicular electric field (6E), is
possible even with vanishing resistivity.

It is further assumed that the perturbed vector potential §A is approximately
given by

B

6A = 5A% (19)




since the parallel component of the perturbed vector potential is the main factor gen-
erating the perturbed perpendicular magnetic field, and this is much larger than the
perturbed parallel magnetic field if p/ B? is not large. The perturbed perpendicular
vector potential, which is the main factor generating the small perturbed parallel
magnetic field, is ignored here. With these approximations, Eq. (14) reduces to

[&
(6u), = EEBXV(S@ . (20)

The perturbed magnetic field dB = V X§A and parallel current density B - 8 =
(c/4m) B - VX 6B are then

§A 4 6 A
B=|V|— B+ ——ij 21
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and §A §A 4
Si=——V.|B? oc o4 Es2
B.dj= 47TV [B VJ_(B)}+C(B> [Ap—l— 023] , (22)

with V :—_-V—eB(eB-V) R eBzB/B.

The second term in Eq. (21) is small ~ p/B? as compared with the first one;
however, it guarantees that §B is divergence-free. The terms containing Ap and
j2 in Eq. (22) will be neglected since they are small compared with the fist term,

(B 68j), := —(c/4n) V - [B*V 1 (§A/B)]. Estimation of the orders of magnitude
yields
. g1
(¢ (6A/B) Apl/ (B 5), ~ 51 (23)
P
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and Py
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PP

with j. = (c(BXVp) /B2 j = (j - es) es, and [, L, and Lp the characteristic lengths
of the fluctuation, the equilibrium pressure and the equilibrium gradients along B,
respectively.

With these approximations, and by deriving Eq. (12) with respect to t, Eqgs.
(12), (13) and (17) yield three coupled scalar equations for 6D and the perturbed
potentials 6® and JA,

Ep_ 0%d 2 B
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In deriving the last equation use has been made of Eq. (27) in the relation

BX(Ju)l-l-a—;—?-”

RArAS (%)H (29)

The five terms in Eq. (26) represent the inertia, the interaction between pres-
sure gradient and curvature (interchange and ballooning), the current-driven tearing
perturbations, the stabilizing effect of magnetic field line bending, and the plasma
compression term, respectively. The terms in Eq. (27) express the balance between
the parallel current and the parallel electric field. Equation (28) describes the per-
turbed motion along the equilibrium magnetic field.

When the sound waves can be neglected (¢ = yup/p) — 0, the RHS (right-hand
side) of Eq.(26) becomes small and Eqgs. (26), and (27) decouple from Eq. (28).
However, sound propagation is not negligible if the perturbations grow slowly and

(1”8/ 6‘t>2 /2 — 0, where [} is the characteristic gradient length of the perturbation
along B. Equation (28) then yields, to leading order,

B.V((fu), Vi- = (sB-Vp) = V-

v
ot px

nc

5D =0. (30)
In both cases, the system of equations (26)-(28) reduces to Eq. (27) and

2 2 2
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The two coupled equations (27) and (31) for 6@ and éA are the basis of the
following investigation.

Equation (27) is a diffusion equation for the magnitude §A of the perturbed
vector potential. The driving term is B - V§®. Neglecting the resistivity changes
the mathematical character of the equation completely and eliminates the diffusion
process. With vanishing resistivity, the time derivative d6A/0t can be replaced in
Eq. (31), which becomes a self-adjoint equation for the perturbed electric potential
§®, as shown explicitly in Sec. IV B.

IV. GLOBAL RELATIONS

Relations describing the time evolution of the global perturbation energy can
be derived from Eqgs. (27) and (31). Here, the investigations are restricted to those
perturbations which leave the plasma surface unchanged and do not yield boundary
contributions. This is guaranteed by requiring §® = const., A/ B = const. on the
plasma surface. Since the actual value of these constants is irrelevant, it 1s then
convenient to consider a Hilbert space of functions which vanish on the boundary.
Thus,

§@=0 , 6A=0 ondQ, (32)

where 9 represents the boundary. For any two functions g, f of this space, a scalar
product is defined by the relation

(9, f) = / gf &Pz . (33)

In the function space considered, useful operators are introduced in a standard
way [11]. To avoid any confusion with vector or scalar quantities, these operators
will be designated by calligraphic letters. When an operator O is applied to a
function f, the mapped function Of is obtained. The scalar products (g,Of)
are functionals in the space in question. Some of these functionals can be used as
Liapunov functionals [12] to decide on the stability of the system. Thus, it is possible
to obtain general results without having to solve the equations for the perturbations
in full detail.

