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Abstract

[t is shown that the collisionless orbit transformation of the locally trapped
and passing particles in the optimized stellarators of the Wendelstein line
results in stochastic diffusion of energetic ions. This diffusion can lead to the
loss of an essential fraction of energetic ion population from the region where
the characteristic diffusion time is small compared to the slowing down
time. The loss region and losses can be minimized by shaping the plasma
tempera;tufe and density profiles so that they satisfy certain requirements.
The predictions of the developed theory are in agreement with the results of
numerical modelling of confinement of a-particles in a Helias reactor, which

was carried out in the work with the use of the orbit following code.



I. INTRODUCTION

It is known that the lack of the axial symmetry in stellarators may result in super-
banana orbits of the locally trapped particles. This fact affects transport processes in
stellarator plasmas. In particular, it leads to the loss of all locally trapped alpha particles
in a conventional stellarators,! therefore, a reactor based on such systems is not possible.
Several ways are suggested to make the confinement of alpha particles to be acceptable.
One of them is to optimize stellarators.?®> The optimized stellarators (or Helias, which
means HELIcal Advanced Stellarator) are characterized by sufficiently high 8 (the ratio
of plasma pressure to the magnetic field pressure) and concomitant enhanced diamag-
netic effects suppressing superbananas. Other suggested ways consist in making such the
magnetic configurations that are symmetric in magnetic coordinates (quasi-helical stel-
larators* and quasi-axisymmetric stellarators®®) or are quasi-omnigenous.” In all these
systems locally trapped particles are to be confined because the contours of the longitu-
dinal adiabatic invariant, J = § vdl, are closed and weakly deflect from the magnetic
flux surfaces. However, one should expect that there will exist inevitable colissionless
losses of alphas in quasi-symmetric and quasi-omnigenous systems because the complete
quasi-symmetry and quasi-omnigeneity cannot be achieved. In the present work we will
show that a weak point of the optimized stellarators is the presence of the transitioning
particles, i.e., particles whose orbits are transformed from the locally trapped to locally
passing ones, and vice versa. We will show that a considerable fraction of energetic ions
in a Helias configuration can be lost because of the mentioned orbit transformations and
concomitant collisionless diffusion.

The physical mechanism responsible for the diffusion of the transitioning particles,
which will be studied in this work, consists in the following. The adiabaticity of the
particle motion in the phase space breaks down near the separatrix between the regions
of the locally trapped and locally passing orbits. Because of this the adiabatic invariant J
acquires phase dependent jump each time when a particle crosses the separatrix.®7° For

successive transitions the phases of the motion do not correlate. Therefore, the multiple



crossings of the separatrix are accompanied by the random walk of particles in the J
space, resulting in spatial diffusion.

It should be noted that the stochasticity associated with orbit transitions seems to be
observed (but not recognized) in Monte Carlo simulations of fast particle ripple losses in
JET and TFTR tokamaks.!!!? In those simulations the ergodic zone was observed not
only in the Goldston-White-Boozer stochastic domain,'® but also beyond it, close to the
midplane of the torus where the ripple wells are formed. The diffusion associated with
the orbit transformations of trapped and localized particles in tokamaks was considered
in the work'* where it was shown that resulting loss time for a-particles can be much
less than their slowing down time. However, this loss channel plays a minor role in
tokamaks where the ripple wells are located only in the narrow band near the midplane
and outer circumference of the torus. In contrast to this, in stellarators the local wells
occupy the whole plasma cross section. Therefore, one may expect that successive orbit
transformations will be an important factor leading to stochasticity and the concomitant
loss of energetic ions in the optimized stellarators. A supposition that stochastic diffusion
plays an important role in systems with closed contours of J was made in the work by
Lotz, et al.!®>!® where confinement of a-particles was studied numerically.

The purpose of the present work is to develop a theory of stochastic diffusion of the
energetic ions in the optimized stellarators.

