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Abstract

Covering one third of the land surface, global forests provide important
ecosystem services for environment and society. Forests strongly affect the global
climate system by influencing the energy, carbon and hydrological cycles. Forests are
important for climate change mitigation by capturing a huge amount of atmospheric
CO, that is comparable to the ocean carbon sink. Forests impact the water balance
and protect the soil against erosion, avalanches and floods. Tropical forests play an
important role for biodiversity, accommodating 50% of all animals and plant species.
Therefore, preserving and enhancing global forests is an important step to react to
climate change.

Being the main storage of aboveground terrestrial carbon, knowledge about the
distribution, magnitude and dynamics of global forests improves our understanding
of the global carbon cycle and their feedbacks with the global climate system. In situ
measurements of forest structure parameters are limited in space and time. With
rapid advances in information technology forest parameters can be estimated using
remote sensing techniques. In particular, in tropical forests remote sensing data
provide spatially consistent information for areas that are difficult to access.
Accurate information on the forest carbon stocks supports the projection of future
climate change through modelling. Spatially explicit estimates of forest carbon
stocks assists policymakers by providing consistent baseline data over large areas to
develop and monitor climate policies. Besides the science and policymakers
communities, these data are of interest for industry due to their cost efficient way to
map and monitor forest resources.

This work provides insights about the current opportunities and limitations
associated with the use of remote sensing data to map forest structure at local,
regional and national scales in Mexico. In particular, the impacts of multi-sensor and

multi-temporal remote sensing data on retrieval accuracies of forest structure
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Abstract

parameters (i.e., aboveground biomass (AGB) and vegetation height) were
examined. Moreover, the influence of the quality, amount and spatial distribution of
reference data on model’s predictive performance was investigated. To address these
questions, remote sensing data acquired from optical and L-band Synthetic Aperture
Radar (SAR) sensors were integrated with national forest inventory as well as with
airborne Light Detection and Ranging (LiDAR) data by applying various modelling
scenarios.

The results indicate that the multi-sensor combination of remote sensing data
improves the retrieval accuracy of AGB by providing additional explanatory
information. Furthermore, it was shown that outdated forest inventory plots can be
detected automatically using Normalized Difference Vegetation Index (NDVI) time
series and a change detection algorithm. By filtering out these outdated reference
data, AGB could be estimated more accurately.

For forest AGB mapping at large scale, very high resolution (VHR) remote
sensing data (optical or LIDAR at ~1 m) can be utilized as reference data to reduce
the field data collection effort. VHR remote sensing data is an extremely valuable
sampling tool for repetitive reference data acquisitions over large areas. Moreover,
these data can provide measurements from areas that are difficult to access.
However, it is important that errors contained in the VHR-based reference data are
characterized in order to prevent propagation of errors in the wall-to-wall map. We
showed that ignoring the field to VHR errors leads to high uncertainties (up to
150%) in the final classification result. The NFI- and LiDAR-calibrated national
AGB maps feature similar goodness-of-fit statistics (R? and RMSE) compared with
an independent validation dataset as the two already published Mexican AGB maps.
Furthermore, both produced maps show similar AGB statistics at federal state and
at national level as national forest inventory data.

An increasing number of spatial predictors and training samples improves model’s
predictive performance of vegetation height. Using multi-temporal L-band SAR data
it was possible to reduce over- and underestimation in sparse and dense forests,
respectively. The prediction performance saturates, however, at a specific level (i.e.,
at 12 dual-polarised L-band backscatter measurements and at around 20% of all
training samples), when no relevant extra information can be gained from the
additional images and training samples.

The main limitation for the estimation of forest parameters in Mexico is the hilly
terrain of the country. Local topography affects sampling of field data and hence,

their quality, quantity and distribution. On the other side topography impacts the
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Abstract

signal scattered (or reflected) back to the sensors (SAR, optical and LiDAR). This
limitation can be partly reduced by using high quality digital elevation models
(DEM) and advanced terrain correction methods. A further issue in the forest AGB
mapping in Mexico is the signal saturation and underestimation in high biomass
(>100 tha'), even dense forests cover only a small part of the country. The
limitation due to saturation effect can be partly solved by multi-temporal
combination of SAR data.

Although satellite-based maps of forest structure parameters contain errors, in
contrast to field data, they come with the advantage to better represent the relative
distribution of forest parameters over large areas. Beside the spatial coverage,
remote sensing offers unique opportunities for a repetitive mapping of forest
parameters and thus, to assess their temporal dynamics. Bearing in mind new
L-band missions in the near future (SAOCOM, NISAR, ALOS-4, potentially
Tandem-L), the development of new algorithms based on dense time series of
L-band backscatter are of high importance to map forest dynamics. An increasing
number of optical, radar and LiDAR sensors in space and in the air (e.g., unmanned
aerial vehicle), open opportunities to map forest parameters on an unprecedented
spatial and temporal resolution with increased accuracies. These spatially explicit
estimates on forest structure are of great interest for science, policy and industry

and provide consistent baseline information for large scale monitoring.
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Zusammenfassung

Die globalen Walder decken ein Drittel der Landfliche ab und bieten wichtige
Okosystemleistungen fiir Umwelt und Gesellschaft. Wilder wirken sich stark auf das
globale Klimasystem aus, indem sie die Energie-, Kohlenstoff- und Wasserkreislaufe
beeinflussen. Wilder sind wichtig fiir die Abschwéichung des Klimawandels durch die
Aufnahme von groBen Mengen an CO; aus der Atmosphére. Diese Mengen sind mit
der Kohlenstoffsenke in den Ogzeanen vergleichbar. Wéilder beeinflussen den
Wasserhaushalt,  schiitzen den  Boden  vor  FErosion, Lawinen  und
Uberschwemmungen. Tropische Wilder spielen eine wichtige Rolle fiir die
Biodiversitdt und beherbergen 50% aller Tiere und Pflanzenarten. Daher ist der
Erhalt und die Férderung der globalen Waldflache ein wichtiger Schritt, um dem
Klimawandel entgegenzuwirken.

Die globalen Wilder sind Hauptspeicher von oberirdischem Kohlenstoff auf der
Erde. Das Wissen iiber die Verteilung, das Ausmafl und die Dynamik globaler
Wilder verbessert somit unser Verstdndnis des globalen Kohlenstoffkreislaufs und
seiner Riickkopplungen mit dem globalen Klimasystem. In situ Messungen von
Waldstrukturparametern sind rédumlich und zeitlich begrenzt. Mit der rasanten
Entwicklung in der Informationstechnologie koénnen Waldparameter unter
Verwendung von Fernerkundungstechniken abgeschiatzt werden. Insbesondere in
tropischen Wéldern liefern Fernerkundungsdaten rdumlich konsistente Informationen
fiir  schwer  zugingliche  Gebiete.  Akkurate  Informationen  {iber  die
Kohlenstoffbesténde in Waildern unterstiitzen die Modellierung des zukiinftigen
Klimas. Raumlich explizite Schétzungen der Kohlenstoffbesténde in Waéildern
unterstiitzen die politischen Entscheidungstriager durch Bereitstellung von
konsistenten Basisinformationen {iber grofle Gebiete, um die klimarelevanten

Programme zu entwickeln und zu iiberwachen. Neben der Wissenschaft und Politik
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sind diese Daten auch fiir die Industrie von Interesse, da sie kostengiinstige
Methoden zur Kartierung und Uberwachung von Waldressourcen darstellen.

Diese Arbeit liefert Einblicke in die aktuellen Moglichkeiten und Einschrankungen
der Verwendung von Fernerkundungsdaten zur Kartierung der Waldstruktur auf
lokaler, regionaler und nationaler Ebene in Mexiko. Insbesondere wurden die
Auswirkungen von multisensorischen und multitemporalen Fernerkundungsdaten auf
die Kartierungsgenauigkeit von Waldstrukturparametern (d.h., oberirdische
Biomasse (AGB) und Vegetationshohe) untersucht. Dariiber hinaus wurde der
Einfluss von Qualitdt, Anzahl und rdumlicher Verteilung von Referenzdaten auf die
Modellierungsgenauigkeit untersucht. Um diese Fragen zu beantworten, wurden
optische und L-Band Synthetic Aperture Radar (SAR) Fernerkundungsdaten
zusammen mit nationalen Waldinventurdaten sowie flugzeuggestiitzten Light
Detection and Ranging (LiDAR) Daten unter Verwendung von verschiedene
Modellierungsszenarien integriert.

Die Ergebnisse zeigen, dass die Multisensorkombination von Fernerkundungs-
daten die Modellierungsgenauigkeit von AGB verbessert. Dies ldsst sich durch die
zusitzlichen Informationen von optischen und SAR-Sensoren erkldren. Aufierdem es
wurde gezeigt, dass veraltete Waldinventurdaten mithilfe von Zeitreihen des
Normalized Difference Vegetation Index (NDVI) automatisch detektiert werden
kénnen. Durch das Entfernen dieser veralteten Referenzdaten kann AGB genauer
modelliert werden.

Fiir die Erfassung von Waldbiomasse iiber grofle Gebiete, kénnen sehr hoch
aufgelosten Fernerkundungsdaten (VHR) (optisch oder LiDAR von ~1 m) als
Referenzdaten verwendet werden, um den FErfassungsaufwand von in situ Daten zu
reduzieren. VHR-Fernerkundungsdaten stellen ein sehr wichtiges Werkzeug zur
wiederholten Stichprobenentnahme von Referenzdaten iiber grofie Fldchen dar.
Weiterhin kénnen diese Daten Referenzwerte aus schwer zugénglichen Gebieten
liefern. Es ist jedoch wichtig, dass Fehler, die in den VHR-basierten Referenzdaten
enthalten sind, charakterisiert werden, um die Fortpflanzung von Fehlern in der
finalen Karte zu verhindern. Wir haben gezeigt, dass das Ignorieren von Fehlern, die
sich von Feld in VHR-Daten fortpflanzen, zu hohen Unsicherheiten (bis zu 150%) in
dem finalen Klassifizierungsergebnis fithrt. Die NFI- und LiDAR-kalibrierten
nationalen AGB-Karten weisen im Vergleich Zu unabhéngigen
Validierungsdatenséitzen &hnliche statistische Modellgiite (R? und RMSE) auf, wie
die bereits verdffentlichten AGB-Karten in Mexiko. Weiterhin, zeigen die beiden
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erstellten Karten eine dhnliche AGB-Statistik auf Landes- und Nationalebene wie die
nationalen Waldinventurdaten.

Durch eine zunehmende Anzahl rdumlicher Prédiktoren und Trainingsdaten
verbessert sich die Modellierungsgenauigkeit fiir die Vegetationshéhe. Mit Hilfe von
multitemporalen L-Band SAR-Daten konnten Uber- und Unterschitzung in lichten
bzw. dichten Waldern reduziert werden. Die Kartierungsgenauigkeit séttigt jedoch
auf einem bestimmten Niveau (d.h., bei 12 doppelt polarisierten IL-Band
Riickstreuintensitdten und bei etwa 20% aller Trainingsdaten), da aus den
zusdtzlichen  Aufnahmen und Trainingsdaten keine weiteren relevanten
Informationen gewonnen werden kénnen.

Eine der wichtigsten Einschrénkungen fiir die Abschétzung der Waldparameter in
Mexiko ist das hiigelige Geldnde des Landes. Die lokale Topographie erschwert zum
einen die Probenentnahme von Felddaten, d.h., die Qualitdt, Quantitdt und
Verteilung von Felddaten kann beeintrdchtig werden. Andererseits beeinflusst die
Topographie das Signal, das zuriick zu Sensoren (SAR, optisch und LiDAR) gestreut
(oder reflektiert) wird. Diese Auswirkung kann teilweise durch die Verwendung
hochwertiger digitaler Héhenmodelle (DEM) und fortgeschrittener Methoden zur
radiometrischen Geldndekorrektur reduziert werden. Ein weiteres Problem der
Waldbiomassekartierung in Mexiko stellt die Signalsidttigung und Unterschitzung
hoher Biomasse (> 100 tha-1) dar, selbst wenn die dichte Wélder nur einen kleinen
Teil des Landes bedecken. Diese Unterschatzung kann zum Teil durch die
Kombination multitemporalen SAR-Daten verringert werden.

Obwohl satellitenbasierte Karten von Waldstrukturparametern auch Fehler
enthalten, weisen sie, im Gegensatz zu Felddaten, den Vorteil auf, die relative
Verteilung der Waldparameter iiber grofie Flachen besser darzustellen. Neben der
rdumlichen Abdeckung bietet die Fernerkundung einzigartige Moglichkeiten die
wiederholte Kartierung von Waldparametern und damit die Abschétzung ihrer
zeitlichen Dynamik. Unter Beriicksichtigung neuer L-Band-Missionen in naher
Zukunft (SAOCOM, NISAR, ALOS-4, moglicherweise Tandem-L) ist die
Entwicklung neuer Algorithmen, die auf dichten Zeitreihen der L-Band
Riickstreuungsintensitéten basieren, flir die Kartierung der Walddynamik von grofier
Bedeutung. Eine zunehmende Anzahl von optischen, Radar- und LiDAR-Sensoren
im Weltraum und in der Luft (z. B. unbemanntes Luftfahrzeug) eroffnet die
Moglichkeit, Waldparameter auf einer beispiellosen rdumlichen und zeitlichen Skala
mit hoher Genauigkeit zu kartieren. Diese rdumlich expliziten Abschétzungen der
Waldstruktur sind fiir Wissenschaft, Politik und Industrie von groflem Interesse und

liefern konsistente Basisdaten fiir das Monitoring {iber grofle Gebiete.
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Chapter 1 — Introduction

1.1 Global carbon cycle and forest ecosystems

The global carbon cycle is a biogeochemical cycle, which describes the exchanges
of carbon (C) between the atmosphere, ocean and land. For a fundamental
understanding of the global carbon cycle accurate estimates of C stocks in the three
main pools (atmospheric, oceanic and terrestrial) and C fluxes between the pools are
needed. In contrast to the oceanic and atmospheric carbon reservoirs, the terrestrial
pool represents the most uncertain term in the global carbon balance (Houghton et
al. 2009). Terrestrial and oceanic carbon reservoirs can act as carbon sinks (net
uptake from the atmosphere) or sources (net emissions to the atmosphere).

The atmospheric C increase by ca. 4.1+0.1 PgC yr! (Pan et al. 2011) and the net
uptake by oceans of ca. 2.3+0.4 PgC yr' (Pan et al. 2011) are relatively well known.
In contrast, the land sink is more uncertain (Figure 1-1) and is usually calculated as
the residual of anthropogenic emissions, the net land-use change flux and the sum of
atmospheric and oceanic uptake. Furthermore, the location of the terrestrial sink is
rather uncertain (Pan et al. 2011), i.e., the relative contributions of different forest
ecosystems to the sink (Mitchard 2018). Based on millions of forest inventory data
combined with statistical models, Pan et al. (2011) estimated carbon sources and
sinks in boreal, temperate and tropical global forests for the time frame between
1990 and 2007. Global intact forests annually removed 2.41 + 0.42 PgC yr from the
atmosphere between 1990 and 2007, which is the same order of magnitude as the
C-uptake by oceans. The tropical intact forests showed the highest C uptake rates of
around 1.19 + 041 PgC yr' compared to 0.5 + 0.08 PgC yr' and
0.72 £ 0.08 PgC yr' in boreal and temperate forests, respectively (Pan et al. 2011).
In addition to the global intact forests, tropical regrowth forests absorb around
1.64 £ 0.52 PgC yr' (Pan et al. 2011).

The main anthropogenic source of carbon into the atmosphere are the emissions
from the use of fossil fuels and cement production (ranging from 7.6 + 0.4 PgC yr
(Pan et al. 2011) to 7.8 & 0.6 PgC yr' (Ciais et al. 2013) for the time frame between
2000 and 2009, causing around 85-90% of total annual human-induced carbon
emissions) (Figure 1-1). Around 8-15% of total annual human-induced carbon
emissions are from land-use change (e.g., tropical deforestation or forest
degradation) (Houghton et al. 2015). Land-use change emission estimates range

between 0.5 and 3.5 PgC yr' (Mitchard 2018). This wide range is primarily caused
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by different methods used (i.e., forest inventory plots, atmospheric inversions,
modelling) and a wide uncertainty of each method (Mitchard 2018).

Increasing CO, concentrations in the atmosphere since the last 50-60 years
hamper the transmission of long-wave radiation from the Earth surface back to
space and thus trap heat in the atmosphere and warm the Earth. In the next
subsection the so called “greenhouse effect” will be described together with its

consequences.
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Figure 1-1: Simplified schema of the global carbon cycle. Black numbers and arrows

indicate carbon stock and fluxes estimated prior to the Industrial Era, circa 1750. Red
numbers and arrows represent annual “anthropogenic” fluxes averaged over the 2000-2009

time period. Carbon stocks are in PgC; carbon fluxes are in PgC yr! (Ciais et al. 2013)

1.1.1 Climate change

The greenhouse effect is a natural process when water vapor, carbon dioxide
(CO,), methane (CH)), nitrous oxide (N.O) and other gases absorb long-wave

radiation emitted from the Earth surface and re-emit it partly back downwards
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(towards the Earth surface) and thus, trap heat in the atmosphere and warm the
Earth, creating ideal conditions for living organisms.

In the Earth’s history, atmospheric CO, has reached several times 10-fold higher
concentrations than today (i.e., greater than 3000 ppmv) (Chapin III et al. 2002).
On the other side, atmospheric CO, concentrations have also been below 300 ppmv,
partly in years of reduced volcanism (Pagani et al. 1999; Pearson and Palmer 2000).
However, since the industrial time the intensive use of fossil fuels and land-use
changes (i.e., deforestation and conversion to agricultural areas) lead to higher
carbon emissions into the atmosphere, which strengthen the natural greenhouse
effects. Based on high-resolution ice-core records, atmospheric CO, concentration has
increased more rapidly during the past century than at any other time during the
previous 20,000 years and probably the last 400,000 years (Petit et al. 1999).

As the result of enhancing atmospheric CO,, the Earth is warming and the
climate is changing, which also leads to a continuously increasing number of climate-
driven extreme events (i.e., flooding, droughts, wildfires, storms) (Reichstein et al.
2013). Changes in temperature, moisture and radiation (Figure 1-2) impact
vegetation carbon uptake (e.g., photosynthesis) and release (e.g., respiration,
mortality) (Chapin III et al. 2002). Elevated atmospheric CO, fosters
photosynthesis, an effect called CO, fertilization (Sitch et al. 2008). However, since
the plant growth is also water and nutrient limited, the overall effect of CO,
fertilization on terrestrial carbon storage is probably smaller than that of
reforestation (Chapin III et al. 2002). On the other side, increasing air temperatures
boost respiration rates by plants and soils (Chapin IIT et al. 2002). Moreover,
warming and droughts convert tropical peat forests to a mnet source of carbon
(Hooijer et al. 2010; Page et al. 2011). An increased number of fires caused by
climate change leads to forest degradation with direct C-emissions into the
atmosphere (Mitchard 2018). Overall, changes in temperature and precipitation
(Figure 1-2) together with an increasing number of extreme events will most
probably convert global forests from a carbon sink to a large carbon source
(Mitchard 2018). For instance, during warm and dry years (e.g., El Nifio years in
Indonesia) tropical forests become a net carbon source (Bonan 2008; Mitchard 2018).

At the same time, global forests influence climate and play a crucial role in
mitigating climate change by their uptake of a huge amount of atmospheric CO,
that is comparable to the carbon sink in global oceans (Pan et al. 2011). Therefore,

preserving and enhancing global forest carbon stocks is an important step to react to
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climate change. In the next subsection the role of global forests in climate change

mitigation is discussed in detail.
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Figure 1-2: Multiple indicators of a changing global climate system (Ciais et al. 2013)

1.1.2 Role of forests in climate change mitigation

Covering 30% of the land surface (Bonan 2008), global forests strongly affect the
global climate system by influencing the energy, carbon and hydrological cycles.
Forests impact climate through biogeophysical processes (i.e., evapotranspiration
and albedo), whereby evapotranspiration leads to cooling effects by increased cloud
formation and precipitation in forest ecosystems. In contrast, the lower albedo of
forests compared to e.g., snow-covered areas, pasture or sand, causes higher
absorption of solar radiation leading to surface warming. Moreover, forests influence
climate through biogeochemical processes (carbon cycle) through photosynthesis and
respiration. Finally, forests as a main storage of aboveground terrestrial carbon,
have an impact on climate through biogeographical processes (e.g., land use
(change), vegetation dynamics and disturbances) (Bonan 2008). Ignoring the direct

(i.e., land-use change) and indirect (i.e., climate change-driven) anthropogenic

(@4
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impact on forests, at the global scale forests mitigate warming through evaporative
cooling and carbon sequestration, these effects are however regionally different. For
instance, tropical reforestation is likely to dampen global warming, while forest
expansion in boreal areas amplifies global warming due to decreasing albedo (Bonan
2008).

Through photosynthesis global forests capture around 123 4+ 8 PgC yearly from
the atmosphere (i.e., gross primary production) (Beer et al. 2010), but also release
almost as high amounts back to the atmosphere due to plant and microbial
respiration and decomposition (Mitchard 2018). The global vegetation stores around
450-650 PgC (Ciais et al. 2013) (Figure 1-1), which is more than half of the total
carbon held in the atmosphere (~829 PgC) (Ciais et al. 2013). Although soils are the
main terrestrial carbon storage (i.e., two to three times more carbon in soil than in
forest biomass), the carbon in soil is physically and chemically protected (except
peatlands) and contributes little to sources and sinks from land-use changes
(Houghton 2005; Houghton et al. 2009). In contrast, carbon stored in forests is
exposed to natural (storms, fires, pests) and anthropogenic (clear-cutting, selective
logging) disturbances and thus, can be easier released to the atmosphere (Houghton
et al. 2009). Moreover, large-scale deforestation does not only lead to the release of
carbon stored in forest biomass, but it creates also warmer and drier local climates
in deforested areas, e.g. pastures (Bonan 2008). Additionally, combustion of biomass
alters atmospheric chemistry and aerosols (Bonan 2008).