A. Operators and their properties

In the Hilbert space considered, let Z be the operator defined by

cp
I=-V. [-]-ﬁvr-} , (34)



where the - - - represent the function on which the operator is applied. This operator
is related to the inertia term. The scalar product of Zf with the functions g and f
then yields

2
(If) = - [g7- [;—’;vlf} &z
= (f,Zg) , (35)
and )
(£,2) = [ G IVLfFda >0, (36)

respectively. Thus, Z is Hermitian and positive. The operator F, defined by
Fev.[BV, ] (37)

is also Hermitian and positive,

(@ Ff) = (f,F9) » (HF) = [BVuPdzz0. ()

The operator F appears in Eq. (31) in the line bending term, and in Eq. (27) in the
magnetic diffusion term.
The operator

D=B-V=V-[B--] (39)

has the property
(9, Df) == (f{,Dg) , (fDf) =0, (40)
and is therefore anti-Hermitian. This is also the case for the operator J, defined by
J =V [.Vxj] (41)

(gajf) = /gV- [fVXj”] Pz

—/ [f (ijll)] - Vgd®z

(f,Jf) =0. (43)



The scalar product (g, Jf) can also be written as

970 = [(VigxVif)-jda (44)
Note that . .
1. (3) - (1) .
vxi=v. () xB+ (), 00 (45)
where (j” / L) Ch is some characteristic value for the perpendicular gradients of the

parallel current density.

In order to describe the second (curvature-driven) term in Eq. (31) it is conve-

nient to introduce the operator M,

M:V-[[jL-V---]ch (%H . (46)

The scalar product (g, Mf) yields

(g, Mf) = /gV- [[jl-Vf]ch (%)]d%
—/ {Vg-cVX (;)} L V] d

o oo (B)])

(M) )

Il

with the adjoint operator M* given by the expression

M+=V-[jL{

@]

The operator M can be expressed as a sum of a symmetric (Hermitian) part M

and an anti-Hermitian part M, in the usual way, M = M + M., with

M= (1/2) [M+ M|, Ma=(1/2) [ M~ M*] (49)

The relevant scalar products are then

Cc

(M) = =5 wa (Bﬁﬂ (G2- V1)

+ [Vf VX (BE)] (e - vw} &z, (50)
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(fyMf) = ”Vf V X (?J](jrw)d%
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Note that the higher-order terms in O(3) must be neglected in order to be consistent
with the assumptions of Sec. ITI B. With the perpendicular differential operators d.1v
and 0;gy defined by the equations

Vo (BXVv)
Oy =— -V v i=—-V,
L diB BVl

o) (52)

where v is the volume enclosed by a magnetic surface, and expressing the curvature
of the magnetic lines as

B? 1 Vo
EER ( ) APy

T TR B

= Kot O(ﬂ) ) (53)

with B )
o =~V (ﬁ) . (54)

Eq. (51) can then written as
c? p
s Mf) = = [ BEI90] Q18 [ion (D120)

g (Ou )] 2 +O(6?) . (55)

Here, dots mean derivatives with respect to the volume v. kon = Ko - Vov/ |Vl
and ko, = Ko - (BX V) /B |Vv| are the leading terms (in 8) of the normal and the
geodetic curvature, respectively.

The anti-Hermitian part M, of the operator M is

x |11 V' (BB)H
s e

By taking into account the relations V-j, +V-j; =0, V-jL = B%j.-V (1/B?)
and V-jj=B-V (]“/B), it can be shown that the term V X [j. X [V X (B/B?)]]