The work is organized as follows. The analysis is carried out in Sec. II. At first,
the longitudinal adiabatic invariants of the locally trapped and locally passing particles
in terms of the parameters characterizing Helias configurations are calculated. Then the
probability of the orbit transformations and a concomitant jump of J are found. Based on
them, a coefficient of the collisionless spatial diffusion of energetic particles is obtained. At
the end of Sec. II the diffusion coefficient is analyzed and used to evaluate the confinement
of the energetic ions in Helias configurations. In Sec. III the confinement of a-particles
in a Helias reactor is investigated numerically with a guiding center orbit following code,
which extends the analysis by Lotz, et al.!>!6, In this section the results of numerical

calculations are also compared with the predictions of the developed theory. A discussion
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and summary of the results obtained in the work are contained in Sec. IV.

II. DIFFUSION OF TRANSITIONING PARTICLES

First of all, we have to specify the magnetic field of the system. We consider a config-
uration where dominant Fourier harmonics in the magnetic field strength are relevant to

a Helias. Namely, we take the magnetic field strength in the form:

B = B[l + (%) + em (1) cos N — ex(1h) cos(d — N) — (1) cos 6], (1)

where v, 0, ¢ are the magnetic flux coordinates with ¢ the toroidal magnetic flux;1920 ¢4

describes the change of the vacuum magnetic field due to finite 3; €n, €, and ¢; are the
amplitudes of the mirror, helical, and toroidal harmonics, respectively, €, being dominant
in the plasma core; and N >> 1 is the number of the field periods along the large azimuth
of the torus. It is convenient to combine the mirror and helical components in Eq. (1),

which leads to

B = B[l + (%) + eam(®h,0) cos(Ng + x(1,0)) — ex() cos 0], (2)
where
enm (0, 0) = (67271 + €2 — 26 €1 COS 0)1/2 . x(¢,0) = cos™ (%__GZE_CES_‘?) _ (3)

It follows from Eq. (3) that there exist two characteristic periods in the dependence of B
along the field line (6 = 1, where ¢ is the rotational transform). The first period, (A¢); =
2m /1, is due to the toroidal nature of the system (but the helicity essentially contribute to
the modulation of B with this period, too ); the second one, (A¢), & 27/N, is associated
with the mirror and helical Fourier components. Because N > 1, (A¢); < (A¢)1, which
leads to the existence of the local magnetic wells.

We are interested in the particle motion for the time which well exceeds the
bounce/transit period, 7, associated with the local magnetic wells. In this case, allowing
for the fact that a particle weakly deflects from the magnetic field line for 7, we can use

the longitudinal adiabatic invariant J for description of the bounce averaged motion of the
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particles. The invariant J has different forms for the locally trapped and locally passing
particles.

In particular, for the locally trapped particles, J' = § vdl, (superscript [ denotes the
locally trapped particles which we will refer to as localized particles). We calculate J*
taking into account Eq. (2) and neglecting the rotational transform and the particle radial

excursion (i.e., we take 1 = const, § = const). The calculations yield:

J' = J,(4,0)f(s%), (4)

where

_ 16R,

Js i

R 1/2
(;LBﬁhm> , f(l‘&z) — E(/i)?) _ (1 _ 52)]{(52)’ (5)

m

Ry is the average radius of the magnetic axis, K(k) and E(x) are the complete elliptic
integrals of the first and second kind, respectively, « is the trapping parameter given by

2 _ 8—y§(1+60—6tcosﬁ—ehm)

- 6
2uBe€nm, (6)

K

& = mv?/2 = const is the particle energy, 4 = mv} /(2B) = const is the particle magnetic
moment, and m is the particle mass.