Tropical intact and regrowth forests, being nowadays the most efficient
carbon-capture method (Mitchard 2018), removed annually ca. 2.83 PgC from the
atmosphere between 1990 and 2007, and thus account for around 70% of the global
forest sink (4.05 £ 0.67 PgC yr') (Pan et al. 2011). The C-emissions due to land-use
change range between 0.5 to 3.5 PgC yr*! depending on different methods (i.e., forest
inventory plots, atmospheric inversions, modelling). Pan et al. (2011) estimated net
(subtracting C uptake by regrowth forests) land-use change C-emissions to be 1.3 +
0.7 PgC yr'! for the years from 1990 to 2007 using forest inventory data combined
with statistical models. Ciais et al. (2013) estimated C-emissions due to land-use
change of about 1.1 + 0.8 PgC yr'. One highly uncertain term in forest carbon
fluxes are COs-emissions from forest degradation. Since forest degradation, defined
as a reduction of carbon stocks within forests without land-cover change (i.e., forest
remains forest), occurs at small scales (e.g., selective logging), COs-emissions from
forest degradation are difficult to assess and usually underestimated (Baccini et al.

2017; Pearson et al. 2017). Using time series of pan-tropical aboveground carbon
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density maps between 2003 and 2014, Baccini et al. (2017) estimated C-emissions
from forest degradation to be 68.9% of total carbon losses from deforestation and
forest degradation (861.7 + 80 TgC yr'). Pearson et al. (2017) estimated
contribution of forest degradation to total carbon losses to be 25% for tropical
countries, whereas in 28 of 74 countries the C-emissions from forest degradation
exceeded those from deforestation.

Although a key element to stabilize atmospheric CO2 is reducing emissions due
to fossil fuel burning (Van der Werf et al. 2009), which account for around 85-90%
of total anthropogenic COs-emissions (Ciais et al. 2013; Pan et al. 2011), forest
conservation and enhancement of forest carbon stocks could create a large land sink
and probably help to keep the global temperature increase below 2°C (Mitchard
2018). A study of Houghton et al. (2015) indicated that stopping tropical
deforestation and forest degradation and enhancing carbon stocks could generate a
terrestrial C-sink of 5 PgC yr* and thus, might offset C-emissions from fossil fuels to
a large extent. This potential C-sink (5 PgC yr') of tropical forests consists of
around 1 PgC yr' otherwise emitted due to deforestation and forest degradation (in
some studies this estimate is twice that amount), C-uptake by secondary forests of
around 3 PgC yr?, and finally, reforestation activities removing another 1 PgC yr*!
from the atmosphere (Houghton et al. 2015). Moreover, vegetated areas in
temperate zones (forests, agriculture, grassland and wetlands) could capture
additional carbon from the atmosphere through sustainable management strategies.
Sustainable management strategies are also of particular importance to reduce C-
emissions from permafrost thawing in arctic and boreal zones (Houghton et al.
2015).

Forests are not only important for climate change mitigation due to their
sequestration of atmospheric CO,, forests also provide important ecosystem services
for both environment and society. For instance, forests impact the water balance,
protect the soil against erosion, avalanches and floods. Furthermore, tropical forests
plays an important role for biodiversity, accommodating 50% of all animals and

plant species.

1.1.3 Forest monitoring with in situ measurements

The status of forests and their temporal dynamics can be assessed and monitored
by measuring and estimating different tree structure parameters (e.g., tree height,
tree canopy cover, stem volume and aboveground biomass (AGB)). Tree biomass
can be measured directly using a destructive method, i.e., tree harvesting, oven

drying and weighing of all tree compartments. Although this method is direct and
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most accurate, it is also most time and cost consuming, destructive and not
applicable for monitoring. Alternatively, mathematical (allometric) equations can be
developed based on allometric relationships between tree parameters that can be
easily measured in situ (e.g., tree height and tree diameter at breast height) and
weighed dried biomass. Thus, using allometric equations, the biomass of single trees
can be estimated. Usually, biomass allometric equations are based on information
about trunk diameter, tree height, wood specific gravity and forest type (e.g., dry,
moist or wet) (Chave et al. 2005). In boreal and temperate forests, where a small
number of tree species dominates, species-specific allometric equations for AGB
estimation can be applied. In contrast, in tropical forests, where as many as 300
different tree species within a 1 ha plot can occur, species-specific allometric
equations are difficult to apply, so that generalized allometric equations for mixed
tropical vegetation have been developed. For instance, Brown (1997) developed
generalized allometric equations for tropical areas based on an analysis of 371
harvested trees with a diameter at breast height (DBH) ranging from 5 to 148 cm
from all three tropical regions (i.e., South America, Africa and Asia). The allometric
equations were generated for three forest types: dry (<1500 mm rain/year), moist
(1500-4000 mm rain/year) and wet (>4000 mm rain/year). However, these rainfall
regimes should be applied to lowland conditions only. The developed equations
describe the relationships between DBH and basal area (BA) and AGB (Brown
1997). The use of allometric equations that are based only on one forest parameter
(e.g., DBH or BA) simplifies the estimation of AGB and is the only option in
regions where measurement of tree height is difficult in closed-canopy forests.
However, including wood specific gravity and tree height leads to an important
improvement for AGB estimation models, as reported in Chave et al. (2005) and
Feldpausch et al. (2012). Chave et al. (2005) analysed a large dataset of 2,410 trees
(DBHZcm) directly harvested since the 1950s in 27 study sites across the tropics
ranging from dry woodlands to very humid closed-canopy forests, from highly
seasonal to aseasonal climates, lowland to high-elevation forests, and secondary to
old-growth forests, to develop generalized equations for tropical areas. In this study,
the authors determined the importance of the tree parameters for the AGB
estimation. The most important predictive variables, in decreasing order of
significance, are tree trunk diameter, wood specific gravity, total height, and forest
type (Chave et al. 2005).

Since allometric models are applied to estimate biomass, these estimates include

errors of different origins. The errors in field-estimated AGB can have four types of



Global carbon cycle and forest ecosystems

sources (Figure 1-3): (1) measurement error; (2) error due to the choice of an
allometric model relating AGB to other measured variables; (3) sampling
uncertainty related to the size of the study plot; (4) representativeness of a network
of small plots across a vast forest landscape (Chave et al. 2004). These four types of
errors add up and need to be quantified to provide estimates of biomass with
corresponding uncertainties, which are useful for further analyses (e.g., carbon
accounting and reporting, calibration of remote sensing data etc.). It is
recommendable to establish large sample plots (e.g., greater than 0.25 - 0.5 ha)
(Chave et al. 2004; Houghton 2005), since (1) tree-level errors average out in large
plots (Chave et al. 2004), (2) a small plot can either include or not include a large
tree, which can lead either to over- or underestimation of biomass (Houghton 2005).
Furthermore, the AGB of large trees should be estimated especially carefully, if their
diameter is bigger than the range of tree diameters for which the allometric
equations were developed (Chave et al. 2004). The errors in field estimated biomass
are larger in the tropical forests than in boreal and temperate forests, due to a much
smaller number of inventory plots, larger spatial variability and greater number of

tree species (Clark et al. 2001).
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Figure 1-3: Propagation of errors in estimating the AGB from field measurements
(Chave et al. 2004)

The most important source of error is related to the choice of the allometric
model (Chave et al. 2004). Figure 1-4 illustrates the variance of AGB estimates
using different allometric equations for tropical areas (Baccini et al. 2012). For
instance, a single tree in wet forests with a DBH of 60 ¢m can have a biomass
ranging between 2.5 Mg (“Chave (2005)-Wet-Forest” equation) and 10 Mg

(“Higuchi-Wet” equation) depending on the applied allometric equation.
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Above-ground Biomass (Mg) by equation functional range
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Figure 1-4: Relationships between field-measured DBH and aboveground dry biomass

according to different allometric equations in tropical forests (Baccini et al. 2012)

Changes in forest carbon stocks (e.g., due to forest degradation or regrowth) can
be assessed in the field by revisiting such inventory plots, e.g., every five years.
Since only a limited number of plots can be established, these estimates are
restricted in time and space with some areas completely undersampled (e.g., due to
geographical and political reasons). Furthermore, the capacity of a tropical country
to measure their forest and carbon dynamics varies from country to country. For
instance, 14 African countries have reported the same annual change in forest area
every year from 1990 to 2015 to the Food and Agriculture Organization (FAO)
(FAO 2015; Mitchard 2018), while other datasets (based on remote sensing data)
have detected significant changes in rates of loss over time (Achard et al. 2014).

Nevertheless, high quality in situ data are the crucial component to assess carbon
stocks and fluxes at local, regional and global scales. To provide wall-to-wall
estimates of carbon stocks using remote sensing, in situ data are needed to
understand the physics of a remote sensing signal, to calibrate this signal and to
assess the accuracy of the generated map. Moreover, in situ data can contain much
more information than AGB (i.e., tree species, mortality, litter fall, root dynamics,

belowground biomass), which are needed for other ecological studies (e.g., soil
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science). In addition, permanent forest plots provide a baseline information for

scientists and policymakers to understand forest dynamics (Feldpausch et al. 2012).

1.1.4 Importance of accurate carbon stock maps

Measurements and estimation of forest structure parameters in the field are
associated with high costs (e.g., labour intensive and time consuming). Field data
are restricted to point measurements and can cover only a small part of
heterogeneous tropical forests. This leads to a limited and possibly biased
information on forest carbon stocks (Houghton et al. 2009), since average values
(from in situ measurements) can be significantly different from spatially explicit
estimates (from satellite measurements). Therefore, our knowledge about the
distribution, magnitude and dynamics of global forest carbon stocks is poor
(Houghton et al. 2009; Mitchard 2018). Recent advances in remote sensing
techniques have enabled the derivation of forest parameters from space. In particular
in tropical forests, where only limited and unevenly distributed field data are
available, remote sensing data are an important source of information, providing
spatially consistent biomass estimates for areas that are difficult to access.

Spatially explicit and detailed estimates of forest carbon stocks will improve our
understanding of the global carbon cycle by providing accurate information on the
distribution and dynamics of the terrestrial carbon pools and their feedbacks with
the global climate system (Houghton 2005; Houghton et al. 2009). Such data
support the projection of future climate change through modelling (Le Quéré et al.
2017), e.g., more accurate modelling of interactions between tropical forests and
climate fluctuations and disturbance events (Mitchard 2018). In addition to the
science community, spatially explicit estimates of forest carbon stocks support
policymakers by providing consistent baseline data over large areas to develop and
monitor climate policies. Accurate carbon stock maps can then be used for reporting
carbon emissions to the United Nations Framework Convention on Climate Change
(UNFCCC) (e.g., in the Reducing Emissions from Deforestation and Forest
Degradation (REDD+) programme) at fine spatial scale. Although satellite-based
maps of forest structure parameters also contain errors, in contrast to field data,
they come with the advantage that they better represent the relative distribution of
forest parameters over large areas. Therefore, satellite-based products can be used
for forest stratification analyses, i.e., to improve sampling strategies of field data by
reducing cost and increasing representativeness of them. Furthermore, remote
sensing based maps can support land use planning by identifying and prioritizing

specific areas, e.g., for biodiversity conservations (Hese et al. 2005) or where changes
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in land use would minimize carbon emissions (Houghton et al. 2009). Besides the
science and policymakers communities, these data are of interest for industry as well
due to their cost efficient way (in time and space) to map and monitor forest
resources.

Although the assessment of aboveground biomass provides a very important
baseline information for understanding the global carbon cycle, monitoring the
change in carbon stocks is even more important for carbon science (Houghton et al.
2009). The changes of forest carbon stocks result from three main processes: (1)
short term changes due to land use and management change (e.g., conversion of
forested to an agricultural area); (2) short term changes due to natural disturbances
(e.g., insect outbreak, storm damage, forest fire); (3) long term changes driven by
interannual variability (e.g., temperature, precipitation, droughts) that affect rates
of photosynthesis, growth, respiration etc. (Houghton et al. 2009). Field and eddy
flux measurements in general can capture the third process (i.e., long-term changes)
only, since they are limited in space. Short-term changes at fine scale, such as
deforestation and forest degradation, or the impact of droughts and fire, usually
cannot be covered by field measurements (including eddy flux measurements)
(Mitchard 2018). The sum of these small-scale changes largely contributes to the
total uncertainty of net sources and sinks of terrestrial carbon stocks (Houghton et
al. 2009), which is the largest source of uncertainty in the global carbon budget
(Section 1.1). For instance, Baccini et al. (2017) used time series of satellite-based
aboveground carbon stock maps and reported that degradation and disturbance
account for 69% of total carbon losses in the entire tropics, and for 70%, 81%, 46%
of total carbon losses across tropical America, Africa, and Asia, respectively. These
results indicated that tropical forests might even be a net carbon source (emitting
0.425 PgC yr'), where carbon losses exceed carbon gains (Baccini et al. 2017).

Satellite observations are able to monitor long term vegetation trends (De Jong
et al. 2013; Forkel et al. 2013) as well as short term changes such as deforestation
(Hansen et al. 2013) and disturbances (Curtis et al. 2018; Hermosilla et al. 2015).
However, the remote sensing signal over forests results from complex interactions
between the electromagnetic wave, object geometry and local environmental
conditions. To better understand the remote sensing signal and thus, to generate
more accurate models based on it, field observations are required. Therefore, an
integration of high quality field data with remote sensing data can generate more
accurate assessments of aboveground carbon stocks and dynamics than either

approach alone (Goetz and Dubayah 2011). In situ data are needed to assess the
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accuracy of the satellite-based product. For instance, an uncertainty of 50% for
carbon stock estimates translates to an uncertainty of about 80% for carbon flux
estimates (Houghton 2005). In the next Section, the mechanisms of remote sensing

technologies and their potential to assess forest structure parameters are presented.
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1.2 Remote sensing of forest structure

Remote sensing methods offer a unique opportunity to generate spatially
continuous maps over large areas that are partly not accessible. Remote sensing
instruments measure electromagnetic radiation reflected from an object and use this
information to characterize the Earth’s surface. Remote sensing sensors can be
divided into passive and active instruments. Passive instruments measure reflected
electromagnetic radiation by the Earth and thus, can be used during the day-time
only. In contrast, the active sensors send energy out and measure reflected
(backscattered) energy received at the sensor. The received energy at the sensor can
be measured at different portion of electromagnetic spectrum (from visible light to
microwaves). Therefore, instruments can be further subdivided regarding the
measured part of electromagnetic spectrum, e.g., optical and radar sensors.

In following subsections the description of functionality of optical (passive visible
and infrared spectrums), radar (active microwaves) and LiDAR (active near-infrared
spectrum) sensors in relation to vegetation monitoring is introduced. Further a
synergetic usage of the sensors is discussed, since each sensor measures different
properties of a target. Finally, statistical models that relates remote sensing

measurements to in situ observations are presented.

1.2.1 Passive optical imagery for forest structure mapping

Passive optical remote sensing sensors (e.g., Landsat, MODIS, Sentinel-2, etc.)
measure electromagnetic radiation reflected by the Earth in visible, near- and
middle-infrared parts of electromagnetic spectrum between 0.4 pm and 2.5 pm
(Jensen 2007). Different surfaces (e.g., sand, vegetation, water) possess specific
spectral characteristics (i.e. spectral signature) allowing to use this information for
classification purposes. Vegetation has low reflectance in the visible electromagnetic
spectrum due to chlorophyll absorption, a high reflectance in the near-infrared
region (Gates et al. 1965) as well as drops in reflectance in middle-infrared due to
leaf water absorption (Jensen 2007). Spectral signatures of vegetation vary according
to vegetation type (e.g., grassland, agriculture, forest), growth stage, leaf type, etc.
Using this specific spectral signature, it is therefore possible to derive information on
vegetation type, health and moisture content.

Optical data have been widely investigated to find relationships between optical

reflectance of Earth’s surface and vegetation parameters (e.g., canopy cover, AGB,
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LAI). In general, optical data are partly appropriate for AGB estimation in global
forests. The spectral signature of vegetation depends on vegetation density as
reflectance decreases in visible and in near- and middle-infrared channels with an
increasing crown cover (Wulder and Franklin 2003). Vegetation density relates to
AGB and saturates at high biomass values (Huete et al. 1997; Huete et al. 2002).
The channels most correlated with vegetation density are near- and middle-infrared
channels (e.g., Landsat channel 4, 5 and 7) (Avitabile et al. 2012; Foody et al. 2001;
Steininger 2000). Since the optical datasets represent two dimensions of the land
surface and less relate to vertical vegetation structure, they possess limitations in
the AGB estimation. The main disadvantages in using of optical data for AGB
estimation are a high cloud cover rate over tropics, strong dependence on
environmental, seasonal and acquisition conditions (e.g., solar zenith angle) as well
as signal saturation over dense forests (Avitabile et al. 2012). To solve the problem
due to cloud cover, the optical data at coarse spatial resolution (e.g., >500 m
(MODIS-like)) with a high temporal repetition rate can be used. However, the use of
these types of sensors restricts to provide high spatial details. Since the relationships
between spectral reflectance and vegetation structure parameters vary from site to
site, development of the site-specific method for AGB mapping is required.
Non-parametric classifiers (e.g., artificial neural network, Random Forest) were
identified to be able to describe non-linear relationship between spectral information
and AGB estimates (Avitabile et al. 2012; Foody et al. 2001). For instance, Foody
et al. (2001) compared AGB mapping performance using 230 vegetation indices
calculated from Landsat TM imagery and three types of neural networks over
Bornean tropical rain forests. The results show that each of the three investigated
neural networks exhibits a higher correlation to AGB as each of the 230 vegetation
indices, indicating restrictions of vegetation indices for AGB modeling. A reason for
this is that vegetation indices are mostly based on two or three spectral channels,
while the neural networks use all six Landsat spectral wavebands.

In the 90s and early 2000s usually only single optical imagery was used to map
forest structure parameters, due to restricted data access. As a result, the
relationships between spectral reflectance of individual bands and forest structure
parameters were highly variable and instable due to influence of environmental
conditions (e.g., rain event) and phenological state. For instance, Steininger (2000)
found strong correlation between the middle-infrared Landsat TM channel and AGB
in Brazilian secondary forests with a correlation coefficient between 0.71 and 0.85. In
contrast, no correlation was observed in the Bolivian secondary forests between

Landsat TM channels and AGB (R ranging between 0.03 and 0.4). Significant
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differences in the results between the two study areas are probably caused by a low
solar zenith angle during the data acquisition over Bolivia. Another reason could be
a difference in the development of regrowth canopy structure between the two areas,
so that a relationship between canopy infrared reflectance and stand variables (e.g.,
AGB) is not valid for regrowth areas in the Bolivian study site (Steininger 2000).

Open data policy of optical Earth observation satellites (e.g., Landsat and
MODIS) has revolutionised the use of these data for scientific investigations,
enabling to gain their full value (Wulder et al. 2012). A 100-fold increase of Landsat
data use from 2001 (25,000 images) to 2010 (2.5 million images) (Wulder et al. 2012)
together with advanced computational power lead to a rapid increase in the
development of new algorithms. Time series of optical data can be used to generate
annual cloud-free spectral reflectance and vegetation indices (e.g., maximum,
minimum, mean annual NDVI) that is less impacted by environmental conditions,
providing more robust results over large areas. Furthermore, with advanced time
series analysis (e.g., Kennedy et al. 2010) every Landsat pixel can be tracked
through time (e.g., disturbance, regrowth) that can help to reconstruct forests
carbon dynamics (Pflugmacher et al. 2012). Moreover, more open data (e.g., from
Sentinel-2) - additionally to the existing programs - foster development of multi-
sensor fusion techniques to increase the number of cloud-free observations and to
monitor forests at different phenological stages.

Hyperspectral optical data (e.g., >50 spectral channels) can be applied to map
tree species as well as biochemical status of the forests, which can further improve
the sensitivity to forest structure (Koch 2010). However, since hyperspectral sensors
are usually operated from an aerial platform, they are restricted to a small study
site. In the near future, the launch of spaceborne hyperspectral sensors (DLR
EnMAP, ESA FLEX) will provide new insights for forest structure mapping at large
scale with hyperspectral information. Similar to hyperspectral data, very high spatial
resolution imagery (~1 m spatial resolution) (e.g., WorldView) possess strong
correlation to canopy cover and vegetation density (single trees and gaps between
them can be identified), however, they are also limited in spatial coverage.

The main advantages of optical data for forest structure mapping are: a) free
data at high and moderate spatial resolutions (e.g., Landsats, Sentinel-2, MODIS),
b) long time series (back to 70s-80s with Landsats and AVHRR), c) sensitivity to
photosynthetic active vegetation and time series of the corresponding products
(NDVI, fAPAR, GPP). The recent large-scale studies for AGB estimation that are

based on optical sensors (Saatchi et al. 2011; Baccini et al. 2012; Matasci et al.

16



Remote sensing of forest structure

2018b) used a fusion of time-series of Landsat or MODIS data with airborne and
spaceborne LiDAR. The potential of multi-sensoral combination for forest structure

mapping is discussed in Section 1.2.4.

1.2.2 Synthetic Aperture Radar for forest structure mapping

Alternatively to the optical remote sensing, so called RAdio Detection And
Ranging (RADAR) sensors, which operate in microwave domain with a spectral
range between 1 mm and 1 m, can be used to obtain information about forest
structure. Due to longer wavelengths, microwaves have the capability to penetrate
into vegetation, and thus to probe the three-dimensional vegetation structure.
Furthermore, microwaves are particularly useful for weather independent
applications, since long electromagnetic waves can penetrate clouds.