Ma = —gv-[(v ) %

= S(V-) VX |iX

11




depends only on the perpendicular gradient of the parallel equilibrium current den-
sity:

B 1 1 ¥
v (B)] = w7 (i vge) B ardh]

_ L m> i ]
= 5 [(B VB B—|-47rBVp

JI JI 1
- vl v gy \v/ 57
B ViRt mBYP- (57)

jiX

The last term in this equation is O(8?). Therefore

v ()

B. Equations in operator form

With the help of the operators defined in Sec. IV A, Egs. (31) and (27) can be
expressed as

2
7202 4 M.+ Ma) 5D - J[—l-@é}JrD[i—l—]—"[lQé—A”:O, (59)

- _Vx [v J“] +0(8%) - (58)

¥V X [JJ_X B

ot? B ot 4 B> |B 0Ot
and A B O6A
Z;nf[ }=—Dcs¢—; = (60)

respectively. These are the basic equations used in the following analysis.
When resistivity vanishes, Eq. (60) yields

1064 ¢

Bar = B (61

and, therefore

B ot B?
- v-[-ﬁ(B-w@)vxjn}
= NéD, (62)

—J [3 Qéé} = J [——D&D]

where the operator N has been defined as

N=v 2BV V] - (63)
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The adjoint operator N'* is obtained in the usual way from the scalar product

(QaNf) = (N+9af) ’

(9, Nf) = /gV~[é(B-Vf)V><j”]d3:c
= — [ V7 [(Ve- Vxit) B|
= [ [(Vo- Vi) 5B s (64)
Therefore
nt=v-[[(vxiy) V] 58] (65)

The operator M can be expressed as a sum of its symmetric part, Ny = (M + N1) /2,
and of its antisymmetric part N, = (N — N*) /2. Explicitly, the antisymmetric
contribution is

N = 3 (V=)
= v [ L@V Vi = [(xii) - V- B
= 5V [ Trx (i) 8] )

Since (V ><j||> XxB=Bx [BXV (j”/B)]—I-éhr (j”/B) Vp, one obtains

Sl epeeedel]. @

(&
a:_v'
N, 2

Comparison with Egs. (56) and (57) shows that the antisymmetric operators M,
and N, exactly cancel. The operator D [(c/4nB?)F [(c/B?)D---]] can easily be
shown to be Hermitian. Therefore, in the ideal case (n = 0), Egs. (59) and (60)
reduce to the self-adjoint equation

2?50

TZF + MS® + N30 - D[Eyf[—ﬁpw” (68)

It is thus shown that the approximations made preserve the self-adjointness of the
complete ideal MHD stability operator.

C. Integral relations

Within the framework of ideal MHD stability analysis, the energy principle is
an important tool which is based on the self-adjoint property of the stability oper-
ator. In the presence of finite resistivity, the energy of a perturbation is no longer

13




conserved. By making use of Liapunov functionals, it will be shown in the following
that resistivity leads to growing perturbations if the initial perturbation is localized

to regions of unfavorable curvature.
Since the operators Z and M are Hermitian, the following relations obtain

d6¢p _0%®\ 1d (095p _05%
(W’ —‘atz) L (W’IW> : (69)
e 950 14
By taking into account Egs. (38), (40) and (60), one obtains
000 o 1 1064Y _ _(p000 ¢ 11064
gt > 4r B2 B Ot ) ot *4m B>” B 0t

_ (e, pLl004 c 1 1004
= \#=" B ot 'ax B2 B 0t
B*10%A ¢ 1 _108A

+ (T:"E 51 * 4 B? BFF)

1
d 1 (18514 ]__165,4)

= s@i- \Bat' B ot
c1? 106A 1 _106A
+5] (f ET’}?’@FEW> - (M)

Multiplication of Eq. (59) by 96® /0t and subsequent integration [ - - d®z yields

dW C 85@ j“ 3
£ [0 v [VLE]M

1 85A_ jy 96 5 .,
+/[B - Vlele Ve P =y CE, (72)

with W and C? defined by the relations

W= L { (@3 I@) e (135‘4 fla‘m) + (5@,M35¢)]