An approximate expression for the longitudional invariant of locally passing particles,
JP, can be obtained by integrating the canonical angular momentum P - muvBs/B —
e,/c (Bs/B = Ry, Bs is a covariant component of B, 1, is the poloidal magnetic flux,
dip,/dip = ) over the period of the field modulation. Taking again ¢ = const, f = const

we obtain (c.f.!8):

A 4dTe
']p:a']s(/ae)f(ﬁ?)— M¢p7 (7)
where 0 = Sgn |,
Fs) = KE(1/2). )

Let us consider transitioning particles (i.e., the particles for which x = 1 at certain

moments, see Fig. 1). Their diffusion arises from the multiple separatrix crossings as a
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result of drift-induced slow modulations of €, (%,8) and x(¥,6). Modulation of x(,0)
corresponds to the slow change of the local well position along the trajectory of passing
particles and results in p* > p~ transitions (p* and p~ are passing particles with v >0
and v < 0, respectively) without the change of the orbit topology. Hereafter we ignore
the contribution from such crossings, and consider only p <+ [ transitions associated with

the modulation of the local well depth €z, (¥, 8).
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Fig.1. Sketch of level contours of J for the locally trapped particles (thin lines) and the
k =1 contour (bold line inside the plasma) in a Helias. Locally trapped particles moving along

the J = const contours become locally passing ones after crossing the bold line.



The corresponding diffusion coefficient can be defined as follows:

5 _ (@A)

T

) (9)

where Ar is the change of the particle radial coordinate caused by the orbit transforma-
tion, r being the effective flux surface radius defined by the equation ¥ = Br? /2; T is the

characteristic time,

r= (), (10)

7! and 7P being the characteristic times of the motion of a particle in the localized and
passing states. The factor 1/2 takes into account that a particle crosses the separatrix
twice per full period of the hybrid passing-localized orbit. The time 7' is essentially the

precession time of a localized particle given by

c aJ

Nt =- : 11
(™) 21e(0J/OE) O (11)
The equation (11) yields:
» ’
() = 27757;503 (eg — ¢} cos 0 + 62}; (en, — €m cOS 9)> . (12)

where prime denotes derivative over 2.
One can see that (77)~! is proportional to the poloidal velocity of a passing particle,
df?/dt, and the probability for this particle to be trapped into the local magnetic well,

P. Therefore, we write:

P do?
-t 7 1
(7)) =5 — (13)

To calculate P we use the following expression:?!

l
b dJ'dt

©dJe/dt (14)

K2=1
Taking into account Eq. (4) and that dJ,/dt|.2=; = 0 we present the numerator of
Eq. (14) as follows:

!
dt

. Of dk?

=J, ——— . 15
* Ok? dt (15)

K2=1 K2=1



Using the equations of bounce averaged motion of the localized particles,

& _ ¢ 9o d ¢ 9 (16)
dt — edJ]OE DY’ dt edJ/OE O’
we obtain:
de?  9r?dy! | 9k?d0' ¢ 1
PR i G vy (17)
where

3T, 0k 0J, 0k

Dv,0) = 5 oy Oy 96 (18)

On the separatrix, which is determined by the equation x*(¢5,6;) = 1, we have (a term

with derivative den, /di is neglected, and subscript “s” is omitted):

o2 1 , €

o . =5 [e{‘ cosf — ey — ﬁ(eh — € COS 0)] ) (19)
k2| sinf [ enen,
b = — 20
00 K2e1 2€hm (6hm 4 €t> ’ ( )

0J _ 16R, pBehm 1/2 €, €h — €m COSH 0J, _ 16R ,uf)’ehm 1/2 €LEm G0 0
oy N m 2€hm €hm 99 N m 2¢2 ’
(21)
A\ 1/2
D, 0oy =~ (;;) :ZESIH 9, (22)
§ = €reney — €,(€n — € cOs 0)€; — €466, cOS b, (23)

Calculating the denominator in Eq. (14), we take into account that di/dt|.2—; = 0

and that the second term in Eq. (7) dominates. Then we obtain:

aJe . ock, 9JF df Or? _ Amv? Ok?
dt |, e(@J7j05) dp x? 00 N ™6,

(24)