Active radars transmit a microwave signal, illuminate a target and measure the
return energy. The received backscattered signal can be recorded in form of
magnitude and phase measurements. The magnitude measurement (backscatter
intensity) describes the strength of the return signal and is determined by the
geometrical and electrical properties of the reflective material, as well as by the
frequency, polarisation and angle of incidence of the emitted wave (Raney 1996).
Electrical properties of a reflective material can be measured with dielectric
constant, ability of a material to conduct electrical energy. Dielectric constant is
mostly determined by moisture content and is high for wet and low for dry surfaces,
respectively. For instance, wet soils (high dielectric constant) conduct and scatter
back more electrical energy (i.e., high backscatter) than dry soils, which absorb
more energy and scatter back a lower amount of energy (i.e., low backscatter).
Furthermore, moisture content determines penetration depth of the incident
microwaves. Generally, penetration depth of a microwave is in order of the size of
emitted wave, however, in extremely dry soils a microwave can penetrate several
meters (Jensen 2007). Seen from imaging radar surface roughness is connected to the
wavelengths and incidence angle of the emitted wave. Surface appears “smoother”
for microwaves with increasing wavelengths and increasing incidence angle (Jensen
2007). The interaction of the emitted wave with the objects on the ground is
determined by their size and shape. For instance, short microwaves (3-5 cm) interact
primarily with objects in order of the size of the wavelength (i.e., with objects equal
or greater than 3 5 cm: tree leaves and small branches). Since long microwaves (20-
70 cm) are sensitive to large objects (e.g., tree trunk) and can penetrate deeper into
the forests than short waves, they are more suitable for forestry applications (e.g.,

mapping of forest cover and forest structure) (Le Toan et al. 1992; Saatchi et al.
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2011b). The polarisation of the microwave also affects the backscatter mechanisms
of vegetated areas. The interaction of vertically polarised waves is generally higher
for objects with vertically oriented elements (branches, trunks) and horizontally
polarised waves with horizontally oriented objects (leaves, twigs) (Leckie and
Ranson 1996). The cross-polarised (HV or VH) waves are more sensitive to volume
scattering (e.g., as occurring within woody canopies) and less affected by surface
properties (e.g., soil moisture) as opposed to co-polarised (HH or VV) waves (Le
Toan et al. 1992; Rauste et al. 1994; Saatchi and Moghaddam 2000).

A radar phase describes the oscillation of electromagnetic waves and measures the
phase angle of returned signal. By comparing two radar phases acquired from
slightly different positions over the same area, the phase difference can be
calculated, with which the elevation of the target can be determined, a remote
sensing technique that is called SAR interferometry. Ideally, two radar imagery
should be acquired simultaneously in order to eliminate the temporal decorrelation
between them. Strong temporal decorrelation caused by changes on the surface
between the acquisitions (e.g., moisture conditions, location and orientation of a
target) can reduce the quality of an interferogram and the corresponding elevation
product. Furthermore, from an interferogram an interferometric coherence can be
calculated that describes the correlation between the two complex radar imagery
with values ranging between 0 (no correlation) and 1 (strong correlation). Since
different land cover classes exhibit various degree of “stability” between two
acquisitions, interferometric coherence can be used for classification of the Earth
surface (Grey and Luckman 2003; Luckman et al. 2000; Wagner et al. 2003). For
instance, urban areas do not change as fast as vegetated areas over time and thus,
possess a higher coherence value. Similarly, with an increasing vegetation density
forested areas become more variable (caused due to slightly changing position and
orientation of branches) and interferometric coherence decreases. Therefore,
interferometric coherence is sensitive to vegetation density and can be used for AGB
estimation (e.g., Askne and Santoro 2005; Wagner et al. 2003).

Since the wavelength of the emitted signal is usually much smaller than the
resolution cell, many scatterers within this cell are present. In Figure 1-5 each arrow
represents backscattered signal of individual scatterer within a resolution cell. The
total backscattered signal of a resolution cell originates from the vector addition of
the individual scatterers with changing magnitude and phase. Even if individual
scatterers would have the same magnitude, they will possess different phase due to

slightly different distance to sensor. For this reason the backscattered signals from
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neighbouring cells appear brighter or darker, resulting in a noise like effect called
speckle. In most applications, speckle is considered as a disturbing noise, since the
changes in backscatter measurements are caused not by surface variability.

o

Phase I

Figure 1-5: Illustration of complex sum of individual scatterer within a resolution cell
(after Raney 1996)

To reduce speckle, either spatial (from the neighbouring cells) or temporal (from
the time series) information can be used. Classical speckle filters (e.g., Lee, Frost)
apply a moving window approach and calculate local statistics to homogenise a
single cell according to its neighbours. This type of speckle filters are fast, easy to
use, they are implemented in common remote sensing software (e.g., ENVI, Erdas,
SNAP etc.), and do not require multi-temporal imagery. However, since a moving
window approach is applied, the spatial details are reduced. Nowadays, with
availability of dense SAR time series, multi-temporal speckle filters are being
developed (e.g., Cremer et al. 2018; Lé et al. 2014). This type of speckle filters use
temporal information and thus, spatial details are fully preserved. Alternatively, a
combination of spatial and temporal information can be used to reduce the speckle
effect (e.g., Quegan and Yu 2001).

Since radar sensors are side-looking systems, a SAR imagery possess specific
geometrical properties. From near (close to nadir) to far range increases the
incidence angle, so that objects far from the nadir appear more distorted and are in
the so called slant-range geometry. Using depression angle (angle between the line of
sight from the radar to a target and the horizontal plane at the radar) slant-range
geometry can be converted into ground-range geometry. However, in the presence of
topography the transformation from the slant- to ground-geometry is not

straightforward, since the return from a high object (e.g., mountain peak) is time
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sooner as from the foot of a mountain. This effect is called foreshortening, when the
slope appears shorter than in reality. The higher the object and the greater the
depression angle (or smaller the incidence angle), the greater is foreshortening
(Jensen 2007). In extreme case the backscattered energy from the peak of mountain
can overlay the return from the base of mountain and the position of the peak is
displaced toward the sensor (layover effect) (Figure 1-6). Additionally to
foreshortening and layover, a further effect called radar shadow can occur in
mountainous or urban areas. In this case, areas behind high objects are not
illuminated by the sensor and thus, no energy is scattered back. Using information
on surface topography (e.g., digital elevation model) it is possible to correct
geometry and backscattering coefficients caused by foreshortening, while distortions

caused by layover and radar shadow are not possible to correct (Jensen 2007).
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Figure 1-6: Influence of topography in radar image (Lillesand et al. 2008)

Generally, there are three main scattering mechanism when using radar imagery:
1) single bounce (or specular reflection), 2) double bounce, and 3) volume scattering.
In case of single bounce the most energy sent reflects away from the sensor and only
a minor part is scattered back (i.e., low backscatter). Double bounce appears when a
signal hits two smooth areas that are perpendicular to each other (e.g., road and
building) and send a strong backscatter to the sensor. When a signal penetrates a
three-dimensional body (e.g., vegetation, ice), a radar signal is scattered back in
multiple directions and some part is returned back to the sensor. Based on these

dominant scattering mechanism the Earth surface can be classified into water, bare
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soils (both single bounce), urban areas (double bounce) and vegetated areas
(dominant volume scattering). Over vegetated areas all three scattering mechanism
can occur. For instance, an L-band signal can penetrate the forest canopy and
interact with the ground (single bounce), the signal can be reflected from the ground
to the trunk and back to the sensor (also other way around) (double bounce), and
finally, the signal can interact with tree elements within the crown (volume

scattering) (Figure 1-7).

Figure 1-7: Scattering mechanism over forested areas: 1) backscatter from the crown
(volume scattering), 2) direct backscatter from the trunks, 3) direct backscatter from the
ground (single bounce), 4) crown-ground backscatter, and 5) trunk-ground backscatter
(double bounce) (Leckie and Ranson 1996)

Over vegetated areas with increasing vegetation density (i.e., biomass) enhances
also backscattered intensity. However, depending on radar frequency, polarisation of
the emitted wave, environmental conditions (freezing, thawing, rain, drought, etc.),
and biome-specific forest characteristics (i.e., coniferous and deciduous forests over
boreal, temperate, tropical zone), the backscattered intensity saturates at different
biomass levels, i.e., it is not further possible to discriminate biomass classes (Imhoff
1995; Le Toan et al. 1992). Usually short microwaves (X- and C-band) do not
penetrate the tree crown and the wave interacts with small tree parts (leaves, twigs)
(Le Toan et al. 1992). For this reason, backscattering coefficients acquired at these
frequencies can be used to estimate biomass at low range (up to ~50 t ha') (Imhoff
1995; Lucas et al. 2006) and are useful for vegetation parameter estimation in open
forests and woodlands (Lucas et al. 2006; Mathieu et al. 2013). Longer wavelengths
(e.g., L- or P-band) usually do penetrate the tree crown and interact with big tree
compartments (branches and trunk), where most of the total biomass is stored. The

saturation level of L- and P-band backscattering coefficients occurs at around 100
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and 200 t ha' (Dobson et al. 1992; Saatchi et al. 2007), respectively. In some studies
(e.g., Joshi et al. 2017; Mermoz et al. 2015; Yu and Saatchi 2016) a decrease of
L-band backscattered intensity with increasing biomass has been reported. The
reason for this could be signal attenuation, i.e., the returned intensity attenuates
and decreases proportionally with increasing canopy opacity (Mermoz et al. 2015).
Furthermore, with increasing biomass radar signal decreases probably due to a
reduced trunk-ground double bounce scattering (Joshi et al. 2017). It has been also
reported that biomass saturation level is affected by polarisation (Dobson et al.
1992; Le Toan et al. 1992). Since cross-polarised waves (HV or VH) are more
sensitive to volume scattering (Rauste et al. 1994; Watanabe et al. 2006) and less
affected by surface properties (soil moisture and roughness) (Saatchi and
Moghaddam 2000; Saatchi et al. 2007) as opposed to co-polarised waves (HH or
VV), the cross-polarised SAR imagery show a stronger sensitivity to forest biomass
with a greater saturation level (Dobson et al. 1992; Saatchi et al. 2007).

Moreover, weather conditions (e.g., freezing, thawing, rain, drought) impact the
potential of SAR imagery to estimate forest structure parameters. The best weather
conditions for stem volume estimation over Northern-Hemisphere boreal forests
using L-band intensity have been reported to be under dry unfrozen weather
(summer period) (Rauste 2005; Santoro et al. 2006). During the frozen conditions
Santoro et al. (2006) noticed signal saturation and low sensitivity of L-band
intensity to stem volume. This can be caused by increased radar backscatter from
the snow on the trees and on the ground (with ice layers inside), which is almost as
high as backscatter from the tree canopy (Rauste 2005; Santoro et al. 2006). Over
semi-arid forests, woodlands and savannahs SAR data acquired during the dry
season showed higher correlation to the vegetation structure metrics than data
acquired during the wet season (Lucas et al. 2010; Mathieu et al. 2013; Naidoo et al.
2015; Urbazaev et al. 2015). During the dry season there is almost no rainfall in
these regions (semi-arid forests and savannahs), thus, moisture in the soil and on the
vegetation is at its minimum resulting in a reduced impact of moisture on the radar
backscatter. Similarly, in the tropical dry forests with a pronounced seasonality,
SAR data from the dry season possess stronger sensitivity to forest structure
parameters (Bouvet et al. 2018; Lucas et al. 2010).

Finally, forest structure influences relationships between backscattered intensity
and AGB. Yu and Saatchi (2016) used spaceborne LiDAR-based AGB estimates
collected over 11 forest biomes to investigate its correlation to the L-band

backscatter intensity. Depending on the forest structure different saturation levels
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were determined for L-band data. For instance, L-band intensity saturates at
~80 t ha' over fresh water swamp forests, while over homogeneous boreal and
temperate needleaf forests the saturation level occurs first at ~250 t ha™’ (Yu and
Saatchi 2016). It is concluded that L-band intensity at HV polarisation can be used
to estimate AGB up to 100 t ha' over all eleven forest types (Yu and Saatchi 2016).

Saturation effect can be partly solved by reducing the impact of environmental
conditions on backscatter, so that the signal is primarily driven by vegetation
structure. For this, multi- or hyper-temporal combination of SAR data is applied,
e.g., by calculating multi-temporal statistics (mean, percentiles of backscatter) or by
weighted averaging of stem volume estimates (Cartus et al. 2012b; Santoro et al.
2011). With multi-temporal SAR data forest structure parameters can be estimated
more accurately and robust as with single SAR imagery (Antropov et al. 2017,
Cartus et al. 2012b; Kurvonen et al. 1999; Rauste 2005; Santoro et al. 2011;
Urbazaev et al. 2015). For instance, Santoro et al. (2011) combined C-band time
series and reported no saturation to a stem volume up to 300 m*ha™ (i.e., ~150 tha™
AGB). Multi-frequency SAR data can potentially improve modelling accuracies of
forest structure parameters, since short and long microwaves interact with different
tree compartments (Englhart et al. 2011). Over dense tropical forests in Central
Kalimantan, Indonesia, Englhart et al. (2011) reported an improved AGB retrieval
accuracy by combining X- and L-band backscattering coefficients compared to the
results that are based on L-band only (R2 of 0.789 for combined results vs. R2? of
0.706 for L-band based only). Multi-temporal X-band backscatters modelled AGB
more accurately at low range than multi-temporal L-band backscatters (Englhart et
al. 2011). In South African savannahs Naidoo et al. (2015) examined the potential of
multi-frequency combination of dry season X-, C- and L-band backscatters for
vegetation structure mapping (woody cover, AGB). Although the best retrieval
performance was achieved using all three frequencies (R? of 0.83 and relative RMSE
of 29.18% for AGB estimation), L-band dataset alone produced marginally lower
goodness-of-fit statistics (R? of 0.78 and relative RMSE of 32.9%). The authors
reported that inclusion of the data at short wavelength (X- and C-band) did not
improve mapping accuracies of the shrubby layer as it was expected (Naidoo et al.
2015).

Supplementary information on forest structure (number of stems, stem size,
understory) can further improve AGB modelling with radar backscatter (Joshi et al.
2017). The impact of forest structure on radar backscatter can be modelled and
analysed using e.g., a simulated forest (e.g., FORMIND) (Cazcarra-Bes et al. 2017;

Koéhler and Huth 1998). However, even if it will be possible to extract “pure”
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backscatter determined by vegetation, there are technical restrictions of radar signal
to estimate biomass at high levels (>200 t ha'), e.g., signal attenuation in dense
forest. Understanding radar signal behaviour at specific frequency, polarisation and
forest structure, can partly extent saturation level of radar signal for estimation of
forest parameters.

Besides the backscatter analysis, advanced SAR techniques, such as Polarimetry
(PolSAR), Interferometry (InSAR), Polarimetric Interferometry (PolInSAR) and
Tomography (TomoSAR) have been applied for forestry applications. PolSAR uses
polarimetric information acquired at different polarisation to decompose the signal
into main scattering mechanism and apply this decomposed information for land
cover classification (Cloude and Pottier 1997) and biomass modelling (Antropov et
al. 2017; Chowdhury et al. 2014). As already mentioned, InSAR. utilizes at least two
phases to calculate phase difference and estimate elevation with corresponding object
height. PolInSAR combines both techniques (polarimetry and interferometry) to
detect volume phase scattering height that is closely related to top of canopy. For
TomoSAR multi-baseline SAR data (i.e., acquired from different positions) are
required to delineate SAR tomogram. In contrast to InSAR or PolInSAR, where
2.5D information (top and bottom height) is estimated, SAR tomogram can be used
to reconstruct 3D structure of an area. It has been shown in many studies that with
InSAR (Askne et al. 2013; Askne et al. 2017; Solberg et al. 2013), PolInSAR
(Hajnsek et al. 2009) and TomoSAR (Dinh Ho Tong et al. 2014) vegetation height
can be mapped accurately, which can be further converted to volume or biomass.
Interferometric coherence for AGB mapping was mostly used in boreal forests under
stable environmental conditions (e.g., under long frozen periods) (e.g., Askne and
Santoro 2005) and less investigated in (sub-) tropical regions, due to a low repetition
rates (e.g., 46 days for ALOS PALSAR), which increase temporal decorrelation in
heterogeneous (sub-) tropical areas. The main restriction to apply all of these
advanced techniques is limited data access. Currently, there are only one spaceborne
system that can be used for single-pass InSAR (TanDEM-X) and thus, for large
scale mapping. Single-pass interferometry based on TanDEM-X data is further
limited due to data policy, including restricted data access for scientific use.
PolInSAR and TomoSAR. systems are currently operated from an airplane only and
thus, limited in time and space. For the first time these two advanced SAR
techniques together with P-band SAR backscatter will be applied from space with
an ESA mission, BIOMASS, which is being developed to assess global carbon stocks
(Le Toan et al. 2011).
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From previous studies a number of recommendations for AGB retrieval using

SAR backscatter can be summarized as follows:

1. In general, cross-polarised backscatter (i.e., HV or VH) is more sensitive to
vegetation structure than co-polarised backscatter (i.e., HH or VV), due to a
higher volume scattering from vegetation canopy and a lower impact of surface
properties (e.g., soil moisture and roughness). However, the sensitivity of co- and
cross-polarised backscatter to vegetation parameters varies across study areas
and depends on vegetation structure.

2. SAR backscatter acquired at high incidence angle (>45°) showed a higher
saturation level and thus, better appropriate for AGB estimation than that
acquired at low incidence angle. One of the main reasons is that data acquired at
high incidence angle have a higher dynamic range (i.e., contrast between non-
vegetated and dense vegetated areas). However, the impact of incidence angle is
reduced for the data at low frequencies (Lucas et al. 2006).

3. Topography affects strongly SAR signal. AGB retrieval accuracies in flat areas
are much higher than in areas with steep slopes (>15°) (Cartus et al. 2014).
Therefore, the use of high quality DEM (e.g., TanDEM-X DEM or LiDAR
DEM) at high spatial resolution can potentially improve topographic
normalisation of the SAR data and thus, the AGB retrieval accuracy.

4. Multi-temporal SAR data improve the retrieval accuracies, as the impact of
environmental conditions on the data is reduced (e.g., Kurvonen et al. 1999;
Santoro et al. 2011).

5. In (semi-) tropical regions SAR backscatter acquired during dry season show
stronger correlation to forest parameters, due to a reduced impact of moisture on
radar signal. Further, an interpretation of operationally products on soil
moisture and/or vegetation water content (e.g., derived from AMSR-E) is
recommended before the data ordering (Lucas et al. 2010).

6. Since SAR backscatter acquired at different frequencies reflects different
scattering mechanisms from the vegetation, a combination of data at high and
low frequencies can enhance the retrieval accuracy. Furthermore, data at
different frequencies can be used for AGB modeling at certain biomass intervals,
e.g., high frequency data for low biomass range, and low frequency data for
middle-high biomass range (Englhart et al. 2011).

7. Tanase et al. (2014a) compared parametric and non-parametric models for AGB
estimation with SAR backscatter and concluded that at different AGB intervals,
parametric and non-parametric models showed various retrieval accuracy,

suggesting that a combination of model types can improve overall accuracy.
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8. Saatchi et al. (2011b) reported that for calibration of SAR data, field plots
should be established at a minimum plot size of 0.25 ha, since the smaller plots
are affected by large trees and thus possessed a high variability. The same
recommendations were done by Chave et al. (2004) and Zolkos et al. (2013) to
establish field plots with a minimum size of 0.2 ha.

9. Saatchi et al. (2011b) showed that adding of vegetation height information in
the AGB model improves the retrieval accuracy significantly. Vegetation height
can be obtained e.g., from LiDAR or InSAR data.

10. Polarimetric decompositions do not seem to improve estimation accuracy, and
showed the similar or lower sensitivity to AGB than cross-polarised backscatter
(e.g., Neumann et al. 2012; Tanase et al. 2014b).

11. The advanced SAR techniques such as PolInSAR and TomoSAR showed very
accurate results to tree height estimation and thus to AGB (e.g., Dinh Ho Tong
et al. 2014; Hajnsek et al. 2009), but limited in time and space as operated from

an aerial platform.

1.2.3 LiDAR for forest structure mapping

Three-dimensional vegetation structure can be detected by Light Detection and
Ranging (LiDAR) sensors. LiDAR is an active system that sends a pulse of light and
measures returned energy. Knowing the precise travel time of the signal, the
distance to targets can be calculated (Lim et al. 2003). LiDAR for terrestrial
applications usually operates in near-infrared range between 900 and 1064 nm of
electromagnetic spectrum and are capable to penetrate tree canopy (Lefsky et al.
2002b) allowing derivation of vegetation structure, understory and bare-ground
information. A LiDAR system illuminates an area (called instantaneous laser
footprint) by sending a laser pulse, which can generate one or many returns
depending on the Earth Surface characteristics (bare-ground or vegetated area)
(Figure 1-8). Laser footprint can vary in size between centimetres for an airborne
sensor to several meters for a spaceborne instrument (e.g., 70 m ICESat GLAS

instrument).
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Figure 1-8: An illuminated area by LiIDAR and different number of returns depending

on land cover (pulses A and B) (Jensen 2009)

LiDAR systems can be categorized as “discrete return” (DR) and “full waveform”
(FW) systems (Lefsky et al. 2002b; Lim et al. 2003). The difference between these
two systems is the way the reflected energy is recorded. While DR LiDAR records

returns from the major peaks, FW systems measure the time-varying intensity of
each pulse (Lefsky et al. 2002b) (Figure 1-9). A FW LiDAR therefore measures a

vertical structure over an illuminated area. The footprint size of FW LiDAR ranges

between 8 to 70 m (Lim et al. 2003) and contains information on multiple forest

elements (trees, shrubs etc.). Since a DR LiDAR possesses a small footprint (less

than a meter) (Lim et al. 2003) many returns can occur within a cell of 1x1 m.