— 2|\ ot ot ir \B ot B ot
1 lep 96\° B? 1054\1°| 4
= 5/{@? (VLW) Hﬂ"l ('B"a?)} }“
+% (6@, M5Q) (73)
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and

2
o= [i] (}_1854 1}.1_0_5_,4)

B ot B ot
- Rl (]
_ /[%ﬁl]d (74)

respectively. Multiplication of Eq. (59) by §® and subsequent integration over the
plasma volume yields

2
(50,2252 ) + (63, m50) - (30,9 L 28) - (oso, g5 ) =0
(75)

Note that only the symmetric part of M survives integration, and that the anti-
Hermitian property of D has been used. With Dé® taken from Eq. (60), and
transforming the time derivatives taking into account that the operators Z and
F are Hermitian, Eq. (75) can be written as

%% / [;agfv ] XB] V60 Pr = 2W, — 2W (76)
with the following definitions:
A= (5@ Iagf)) +%n02, (77)
95 1d
(&I)Ia ) = th BZ(V 15®)? dPx
= < / 5p (6ve)” &'z, o (18)

where dvg is the perturbation of the electric drift velocity, and
2 ._ |& 21 2 0A 3
¢ = [4%]./B2[V [BVL(B e
= [ (5) &=, (79)
)
Wy = (Q@ I@-) —fc” (vL@) Br>0. (80)

ot ’" ot B? ot

Equations (27) and (31) (or, equivalently, (59) and (60)), and (72) and (76) are
the basis of the following stability analysis.

15




V. STABILITY ANALYSIS

A. Global perturbations driven by the pressure gradient

The subject of interest in this section are the perturbations which are driven by
the interaction of the unfavorable field line curvature with the pressure gradient.
It should be stressed that no condition is imposed requiring that the perturbations
be localized to a small region of space. On the other hand, it is assumed that
tearing modes play no role , either because their absence is inherent to the type of
equilibrium treated, as is usually the case in stellarators or, in the case of tokamaks,
because the current density profiles of the configurations of interest have already
been optimized with respect to tearing modes. Therefore, it is assumed that the
driving force responsible for these modes, i.e. the perpendicular gradients of the
parallel current density, V | (j“ / B) , can be neglected. In this case, the contributions
of 7, Eq. (41) and M,, Eqgs. (49), (56) in Eq. (59) can also be neglected, and the
operator M contributes only through its Hermitian part, which is explicitly given
by Eq. (55).

Then,by taking into account Eq. (57), Eqgs. (72) and (76) reduce to

dw ,

-Ef— =N Ct ) (81)
dA
=22 (82)

The functional W is related to the perturbation energy; its dimension is energy
divided by 2.

Tt should be noted that the perpendicular gradients of the perturbed quantities
contained in these equations can be large in some regions of space, and this can have a
substantial influence on the growth rates. Although Eqgs. (81) and (82) are useful for
deriving general properties concerning the time evolution of the perturbations, they
do not yield, in general, their explicit time dependence nor the relation between this
time dependence (the exponential growth rate + in the case of unstable eigenmodes)
and the resistivity 7. To obtain these relations, it is necessary to explicitly solve Eqs.
(59) and (60). For instance, in the case of unstable modes, growth rates proportional
to fractional powers of the resistivity can be found, whereas a superficial estimation
based on Eqgs. (81) and (82) might mislead to conclude that the relation between
d/0t and 7 is linear. Regarding this point, cf. the last paragraph of Sec. Il in Ref.
24 .

16



Initial value problem

Equations (59) and (60) are of second order in ¢ for 6@, and of first order for § A.
Therefore, the initial conditions §®(x,t = tq), d6®/0t(x,t = to) and SA(x,t = to)
can be arbitrarily chosen.

It can now be shown that these configurations are resistive unstable whenever
there is a region of bad curvature. When there is such a region, a perturbation
§®(x,t = to) can always be found which makes the functional (6®, M&®) negative
at the initial time ¢ = #,. This is achieved by choosing §®(x,t = #5) # 0 only in
the region of bad curvature. The initial perturbation § A(x,t = tg) is chosen as the
solution of the equation

7 (%) = -pssxt=ta) (83)

This implies 96 A/Ddt(x,t = to) = 0, according to Eq. (60). Therefore,

o
(60, Mé®) (t=1ty) <O, 38_:1_ (x,t=19)=0. (84)
With the further initial condition
06®
W(X,t=t0) =0 ) (85)

it follows from Eq. (73) that the energy functional W (¢ = o) is negative.