1
where 9x2/90),2-, is given by Eq. (20).
The obtained relations enable us to write the probability of the orbit transformations

given by Eq. (14) as



A A 1/2
»_ 28R (,uBehm> / 5

TwB m €hem + €t€hm’ (25)
where wg = eB/(mc). Combining Egs. (25), (13) we have:
- P 9J7  EB 8
(") = —5m (26)

—271'6(8]?/68) o - 2TMWEB €4Em + EnmEr

Comparing Eq. (26) with Eq. (12) we conclude that typically the times which a transi-
tioning particle spend on each part of the hybrid trajectory are almost equal.

Let us calculate now the change of the adiabatic invariant caused by separatrix cross-

ing. We proceed from the following expression:371°
1dJ!
AJ = _5 dt A(fs)a (27)

where w = 2K (k)(mdJ'J0E)™1 /m, A(&s) = In[2sin(7Es)], and & is a crossing parameter
which can be expressed in terms of the coordinate ¢, of the point where the trajectory
crosses the separatrix as & = 0.5(1 — sin N¢,/2) with —7/N < ¢, < 7/N.

When multiple trapping occurs, & can be regarded as a random value uniformly

distributed in the interval (0,1). Then we obtain:

2 1\ 2
_ 2T ldJs
<AJ>=0, <(AJ) >= 1 (w dt) : (28)

The corresponding radial jump can be found from the relation:

_ A0
AY = Az, (29)

where 1 is to be taken at the transition point determined by the equation

Js(¥,0(9)) = J'(4,0, ), (30)

and o = £/pB — 1 is a pitch angle variable. From Eq. (30) we find:

(31)

oy  (dJ, +Q0_6Js\_1
8Jl — \ 9y | dp 86 )

with 0/0v determined by the particle trajectory. The latter, as it follows from Eq. (16),

is determined by the following equation:



90 97y

y  8J1/06° (32)
Substituting Eq. (32) to Eq. (31) we obtain:
I (0k?/00)]2=1 (33)

oJt D(¢,0)
Using Egs. (4), (15)-(18), the jump of the adiabatic invariant given by Eq. (27) can
be presented in the form:

mem Bf m By

AJ = o K ) 313 D M) = =/ D(, 0)A(Es)- (34)

This expression together with Eqgs. (29), (33) and the relation ¢ = Br?/2 yield:

Are T J, Ok?

e BRG] (35)

Combining Egs. (13), (25), (35), and (9) we finally obtain:

3 R2
R; prB é (€nem + €t€nm)* sin? 0, (36)

D= 12 N2ar3 €, (€nem + €rmes + /1)

where pp = (26/m)'/?/wp is the Larmor radius, ¢xm = €xm (7, 0),
§=8(r,0) = enemen, — (€n — €m cOs O)€sl,, — €n€mey, cOs b, (37)

!
81 = € + 66}”” (€ — € cos ) — €; cos b, (38)

hm

z =r/a, €, = dejy/de, j = h,m,t; § = 0(r,a) is the poloidal angle at a point of ¢ — [

? ].’L‘

transition (see Fig. 1), which is determined by the following expression (x* = 1):

1 m m 2
CcoS (0(7‘) Ol)) — .6_ [60 o — €p€ + \/(60 s Ep€ > + 6]21 + 67271, — (O! — 60)2 , (39)
t

€t €4

Umin < & < QOmazy Qmin = €m — €4 — €+ €0y Cmaz = €m + €1 + € + €0. When & < € <K €m,
which is the case in the plasma core of a Helias, the maximum diffusion coeflicient can be

evaluated as

2
4Rw3p 6h€,
™ N2ard e, °

Dma..'z: ~

(40)
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The condition that an energetic ion will be lost because of diffusion (rather then
displaced within the plasma) is 74 < 75, where 7, is a characteristic slowing down time of

this ion, and 74 is its confinement time,

(a—r)?
D

(41)

Ta(r) ~

Because the diffusion coefficient given by Eq. (36) strongly grows with the particle energy,
this condition must be well satisfied for a particle escaping to the wall. Taking this into
account, we introduce a critical radius, rq.;;, such that when r > r..;, the transitioning
particles are lost before they will be thermalized. The radius r.;; can be defined as a
solution of the equation S7; = 7, where S ~ 3.