Therefore, vertical target distribution can be simulated from these multiple returns

(Lefsky et al. 2002b).
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Figure 1-9: Differences in recording of return signal between the full waveform and
discrete return LiDAR systems (Lefsky et al. 2002b)

LiDAR is able to measure some vegetation structure parameters directly (e.g.,
vegetation height, density), but not the tree volume and biomass. The latter can be
estimated via statistical modelling with AGB estimates derived from field
measurements. Alternatively, height-to-biomass allometry can be developed to
convert LiDAR-height to biomass. For instance, Asner et al. (2012) developed an
universal equation to estimate aboveground carbon density (ACD) from the LiDAR
mean canopy height (MCH) over four tropical regions (Panama, Peru, Madagascar,
and Hawaii). The idea to develop an universal model for tropical forest is based on
generalized pan-tropical equations after Chave et al. (2005). Asner et al. (2012)
substituted the tree height derived from field measurements with the LiDAR MCH
and combined together with the plot specific basal area (BA) and wood density
(WD) parameters. If plot specific BA and WD are applied, the universal model
explained 95% of the variation in ACD across all 482 field plots with an R? of 0.95
and RMSE of 12.6 MgC ha! between LiDAR predicted and field based ACD. Using
regional specific BA and WD together with LIDAR MCH predicted and observed
ACD have an R? of 0.80 and RMSE of 27.6 MgC ha™.

Since vegetation height and density metrics correlate strongly with biomass,
LiDAR-metrics can be used for accurate biomass mapping. Zolkos et al. (2013)

compared more than 70 studies for AGB estimation, which were based on LiDAR
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and synergetic (i.e., multi-sensor) approaches and carried out across the world. The
authors concluded that LiDAR-based AGB models are significantly more accurate
than those based on radar or optical data. Multi-sensor approaches are more
variable than LiDAR-only models and they do not always enhance AGB retrieval
accuracy. The use of imaging sensors is, however, required to provide “wall-to-wall”
products over large areas. In contrast to radar and optical approaches, only LiDAR
and multi-sensor based models may satisfy “Monitoring, Reporting and Verification”
(MRV) guidelines (Herold and Skutsch 2011) with Root Square Error within
20 Mg ha' or 20% of field estimates. Accuracies of LIDAR based AGB models are
dependent on the type of LiDAR system (airborne discrete return (DR), full
waveform (FW), spaceborne (GLAS)), forest type (boreal, temperate, tropical), and
field inventory plot size. The accuracies achieved by different LiDAR and multi-
sensor (MS) models were similar with mean R? of 0.80, 0.78, 0.76 and 0.70 for FW,
MS, DR and GLAS, respectively. In contrast, mean R? for radar and optical data
based models were significantly lower with 0.50 and 0.59, respectively. The best
model performance was achieved in tropical forests (mean RSE=20.7%), while in
temperate deciduous and boreal forests (mean RSE=31.0% and RSE=34.3%,
respectively) the errors were higher. Finally, model performance is affected by the
field plot size. RSE decreases rapidly with increasing of plot size. The relationship
between model error and plot size is asymptotic and saturates at ~0.2 ha, i.e. the
plot size for LIDAR model calibration should be at least 0.2 ha (Zolkos et al. 2013).
LiDAR can provide very accurate information on vertical distribution of canopy
elements (Goetz and Dubayah 2011) and thus, can be used for AGB modelling
without signal saturation (Lefsky et al. 2005). The main limitation of the LiDAR is
a restricted spatial coverage, since LiDARs are samplers and not imagers. Although
airborne LiDAR systems are capable to generate a continuous scan of the Earth,
they are limited in space and time. Spaceborne LiDARs collect samples of the Earth,
e.g., NASA’s ICESat GLAS sampled the Earth approximately every 170 m (distance
between single laser footprints). At local scale airborne LiDAR are able to measure
forest dynamics (e.g., Dubayah et al. 2010). At continental or intercontinental scales
airborne and spaceborne LIDAR can serve as training data for optical and/or radar
imagery (Section 1.2.4). LiDAR-based AGB estimates can provide a larger number
of training data, which is necessary for a large scale mapping (continental or
intercontinental scale). Furthermore, in contrast to forest inventory data, LiDAR
can help to reflect local spatial variability and thus to establish robust statistical
models. LiDAR possess, however, some further limitations, e.g., it is difficult to

separate first and last return over hilly terrain or dense understory (Goetz &
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Dubayah 2011). Lasers still have some penetration (especially during leaf-off
conditions) and may reflect not the highest vegetation point (Dubayah et al. 2010).
Similar to passive optical remote sensing data, LiDAR is hindered by clouds (Lefsky
et al. 2002b). Therefore, one important step in using LIDAR-AGB as reference data
is error characterisation by up scaling of field data. For instance, Saarela et al.
(2016) and Holm et al. (2017) showed that ignoring field to LiDAR error can
underestimate uncertainty in the final satellite based AGB map by a factor of three
or higher.

In addition to topography and forest carbon stocks mapping, LiDAR provides
unique data for a number of ecological applications (e.g., characterisation of
biodiversity and habitat, understory structure and dynamic) (Goetz & Dubayah
2011). New spaceborne LiDAR missions (e.g., NASA’s Global Ecosystem Dynamics
Investigation (GEDI) and ICESat-2, JAXA’s MOLI), partly are specifically designed
for vegetation monitoring, will provide unique multi-temporal datasets on vertical
vegetation structure over undersampled dense tropical forests. These datasets alone
can provide statistics (mean, total AGB) over an area of interest using sampling
theories (e.g., design- or model-based interference (Gregoire 1998; Stahl et al. 2016)).
However, to provide wall-to-wall estimates of a variable of interest a fusion with

satellite imagery is necessary (Section 1.2.4).

1.2.4 Multi-sensor combination for forest structure mapping

Since optical, LIDAR and SAR data reflect different characteristics of a vegetated
area (e.g., spectral and vertical properties of vegetation), a synergetic combination of
these datasets can be used to describe horizontal and vertical vegetation structure
and thus, to enhance vegetation parameter estimation (e.g., tree height, crown
density, AGB). Limitations of each data type, e.g., impact of moisture and
topography on SAR data, cloud cover and seasonal effects on optical imagery, and
sampling mode of LIDAR, can be minimized when using these data synergetically
(Goetz et al. 2009). Moreover, different sensor type features their advantages. For
instance, optical sensors are sensitive to photosynthetically active vegetation and
possess long and continuous time series of imageries (back to 70s-80s). SAR has the
ability to penetrate tree crown and is sensitive to woody vegetation. Thus, SAR can
be effectively used to separate woody and herbaceous layers (e.g., Naidoo et al.
2016). LiDAR provides accurate measurements of tree height, tree crown and

vegetation density without signal saturation (Lefsky et al. 2002b).
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Since LiDAR can provide very accurate estimates of biomass (Zolkos et al. 2013)
and height (Simard et al. 2011), these data can be used as training data for large
scale mapping. Using a combination of spaceborne LiDAR and optical imagery it
was possible to estimate AGB for the entire tropical region (Baccini et al. 2012;
Saatchi et al. 2011a). Baccini et al. (2008 and 2012) reported a sensitivity of a short
wave infrared (SWIR) spectral band to texture and shadows, which are related to
stand age structure and thus to AGB of dense tropical forests. Without spaceborne
LiDAR (i.e., with field data only) it would not be possible to train adequately
machine learning algorithms, which require a large amount of training data.
Furthermore, using time series of optical data (Landsat and MODIS) together with
LiDAR data it was possible to track forest dynamics over time in boreal forests of
Canada (Matasci et al. 2018) as well as over the entire tropical region (Baccini et al.
2017).

TanDEM-X scattering phase height is closely related to the canopy height due to
the low penetration depth of X-band signal as well as due to the quasi simultaneous
acquisition from two different positions allowing to apply single-pass InSAR. In
application preparation phase of the spaceborne GEDI LiDAR data, Qi and
Dubayah (2016) investigated the potential of the fusion of TanDEM-X data with
simulated GEDI LiDAR to provide wall-to-wall estimates of vegetation height under
varying terrain conditions. Although TanDEM-X features strong capability to
estimate vegetation height (Askne et al. 2013; Solberg et al. 2013), inclusion of
topographic information such as from spaceborne LiDAR, improves modelling
accuracies, especially over hilly terrain than using TanDEM-X alone (Qi and
Dubayah 2016).

Optical and SAR signals are determined by different vegetation characteristics.
While optical data are sensitive to foliar properties and canopy gap structure
(Avitabile et al. 2012), SAR signal interacts primarily with woody tree
compartments (i.e., trunk, branches and twigs). Therefore, a fusion of SAR and
optical data provide more complementary information of forests, which can
potentially improve retrieval accuracies of forest parameters. For instance, over
homogeneous even-aged forest plantations in Chile Cartus et al. (2012a) estimated
canopy height and growing stock volume using L-band SAR (backscatter intensity
and interferometric coherence) and optical Landsat data. Single sensor models (i.e.,
PALSAR-only and Landsat-only) achieved similar retrieval accuracies, while a
synergetic combination of PALSAR and Landsat data produced consistently higher
accuracies for three test sites in Chile. Over tropical forests in central Laos

investigated Hame et al. (2013b) performance of L-band SAR backscatter and
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optical data (acquired from ALOS AVNIR) in single-sensor and combined
approaches to estimate AGB. The results showed similar prediction performance of
single SAR- and optical-based models as well as in a combined manner (Hame et al.
2013b). Bearing in mind data collection efforts and local site conditions, the use of
data from one sensor (either SAR or optical) can be sufficient to provide reliable
estimates of vegetation structure parameters at local scale. For instance, SAR data
have been proven to be more appropriate for vegetation parameter estimation in a
savannah landscape (Naidoo et al. 2016), mostly due to difficulties to separate
herbaceous and woody vegetation with optical imagery (Lucas et al. 2006).
Combination of IL-band backscatter with Landsat surface reflectance improves
prediction performance marginally (Naidoo et al. 2016).

Overall, for large scale mapping a combination of SAR and optical data would
enhance prediction performance by compensating limitations of one sensor type for
specific local conditions (e.g., hilly terrain areas in case of SAR data, areas
permanently covered by clouds in case of optical data). For forest structure mapping
at local scale, however, single sensor data (either SAR or optical) might be used that
reflect the best site specific conditions (e.g., savannahs). LiDAR data are generally
used to increase the amount of reference data that better describe spatial variability
of heterogeneous forests as field data (Baccini et al. 2008; Baccini et al. 2012;
Englhart et al. 2011; Saatchi et al. 2011a). For a spatially continuous mapping a
fusion of LiDAR with optical and/or SAR imager is required. Nowadays with
increasing number of optical, radar and LiDAR sensors in space and in the air (e.g.,
unmanned aerial vehicle), opportunities emerge to map biomass on an

unprecedented spatial and time scales with a high retrieval accuracy.

1.2.5 Statistical models for forest structure mapping

To relate a signal measured by a remote sensing sensor (optical, radar, LiDAR)
to a target variable (i.e., biomass, height etc.) and to do a prediction based on this
relationship, different types of statistical models can be applied. For forest
parameter estimation simple parametric regression models (e.g., linear regression,
multiple linear regression), physically-based models (e.g., Water Cloud Model
(WCM)), and machine and deep learning algorithms (e.g., Random Forests, Support
Vector Machine) have been applied.

Assuming there is a relationship between X (predictor, i.e., remote sensing
measurement) and Y (response, i.e., target variable), a very straightforward

approach to predict a response Y is to use a simple linear regression in the form
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Y=a+b*X, where a (intercept) and b (slope) are unknown model coefficients. The
model coefficients a and b can be estimated, where samples of Y and X are known
using e.g., least squares approach. Least squares criterion selects a and b to
minimise the residual sum of squares (RSS) (James et al. 2015), i.e., data points
from Y and X values are located as close as possible to the regression line. This
procedure can be called model fitting or training. The simple linear regression can be
extended to multiple linear regression by applying a number of predictors and can
be written in the form Y=a+bi*Xi+b2*Xo+...+bn*Xn. The model coefficients (a,
b1...bn) are determined empirically as well with the sample data. Since the
relationships between remote sensing measurements and forest parameters are
usually not linear, a linear regression with logarithmic transformation can be used,
e.g., in the form of Y=at+b*log(X). The linear regressions are {flexible, well
understood, and serves as basis for many advanced statistical approaches that
represent generalisations and extensions of linear regression (James et al. 2015).

An extension of linear regressions are the physically-based models that have been
developed specifically to describe a SAR signal as a function of complex signal
interaction within a vegetated area, e.g., Water Cloud Model (WCM) (Attema and
Ulaby 1978) and Interferometric Water Cloud Model (IWCM) (Askne et al. 1997).
These models try to describe total SAR signal over forests (backscatter intensity or
interferometric coherence) as a sum of ground scattering through canopy gaps,
ground scattering attenuated by the crown and scattering from vegetation layer
(Askne et al. 1997). Total forest backscatter can be expressed as a function of stem
volume or biomass in the form of Ow=0g€®Y + Oueg(l-€PY). Oror represents
backscatter intensity over forest, Oy and Oveyg are backscatter intensities of the forest
floor and vegetation layer, respectively, B is related to dielectric and forest structure
properties (Santoro et al. 2011). The unknown model coefficients (Ogr, Oveg and B)
can be estimated empirically with sample data, e.g., using a least squares approach
similar as for linear regression. For large scale applications, however, empirical
estimation of the model coefficients is not feasible as sample data are rare and might
not reflect spatial variations of SAR backscatter caused by forest structure and
environmental conditions (Santoro et al. 2011). Therefore, Santoro et al. (2011)
estimated the model coefficients Oy and Oveg by means of globally available MODIS
tree cover map (Hansen et al. 2003), where Oy and Oveg represent backscatter
intensities of unvegetated land surfaces and dense forests, respectively. These
parameters are estimated by applying different windows sizes and tree cover
thresholds (Santoro et al. 2011). Empirical estimation of the parameter B showed

that this coefficient varies in average between 0.004 and 0.008 ha m™ and impacts
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Growing Stock Volume (GSV) estimates by less than 10% regardless of the study
area (Santoro et al. 2011). Therefore, using a set of Oy, Oveg and B values it was
possible to estimate GSV without model fitting, i.e., without training data. The
authors further applied temporal (i.e., multi-temporal weighting of single scenes
estimation) and spatial aggregation to reduce impacts caused by spatial variations
and environmental conditions on GSV estimation (Santoro et al. 2011). So far, this
algorithm (called BIOMASAR) has been applied on C-band SAR time series and
generated accurate estimates of GSV at low spatial resolution (1 km) over entire
Northern Hemisphere boreal forests. With new spaceborne L- and P-band SAR
systems available in the near future, adaption of the BIOMASAR algorithm to these
data would be very promising, considering higher sensitivity of low frequency SAR
to forest structure.

Alternatively to the parametric type of statistical models, non-parametric models,
such as machine and deep learning algorithms, can be applied to derive vegetation
structure parameters from remote sensing data. These types of models make no prior
assumption on the shape of data distribution and can therefore, describe complex
non-linear relationships (James et al. 2015) (Figure 1-10). However, a very large
amount of training data (far more than typically needed for parametric models) are
required to obtain an accurate model (James et al. 2015). Furthermore, non-
parametric models are prone to overfitting (Figure 1-10), i.e., the model is tuned too

much to the sample data and can fail to do a prediction of unknown observations.
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Figure 1-10: Schematic representation of (a) linear parametric model and (b)

non-parametric model (b) (James et al. 2015)

One of the most popular machine learning algorithms for estimation of forest
structure parameters is the Random Forests (RF) algorithm (Breiman 2001). The
RF by Breiman (2001) is built on the Classification and Regression Trees (CART)

algorithm (Breiman et al. 1984). In contrast to CART many regression trees are
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generated in RF instead of one, which generally produce more accurate results
(Baccini et al. 2008). This machine learning algorithm generates an ensemble of
regression trees with a random selection of predictors at each node as well as with a
random subset of samples for each tree to prevent overfitting. In order to calculate a
single estimate, the predictions of each regression tree are averaged (Breiman 2001).
The RF is a computational efficient and a robust non-parametric model, which was
successfully applied to map vegetation structure metrics (e.g., AGB, tree height)
with high retrieval accuracy at large spatial scales (e.g., Avitabile et al., 2012;
Baccini et al. 2008; Cartus et al., 2012a). Alternatively to RFs, hybrid tree-based
approach Cubist showed among the best modelling predictive performance (Moisen
et al. 2006; Walker et al. 2007). Cubist combines rule-based regression with linear
multivariate models (Quinlan 1993). Based on the training data a collection of rules
is defined. A rule represents a path through a decision tree, for each rule a
multivariate linear regression is used to calculate a predicted value. The final
prediction is calculated by combining linear models at each node of the trees;
therefore, it is smoothed compared to a single linear model.

In summary, parametric linear regressions possess following advantages: they are
simple (easy to understand and interpret results), computationally fast, and they do
not require a large amount of sample data. On the other side, parametric models are
constrained, i.e., not flexible, they are more suitable for simple linear relationships
and less for complex functions (Brownlee 2016). In contrast, non-parametric
statistical models are flexible, i.e., able to fit complex relationships, and accordingly,
possess high modelling performance. The advantages of non-parametric models are
at the same time their disadvantages, for instance, they are computationally
intensive, they require a large amount of training data, and they are prone to
overfitting (Brownlee 2016). Moreover, non-parametric models usually represent
black-box models that are difficult to understand. Tanase et al. (2014a) compared
parametric and non-parametric models for AGB estimation and concluded that at
different AGB intervals, parametric and non-parametric models showed various
retrieval accuracies, suggesting that a combination of model types can improve

overall accuracy.
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1.3 Study area

The study area of this work is the United Mexican States (hereafter Mexico), a
sub-tropical country with an area of approx. 2 million km?* (5.5 times larger than
Germany). Forest in Mexico is defined as an area with a minimum size of 1 ha,
where vegetation cover is higher than 10% and vegetation height is greater than 2 m
(CONAFOR 2010). According to this definition approximately one-third of the
country is covered by forests (ca. 65 million ha) (FAO 2015). Mexico has been
selected as a study area for several reasons. Mexican forests represent a wide variety
of forest types ranging from temperate coniferous and deciduous forests to cloud
forests and mangroves to woodlands (savannah-like environments) and to tropical
humid and dry forests under different topographic conditions (flat terrain in the
Yucatan peninsula, hilly terrain in other parts of Mexico) (Figure 1-11).
Furthermore, availability of reference data is one of the crucial issues to estimate
various forest parameters with remote sensing. Mexico is one of the REDD countries
with a dense nationwide publicly available network of forest inventory data
(CONAFOR 2012) (Figure 1-11a). Additionally to the dense network of field data,
there exist free available airborne LiDAR data collected by NASA over the major
Mexican’s forest types (Cook et al. 2013) (Figure 1-11a). The results of this study

can be potentially transferred to similar environments.
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Figure 1-11: (a) Land use and vegetation map of Mexico from the Mexican National
Institute for Statistics and Geography (INEGI) Series IV (INEGI 2010). (b) Elevation in
meters above sea level from the SRTM DEM

Forest biomass in Mexico is estimated using national forest inventory data

(Spanish acronym INFyS (Inventario Nacional Forestal y de Suelos)) conducted by
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the National Forestry Comission of Mexico (Spanish acronym CONAFOR
(Comision Nacional Forestal)). These inventory-based estimates are used for
reporting to the FAO and REDD+ programme. The first national forest inventory
programme was accomplished between 1961 and 1985 (CONAFOR 2012). Since 2004
CONAFOR has established a systematic nationwide network of forest inventory
plots (Figure 1-11), which are re-measured every five years. In the national forest
inventory programme conducted between 2004 and 2009 more than 26,000 plots
were sampled (CONAFOR 2012). A single circular sampling plot has a radius of
56.42 m covering an area of 1 ha and comprises four sub-plots with an area of 400
m?2 (0.04 ha) (Figure 3-2). The plot design of INFyS data is similar to the United
States Forest Service Forest Inventory and Analysis program (FIA) (Bechtold and
Patterson 2005). From the central sub-plot three further sub-plots at an azimuth of
0°, 120° and 240° were defined. The plots are sampled over the whole country using
rectangular grid with a distance between single plots varying from 5 km (in tropical
and temperate forests) to 20 km (in arid regions). Within each sub-plot, different
forest structure parameters (e.g., diameter at breast height, tree height, etc.) were
measured. AGB was calculated for each sub-plot using 339 species and genus-specific
allometric models and wood densities (CONAFOR 2016) and then extrapolated to
1 ha. If more than one allometric model was available, the one with highest R? or
with the closest regional relevance was used. Due to the lack of allometries,
especially in the tropical areas, also pan-tropical generalized models (Chave et al.
2005) were used. Beside the forest structure parameters further variables, such as
species composition, disturbance impacts, leaf area index are collected in the field.
Additionally to the NFI-based forest biomass estimates, there exist two remote
sensing based products on national forest biomass (Cartus et al. 2014;
Rodriguez-Veiga et al. 2016). Comparison of these products with the results of this

study and the corresponding discussion is presented in the Section 5.
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1.4 Research objectives

The general objectives of this thesis are to determine the capabilities and
limitations of remote sensing data (SAR, optical and LiDAR data) to estimate forest
structure parameters (e.g., AGB and vegetation height) over sub-tropical forests of
Mexico. According to the general objective of the thesis, following specific research

objectives were defined:

1. Potentials to improve AGB estimation over tropical dry and humid forests by
combining SAR and optical data and by automatic selection of temporally

stable forest inventory plots using NDVI time series (Section 2).

To address this research objective a different number of remote sensing data, e.g.,
L-band SAR backscatter intensities, interferometric coherences, Landsat-based tree
cover information and SRTM Digital Elevation Model were used to assess AGB
modelling performance under different scenarios (i.e., single-sensor based and
multi-sensor combination). Since reference data used for model training and for
results validation can contain outdated information (caused by deforestation or fire),
these outdated data can lead to a reduction of model prediction performance. It was
investigated whether filtering of reference data using automatic change detection

algorithm can improve AGB model prediction performance.

2. Integration of SAR, optical, airborne LiDAR and forest inventory data to

estimate AGB and corresponding uncertainties at national scale (Section 3).

In this study, two modelling scenarios for AGB estimation using different sets of
reference data were assessed. In the first modelling scenario forest inventory data
were used as reference data, while in the second modelling scenario LiDAR-based
AGB served as training data. Errors were estimated in the field data and
propagated to the LiDAR-based AGB and to the final national satellite-based AGB
maps. From the error propagation analysis corresponding uncertainty layers for NFI-

and LiDAR-calibrated AGB maps were generated.