Since W is initially negative, it remains so at all later times owing to Eq. (81).
W1, Eq. (80), is always positive. Then, according to Eq. (82), the functional A is a
monotonic increasing function of time. One obtains

Mﬂ::A@:M+?[Wﬂﬂﬁ+ﬂW@=mM#%@

f@@ﬂﬂ. (36)

to

¢
+2n [
to
Therefore, owing to Eqs. (77)-(79), either the perturbed plasma velocity or the

perturbed parallel current, or both, must grow unlimitedly in time.

The choice of initial conditions is based on the freedom to choose arbitrary
- permissible test functions at the initial time ¢ = t,. The linear time evolution of
the perturbations is determined by solving Egs. (59) and (60) with the appropriate
boundary conditions. Such a detailed treatment is not the subject of this paper. The
results obtained here are of a different nature: in the case considered, a Liapunov
functional exists which contains the perturbed plasma velocity and the perturbed
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plasma current, and which, within the framework of linear theory, grows unbounded
in time.

Note that a similar proof for exponential growth cannot be done in the same
way since, for eigenmodes, §®(x,t) = §®(x) exp (7t), SA(x,t) = JA(x)exp (7t), and
§®(x) and §A(x) cannot be chosen independent of each other, but are related by
Eq. (60) at all times. Here, on the contrary, the initial conditions for 6@, 06® /0t
and JA can be arbitrarily chosen.

These unstable perturbations can extend over large plasma regions, even though,
owing to the small resistivity, the main destabilizing contributions of the resistive
term —n [ [85j,|/8t]2 d®z (cf. Egs. (72) and (74)) originate only in the regions of
large transversal gradients ,where the perturbed parallel current is large.

It should be noted here that nonlocal, exponential, resistive drift instabilities
were found in Ref. 1, where the two coupled equations describing the perturbed
density and perturbed electric potential of resistive drift modes were numerically
solved for a certain stellarator model, without making further approximations with
respect to either the equilibrium geometry or the mode structure.

B. Localized perturbations driven by the pressure gradient

Perturbations which are localized, either near a particular magnetic surface or
around a closed field line, have large gradients across the localization surface or
transversally to the localization line. When applied to these kind of perturbations,
the operators J, Eq. (41), and M,, Eq (56) can always be neglected as compared
to Z, Eq. (34), F, Eq. (37), and M, Egs (46)-(49) since the former contribute with
only one large transversal derivative and the latter with two of them. In this case,
Egs. (59) and (60) reduce to

%6 c 1 _106A :
and A B OSA
C
=" (?) =P T (88)

The approximations made here taken into account, these equations can be shown
to be the resistive ballooning mode equations of Refs. 6 and 7 (Egs.(13), (18) and
(19) of Ref. 6, with yupéD — 0). With the effect of sound waves propagation
included, yupdD # 0), the stability of localized modes, which depend on time as
~ exp~t, can be studied with the general methods developed in those papers, or,
more recently, in Ref. 24. For general perturbations, the stability can be studied as
in Sec. V A. as an initial value problem. In the case of localized perturbations, the
operator M is given by its Hermitian part, Eq. (55).
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By taking advantage of the fact that the transverse derivatives of the perturba-
tions are large, and by Fourier-transforming the dependence along the field lines,
SA can be eliminated from Eqgs. (87) and (88), which then reduce to an ordinary
differential equation for the transformed of §® alone. Detailed calculations can be
found in Refs. 6, 7 and 24. Again, with resistivity, instability can be shown whenever
there is a region of bad curvature.