The fraction of transitioning particles at a given flux surface, which is essentially the

loss fraction of a-particles when S > 3, can be estimated using Eq. (39) as follows:

L~ 1 1 _ 2(en + €)
T4 Qmin 14 0maz (T4 em +60)2— (en+€)?

(42)

Let us evaluate 7; and v of a-particles in a Helias reactor with N = 5, Rg/a = 10, and
(B) = 5%'7. At first, we make a simple estimate by approximating Fourier harmonics of

the magnetic field as follows:
em = 0.1, € =0.082%, ¢ ~0.05z, ¢, = 0.08z. : (43)
Then at r = a/2 we find:

ra(a)2) ~ % (piB>4, Y(af2) ~ 10%. (44)
Assuming B = 5T and using Eq. (44) we obtain 74 = 0.02s for a/pp = 30, and 74 ~ 0.06s
for a/pp = 40. On the other hand, the slowing down time of a 3.5MeV alpha particle
in a plasma with the electron density n. = 2 + 3 x 10**m™2, and the temperature T' =
10 + 15keV is 7, ~ 0.1sec. This means that an essential fraction of alphas will be lost to
the wall from a flux surface with the radius r/a = 0.5 in a system with a/pp = 30, but

particles can hardly escape from the r/a = 0.5 surface when a/pp = 40. Furthermore,

if profile shapes of the plasma density and temperature change in a way that 7, strongly
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decreases with the radius, the condition 7; < 75 will violate near the plasma edge. Then
energetic ions will diffuse to the periphery and thermalized in that region. In this case
the main effect of the stochastic diffusion will be the broadening of the radial profile of
the power deposition of energetic ions rather than their loss. As 75 o T%?/n,, this will
be the case when the temperature strongly decreases with r, whereas the ne(r) profile is
flat.

To obtain a general picture and to verify these estimates we calculated D and 74 as
the function of r using exact Fourier harmonics , see Figs. 2-6. We observe that Eq. (44)

represents a reasonable approximation.
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Fig.2. Fourier harmonics of the magnetic field strength in a Helias reactor and the high-mirror

high-. variant of Wendelstein 7-X with (8) = 4.7%
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Fig.3. Diffusion coefficient versus the pitch parameter oo = £/uB — 1 for various r/a. The

Jollowing parameters were used: (8) = 4.7%, a/pp = 30, B = 4.75T.
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Fig.4. Radial dependence of the diffusion coefficient and ag = (tmaz + Omin)/2 for the same

parameters as in Fig. 8. The used magnitudes of o are shown by the dashed line.
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IIT. NUMERICAL MODELLING OF ALPHA PARTICLE CONFINEMENT IN

A HELIAS REACTOR

Numerical integration of the guiding center equations of motion has been used in the
past to investigate o-particle confinement in Helias configurations.'®¢ It was found that
when Coulomb collisions are neglected in a simulation with <3> = 0.05 and a/pp = 30,
that approximately 10% of a-particles launched from the r/aa¢1/3 flux surface were lost
from the plasma and that the confinement time of such lost particles satisfied 7; > 0.03 s.1®
Both of these results are in good agreement with the estimates provided above. Repeat-
ing the numerical simulations including collisional effects (slowing down and pitch-angle
scattering), a-particle losses were found to occur after 0.01s and a significant fraction
of the energy loss observed in the simulation was due to escaping particles with energies
greater than 1 MeV.1¢

For the present work, similar calculations have been undertaken for a Helias reactor'”
with Ry = 22 m, a = 1.8 m and By = 4.75 T (and thus a/pp = 31.5). The plasma

parameters and profiles are taken from 1-D numerical simulations for two scenarios:

e a high-density (central electron density n.(0) = 3 x 10* m™2), low-temperature (central

15,16

temperature 7'(0) = 15 keV) case similar to that considered previously, and

o a low-density (n.(0) = 1.5 x 10%° m™2), high-temperature (T'(0) = 25 keV) case.