3. Potential of multi-temporal combination of L-band time series data to improve

vegetation height estimation over tropical dry and humid forests (Section 4).

For this research objective, vegetation height was estimated using different
number of multi-temporal L-band SAR backscatter scenes acquired between 2014
and 2018 (24 scenes in total). Statistical models based on 4, 8, 12, 16, 20 and 24

L-band backscatter intensities were developed and their predictive performance was
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assessed. Furthermore, the impact of spatial autocorrelation in the reference data
and the importance of sampling size (i.e., number of training data) on modelling

predictive performance was investigated.
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Abstract

Abstract

Accurate estimates of aboveground biomass (AGB) are crucial to assess
terrestrial C-stocks and C-emissions as well as to develop sustainable forest
management strategies. In this study we used Synthetic Aperture Radar (SAR) data
acquired at L-band and the Landsat tree cover product together with Moderate
Resolution Image Spectroradiometer (MODIS) normalized difference vegetation
index (NDVI) time series data to improve AGB estimations over two study areas in
southern Mexico. We used Mexican National Forest Inventory (INFyS) data
collected between 2005 and 2011 to calibrate AGB models as well as to validate the
derived AGB products. We applied MODIS NDVI time series data analysis to
exclude field plots in which abrupt changes were detected. For this, we used Breaks
For Additive Seasonal and Trend analysis (BFAST). We modelled AGB using an
original field dataset and BFAST-filtered data. The results show higher accuracies of
AGB estimations using BFAST-filtered data than using original field data in terms
of R2 and root mean square error (RMSE) for both dry and humid tropical forests
of southern Mexico. The best results were found in areas with high deforestation
rates where the AGB models based on the BFAST-filtered data substantially
outperformed those based on original field data (R’srast = 0.62 vs. R%, = 0.45;
RMSEgrast = 28.4 t/ha vs. RMSE.;; = 33.8 t/ha). We conclude that the presented
method shows great potential to improve AGB estimations and can be easily and

automatically implemented over large areas.

Keywords: aboveground biomass; Mexico; remote sensing; time series; BFAST;
MODIS; NDVI; ALOS PALSAR; Landsat tree cover
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2.1 Introduction

Through the process of photosynthesis, vegetation absorbs CO2 from the
atmosphere and stores carbon in the biomass of leaves, branches and stems. This
can be summarized as aboveground biomass (AGB), defined as the total amount of
aboveground living organic matter in vegetation and expressed as oven-dry tons per
unit area (Brown 1997). Around 50% of dry aboveground biomass is carbon.
Therefore, AGB is one of the crucial parameters to assess terrestrial aboveground
C-stocks and C-emissions caused by deforestation and forest degradation. Since
vegetation biomass affects a range of ecosystem processes such as carbon and water
cycling, as well as energy fluxes, accurate AGB information is required for the
development of sustainable forest management strategies (FAO 2015). Sustainable
forest management can contribute to the reduction of carbon in the atmosphere by
the decrease of emissions and the increase of carbon storage (carbon sequestration in
vegetation). Field measurements of vegetation parameters (e.g., tree height, tree
diameter, crown density) that can be further related with AGB are associated with
high costs (e.g., labour-intensive and time-consuming) and are limited to point
measurements, which may not adequately describe patterns at different spatial
scales. Fortunately, rapid advances in information technology have enabled woody
vegetation parameters to be estimated from remote sensing. In particular in tropical
forests, remote sensing data provides spatially consistent information for areas that
are difficult to access.

Synthetic Aperture Radar (SAR) data have been shown to be useful for AGB
estimation across the landscape, e.g., (Cartus et al. 2012b; Mitchard et al. 2009b;
Saatchi et al. 2011b; Stelmaszczuk-Goérska et al. 2016; Tanase et al. 2014a).
Microwave signals have the capability to penetrate the vegetation profile, reflecting
the three-dimensional vegetation structure, and are useful for weather-independent
applications, as long wavelengths penetrate clouds. The interactions of the radar
waves with vegetation elements are determined by their size, shape, and dielectric
properties. Long wavelengths (e.g., at P-band and L-band) are more suitable for the
retrieval of woody vegetation structure parameters (e.g., stem volume, AGB)
because of their ability to penetrate deeper in forest canopies as compared to short
wavelengths (e.g., at X-band and C-band) (Le Toan et al. 1992; Lucas et al. 2004;
Saatchi et al. 2011b), and thus to interact with large branches (in order of the
wavelength) and trunks. A key parameter obtained from SAR data, backscatter

intensity, measures the return of energy from a ground object and is determined by
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the physical (geometry of the object) and electrical (dielectric constant, which is
mostly determined by the water content) properties of the target, as well as by the
signal properties (e.g., frequency, polarization and angle of incidence of the emitted
wave) (Raney 1996). A further SAR parameter, interferometric coherence, can be
calculated using interferometry techniques (InSAR). Interferometric coherence
represents a degree of correlation between two acquisitions. In general, non-forest
areas (e.g., urban areas, bare soil), typically stable over time, have high coherence
value. Since coherence is typically lower over forests (through an increase of volume
and corresponding temporal decorrelation), interferometric coherence can be used for
the mapping of forest/non-forest areas (Luckman et al. 2000) as well as for AGB
assessment (Cartus et al. 2011; Wagner et al. 2003). Limitations of radar data for
AGB estimation are saturation as well as strong dependence on environmental
conditions (e.g., rain fall, and soil moisture conditions). The saturation level of the
SAR signal for AGB estimation depends on forest types and wavelengths and varies
between 40-150 t/ha for L-band data (Imhoff 1995; Lucas et al. 2004; Mermoz et al.
2014; Mitchard et al. 2011; Saatchi et al. 2007; Yu and Saatchi 2016).

Remote sensing data from optical sensors (e.g., Landsat, Moderate Resolution
Image Spectroradiometer (MODIS) are partly appropriate for AGB estimation.
Optical data are sensitive to vegetation density (Avitabile et al. 2012), which relates
to AGB and saturates at high biomass values, e.g., (Huete et al. 1997; Huete et al.
2002). Optical data from Landsat and MODIS are attractive as they are freely
available and possess long time series. Disadvantages in the use of optical data for
AGB estimation are high cloud cover rates over tropics, and strong dependence on
environmental, seasonal and acquisition conditions (e.g., solar zenith angle)
(Steininger 2000).

The estimation of vegetation parameters (e.g., AGB, vegetation height, growing
stock volume) can be improved by the fusing of SAR imagery with optical data
(e.g., from Landsat) and complementary information such as altitude (Basuki et al.
2013; Cartus et al. 2012a; Cartus et al. 2014; Montesano et al. 2013; Rodriguez-
Veiga et al. 2016).

For the most commonly used parametric and non-parametric AGB models,
calibration data are needed. However, the reference data used for model calibration
and product validation can contain inaccurate measurements as well as outdated
information (Chowdhury et al. 2014). For instance, if field plots were sampled a few
years earlier than the remote sensing data acquisition, changes (caused, e.g., by fire

or deforestation) within the field plots are likely to occur. Accordingly, these
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outdated calibration/validation data can lead to a reduction of model prediction
performance and thus decrease product accuracy. Time series analysis of remotely
sensed data is recognized as a powerful tool to monitor temporal dynamics in
vegetation at different scales (from local to global) (De Jong et al. 2013) and can be
used to identify, in an automatic way, reference data within which abrupt changes
have occurred. The normalized difference vegetation index (NDVI) (Tucker 1979) is
a vegetation index based on a combination of red and near-infrared reflectance; it is
sensitive to photosynthetically active vegetation and thus often has been used for
vegetation monitoring, e.g., (De Jong et al. 2011; Ichii et al. 2013). Therefore, NDVI
time series are one of the important tools to monitor inter-annual and intra-annual
variations over a vegetated area (Forkel et al. 2013; Horion et al. 2014). There exist
a number of long-term NDVI products, which are mostly based on a combination of
different sensors. However, due to temporal inconsistency between the sensors, e.g.,
caused by orbital shift (Pinzon et al. 2005), these NDVT products may possess sensor
artefacts, which can cause misinterpretations using time series analysis. By a
comparison of three NDVI products derived from SPOT-VEGETATION, MODIS,
and Advanced Very High Resolution Radiometer (AVHRR), Horion et al. (2014)
concluded that the MODIS-based NDVI product is more consistent over time than
other two products and showed a better potential to detect changes in tree cover in
Sahel. Furthermore, MODIS NDVI data do not include platform orbital shift, and
possess higher spatial resolution compared to AVHRR- and SPOT-VGT NDVI
products.

In this study we investigated whether filtering of calibration data using change
detection information obtained from remotely sensed data can improve AGB model
performance. This was done by applying Breaks For Additive Seasonal and Trend
(BFAST) analysis (Verbesselt et al. 2010a; Verbesselt et al. 2010b) on MODIS
NDVT time series data in order to exclude field inventory plots within which abrupt
changes were detected. We compared AGB estimates based on original reference
data with results based on filtered reference data from the time series analysis.
Moreover, due to the fact that canopy density correlates with aboveground biomass,
we used the Landsat tree cover (TC) product (Sexton et al. 2013) as an additional
predictor layer for SAR-based AGB models. Furthermore, we included altitude from
the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) in
the AGB modelling. We modelled AGB using a different number of input layers,
e.g., using SAR backscatter intensities and interferometric coherences separately and

together with Landsat TC and SRTM DEM products, and assessed the modelling
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performance. Our approach was tested over two study sites located in dry and

humid tropical forests in southern Mexico.
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2.2 Materials and Methods

2.2.1 Study area

The two study areas are located in the United Mexican States (hereafter Mexico)
and are shown in Figure 2-1 together with the Advanced Land Observing Satellite’s
Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) footprints
(red and blue polygons). The first study area (Figure 2-1, blue polygon, hereafter
Campeche) is partly located in the National Park “Los Petenes-Ria Celesttin” in the
Campeche and Yucatan federal states. The western part represents a mosaic of
mudflats, mixed with mangroves, while the eastern part of the study area is
characterized by dry deciduous forests. The climate in the region is tropical sub-
humid, with yearly precipitation near 1000 mm, mostly occurring during the
summer; the average annual temperature is 26 °C (Flores and Carvajal 1994). The
surface consists of a coastal plain with some hills with an average elevation of 37.2
m and a standard deviation of 36.8 m. The mean slope is 1.5° with a standard
deviation of 1.8°.

The second study area is located in the Lacandon rain forest region in the north-
western part of the state of Chiapas (Figure 2-1, red polygon, hereafter Comillas),
and extends over the Montes Azules Biosphere Reserve and the communal lands of
Marques de Comillas. The predominant vegetation type in the region is tropical
evergreen and semi-evergreen rainforests (De Jong et al. 2000). The climate is humid
tropical with the average annual temperature of 25 °C for the areas below 800 m
(Mendoza and Dirzo 1999). Average annual precipitation ranges from 2000 mm to
3500 mm, while the period between June and September is characterized by
pronounced rainfall, and the relatively dry period extends between February and
April (De Jong et al. 2000; Mendoza and Dirzo 1999). An average elevation in the
study area is about 280 m with a standard deviation of 195 m. The mean slope is
5.5° with a standard deviation of 6.4°. Since the region has been treated as a main
source for timber (De Jong et al. 2000), it was massively deforested since 1960s
(Mendoza and Dirzo 1999). The mean deforestation rates for the Lacandon rain
forests (except Marques de Comillas) estimated for the periods 1974-1981 and 1981—
1991 were 2.1% and 1.6% per year (Mendoza and Dirzo 1999), and 2.1% per year
from 1990 to 2010 for the Marques de Comillas region (Couturier et al. 2012).
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Figure 2-1: Study areas. Forest type information provided by the Instituto Nacional de
Estadistica y Geografia (INEGI) landcover map series IV.

2.2.2 Earth Observation Data

2.2.2.1 SAR Data

ALOS PALSAR data with a wavelength of 23.6 cm were used in this study. The
SAR data were available in Single Look Complex (SLC) format acquired in the Fine
Beam Single Polarization (FBS) (i.e., single HH (horizontal send-horizontal receive)
polarization) and Fine Beam Double Polarization (FBD) (i.e., dual HH and HV

(horizontal send-vertical receive) polarizations) modes with an incidence angle of
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34.3°. FBS data were collected from December to April between 2007 and 2011 and
FBD data were acquired from May to September between 2007 and 2010. Table 2-1
gives an overview of the number of datasets used in this study. Both FBS and FBD
data cover an area of approximately 70 km x 70 km. From the PALSAR SLC data
backscatter intensities were calculated (Section 2.2.4.1). Since some PALSAR data
were acquired with a repetition of 46 days, interferometric coherences were
calculated from the FBS/FBD data, and used as predictors for AGB modelling.

Furthermore, slope-corrected and orthorectified PALSAR mosaics backscatter
data (Shimada and Ohtaki 2010) were used as predictor variables in the AGB
modelling (Table 2-1). PALSAR mosaics were available in dual-polarization modes
in HH/HV polarizations. The mosaics were built by Japan Aerospace Exploration
Agency (JAXA) using PALSAR backscatter data and partly consist of backscatters
that differ from the FBS and FBD data described above. The data were downloaded
from the JAXA server (JAXA 2016) at 50 m spatial resolution.

Table 2-1: Earth observation data used in this study

Data sets Campeche Comillas
L-band backscatter: L-band backscatter:
8 FBS (HH polarization) 12 FBS (HH polarization)
5 FBD (HH/HV polarizations) 9 FBD (HH/HV polarizations)
4 PALSAR mosaics (HH/HV 4 PALSAR mosaics (HH/HV
SAR data . N
polarizations) polarizations)
L-band coherence: L-band coherence:
3 FBS pairs (HH polarization) 6 FBS pairs (HH polarization)

2 FBD pairs (HH/HV polarizations) 4 FBD pairs (HH/HV polarizations)

Landsat tree cover 2005

Optical dat
ptical data MODIS NDVI from 2005 to 2011

Ancillary data SRTM DEM altitude 2000 (1 arc-sec)

2.2.2.2 Optical Data

As canopy density correlates with AGB, Landsat Tree Cover product (TC) for
2005 Version 3 (Sexton et al. 2013) was used in AGB modelling as an additional
explanatory variable (Table 2-1). Sexton et al. (2013) rescaled MODIS Vegetation
Continuous Fields (VCF) Tree Cover (Dimiceli et al. 2011) using circa 2005 Landsat
imagery. Landsat TC product exhibits consistency with MODIS VCF product with
improvements in discrimination of forest patches in fragmented landscapes (Sexton
et al. 2013). The generated Landsat TC product for 2005 was validated with
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independent LiDAR measurements collected over Costa Rica, Utah, California and
Wisconsin and possessed an average RMSE of 17.4% (Sexton et al. 2013).

For the time series data analysis, MODIS NDVI 16-daily product at 250 m
spatial resolution (MOD13Q1) product (NASA 2016) was used (Table 2-1). The
time series data from January 2005 to December 2011 with the quality flags of 0
(i.e., “good data: use with confidence”) were selected. To gap-fill NDVI time series a
linear interpolation between neighbouring values was applied (Verbesselt et al.
2006). MODIS NDVI time series data analysis for change detection is further
described in Section 2.2.4.2.

2.2.3 INFyS Data

The reference INFyS data were collected between 2005 and 2011 by Comisién
Nacional Forestal (CONAFOR) of Mexico (CONAFOR 2012). The sampling plot
consisted of a single circular plot with a radius of 56.42 m covering an area of 1 ha
and comprising four sub-plots with an area of 400 m2 (0.04 ha). The plot design of
INFyS data is similar to the United States Forest Service Forest Inventory and
Analysis program (FIA) (Bechtold and Patterson 2005). From the central sub-plot
three further sub-plots at an azimuth of 0°, 120° and 240° were defined. The plots
are sampled over the whole country using rectangular grid with a distance between
single plots varying from 5 km (in tropical and temperate forests) to 20 km (in arid
regions). Within each sub-plot different biophysical parameters (e.g., diameter at
breast height, tree height, etc.) were measured. AGB was calculated for each sub-
plot using 339 species- and genus-specific allometric models and wood densities
(CONAFOR 2016) and then extrapolated to 1 ha. If more than one model was
available, the one with highest R2 or with the closest regional relevance was used.
Due to the lack of allometries, especially in the tropical areas, also pan-tropical
generalized models (Brown 1997; Chave et al. 2005) were used.

Over the first study area (Campeche) 28 plots were measured twice, i.e., in 2005
and 2011, and 13 plots were sampled once either in 2005 or in 2011. For the field
plots which were measured twice a mean value for two AGB estimates was
calculated in order to reduce variations in the data, which can be caused for instance
by wrong measurements. We used data from 41 field plots (hereafter original
reference data) for AGB modelling (Section 2.2.4.3) and validation (Section 2.2.4.4)
in Campeche study area. In the Marques de Comillas region three plots have less
than four sub-plots and three plots were located on the steep slopes (greater than

15°) and were excluded from the calibration/validation procedure. Twenty-five field
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plots were sampled twice either in 2005 or in 2011 and 16 once, resulting in 41 plots
which were used as original data. Field-based AGB estimates range from 0 to 130

t/ha and from 0 to 170 t/ha in Campeche and Comillas study areas, respectively
(Figure 2-2).

Campeche Comillas
6 Meanoriginal INFys = 36.95 t/ha 6 MeaNgriginal InFys = 62.9 t/ha
|: Meangrast fitered = 37-12 t/ha Meangrast fiered = 64.29 t/ha
5 5 m
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Aboveground Biomass [t/ha] Aboveground Biomass [t’ha]

|Z| Original INFyS |Z| BFAST-filtered

Figure 2-2: AGB distribution over Campeche (left) and Comillas (right) study areas
before (dark grey bars) and after BFAST-filtering (light grey).

2.2.4 Processing steps

This study is based on two main steps. Firstly, we identified forest inventory
plots within which abrupt changes were detected using MODIS NDVI time series
and BFAST (Verbesselt et al. 2010a; Verbesselt et al. 2010b). In the next step we
used multi-sensor remote sensing data and temporally stable inventory plots to

model AGB. In the following subsections a detailed description of each steps is

presented (Figure 2-3).
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Figure 2-3: Flow chart of the data processing and analysis steps

2.2.4.1 SAR Data Processing

On the SLC level 1.1 datasets, a multi-look technique was firstly applied. The
original spatial resolution of FBS data in radar geometry was 4.68 m x 3.23 m in
the range and azimuth directions, respectively. The FBS data were therefore multi-
looked by factors 1 and 2 in range and azimuth, resulting in a multi-looked ground
resolution of 8.3 m x 6.46 m. Using bilinear interpolation the FBS data were
oversampled to a pixel size of 6.25 m x 6.25 m. For FBD data, which original
spatial resolution in radar geometry was 9.37 m X 3.23 m in the range and azimuth
directions, respectively, multi-looking factors of 1 and 5 in range and azimuth were
applied, resulting in a multi-looked ground resolution of 16.63 m x 16.15 m. The
FBD data were then oversampled to a pixel size of 12.5 m x 12.5 m using bilinear
interpolation. The multi-look images were radiometrically calibrated using a sensor-
specific calibration factor (—115 dB). Using SLC scene pairs, interferometric
coherences were calculated with similar multi-looking factors described above for
FBS and FBD data. The SAR parameters were terrain corrected and geocoded using
SRTM DEM. The geocoded SAR parameters were then normalized for topographic
effects after Castel et al. (2001). The geocoded and terrain-corrected SAR

parameters with different pixel sizes were aggregated to a pixel size of 50 m using a
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block averaging technique. The aggregation of pixels reduces the influence of speckle
noise in the SAR data and the co-registration uncertainty between reference and
SAR data (Saatchi et al. 2011b).

2.2.4.2 Change Detection Method of NDVI Time Series

To update calibration data and to exclude outdated field plots, we applied
BFAST (Verbesselt et al. 2010a; Verbesselt et al. 2010b) to detect plots within
which abrupt changes in the remote data have been occurred, indicating potential
disturbance or land use change occurring in that particular plot. BFAST is a generic
statistically based change detection method developed for time series data,
successfully validated for forest change (Verbesselt et al. 2010a) as well as for the
detection of phenological events (Verbesselt et al. 2010b). The algorithm decomposes
time series data into trend, seasonal and noise components and detects changes
within them. To test whether one or more changes (i.e., breakpoints) in the trend
component of time series are occurring, the ordinary least squares (OLS) residual-
based MOving SUM (MOSUM) test is applied (Zeileis 2005). By an indication of
significant change in the trend component, the breakpoints are estimated using the
Bayesian Information Criterion (Verbesselt et al. 2010a). Verbesselt et al. (2010a)
tested this approach using simulated NDVI time series data with varying magnitude
of seasonality and noise as well as using 16 day MODIS NDVI imagery over a
forested area in southern Australia. The both tests verified that the algorithm is
able to detect and characterize abrupt changes in trend component with robustness
against noise and seasonal changes. Furthermore, Dutrieux et al. (2015) successfully
applied this algorithm on MODIS NDVI data to monitor forest cover loss in a
tropical dry forest of Bolivia (overall accuracy of 87%).

We applied BFAST algorithm on MODIS NDVI 16-daily product at 250 m
spatial resolution over the field plot areas for a time frame between January 2005
and December 2011. We increased a parameter h (i.e., “the minimal number of
observations in each segment divided by the total length of the time series” (BFAST
2016)) in the algorithm to 0.5 (default value 0.1) to reduce the number of
breakpoints, i.e., only main big and confident changes were detected. Other
parameters have been kept at the default values. In the case of detecting a change
(i.e., breakpoint) over a field plot from 2005 to 2011, the field plot was excluded

from the AGB model calibration/validation procedure.
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2.2.4.3 AGB Modelling

AGB was modelled for two study areas using a non-parametric model, random
forests algorithm (RF) (Breiman 2001). This machine learning method generates
many regression trees with a random selection of predictors at each node as well as
with a random subset of samples for each tree with the aim of avoiding overfitting.
In order to calculate a single estimate, the predictions of each regression tree are
averaged (Breiman 2001). The RF is a computational efficient and robust non-
parametric model and was successfully applied to map vegetation structure metrics
(e.g., AGB, tree height) with high retrieval accuracy at large spatial scales, e.g.,
(Avitabile et al. 2012; Baccini et al. 2008; Cartus et al. 2012a). Our random forests
were generated with 500 regression trees.