Ideal localized perturbations
In the limit of vanishing resistivity, Eq. (88) reduces to

BOSA
Dég+——-=0, (89)

and one does not have now the freedom to choose dA(x,t = %) so as to make
0§A/D6t(x,t = to) = 0. In this case, Egs. (87) and (88) yield the ideal ballooning
modes equation

1
47 B?

%60

z ot?

+ M50 — D[ f[—Da@H 0, (90)

B2

from which the conservation of energy follows

diw 06¢p 06D 2 /1 ~
dr dt2 [ (W’IW) + — ypm (3295@ }—B D5<I)> + (5‘13,./\/155(1))} =
(91)

The second, stabilizing line-bending term can be made small with flute-like pertur-
bations, which have a small variation along B, i.e. D§® ~ 0. These perturbations
can be stabilized by a magnetic well. For ballooning modes proper, Dé® is not
small, and there is a threshold for the pressure gradient.

C. Tearing modes

The basic theory of tearing modes was developed in Ref. 2, which treated the
finite resistivity instability of a sheet pinch. Here, these modes will be only briefly
discussed. The equations obtained are valid in general geometry.

Equations (27) and (31) describe the combined effect of ballooning and tearing
modes. By neglecting the perturbed pressure in these equations (the term propor-
tional to (BX V{§®)-Vp) and integrating Eq. (31) with respect to time ¢, one obtains
the following tearing modes equations

. cp 960 SA c B 9 dA B
V|5Vl at+BV _]“—}——EV B*V 5 =0, (92)
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§A BasA
nf;v : [B2VL (fﬂ —B-V§d+ ?%? . (93)

The driving term for the tearing mode instability is the second term in Eq. (92)
containing V | (j“ / B). If this term is neglected, the system is stable. This follows
from W > 0 and Eq. (81).

Since the resistivity 7 is small, it can be ignored unless the transversal gradients
V . are large. The resistive terms on the left-hand side of Eq. (93) can then balance
the parallel perturbed electric field on the right-hand side of the same equation. In
cylindrically symmetric configurations, it is possible to consider perturbations with
a single toroidal and a single poloidal Fourier component. For these, the region of
large transverse gradients is located around one surface, the mode rational surface
on which B - V§® = 0. Outside these region, the perturbations change on the
equilibrium length scales, the gradients are not large, and resistivity can be ignored.

The method of treatment is then to solve the equations in a small region with
resistivity taken into account. In most of the plasma, the equations are solved
ignoring resistivity. Since the solutions to both sets of equations are to represent one
and the same perturbation, they must match smoothly on the boundary separating
the resistive from the non-resistive (ideal) region.

In the resistive region, where the transverse gradients are large, Eqs. (92) and
(93) reduce to

p_, 060 ¢ 1,
B Vi tBV [5viea] =0, (94)
and BOSA
< 254 _R. DooA
1--BVi6A=B V6o + -, (95)
with
V25A =8 6A+ 025,04 . (96)

Here, for consistency, it is assumed that the product of the small resistivity n
with the large V2 is of the same order of magnitude as the terms on the right-hand
side of Eq. (95).

In the non-resistive region, where the transverse gradients are not large, the term
~ 7 in Eq. (93) can be ignored, and since the growth rate of the perturbation can be
assumed to be small, dependent on the small resistivity, the inertia term in Eq. (92)
can also be neglected. Eqs. (92) and (93) reduce to

[VJ_ (%‘-) xB] v (%) + BV [EI-Q-V- [B2VL (%)H —0, (97

B OSA
O—B-Vcs@-i-—c“—a—t—, (98)
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where VXj =V (j“/B) XB + O(B) has been taken into account. Eq. (98) can
be used to calculate B - V§®, but it is not required.

In cylindrical geometry, with j; ~ j.(r), these equations lead to the well-known
A criterion [3] frequently used in treatments of tearing modes in tokamaks. In more
complicated geometries, it is not possible to consider a single Fourier component
separately. Coupling of different Fourier modes arises owing to the metric of the
magnetic surfaces, which depends on the poloidal and the toroidal coordinates and,
in particular, owing to the angular dependence of j;. In stellarators with vanishing
net toroidal current the local parallel current changes sign. The perturbations have
a singular structure on the rational surfaces where any of the Fourier components
are resonant. Obtaining the actual solutions of Egs. (92) and (93) and carrying out
the matching process on the boundary of the resistive to the non-resistive regions
is a difficult task [4, 14]. As it is shown in the standard tearing mode theory
of a cylindrical plasma, the resistive layer is small if resistivity is small and the
shear of the magnetic field lines is large. However, this is not the case in low-shear
stellarators, and in tokamaks with reversed shear. For these, a special treatment of
the equations is necessary.