These profiles are illustrated in Fig. 7. Also shown are the a-particle birth profiles which
result therefrom, in the form of cumulative probability curves (i.e. the likelihood that an
a-particle is born at a value of normalized radius less than a given z). For simplicity,
it has been assumed that the densities of deuterium and tritium are equal and given be
ne/2 and that the temperatures of all species are identical.

The simulations described here begin with an ensemble of 250 a-particles, all of which
have the same initial energy & = 3.52 MeV but are assigned to different starting radii
according to the appropriate birth profile; the remaining spatial and velocity coordinates

are chosen randomly. The guiding center trajectory of each a-particle is then followed
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in the magnetic field of the Helias reactor determined by an equilibrium code for < 8>
= 0.047. The particles undergo slowing down and pitch-angle scattering on the local
background plasma. An a-particle is considered lost if it reaches = 1. When this occurs
its energy, Epss, and confinement time, 7,5, are recorded and it is removed from the
simulation without replacement. All a-particles which remain confined are followed until
the sum of their energies is reduced to 88 MeV (v10% of the total energy which the 250
simulation particles initially possessed). This typically implies a simulation time roughly

equal to 7,(z = 0).

T (keV)

1.0 T | 1 ™

0.6 .

0.4 _

Cumulative Probability of « Birth

0.0 0.2 0.4 0.6 0.8 1.0

Fig.7. Density and temperature profiles used for the high-n, low-T (solid line) and low-n, high-T
(dotted line) scenarios. Also shown are the corresponding a-particle birth profiles as cumulative

probability curves.
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The two scenarios considered here lead to nearly identical birth profiles for the a-

particles (Fig. 7) but slowing-down times which differ by a factor of four. Given the

arguments of the previous section, one must therefore expect greater losses of fast a-

particles for the low-density, high-temperature scenario as even those particles born near

the plasma center (with 7, ~0.46 s) can diffuse to the plasma edge before slowing down.

These expectations are borne out by the results of the numerical simulations which are

presented in Fig. 8 (high-n, low-T scenario) and in Fig. 9 (low-n, high-T" scenario). Here,

the fraction of initial energy transferred to the background plasma, AE = 1 — s /&o,

and the birth radius, zo are plotted versus 7., for all particles lost in the course of the

simulation.
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Fig.8. The fraction of initial energy transferred to the background plasma before its escape, AE,

- is plotted as a function of confinement time, Tjoss, (symbol: O) for each of the 19 a-particles

lost during the 0.12 s of the high-n, low-T simulation. Also shown is the normalized radius at

which the particle began the simulation, xo (symbol: O)
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The relevant statistical data may be briefly summarized as follows :

e For the high-n, low-T scenario 19 particles are lost during a simulation time of 0.12s
leading to a lost-energy fraction of 0.02, 60% of which is due to 5 particles with &jpss >
1 MeV.

e In the low-n, high-T scenario losses increase to 54 particles during a simulation time of
0.44s. The lost-energy fraction is 0.09, of which 85% can be attributed to 32 particles
with &pss > 1 MeV.