We modelled AGB using three scenarios: (1) a scenario based on original
reference data; (2) a scenario based on BFAST-filtered reference data; and (3) a
scenario based on random sampling of the same number of observations from the
unfiltered data as was used for the BFAST-filtered data. The last scenario was
conducted in order to show that the improvements in AGB estimations are due to
BFAST-filtering and not due to a reduced number of observations. The random
sampling was run 10 times. Furthermore, to investigate the impact of single
predictor layers, we modelled AGB using different input variables, e.g., based on
PALSAR backscatter intensities, PALSAR interferometric coherences only or in
combination with Landsat TC and altitude from SRTM DEM.

2.2.4.4 k-Fold Cross-Validation

In order to estimate the accuracy of generated products, we applied the k-fold
cross-validation technique. Using this technique the dataset is randomly divided in a
number of folds (in our case we used 10 folds). One single fold is kept for model
validation, while k-1 folds are used for model calibration. This procedure is then
repeated k times until all folds have been used as calibration and validation data.
All k estimates are finally summarized and a linear regression with the coefficient of
determination (R2), root mean square error (RMSE) and bias between predicted and
observed data is calculated. The benefit of this validation technique is that each
observation will be used once for calibration and validation, so that the dataset is

completely validated.
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2.3 Results

The primary objective of this study was to determine whether AGB estimations
can be improved by combining multi-sensor remote sensing data and MODIS NDVI
time series data. To address this question, we applied the BFAST algorithm on
MODIS NDVI time series. The field plots, where abrupt changes were detected,
were excluded from the model calibration and products validation. In Figure 2-4 an
example of such a field plot is illustrated, showing Google Earth imagery from 2005
and 2011 over a sample plot in the Campeche region where abrupt changes caused
by deforestation have occurred. A corresponding BFAST graph for this field plot,
consisting of NDVI values (Yt), and seasonal (St), trend (Tt) and noise (et)
components, presents the detection of abrupt changes in the trend component

(Figure 2-4, below).
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Figure 2-4: Google Earth imagery from 2005 and 2011 over a field plot (red polygon)
showing an example of abrupt changes (above) and corresponding BFAST plot (below)
with NDVT values (Yt), and seasonal (St), trend (Tt) and noise (et) components.
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We modelled AGB using original, BFAST-filtered and randomly filtered reference
data as well as using different predictor variables (Section 2.2.4.3). Using the
BFAST algorithm, six and 18 plots were excluded in the Campeche and Comillas
study areas, respectively. Accordingly, 35 and 23 BFAST-filtered field plots for
Campeche and Comillas were used for AGB modelling. In order to ensure that
improvements in AGB estimations are not due to a reduced number of calibration
data but due to BFAST, we modelled AGB with 35 and 23 randomly sampled
calibration data plots for the Campeche and Comillas study sites, respectively. This
random sampling was applied 10 times. The statistics computed using modelled and
reference AGB estimates are shown in Figure 2-5 for the Campeche and Comillas
study areas, respectively. The bars by randomly filtered data indicate mean values
with the standard deviation shown as error bars. Compared to the results based on
the original reference data, AGB estimates based on BFAST-filtered reference data
exhibit 8% and 38% higher R2 values for the Campeche (R2.,; = 0.65 vs.
R2grasr = 0.7) and Comillas (R2.; = 0.45 vs. R2prasr = 0.62) study regions,
respectively, when using all predictor variables. For the Campeche study area the
AGB estimates based on BFAST-filtered data show a slightly lower RMSE
compared to the results based on the original reference data. For the Comillas study
area the RMSE decreases substantially by around 16% (RMSE.;, = 33.78 t/ha vs.
RMSEgrast = 28.4 t/ha). AGB estimates based on randomly filtered data showed in
most cases the lowest mean R? as well as the highest mean RMSE for both study
areas compared to two other scenarios (Figure 2-5). This indicates that the
improvements in AGB estimations are caused not by the reduction of the sample
size in the unfiltered data, but by the application of BFAST-filtering. In terms of
bias, the results based on BFAST-filtered data showed generally higher bias values
than those based on original INFyS data for both test sites. The reason for this can
be that the original data contains lower AGB values (Figure 2-2), which can

introduce a low bias in the training set.
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Direct comparisons of the performance of AGB models based on original and
BFAST-filtered data and all available predictor layers for the Campeche and
Comillas study areas are shown in Figure 2-6 and Figure 2-7 (note: 1 ha field
inventory plot was covered by four satellite imagery pixels with a spatial resolution
of 50 m). In the Campeche study area, only within six field plots abrupt changes
were detected and the corresponding number of plots was screened out. This results
in a similar distribution of points in the scatterplots with similar statistical metrics
(Figure 2-6). In this region BFAST excluded primarily outlier and mixed pixels in
the low AGB range, which have changed over time. In contrast, in the Comillas
region, where the deforestation activities have been observed since the 1960s
(Couturier et al. 2012; Mendoza and Dirzo 1999), 18 field plots were excluded from
the calibration data. In Comillas BFAST removed outlier and mixed pixels at low
biomass range as well as plots with high biomass (>100 t/ha), indicating
deforestation/forest degradation within those field plots (Figure 2-7). Accordingly
the model performance is improved significantly in terms of R? and RMSE. The
point distributions along the 1:1 line in Figure 2-6 and Figure 2-7 showed typical
under-/over-estimation patterns for tree-based regression models, as the predictions
of such tree-based models are computed as the average values of the regression trees
within each node (Baccini et al. 2008; Breiman 2001). Moreover, a lower prediction
performance at high biomass ranges (over 100 t/ha) for both study sites can be

additionally caused by reaching the saturation level of the SAR signal.
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line.

To investigate the impact of a single predictor on AGB modelling, we estimated
AGB using, e.g., PALSAR backscatter intensities or interferometric coherences
separately as well as in combination with further parameters. The inclusion of
additional predictor layers (e.g., Landsat TC, SRTM DEM) with SAR products
improves AGB estimations and they achieve the highest accuracy (in terms of R2
and RMSE) when all predictors are used for all three scenarios: i.e., using original
INFyS, BFAST-filtered and randomly filtered data (Figure 2-5). These results based
on the multi-sensor combination are in agreement with previous studies, e.g.,

(Cartus et al. 2012a; Cartus et al. 2014; Rodriguez-Veiga et al. 2016).
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2.4 Discussion

The accuracy of AGB estimates based on original data is consistent with the
results produced by the authors of (Cartus et al. 2014) in terms of statistical metrics
(R2 = 0.52 (Cartus et al. 2014) vs. R2 = 0.55 (mean for Campeche and Comillas);
RMSE = 28.2 t/ha (Cartus et al. 2014) vs. RMSE = 23.8 t/ha (mean for Campeche
and Comillas)), while AGB estimates based on BFAST-filtered plots produce more
accurate estimates.

The use of MODIS NDVI time series data to detect areas with abrupt changes
has the advantage of being fully automated and so can be applied over large areas.
Nevertheless, we cannot exclude the confounding influence of the false detection of
abrupt changes over field plots, bearing in mind a lower spatial resolution of a
MODIS NDVT pixel compared to the plot area (250 m vs. 100 m), and the possible
influence of clouds and cloud shadows. Earth observation data at higher spatial
resolution (e.g., Landsat) are limited for the calculation of seasonal trends over large
areas taking into account cloud cover, SLC-off gaps, as well as restricted access to
the whole Landsat archive. However, the launch of the ESA Sentinel-1/Sentinel-2
satellites with free-of-charge imagery opens new perspectives for time series analysis
at high spatial resolution. A multi-sensor combination of Landsat and Sentinel-2
time series data as well as fusion with SAR imagery (Reiche et al. 2015) has great
potential to enhance time series analysis both in spatial detail and in temporal
coverage, potentially leading to a near-real-time forest monitoring system. The
inclusion of additional predictor layers (e.g., interferometric coherence, Landsat TC)
leads to an improvement of AGB modelling, and the highest prediction performance
was achieved when all available predictor variables were used for both test sites. In
the Campeche study site, FBS and FBD PALSAR backscatters showed a lower
prediction performance compared to four yearly PALSAR mosaic backscatters and
interferometric coherences (Figure 2-5a). The most likely reason is that only five
dual-polarized (FBD) backscatter images were available, while one annual PALSAR
mosaic consists of different FBD data and may contain additional information.
Furthermore, as was shown in Siberia (Stelmaszczuk-Gorska et al. 2016), PALSAR
coherence was a more important predictor variable than PALSAR backscatter for
AGB assessment at a low biomass range (up to 60 t/ha). In the Campeche region,
mean field-estimated AGB is around 35-40 t/ha, so L-band interferometric
coherences could better explain the AGB distribution than backscatter intensities.

However, in the Comillas study site, where a dense stack of L-band backscatters
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(nine dual-polarized (FBD) together with 12 single-polarized (FBS) backscatters)
were available, the backscatter-based AGB model outperformed the models based on
PALSAR mosaic backscatters and coherence data (Figure 2-5b). Moreover, this
region exhibits higher AGB distribution (up to 150 t/ha) than Campeche, which can
further restrict the use of interferometric coherence in this area. However, SAR-
based AGB estimates (i.e., based on PALSAR backscatter, coherence and PALSAR
mosaic backscatter) exhibit only slightly lower R2 (R2sar = 0.65 vs. R2.q = 0.7 for
Campeche and R2sar = 0.54 vs. R2, = 0.62 for Comillas), suggesting that L-band
SAR data alone would be appropriate for AGB modelling in these tropical dry and
humid forests.

The results in the Comillas region are less accurate than in Campeche in terms of
statistical metrics due to the several reasons. Firstly, in the Comillas study area
tropical rain forests with a higher AGB distribution have occurred, which restricts
the use of L-band data in these dense forests. Furthermore, the average annual
precipitation in Comillas is more than twice that in Campeche (2000-3500 mm vs.
1000 mm). This leads not only to an increased water content in tree crowns but also
to an increased soil moisture, which further limits SAR data for AGB modelling.
Finally, the Campeche region is located on a coastal plain with a flat terrain, while
in Comillas site hills with partly steep slopes (>15°) are present, which not only
restricts SAR data but also can increase geolocation and measurement errors of field
data. Collectively, these factors (e.g., denser, moister forests in complex terrain) lead
to a decrease of AGB modelling performance in the region.

Moreover, we observed in both study sites an underestimation of AGB modelling
for the range higher than 100 t/ha (Figure 2-6 and Figure 2-7). From one side it is
caused by the L-band signal saturation that occurs in this range. From the other
side it is caused by the tree-based regression model itself, as the predictions of the
random forest model are computed as the average values of the regression trees
within each node (Baccini et al. 2008; Breiman 2001). Finally, due to the global
acquisition strategy implemented by JAXA (Rosenqvist et al. 2004), the L-band
cross-pol data (HH/HV polarizations) were acquired between May and September
during the rainy season in Mexico. During this season, the water content in
vegetation and soil moisture is increased and accordingly limits the use of HV SAR
backscatter, which correlates stronger with the vegetation structure than HH SAR
backscatter (Rauste et al. 1994; Watanabe et al. 2006). In general, AGB estimations
are restricted by possible geolocation inaccuracies of the field data as well as by the
fact that the total sampled area of 0.16 ha was extrapolated to 1 ha. However, these

sources of errors have an impact on general AGB estimations (i.e., using three

61



Chapter 2 — Multi-Sensor Satellite-Based AGB Estimation

scenarios) and not on BFAST-filtering, since the same reference datasets were used

for filtering.
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2.5 Conclusions

In this study we showed the improvements in AGB estimations by the filtering of
calibration data using change detection information derived from time series analysis
of remote sensing data. Our results indicate that MODIS NDVTI time series data can
be used to identify temporally stable field inventory data, which improves the
performance of AGB estimations. The method was evaluated in two study areas in
the tropical dry and humid forests of Mexico. Especially the performance of time
series analysis was noticeable better in the Comillas region, which possesses high
deforestation rates (Couturier et al. 2012). Moreover, we showed that the
improvements in AGB estimations are caused by the application of BFAST-filtering
and not by the reduction of the calibration data as shown for randomly selected
data. Furthermore, results based on the combination of different predictor layers
(i.e., SAR backscatter, interferometric coherence, Landsat TC, SRTM DEM) showed
more accurate AGB estimations than those based on a single variable, providing
additional explanatory information.

We showed that the filtering of reference data is an important step to improve
AGB estimations using remotely sensed imagery. We argue that the presented
method shows great potential to enhance AGB estimations and can be easily and

automatically implemented over large areas (at national or biome scales).
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Abstract

Information on the spatial distribution of aboveground biomass (AGB) over large
areas is needed for understanding and managing processes involved in the carbon
cycle and supporting international policies for climate change mitigation and
adaption. Furthermore, these products provide important baseline data for the
development of sustainable management strategies to local stakeholders. The use of
remote sensing data can provide spatially explicit information of AGB from local to
global scales. In this study, we mapped national Mexican forest AGB using satellite
remote sensing data and a machine learning approach. We modelled AGB using two
scenarios: (1) extensive national forest inventory (NFI), and (2) airborne Light
Detection and Ranging (LiDAR) as reference data. Finally, we propagated
uncertainties from field measurements to LiDAR-derived AGB and to the national
wall-to-wall forest AGB map.

The estimated AGB maps (NFI- and LiDAR-calibrated) showed similar
goodness-of-fit statistics (R2, Root Mean Square Error (RMSE)) at three different
scales compared to the independent validation data set. We observed different
spatial patterns of AGB in tropical dense forests, where no or limited number of NFI
data were available, with higher AGB values in the LiDAR-calibrated map. We
estimated much higher uncertainties in the AGB maps based on two-stage up-
scaling method (i.e., from field measurements to LiDAR and from LiDAR-based
estimates to satellite imagery) compared to the traditional field to satellite up-
scaling. By removing LiDAR-based AGB pixels with high uncertainties, it was
possible to estimate national forest AGB with similar uncertainties as calibrated
with NFI data only.

Since LiDAR data can be acquired much faster and for much larger areas
compared to field inventory data, LiDAR is attractive for repetitive large scale AGB
mapping. In this study, we showed that two-stage up-scaling methods for AGB
estimation over large areas need to be analyzed and validated with great care. The
uncertainties in the LiDAR-estimated AGB propagate further in the wall-to-wall
map and can be up to 150%. Thus, when a two-stage up-scaling method is applied,
it is crucial to characterize the uncertainties at all stages in order to generate robust
results. Considering the findings mentioned above LiDAR can be used as an

extension to NFI for example for areas that are difficult or not possible to access.
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3.1 Background

Tropical intact and regrowth forests have the highest carbon (C) uptake of the
world’s forests. They account for around 70% of global gross forest sink (Pan et al.
2011). At the same time tropical forests are nearly carbon-neutral taking into
account C-emissions from tropical deforestation with the highest uncertainties in C-
stocks and -fluxes compared to other biomes (Pan et al. 2011). The status of tropical
forests and their temporal dynamics can be assessed by measuring different
structural tree parameters (e.g., vegetation height, canopy cover, stem volume and
AGB). AGB, defined as the total amount of aboveground living organic matter in
vegetation and expressed as oven-dry tons per unit area (Brown 1997), is one of the
crucial parameter to assess terrestrial aboveground C-stocks and -fluxes. Since
vegetation biomass affects a range of ecosystem processes such as carbon and water
cycling, energy fluxes, and thus affects local and regional climate, accurate AGB
information is required for developing sustainable forest management strategies.

Traditionally, vegetation structural parameters are assessed using forest
inventory data. These measurements are demanding in terms of costs and resources,
and thus are limited in space and time. With rapid advances in information
technology vegetation parameters can be estimated using remote sensing methods.
In particular, in tropical forests remote sensing data provide spatially consistent
information for areas that are difficult to access. Moreover, in contrast to point
measurements spatial continuous AGB maps can improve estimates of carbon flux
(Houghton 2005).

In the past 20 years a number of studies aiming at AGB estimation using remote
sensing data have been published. These studies reach from local (e.g., Dubayah et
al. 2010) over national (Avitabile et al. 2012; Cartus et al. 2014; Rodriguez-Veiga et
al. 2016) to continental (Baccini et al. 2008) and intercontinental scales (Avitabile et
al. 2016; Baccini et al. 2012; Saatchi et al. 2011a; Santoro et al. 2013). In general,
remote sensing data from optical, Synthetic Aperture Radar (SAR), and LiDAR
sensors or a combination of these sensors are used to estimate AGB. Optical remote
sensing data (e.g., Landsat, Sentinel-2, MODIS) are sensitive to vegetation density
(Avitabile et al. 2012), which relates to AGB but saturates at high biomass (e.g.,
Huete et al. 1997; Huete et al. 2002). Disadvantages in using optical data for AGB
estimation are frequent cloud cover over the tropics, and strong dependence on
environmental, seasonal and acquisition conditions (e.g., solar zenith angle)
(Steininger 2000). Alternatively, SAR sensors can be used for the estimation of

woody vegetation parameters (Antropov et al. 2017; Cartus et al. 2012b; Hame et al.
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2013b; Mitchard et al. 2009b; Saatchi et al. 2011b; Santoro et al. 2015; Tanase et al.
2014a; Thiel and Schmullius 2016; Urbazaev et al. 2015). For instance, Hame et al.
(2013b) showed that with L-band SAR data estimation of biomass in tropical forests
was nearly as good as with optical imagery. Microwave signals (with a spectral
range between 1 cm and 1 m) have the capability to penetrate into vegetation, and
thus to probe the three-dimensional vegetation structure. Additionaly, microwaves
are particularly useful for weather independent applications, as long wavelengths
penetrate clouds. Limitations of radar data for AGB estimation are saturation at
middle-high biomass levels (depending on wavelength) as well as strong dependence
on environmental conditions (e.g., rainfall, freezing, different moisture conditions). A
way to delineate precise 3D information about the objects on the earth's surface
(trees, buildings) and the topography is the usage of LiDAR. Laser pulses sent from
a LiDAR sensor are capable to penetrate forest canopy, and to provide information
on the vertical structure (e.g., height, canopy volume). LiDAR data can be used to
delineate very accurate estimates of AGB without signal saturation. Accordingly,
LiDAR is a key information source for assessing carbon stocks including tropical
forests (Asner et al. 2012). Zolkos et al. (2013) compared more than 70 studies for
AGB estimation and concluded that airborne LiDAR methods provide a higher
accuracy compared to SAR or optical data. However, airborne LiDAR data is
limited to a small spatial coverage.

The signals from optical, SAR, or LiDAR sensors are commonly compared to the
field-estimated AGB using semi-empirical regression models or machine learning
algorithms to extrapolate over the entire remote sensing imagery. As mentioned
above the plot estimates of AGB are limited in time and space, and might thus not
represent the full spectrum of vegetation types or AGB (Marvin et al. 2014).
Alternatively, very high resolution (VHR) (<2m) remote sensing data from airborne
LiDAR or optical sensors can be used as reference data for up-scaling to larger area.
Currently, many large scale mapping efforts both for AGB estimation and forest
cover delineation have been applied a two-stage up-scaling method (i.e., from field
measurements to LiDAR strips or VHR optical imagery and from LiDAR-,
VHR-based estimates to satellite imagery) (Baccini et al. 2012; Englhart et al. 2011,
Hame et al. 2013a; Saatchi et al. 2011a; Su et al. 2016). One important step in the
two-stage up-scaling method is error propagation analysis. As showed in (Holm et al.
2017; Saarela et al. 2016), ignoring the field to LIDAR error can underestimate the

uncertainty in the final satellite-based AGB map by a factor of three or more.
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Therefore, an uncertainty map at pixel level is important for the interpretation of
the AGB map.

In this study, we estimated forest AGB in Mexico at national scale, where both
extensive NFI (~15,000 plots) (Spanish acronym INFyS) and country-wide airborne
LiDAR data were available. As spatial predictors to estimate AGB over Mexico we
used satellite imagery from the Advanced Land Observing Satellite Phased Array
type L-band Synthetic Aperture Radar (ALOS PALSAR), Landsat and the Shuttle
Radar Topography Mission (SRTM), since a fusion of optical and SAR imagery
provides more accurate estimates of AGB compared to single sensor type data
(Cartus et al. 2014; Rodriguez-Veiga et al. 2016; Urbazaev et al. 2016; Xu et al.
2016). We estimated AGB at national scale using two modelling scenarios: 1) using
INFyS data collected over the country with systematic sampling as calibration data
for satellite imagery, 2) using airborne LiDAR-based AGB as calibration data for
satellite imagery. Both national AGB products were validated with INFyS data that
were not used for model calibration. Furthermore, we conducted an error
propagation analysis for both scenarios and estimated uncertainties at pixel level
using Monte Carlo simulations. This kind of comprehensive comparison between NFI
and LiDAR data as reference for a large scale AGB mapping with satellite imagery
including an error propagation analysis have not been conducted before. This gap
needs to be addressed, especially in the context of the upcoming missions designed
for global vegetation monitoring (e.g., NISAR, GEDI, BIOMASS, Tandem-L).
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3.2 Methods

3.2.1 Study area and field data

Approximately one-third of Mexico is covered by forests resulting in 65 million ha
(FAO 2015) with a variety of forest types (deciduous and coniferous forests,
mangroves, cloud forests, and tropical dry and rain forests) (Figure 3-1). These
forests are located at different topographies (from coastal plain in the Yucatan

peninsula to mountainous regions in central part of the country).
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Figure 3-1: Land use and vegetation map of Mexico from the Mexican National
Institute for Statistics and Geography (INEGI) Series IV (INEGI 2010)

The National Forestry Commission of Mexico (CONAFOR) has established a
systematic nationwide network of forest inventory plots (Figure 3-1). In this study,
NFT data collected between 2004 and 2011 were used. One sampling plot represents
a single circular plot with a radius of 56.42 m covering an area of 1 ha and
comprising four sub-plots with an area of 400 m2 each (0.04 ha). For temperate and
tropical forests different sampling designs were used (Figure 3-2). Each circular plot
was sampled using rectangular grid with a distance between single plots varying
from 5 km (tropical/temperate forests) to 20 km (arid regions) resulting in 28,869

plots, while most of the plots were sampled twice during the mentioned 7 year
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period. Within each sub-plot different structural tree parameters (e.g., diameter at
breast height, mean tree height etc.) were measured. AGB was calculated for each
sub-plot (total sampled area of 0.16 ha) using 339 species- and genus-specific
allometric models and wood densities (CONAFOR 2012) and then extrapolated to 1
ha. From all available INFyS data, plots with less than four sub-plots measurements
were discarded (1786 plots). Further, for the plots comprising two temporal
measurements (either 20042007 or 2008-2011) the temporal average was calculated.
This step was conducted in order to reduce imprecision due to geolocation errors or
inaccurate measurements resulting in 15,982 plots. Finally, inventory plots located
on steep slopes (> 15°) were also excluded from the analysis (8441 plots), as they
can be located in SAR layover and shadow areas and often show high geolocation
errors. In total 7541 forest inventory plots were used for AGB mapping and product
validation. From 7541 plots, 332 plots were used for AGB estimation along the
LiDAR strips. The remaining 7209 field plots were divided into calibration (67%)
and validation (33%) data sets based on biomass intervals. For this, the NFI data
set were split into ten biomass classes with an interval of 30 t/ha, 67% from each
class were selected randomly for calibration and the remaining plots were used for

validation. An overview of the whole procedure can be found in Figure 3-4.