The joint behavior of tearing and ballooning effects can be described by keeping
the perturbed pressure term ~ (BXV{§®)- Vp in Eq. (31). In this case, Eq. (94) is
replaced by , ,

c i® c 1
B—fvi%-t-; — M50 + BV [EviaA] =0, (99)
with

) 1
MSP = c2|vv|3{’5[—32 <0Lv§) 9%, 60
1
+ B (amvﬁ) aLBv(aLvacp)] . (100)

Equations (99) and (95), which describe the resistive region, are identical to
Egs. (87) and (88). They can be studied with the methods of Refs. 4, 6, 7, and
13. The equivalence of the treatments used in Ref. 4, where the equations are
solved in physical space, and in Refs. 6 and 7, where the equations are solved in
Fourier-transformed (“ballooning”) space was shown in Ref. 13.

Unfortunately, in the case of tearing modes in general configurations, it does
not seem possible to derive relations determining the stability in a similar way as
in Sec. V A, because of the presence of the operator [, which has both Hermitian
and anti-Hermitian parts, in the relevant equations. There are, however, interesting
special cases for which a resistive energy principle can be derived and evaluated, as
done in Ref. 14, and, particularly, in Refs. 15 - 23, where fundamental contributions
to the theory of energy principles for dissipative systems can be found.
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VI. CONCLUSIONS

The usual resistive MHD equations for plasmas with small resistivity, which
keep resistive effects only in Ohm’s law, were considered in their linearized form.
By making some plausible approximations, a simplified set of resistive MHD equa-
tions was derived. These equations describe the joint effect of pressure-driven (in-
terchange and ballooning) and current-driven (tearing) perturbations in arbitrary,
three-dimensional geometry. The approximations leading to the simplified equations
are the neglect of the coupling of the equations for the perturbed electromagnetic
potentials to the equation describing the perturbed plasma motion along the equi-
librium magnetic field, as explained in Sec. III B, and the assumption that the
perturbed magnetic vector potential JA is given mainly by its component parallel
to the equilibrium magnetic field. With these assumptions, it was possible to derive
a set of two coupled, second-order, partial differential equations for two scalar quan-
tities, namely the perturbed electric potential @ and the parallel component of the
perturbed vector potential §A. With the introduction of appropriate operators, the
equations could be written in a very concise form. The symmetry properties of these
operators was investigated, and energy-related functionals which describe the time
evolution of the perturbed system were derived. By neglecting the perpendicular
gradients of the equilibrium parallel current density (thus assuming that the equilib-
ria of interest are either inherently stable with respect to tearing modes, as is usually
the case in stellarators or, in the case of tokamaks, assuming that tearing modes
play no role because the current density profiles have already been optimized with
respect to them), and by treating the stability problem as an initial value problem,
it was possible to show that toroidal configurations (tokamaks and stellarators) are
always unstable for non-vanishing resistivity. This result was obtained by taking
advantage of the freedom to choose the initial perturbations, and is a consequence
of the fact that there are always regions of bad curvature. An important feature of
these instabilities is that they can be global an do not have to be localized in space.
However, the method does not yield the explicit time dependence of the instabilities.
In particular, it is not possible to show exponential instability.

By considering the appropriate limiting cases, it was shown that, within the
approximations made, the derived set of equations contains, as special cases, the
equations which describe ideal and resistive localized ballooning modes, and tearing
modes in toroidal configurations.

For the outer regions of tokamak plasmas, the results are consistent with those
previously obtained for local perturbations within the framework of a circular toka-
mak model [13], and also with numerical calculations based on local (Ref. 25) and
nonlocal (Ref. 26) [26]) dissipative two-fluid theory.