The effects of a broader density profile were also investigated for the high-density,
low-temperature scenario by setting n.(a)/n.(0) = 1/3; the temperature profile was left
unchanged. No statistically significant differences were observed in the numerical simu-
lation, however, as the higher edge density leads not only to more effective slowing down
in the plasma periphery but also to a broader birth profile of a-particles and these two

effects largely counteract one another.
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Fig.9. As in Fig. 8 for the 5/ a-particles lost during the 0.44 s of the low-n, high-T simulation

18



IV. SUMMARY AND CONCLUSIONS

The theory developed in the present work shows that transitioning energetic particles
in advanced stellarators of Wendelstein line undergo the stochastic diffusion associated
with the orbit transformation of the localized and passing particles. This diffusion may
lead to the loss of a-particles and other energetic ions from the plasma core of the Helias
reactor'” and Wendelstein 7-X?? for the time > 0.01s. The fraction of escaping a-particles
can be rather large. It is about 10% for a-particles produced at r ~ a/2 and can be even
more for the injected ions when their pitch angles correspond to transitioning particles,
v)/v ~ /€, ~ 0.3. However, the diffusion process is relatively slow. Therefore, the
diffusion not necessarily leads to the loss of ions of high energy to the wall. When the
electron temperature is characterized by strongly peaking radial distribution whereas the
electron density profile is flat, the energetic ions will be thermalized near the edge before
being lost. A key parameter affecting the magnitude of the diffusion coefficient is the
ratio a/pp (D o< wg(pp/a)*). The diffusion coefficient grows with the plasma pressure
(D x €p). Nevertheless, it can be rather small in the plasma core (where the most of a-
particles are produced) even in high-f plasmas provided that €} is minimized at r/a < 0.5.
However, we should note that € must exceed a certain magnitude to avoid superbanana
orbits.

The estimates for the diffusion time and the fraction of lost particles which follows from
our theory agree with the results of numerical modelling carried out in this work and in
the earlier works'® 6. This show that the considered stochastic diffusion is responsible for
the loss of energetic ions (A€ < 1) for At > 0.02s observed in the mentioned numerical
experiments.

A general conclusion which follows from our work is that the stochastic diffusion of
transitioning particles is an important factor which affects the confinement of energetic
particles in optimized stellarators. The dependence of the obtained diffusion coefficient
on plasma parameters and relatively large diffusion time (7;) indicate that there should

exist the optimum profile shapes of the electron density and temperature minimizing the
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effect of the stochastic diffusion on the loss of energetic transitioning particles in Helias

configurations.
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FIGURES
FIG. 1. Sketch of level contours of J for the locally trapped particles (thin lines) and the

% = 1 contour (bold line inside the plasma) in a Helias. Locally trapped particles moving along

the J = const contours become locally passing ones after crossing the bold line.

FIG. 2. Fourier harmonics of the magnetic field strength in a Helias reactor and the

high-mirror high-¢ variant of Wendelstein 7-X with (8) = 4.7%.

FIG. 3. Diffusion coefficient versus the pitch parameter @ = £/uB — 1 for various r/a. The

following parameters were used: (8) = 4.7%, a/pp = 30, B = 4.75T.

FIG. 4. Radial dependence of the diffusion coefficient and ap = (@maz + @min)/2 for the

same parameters as in Fig. 3. The used magnitudes of « are shown by the dashed line.

FIG. 5. The diffusion time versus a for the Fourier harmonics of the magnetic field shown

in Fig. 2.

FIG. 6. Fraction of transitioning particles versus r for the same parameters as in Fig. 3.

FIG. 7. Density and temperature profiles used for the high-n, low-T" (solid line) and low-n,
high-T' (dotted line) scenarios. Also shown are the corresponding a-particle birth profiles as

cumulative probability curves.

FIG. 8. The fraction of initial energy transferred to the background plasma before its escape,
AE , is plotted as a function of confinement time, 7,55, (symbol: O) for each of the 19 a-particles
lost during the 0.12 s of the high-n, low-T simulation. Also shown is the normalized radius at

which the particle began the simulation, 2o (symbol: O).

FIG. 9. As in Fig. 8 for the 54 o-particles lost during the 0.44 s of the low-n, high-T simu-

lation.
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