Az = 240°

Figure 3-2: INFyS sampling plot design for a) temperate and b) tropical forests
3.2.2 Remote sensing data

3.2.2.1 Airborne LiDAR data

Small footprint discrete-return airborne LiDAR data were collected by NASA’s
G-LiHT imager (Cook et al. 2013) in April-May 2013 over the entire country
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resulting in 1123 strips (Figure 3-1). The average pulse density was approximately 6
returns/m2. The data were acquired during leaf-off conditions. From the
topography-normalized point clouds 88 plot-aggregated LiDAR metrics as described
in (Evans et al. 2009; Goetz et al. 2007; Naesset and Okland 2002) were calculated
at 1 ha scale. These LiDAR metrics correspond to the vertical structure of a target
and were used as predictor variables to estimate AGB along the LiDAR strips
(Section 3.2.3.2).

3.2.2.2 Satellite imagery

In our study, we used ALOS PALSAR L-band SAR and Landsat optical data.
The L-band SAR data were collected and processed by Japan Aerospace Exploration
Agency (JAXA) in dual-polarization mode (i.e., HH/HV polarizations). The JAXA
pre-processed ALOS PALSAR backscatter (gamma nought) mosaics were
slope-corrected and orthorectified using a digital elevation model (DEM) (Shimada
and Ohtaki 2010; Shimada et al. 2014). The mosaics feature a pixel spacing of 25 m
x 25 m and are provided for free (JAXA 2016). In the next step, ALOS PALSAR
backscatter images were speckle filtered using the multi-temporal filter after Quegan
et al. (Quegan et al. 2000; Quegan and Yu 2001) with a window size of 7x7 pixels.
In order to evaluate the amplitude of speckle, the equivalent number of looks (ENL)
was calculated over homogeneous areas for original and filtered images using an
empirical approach after (Oliver and Quegan 2004) (i.e., ENL=mean?/variance).
The ENL was increased by factor 2 both for HH and HV polarizations indicating a
reduction of speckle.

Optical data was used in form of spectral reflectance (SR) mosaic based on
Landsat 5 and 7 ETM+ data for the year 2012. This Landsat SR mosaic was
published by Hansen et al. (Hansen et al. 2013) and is freely accessible (University
of Maryland 2016). From the Landsat SR the Normalized Differenced Vegetation
Index (NDVI) was calculated and used as a predictor layer. A further predictor
layer was the Landsat tree cover product by Hansen et al. (Hansen et al. 2013) for
the year 2010. First independent product validations suggest that this tree cover
product features high accuracy. For instance, a validation study conducted over
South America based on VHR commercial optical imagery showed a strong
agreement with an R? of 0.82 (Pengra et al. 2015). Finally, altitude and slope
information obtained from the Shuttle Radar Topography Mission (SRTM) DEM
data version 4.1 (CGIAR 2016) were utilized in AGB modelling. All spatial data sets

were aggregated to 100 m pixel size using block averaging and nearest neighbour
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resampling. In total, 16 predictor layers were used for AGB estimation (Section
3.2.3) (Table 3-1).

Table 3-1: Remote sensing products used for AGB estimation at national scale

Remote sensing Spatial Acquisition Layers
product resolution Date

SAR backscatter: HH and HV

ALOS PALSAR 25 m 2007-2010 .
polarization for 2007-2010
Normalized Top-of-atmosphere (TOA)
Landsat 0 m 2010.2019 Reflectance: Band 3 (red), Band 4 (NIR),
Band 5 (SWIR), Band 7 (SWIR); NDVT;
Tree cover
SRTM DEM 30 m 2000 Altitude; Slope

3.2.3 AGB modelling and uncertainty analysis

As mentioned above, two modelling scenarios were applied. As NFI data were
collected over the whole country, we developed a model that was calibrated with
NFI data only (scenario 1, Section 3.2.3.3). In the other scenario, we applied a two-
stage up-scaling method (i.e., from field measurements to LiDAR strips and from
LiDAR-based estimates to satellite imagery) (Figure 3-3) (scenario 2, Sections
3.2.3.2, 3.2.3.4). Since NFI data were collected over forested areas only, we applied a
forest mask to the wall-to-wall AGB maps. For this task, the Landsat tree cover
product for 2010 (Hansen et al. 2013) was used (forest = tree cover > 10% according
to FAO definition of forest (FRA 2012)).

We estimated uncertainties at pixel level for both scenarios using Monte Carlo
simulations. For this, we introduced an error term in field-estimated AGB (Section
3.2.3.1) and propagated it to satellite-estimated AGB (Section 3.2.3.3). In the two-
stage up-scaling method, first we propagated errors of field-estimated AGB to
LiDAR-estimated AGB (Section 3.2.3.2) and the latter to satellite-estimated AGB
(Section 3.2.3.4).
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i Forest
SAR data Optical data Airborne LIDAR
(ALOS PALSAR mosaics) (Landsat) Inventory data
Bands 3,4,5,7; AGB estimation using LiDAR metrics
allometric equations ||
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AGB over LiDAR

transects

—
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AGB
modelling

R Validation at three
Uncertainty AGB map spatial scales
analysis .
Y (pixel, hexagon, state)

Figure 3-3: Flow chart of the data processing and analysis steps. Blue: first modelling
scenario based on NFT data; red: second modelling scenario based on two-stage up-scaling

method

3.2.3.1 Estimation of errors in the field-estimated AGB

The total error of the field-estimated AGB (g,4) Was composed of three

components which were assumed to be independent and random and were calculated

as follows:

-

- - 1.!"2
Efia!d - [E?nansuramanr + En!!omarr}' + Esmnp!ng} (1)

where &, ccurements € and €;pmpiing are the measurement error of tree

allometry’
parameters (e.g., diameter at breast height (dbh) and tree height), allometric model
error, and sampling error, respectively. Chave et al. (2004) estimated the
measurement error of individual trees in central Panama to be 16%. As it averages
out at stand level (Chave et al. 2004), it was assumed to be 10% in this study
(Mitchard et al. 2011). For species-specific allometric models, we assumed an error
of 11% (Chave et al. 2004). To estimate the sampling error, we approximated the
errors using the study from (Chave et al. 2003). In the study in central Panama, the
authors concluded that in order to estimate AGB for a 50 ha plot with +10%
uncertainty at least 160 of 0.04 ha plots are needed (Chave et al. 2003). This
requires a sampling intensity of 12.8%. By assuming similar variability in 1 ha pixel,
and thus similar sampling intensity, the number of 0.04 ha plots required to
estimate AGB with £10% uncertainty will be 3.2. Therefore, the sampling error in

our study was 8.9% (10 x/3.2/4). By summing up each single error term, we

suggest that our field-estimated AGB have an error of around 17%.
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Under the assumption that our field-estimated AGB (Field,zg) have an error of
17%, we generated 100 realizations of field-estimated AGB (F Ié??‘f:;gﬁ.) using

normally distributed random values:

——— n .
Fieldcg, . = Fieldygg . X (1+ Erigta X X:‘}) (2)

where the symbol “*” denotes a variable that includes the estimated error, m is
number of Monte Carlo realizations, I, is a single pixel, X is a random number from

a normal distribution with mean = 0 and standard deviation = 1.

3.2.3.2 Estimation of AGB and uncertainties along the LiDAR strips

To estimate AGB along the LiDAR strips, all NFI data that were located
completely within the LiDAR data were selected (332 plots). Since the difference in
acquisition time between NFI and LiDAR data is between two to nine years,
significant changes (caused, e.g., by fire or deforestation) within the field plots might
have occurred (Urbazaev et al. 2016). Consequently, plots for which the residuals
exceeded a range of two times the residual standard deviation (20 plots) were
excluded from the analysis. For these 312 field plots 100 Monte Carlo realizations of

field-estimated AGB (F IEHAGB) were generated and used as response variable. As
spatial predictors 88 plot-aggregated LiDAR metrics (LiDAR, _.....) were used. We
estimated 100 different LiDAR-AGB calibrated with F Iédf?f:q_sﬂ using a machine

learning approach Cubist. Cubist is a hybrid tree-based approach that combines rule-
based regression with linear multivariate models. Based on the training data a
collection of rules is defined. A rule represents a path through a decision tree, for
each rule a multivariate linear regression is used to calculate a predicted value. The
final prediction is calculated by combining linear models at each node of the trees;
therefore, it is smoothed compared to a single linear model. The approach is
described in Quinlan (Quinlan 1992, 1993). Cubist is computational efficient and
robust non-parametric model and was successfully applied to map vegetation
structure metrics (e.g., AGB, tree height) with high retrieval accuracy at large
spatial scales (Blackard et al. 2008; Gleason and Im 2012; Moisen et al. 2006;
Walker et al. 2007).
The 100 LiDAR-AGB estimations for each pixel (LIDAR .z z,}j were calculated:

Lj*

LiDAR 5" = cubist(FieldAGBY, LiDAR perics)  (3)



Chapter 3 — Estimation of forest AGB and uncertainties in Mexico

From these 100 LiDAR-AGB realizations, 95% Confidence Interval (CI 95) was
calculated:
A ny — Sl Che
CI95 (LIDARAGB”] = s 2= (4)

The uncertainty for each LIDAR-AGB pixel was calculated:

€I 95 (LiDARAGEY,)

. 1 5 100 5
LiDAR n]ganiLEDAHﬂGE:EJ:I ( )

3.2.3.3 Estimation of AGB and uncertainties at national scale with NFI-

AGB as calibration data

For the first modelling scenario at national scale (i.e., based on NFI data only),
we proceed similar as for the estimation of AGB along the LiDAR strips. The
estimation of AGB at national scale was performed using a machine learning
algorithm Cubist (Quinlan 1992, 1993). As response variable we used 100 Monte
Carlo realizations of NFI-estimated AGB (F Iéﬁ_ﬂ[@& ), while satellite data (Sat, )

Layers
(Section 3.2.2.2, Table 3-1) were used as spatial predictors. 100 AGB maps at

national scale based on the first modelling scenario (5 m‘:ﬁ_ﬁqﬂg &) were estimated as:

Sat_NFI, 5 :‘} = cubist (F’IEMAGB :},Sﬂrm}.mT} (6)

Based on the 100 NFI-calibrated national AGB estimates (5 at__ﬁTAG z) the 95%
confidence interval (CI 95 [Sr:tr_ﬁa’?fz_wﬂ :‘}]) was calculated (Equation 4), and the

uncertainty for each pixel was determined:

CI 95 (Sat NFlage™ )
- x 100 (7)

mean(Sat. NFlazg :’}J

Egar NFI =

Finally, we applied the Landsat tree cover product from 2010 (Hansen et al.

2013) to mask areas covered by forests.
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3.2.3.4 Estimation of AGB and uncertainties at national scale with
LiDAR-AGB as calibration data

In the second modelling scenario at national scale, a two-stage up-scaling method
was applied. Similar to the first modelling scenario, we applied the machine learning
algorithm Cubist (Quinlan 1992, 1993) and used the same satellite imagery
(Satyqyers) as spatial predictors (Table 3-1). As model calibration data we used 100
LiDAR-AGB estimations (Lxﬂﬁ;mﬁ.) that already include the estimated error of
field data and the model prediction error for the LiDAR strips. Accordingly, 100
AGB maps at national scale based on second modelling scenario (Sttt_ﬁfﬁﬂ.ﬁ CB)
were estimated as:

5ar_LfEﬁEAGE:‘} = cubist (LID:QE;;E ", Sat, ) (8)

LJj Layers

Again, based on the 100 LiDAR-calibrated national AGB estimates
(Sat_LiDAR,.5) the 95% confidence interval (CI 95 (Sat_LI_ﬂEAGB:L]) was

calculated (Equation 4) and the uncertainty for each pixel was determined:

CI 95 (Sar_LiDAR gg!,)

£ ; = — » 100 9
Sar LiDAR mean(Sar_LzDAHAGB:’Jj (9)

Additionally to the modelling scenario based on all LIDAR-AGB estimates, we
estimated AGB at national scale using LiDAR-AGB samples with uncertainties

below 50% (5§ at_LiDAR -5 . This modelling scenario was conducted in order

uncertso)
to prevent the propagation of high uncertainties of the LiDAR-AGB to the final
AGB map. The threshold of 50% is a trade-off between retaining LIDAR samples for
training and keeping the uncertainties of the wall-to-wall map at a low level (i.e., a
lower threshold will lead to a lower number of training data; a higher threshold will
lead to higher uncertainties in the wall-to-wall map). The number of remaining
LiDAR-AGB samples can be found in Figure 3-4. In the next step, we estimated the
uncertainties for AGB map calibrated with LiDAR-AGB pixels with uncertainties

below 50% (£5az Lipar ) (Equation 9).

uncertal

Eventually, all non-forest areas were discarded again using the Landsat tree cover

product from 2010 (Hansen et al. 2013).
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3.2.4 Validation of mean forest AGB maps at different scales

Both national AGB maps (based on NFI and LiDAR training data) were
validated at pixel level. For each modelling scenario (i.e., NFI- and LiDAR-
calibrated AGB models), we calculated a mean AGB value from 100 Monte Carlo
realizations. Goodness-of-fit statistics (R?, RMSE, bias) were calculated between
NFI- and LiDAR-calibrated mean AGB and the validation data set (Section 3.2.1)
(Figure 3-4).

The validation was also performed at hexagon and state levels. Accordingly, we
built a mesh of hexagons over the country with an area of 650 km? per hexagon. For
each hexagon the modelled AGB (i.e., average of 100 Monte Carlo realizations) and
the AGB based on forest inventory were extracted. The percentage of the forest
cover per hexagon was considered using as a weighting factor. The forest areas were
obtained from the Mexican National Institute for Statistics and Geography (INEGI)
Land use map (INEGI 2010), since this map was used to establish the field plots.
The national INEGI Land use map was generated using visually interpretation of
SPOT optical imagery and field verification at a scale of 1:250,000.

For the validation at state level a similar procedure was applied. For each federal
state, AGB values from the modelled maps and NFI plots were extracted and
weighted by the forest area delineated from the INEGI Land use map (INEGI 2010).
Finally, linear regressions and statistics (R?, RMSE, bias) comparing modelled and

field-estimated AGB were calculated at hexagon and state levels.
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28,869 NFI plots for
2004-2007 and 2008-2011
A

‘ 27,083 with 4 sub-plots ‘
T
15,982 plots
(mean between 2004-2007/2008-2011)

1

4{ 7,541 plots < 15° slope }—l

| 7,209 plots outside LiDAR | ‘ 332 p'°t5f°i LIDAR-AGB
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calibrated
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all pixels

271,216
All LiDAR-AGB samples

4,794 plots for cal 2,415 plots for val LiDAR-
(67%) (33%) 68,395 calibrated
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uncertainties <50%
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calibrated
AGB

Figure 3-4: Filtering steps of reference data (both NFI and LiDAR) for calibration of
satellite imagery and validation of the AGB maps.
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3.3 Results

3.3.1 Estimation of AGB and uncertainties along the LiDAR strips

In order to apply a two-stage up-scaling method (Section 3.2.3.4), we first
estimated AGB along the LiDAR strips with the Cubist machine learning algorithm.
We propagated the estimated field error (17%) to the AGB modelling running 100
Monte Carlo simulations (Equation 3). From the 100 AGB estimations, we
calculated the mean AGB, CI 95, and the uncertainty for each single LiDAR pixel
and plotted the simulation results against field-estimated AGB (Figure 3-5).
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Figure 3-5: a) Linear regression between reference (INFyS) and predicted (LiDAR)
AGB. The dotted line is the 1:1 line. b) CI 95 of LiDAR-estimated AGB increases with
increasing reference AGB. ¢) The highest uncertainties of LiDAR-estimated AGB at low

AGB range decreases with higher reference AGB.

Although the correlation between the mean estimated AGB (from Monte Carlo)
and field-estimated AGB was strong (Figure 3-5a), the uncertainties in the LiDAR-
AGB were very high and went up to 200% (Figure 3-5¢, Figure 3-6¢). The absolute
AGB uncertainties (in our case CI 95) increased with increasing AGB (Figure 3-5b).
However, the highest relative uncertainties were found in areas with low biomass
(Figure 3-5c), as in these areas small absolute deviations easily result in large
relative uncertainties (Equation 5).

Discrepancies between modelled and reference data are caused by different
factors. First, the high variations in 100 LIDAR-AGB estimates (expressed in CI 95
and uncertainties) can be caused by a low amount of training data (i.e., 312 field
plots were used to extrapolate AGB for more than 270,000 LiDAR samples), so that
each model run produced diverse results. Second, the time lag between the

acquisitions of LiDAR and NFI data was between 2 to 9 years, which introduces the
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potential for changes between both data acquisitons. Third, the sampled area of NFI
data of 0.16 ha was extrapolated to 1 ha, i.e., for some plots an area of 0.16 ha may
be not representative for the 1 ha plot. Fourth, small inventory plots (4 subplots
with 0.04 ha size) are more affected by geolocation errors, since they may not reflect
the spatial variability in the surrounding area. As reported in (Zolkos et al. 2013),
the errors in LiDAR-estimated AGB decrease exponentially with a decreasing plot
size, due to spatial averaging of errors (Goetz and Dubayah 2011). Finally, a
universal AGB model developed for different forest types can produce additional

errors in the prediction results.
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Figure 3-6: a) Histogram of field-estimated AGB used for calibration of LiDAR metrics;
b) histogram of LiDAR-estimated AGB; ¢) histogram of uncertainties in LiDAR-estimated
AGB

Field-estimated AGB (used for calibration of LiDAR metrics) and the modelled
mean LiDAR-AGB showed similar distribution with a mean AGB around 40-50
t/ha, a standard deviation (SD) of 30-40 t/ha, and a maximum AGB up to 150-160
t/ha (Figure 3-6a, 6b). In the mean LiDAR-AGB, however, there were fewer pixels
featuring a low AGB (e.g., less than 10 t/ha) compared to the field-estimated AGB.
This is caused by the ensemble model of decision trees (Baccini et al. 2008; Hooker
and Mentch 2018; Xu et al. 2016), where single predictions of each tree are
averaged. These models in general tend to shift the lowest and highest values
towards the mean.

As mentioned above (Section 3.2.3.4), we used LiDAR-AGB samples as
calibration data for satellite imagery. For this, we used all LIDAR-AGB samples
(271,216 1ha LiDAR samples) as well as LiDAR-AGB pixels with uncertainties
below 50% (68,395 1 ha LiDAR samples).
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3.3.2 Estimation of AGB and uncertainties at national scale with NFI-

AGB as calibration data

Based on the satellite imagery, the 4,794 NFI-estimated AGB samples, and the
Cubist machine learning algorithm around 65 Mio. ha of forest land was mapped at
1 ha scale. We propagated the estimated field error (17%) in the AGB modelling
with 100 Monte Carlo simulations (Equation 6).