One may speculate whether instabilities with non-exponential growth are dan-

22



gerous for plasma confinement. In the experiment, however, a situation in which
a plasma starts from an unstable equilibrium with small perturbations cannot be
verified. The experiment starts at a finite distance from the envisaged unstable
equilibrium and will stay in an oscillatory or turbulent mode around this equilib-
rium. This state is governed by the non-linear resistive MHD equations. Thus the
system never passes through a phase where the linearized theory is relevant. The
main result of the linearized theory is that the equilibrium cannot be reached.

ACKNOWLEDGMENT

The Authors would like to thank J. Nithrenberg for useful comments.

23




References

[1] R. Kleiber, 25th EPS Conference on Controlled Fusion and Plasma Physics,
Prague, 1998, edited by P. Pavlo (European Physical Society, 1998), Vol. 22C,
p- 1753.

[2] H. P. Furth, J.Killeen, and M. N. Rosenbluth, Phys. Fluids 6, 459 (1963).

3] B. Coppi, J. M. Greene, and J. L. Johnson, Nucl. Fusion 6, 101 (1966).

[4] A. H. Glasser, J. M. Greene, and J. L. Johnson, Phys. Fluids 18, 875 (1975).
[5] G. Bateman and D. B. Nelson, Phys. Rev. Lett 41, 1804 (1978).

6] D. Correa-Restrepo, Z. Naturforsch. 37a, 848 (1982).

]

7] D. Correa-Restrepo, in Plasma Physics and Controlled Nuclear Fusion Re-
search 1982 (International Atomic Energy Agency, Vienna, 1983), Vol. II, pp.
519-530.

[
[
[8] A. B. Mikhailovskii, B. N. Kuvshinov, V. P. Lakhin, S. V. Novakovskii, A. .

Smolyakov, and S. E. Sharapov, Plasma Phys. Contr. Fusion 31, 1741 (1989).

[9] A. B. Mikhailovskii, B. N. Kuvshinov, V. P. Lakhin, S. V. Novakovskii, A. L.
Smolyakov, and S. E. Sharapov, Plasma Phys. Contr. Fusion 31, 1759 (1989).

[10] A. B. Mikhailovskii Instabilities in a Confined Plasma (Institute of Physics
Publishing, Bristol and Philadelphia, 1998).

[11] A. E. Lifschitz Magnetohydrodynamics and Spectral Theory (Kluwer Academic
Publishers, Dordrecht, 1988), p. 40.

[12] P. G. Drazin Nonlinear Systems (Cambridge University Press, Cambridge,
1992), p. 178.

[13] D. Correa-Restrepo, Phys. Plasmas 6, 530 (1999).
[14] B. N. Kuvshinov, Sov. J. Plasma Phys. 17, 717 (1991).

[15] E. M. Barston, Phys. Fluids 12, 2162 (1969).

]
[16] H. Tasso, Plasma Phys. 17, 1131 (1975).

24




[17] H. Tasso, in Plasma Physics and Controlled Nuclear Fusion Research 1976
(International Atomic Energy Agency, Vienna, 1977), Vol. III, pp. 371-381.

[18] H. Tasso, Plasma Phys. 19, 177 (1977).

[19] H. Tasso, and J. T. Virtamo, Plasma Phys. 22, 1003 (1980).
[20] H. Tasso, Phys. Lett. A 94, 217 (1983).

[21] H. Tasso, Phys. Lett. A 147, 28 (1990).

[22] H. Tasso, Phys. Lett. A 161, 289 (1991).

[23] W. Kerner, and H. Tasso, Phys. Rev. Lett. 49, 694 (1982).
[24] W. Kerner, and H. Tasso, Plasma Phys. 24, 97 (1982).
]

[25] A. Zeiler, D. Biskamp, J. F. Drake, and B. N. Rogers, Phys. Plasmas 5, 2654
(1998).

[26] K. Hallatschek, and A. Zeiler, Phys. Plasmas 7, 2554 (2000).

25




	Titel IPP-III-267.pdf
	Text IPP-III-267.pdf