From the 100 AGB estimations, we calculated mean AGB (Figure 3-7), CI 95,
and uncertainties (Figure 3-8) for each single 1 ha pixel. We attributed the last class
as AGB > 120 t/ha, since a signal saturation of SAR and optical data for a high
AGB range occurred (Avitabile et al. 2012; Lucas et al. 2004; Mermoz et al. 2014;
Mitchard et al. 2011), and a relatively small country area possess AGB values higher
than 120 t/ha (Figure 3-9a). In accordance to (Cartus et al. 2014; Rodriguez-Veiga
et al. 2016), the highest forest AGB were located in the tropical forests of the
Yucatan Peninsula (Figure 3-7b) and Chiapas (Figure 3-7a) as well as in the
mountain forests of Trans-Mexican Volcanic Belt (close to Mexico City). Since we
applied a forest mask with 10% tree cover, the AGB in north-central parts of
Mexico can be underestimated. The total forest aboveground carbon (AGC) was
found to bel.602 PgC (conversion factor of 0.48). This value is close to the Mexican
forest carbon stock according to FAO’s Forest Resource Assessment 2010 (1.688
PgC) (FAO 2010). The validation of the map at different scales is presented in
Section 3.3.5.
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Figure 3-7: National forest AGB map based on NFI-estimated AGB, satellite imagery,

Cubist machine learning algorithm, and Monte Carlo analyses

Most forest areas in Mexico possessed AGB uncertainties lower than 20-30% with
a mean of 29.11% (Figures 3-8, 3-9c). The areas with the highest AGB uncertainties
were found in the states of Oaxaca, Chiapas, and Tabasco (Figure 3-8a). For
instance, in the state of Tabasco the highest uncertainties (higher than 90%) were
estimated for mangrove forests in Pantanos de Centla (Figure 3-8a). In the states of
Oaxaca and Chiapas the highest uncertainties (up to 90%) occurred in the dense
cloud forests of Sierra Madre del Sur and Chimalapas tropical forests, respectively.
In contrast, the dense tropical forests of the Yucatan peninsula featuring high forest
AGB (Figure 3-7b)) showed relatively low uncertainties (Figure 3-8b) ranging
between 20 and 40%. One reason for the low uncertainties is related to the dense

NFI network covering the entire peninsula.
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Figure 3-8: Estimated uncertainties (incl. error in field data and model prediction error)
based on NFI-estimated AGB, satellite imagery, Cubist machine learning algorithm, and

Monte Carlo analyses

Similar to the AGB estimation along the LiDAR strips, the AGB distribution in
the national NFl-calibrated map was different at low and high AGB ranges
compared to the field-estimated AGB (Figures 3-9a, 3-9b). This is again partly
caused by the characteristics of the ensemble model of decision trees (Baccini et al.
2008; Hooker and Mentch 2018; Xu et al. 2016) (see above). Also, SAR and optical
imagery reached saturation level at high AGB (> 100 t/ha) (Avitabile et al. 2012;
Lucas et al. 2004; Mermoz et al. 2014; Mitchard et al. 2011). The uncertainties in
the national NFI-calibrated AGB map were smaller compared to the LiDAR-AGB
(Figures 3-6¢, 3-9¢). These lower variations can be caused by the fact that for the
mapping at national scale a much larger reference data set were available compared
to the AGB mapping along the LiDAR strips (4,794 plots vs. 312 plots).

Accordingly, the regression models become more robust.
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Figure 3-9: a) Histogram of field-estimated AGB used for calibration of satellite
imagery; b) histogram of estimated national forest AGB calibrated with field-AGB; ¢)
histogram of uncertainties in AGB map calibrated with field-AGB

3.3.3 Estimation of AGB and uncertainties at national scale with

LiDAR-AGB as calibration data

Using the same satellite imagery as for the first modelling scenario (Section
3.2.3.3, Section 3.3.3) and 271,216 LiDAR-estimated AGB values as calibration
data, we applied the Cubist machine learning algorithm to map forest AGB in
Mexico at 1 ha scale (Figure 3-10). Similar to the NFI-calibrated AGB map, the
highest AGB in the LiDAR-calibrated map occurred in the Yucatan Peninsula,
Chiapas and Trans-Mexican Volcanic Belt. However, in contrast to the
NFI-calibrated map, one of the areas featuring the highest AGB was located in the
Chimalapas and Lacandon tropical forests (Figures 3-8a and 3-10a). Furthermore,
the spatial AGB pattern in the Yucatan peninsula shows clear differences between
both maps (Figures 3-8b, 3-10b and 3-18). Since we applied a forest mask with 10%
tree cover, the AGB in north-central parts of Mexico can be underestimated. The
total forest aboveground carbon (AGC) was estimated to be 1,374 PgC (conversion
factor of 0.48), and thus lower compared to the NFI-calibrated AGB map (1,602
PgC) as well as compared to the Mexican forest carbon stock according to FAO’s
Forest Resource Assessment 2010 (1.688 PgC) (FAO 2010). The validation of the

map at different scales is presented in Section 3.3.4.
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Figure 3-10: National forest AGB map based on LiDAR-estimated AGB, satellite

imagery, Cubist machine learning algorithm, and Monte Carlo analyses

When using all LIDAR-AGB values (i.e., with uncertainties up to 200%), the
uncertainties in LIDAR-AGB propagated to the final AGB map. Accordingly, the
national forest AGB map based on all LiDAR-AGB featured high uncertainties
(Figure 3-11). Most forest areas in Mexico showed uncertainties between 60 and 90%
with a mean of 65.86% (Figure 3-12c). High uncertainties (>60%) occurred in areas
with low forest AGB (<60-80 t/ha), while in areas with high forest AGB (>80 t/ha)
the AGB uncertainties were lower (20-40%) (Figures 3-10, 3-11).
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Figure 3-11: Estimated uncertainties (incl. error in field data, model prediction errors:
NFI to LiDAR and LiDAR to satellite imagery) based on all LIDAR estimated AGB,

satellite imagery, Cubist machine learning algorithm, and Monte Carlo analyses

In the next modelling scenario we used only LiDAR-AGB pixels with
uncertainties below 50% (henceforth LiDAR-AGB_50%). The majority of the pixel
with uncertainties >50% were located in areas with low forest AGB (Section 3.3.1).
For this reason, the forest AGB map calibrated with LIDAR-AGB_50% possessed
higher AGB values than the map calibrated with all LIDAR-AGB pixels (Figures
3-10, 3-12, 3-14). The highest AGB occurred in the Yucatan Peninsula, Chiapas and
Trans-Mexican Volcanic Belt. The total forest aboveground carbon (AGC) was
1,966 PgC (conversion factor of 0.48), and thus higher than the NFI-calibrated AGB
map (1,602 PgC), the LiDAR-calibrated AGB with all LiDAR-AGB pixels (1,374
PgC) as well as Mexican forest carbon stock according to FAO’s Forest Resource
Assessment 2010 (1.688 PgC) (FAO 2010). The validation of the map at different

scales is presented in Section 3.3.4.
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Figure 3-12: National forest AGB map based on LiDAR-estimated AGB (with
uncertainties <50%), satellite imagery, Cubist machine learning algorithm, and Monte Carlo

analyses

When LiDAR-AGB_ 50% were used, the uncertainties in the national forest AGB
map were reduced by 20-40% compared to the map calibrated with all LIDAR-AGB
(Figures 3-11, 3-13, 3-14c¢, 3-14d). In contrast to the AGB map calibrated with all
LiDAR-AGB pixels, here the areas with low forest AGB showed similar
uncertainties as the areas with high AGB ranging between 20 and 40%. The highest
uncertainty (>80%) in the forest AGB map calibrated with LiDAR-AGB_50% were
found in the mangrove forests of Tabasco in Pantanos de Centla, which is similar to
the NFI-calibrated AGB map (Figures 3-8a, 3-13a). Furthermore, similar high AGB
uncertainties were estimated in the north-eastern part of Mexico (state Coahuila).
Possible reasons for this could be a combination of factors: 1) no LiDAR strips and
only few NFI plots were available for this region, 2) and steep topography that

effected radar backscatter.

88



Results

Uncertainty LiDAR-calibrated AGB [%]
LiDAR-AGB pixels with uncertainties <50%

1. Campeche
2. Yucatan
3. Quintana Roo

Legend

[T Non-Forest [0 20,1-30 [ 40,1-50 [ 60,1 - 70 [l 80,1 - 90
B <20 [130,1-40[]50,1-60 [l 70,1 - 80 [N > 90

2. Veracruz

3. Tabasco| o 125 250 500 750 1.000
4. Chiapas | e s— km

Figure 3-13: Estimated uncertainties (incl. error in field data, model prediction errors:
NFI to LiDAR and LiDAR to satellite imagery) based on LiDAR-estimated AGB (with
uncertainties <50%), satellite imagery, Cubist machine learning algorithm, and Monte Carlo

analyses

As mentioned previously, the forest AGB map calibrated with all LIDAR-AGB
pixels showed lower AGB values as the map calibrated with LiDAR-AGB_ 50%.
Figures 3-14a and 3-14b showed that the histogram of the map calibrated with
LiDAR-AGB_50% was shifted towards higher AGB values. The opposite shift
towards lower uncertainties was observed in the national forest AGB map that was
calibrated with LIDAR-AGB_ 50% (Figures 3-14c, 3-14d).
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Figure 3-14: a) Histogram of estimated national forest AGB calibrated with all LiDAR-
AGB pixels; b) histogram of estimated national forest AGB calibrated with LIDAR-AGB
pixels with uncertainties <50%; c) histogram of uncertainties in AGB map calibrated with
all LIDAR-AGB pixels; d) histogram of uncertainties in AGB map calibrated with LiDAR-
AGB pixels with uncertainties <50%.

3.3.4 Validation of forest AGB maps at different scales

The first validation was conducted at pixel level. Three maps were validated
independently using forest inventory plots that were not used for model calibration
(Figure 3-15). The goodness-of-fit statistics were similar for all three AGB maps
with similar values for R? and RMSE, but a lower bias for the AGB map calibrated
with LiDAR-AGB_50% (Figures 3-15b, 3-15c¢). Obviously, all three maps
underestimated the AGB in the upper range (i.e., 100-120 t/ha). This can be caused

90



Results

by the fact that SAR and optical imagery saturated at high AGB level, and thus
became less sensitive for AGB. Furthermore, only a small amount of training data
for areas with high AGB was available. This fact caused an underrepresentation of
high AGB during the training process. Also, as already mentioned above, tree-based
models tend to underestimate in the high range and to overestimate in the low range
(Baccini et al. 2008; Xu et al. 2016). Finally, temporal mismatch between the
reference and satellite data could degrade the model performance (e.g., potential

change within the field plots, as was shown in (Urbazaev et al. 2016)).
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Figure 3-15: Validation at pixel scale: field-estimated AGB plotted against a) NFI-
calibrated AGB map, b) AGB map calibrated with all LIDAR-AGB pixels, ¢) AGB map

calibrated with LIDAR-AGB_ 50%. Dotted line is the 1:1 line. Blue to red colours indicate
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low to high point density, respectively.

The second validation scale was the hexagon level. Due to spatial aggregation
improved correlations were observed. All maps showed similar goodness-of-fit
statistics (Figure 3-16). At hexagon level a slight underestimation of AGB is visible,

as the most of the dots in the scatterplots were located below the 1:1 line.
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Figure 3-16: Validation at hexagon scale: field-estimated forest area weighted AGB
plotted against a) NFI calibrated AGB map, b) AGB map calibrated with all LIDAR-AGB
pixels, ¢) AGB map calibrated with LIDAR AGB_ 50%. Dotted line is the 1:1 line.
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At the state scale the NFI- and LiDAR-calibrated AGB maps correlated clearly
with field-estimated forest area weighted AGB (Figure 3-17). However, all three
AGB maps showed underestimation of the forest AGB for all federal states. The
smallest deviation from the 1:1 line (and the smallest RMSE) was found for the
AGB map calibrated with LIDAR-AGB_ 50%.
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Figure 3-17: Validation at state scale: NFI- and LiDAR-calibrated AGB maps plotted

against field-estimated forest area weighted AGB. Every point represents mean forest area

weighted AGB for each federal state. Dotted line is the 1:1 line.
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3.4 Discussion

Since NFI data are labor intensive and time consuming, and thus limited in time
and space (i.e., point measurements), many remote sensing based applications use
very high resolution data as reference to assess AGB. For instance, airborne LiDAR
can drastically increase the number of reference data (Asner 2009; Marvin and Asner
2016). In this study, we showed that LiDAR-based AGB should be used with great
care for further up-scaling to satellite imagery. Although the NFI-calibrated and
LiDAR-calibrated AGB maps showed similar validation results at three spatial
scales, the LiDAR-calibrated AGB maps contain much larger uncertainties
compared to the NFI-calibrated map. In this study, the uncertainties in the LiDAR-
based AGB were much higher than the errors in the field data. These errors were
propagated further to the wall-to-wall map. This resulted in very high variation of
the national LiDAR-calibrated AGB. To reduce uncertainties and variations in the
LiDAR-calibrated AGB map, we removed reference LIDAR-AGB pixels with high
uncertainties. Consequently, the national forest AGB map calibrated with
LiDAR-AGB_50% showed similar uncertainties (20-40%) as the forest AGB map
calibrated with NFI data only. For further exploitation of an AGB map (e.g.,
decision making, modelling of C-fluxes) as well as to identify variance of the
estimated AGB, a proper characterization of uncertainties and its analysis is a
crucial step.

Furthermore, both AGB maps (NFI- and LiDAR-calibrated) showed different
spatial patterns of AGB. For instance, the AGB estimates of dense tropical forests
in Oaxaca and Chiapas (Chimalapas and Lacandon forests) showed a difference of
50-100 t/ha (Figure 3-18a). The underestimation of AGB of the NFI-calibrated map
can be caused by the fact that no or a limited number of NFI plots were available
for these areas. However, we could not independently validate both AGB maps for
Chimalapas and Lacandon forests due to the lack of independent reference data.
Different AGB distributions were observed in the Yucatan peninsula as well (Figure

3-18b), although a dense NFI network and LiDAR strips were available here.

93



Chapter 3 — Estimation of forest AGB and uncertainties in Mexico

N Absolute Difference
R . (NFl-calibrated AGB - LiDAR-calibrated AGB) | D)
L I
\\ \ 1 & 2
N R
L \\ § /;\—4.\ "
\ - \ 3
4 Y N A\
= \ 3 b
=) h% \ 1
\ .
1\‘[‘. . ( \\_\r!
J H‘\;N\ 9 / 1. Campeche
R ( 2. Yucatan
R Y N \ 3. Quintana Roo
\‘ \\\ ‘
\ ©
\:‘ =3 N
) \ - )
>) ///_
% \\ J 1/ 4
R ] p f ?
\ . “/(’ ¢
2 3 i i
4o % -
— >
> &
1
4 Legend J
1.0axaca | M <80 [ 60--40 -20-0 [ 20-40 [ 60 - 80
2. Veracruz| M -8o--60[ ] 40-20[  Jo-20 [ 40-e0 [ >80
a) 3. Tabasco| ¢ 125 250 500 750 1.000
4. Chiapas | e w— km

Figure 3-18: Absolute difference between the NFI- and LiDAR-calibrated AGB map
(based on all LiDAR-pixels). Zoom sections a) and b) illustrate different spatial patterns for

dense tropical forests.

Both AGB maps showed an underestimation at high AGB level compared with
field-plot estimates (Figure 3-15). The reasons as already discussed above are related
to the model characteristics and the insufficient sensitivity of the satellite data for
AGB at high levels (Figure 3-15). These shortcomings can be partly solved through
bias-correction approaches (Hooker and Mentch 2018; Xu et al. 2016) as well as
through a greater amount of high quality reference data for high AGB intervals.
Regarding satellite data the use of multi- or hyper-temporal imagery can potentially
help to mitigate the signal saturation issue (Cartus et al. 2012b; Santoro et al.
2011). Furthermore, the future P-band SAR mission BIOMASS (Le Toan et al.
2011) will provide data with a higher saturation level in forest covered areas.
Eventually, considerable deviations between the AGB maps were observed in areas
with steep slopes (beside the Yucatan peninsula) (Figure 3-18). Accordingly,
advanced terrain-correction methods for SAR imagery (e.g., Hoekman and Reiche
2015; Small 2011) and new accurate DEM products (e.g., TanDEM-X DEM) should
be analyzed and included to further improve AGB estimations for mountainous

regions.
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Since there are several studies aiming at national AGB mapping for Mexico
(Avitabile et al. 2016; Cartus et al. 2014; Rodriguez-Veiga et al. 2016), a
comprehensive comparison of the different products available is desirable. There is a
clear need to support Mexico’s local authorities (e.g., CONAFOR, CONABIO) to
identify and understand similarities and discrepancies of the different AGB maps as
well as the source of errors.

An important issue in forest AGB mapping in Mexico is the agreement on a
forest definition or a forest covered area of interest, respectively. For instance, in
(Cartus et al. 2014) the total AGC varied by 44% (2.21 PgC vs. 1.53 PgC),
depending on whether a forest mask was applied. Rodriguez-Veiga et al. (Rodriguez-
Veiga et al. 2016) applied different forest mask to calculate national forest AGC and
concluded that total national forest AGC varied by 31% (lowest forest AGC of 1.47
PgC vs. highest forest AGC of 1.92 PgC). Therefore, a consistent and accurate

national forest mask is crucial to assess national forest carbon stocks.
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3.5 Conclusion

The results of this study indicated that ignoring errors in the LiDAR-estimated
AGB can lead to much higher uncertainties in the final wall-to-wall AGB map
compared to the field to satellite up-scaling. Although the delineated forest AGB
products showed similar goodness-of-fit statistics at different scales compared to the
validation NFI data set (Figures 3-15, 3-16, 3-17), we computed clearly higher
uncertainties in the LiDAR-calibrated AGB map compared to the NFI-calibrated
map. When we removed LiDAR-estimated pixel with high uncertainties, we could
estimate national forest AGB with similar uncertainties as with NFI data.

Furthermore, we observed different spatial patterns of AGB in regions where no
or only a limited number of NFI data were available (conservation areas in tropical
forests (e.g., Chimalapas and Lacandon forests). A set of independent field plots for
these regions would help to analyze and validate the presented results. Moreover,
AGB at high level (>100 t/ha) was underestimated in both modelling scenarios. We
suggest that a greater number of high quality field data in dense tropical forest can
mitigate this issue. Furthermore, the implementation of dense time series of satellite
data will help to impove the model results. Thus, the forthcoming L-band missions
(NISAR and SAOCOM) and in particular ESA’s P-band mission BIOMASS are of
great interest.

Since LiDAR data can be acquired for much larger areas than field inventory
data, LiDAR is an extremely important tool for repetitive reference data acquisitions
over large areas, in particular in areas where the amount of NFI data are limited
(e.g., restricted or inaccessible areas). Furthermore, in contrast to point
measurements of field data, LIDAR captures spatial variability, which is beneficial
at heterogeneous tropical forests. Nevertheless, we showed here that a two-stage up-
scaling method needs to be analyzed and validated with great care. Field inventory
is an essential tool to measure and observe ecological processes at local scale as it
can provide a higher level of data richness when compared to LiDAR. We believe
though that LiDAR can be used as an extension to NFI, for example, for areas that
are difficult or not possible to access. Therefore, future research can investigate an
integration of airborne LiDAR data into field inventory for forests carbon stock
assessments (e.g., a trade-off between map accuracy (i.e., user requirements) and

resulting costs (i.e., number of NFI and LiDAR data)).
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Abstract

Information on the spatial distribution of forest structure parameters (e.g.,
aboveground biomass, vegetation height) are crucial for assessing terrestrial carbon
stocks and emissions. In this study, we sought to assess the potential and merit of
multi-temporal dual-polarised L-band observations for vegetation height estimation
in tropical deciduous and evergreen forests of Mexico. We estimated vegetation
height using dual-polarised L-band observations and a machine learning approach.
We used airborne LiDAR-based vegetation height for model training and for result
validation. We split LiDAR-based vegetation height into training and test data
using two different approaches, i.e., considering and ignoring spatial autocorrelation
between training and test data. Our results indicate that ignoring spatial
autocorrelation leads to an overoptimistic model’s predictive performance.
Accordingly, a spatial splitting of the reference data should be preferred in order to
provide realistic retrieval accuracies. Moreover, the model’s predictive performance
increases with an increasing number of spatial predictors and training samples, but
saturates at a specific level (i.e., at 12 dual-polarised IL-band backscatter
measurements and at around 20% of all training samples). In consideration of spatial
autocorrelation between training and test data, we determined an optimal number of
L-band observations and training samples as a trade-off between retrieval accuracy
and data collection effort. In summary, our study demonstrates the merit of
multi-temporal ScanSAR L-band observations for estimation of vegetation height at

a larger scale and provides a workflow for robust predictions of this parameter.

Keywords: L-band; SAR backscatter; vegetation height; forest structure

parameters; spatial autocorrelation; Yucatan; Mexico
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4.1 Introduction

The status of tropical forests and their temporal dynamics can be assessed and
monitored by measuring different forest biophysical parameters (e.g., vegetation
height, canopy cover, stem volume and aboveground biomass (AGB)). Accurate
spatial estimates of these parameters are crucial to assess terrestrial carbon (C)
stocks and C-emissions, as well as to develop sustainable forest management
strategies. Furthermore, these products can help provide a better understanding of
the ecosystem dynamics and the effects of environmental drivers through modelling.
Field measurements of forest biophysical parameters are, however, associated with
high costs (e.g., they are labour intensive and time consuming) and are limited to
point measurements, which may not adequately describe patterns at different spatial
scales. Spatially explicit information on three-dimensional vegetation structure can
be provided by Light Detection and Ranging (LiDAR) sensors (Asner et al. 2008;
Clark et al. 2004; Lefsky et al. 2002a)). Laser pulses sent from a sensor are capable
to penetrate the forest canopy and to directly measure vertical vegetation structure.
LiDAR is usually operated from an airborne platform and thus limited to small
spatial coverage. Both spaceborne as well as airborne LiDAR may provide samples
of forest structure parameters over large areas (e.g., regional, national, continental
scales) and need to be integrated with satellite imagery to derive wall-to-wall
estimates of forest biophysical parameters.

Satellite imagery collected by Radio Detection and Ranging (RADAR) sensors
are sensitive to forest structure parameters (e.g., Berninger et al. 2018; Cartus et al.
2012b; Lucas et al. 2010; Mitchard et al. 2011; Saatchi et al. 2011b; Santoro et al.
2011; Santos et al. 2003; Tanase et al. 2014b)), as microwave signals have the
capability to penetrate the vegetation profile, and thus to probe the three-
dimensional vegetation structure. Furthermore, RADAR data are particularly useful
for weather independent applications, as long wavelengths (with a spectral range
between 1 ¢cm and 1 m) penetrate clouds. A key parameter obtained from Synthetic
Aperture Radar (SAR) data, backscatter intensity, measures the return energy from
a target and is determined by the geometric and dielectric properties (which is
mostly determined by the water content) of the reflective material, as well as by the
frequency, polarisation and angle of incidence of the emitted wave (Raney 1996).
Long wavelengths (e.g., at P-band and L-band) are more suitable for the retrieval of
forest structure parameters (e.g., growing stock volume, AGB) because of their
ability to penetrate deeper in forest canopies as compared to short wavelengths (e.g.,
at X-band and C-band) (Le Toan et al. 1992; Lucas et al. 2004; Saatchi et al.
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2011b), and thus to interact with large branches (in order of the wavelength) and
trunks. In general, the cross-polarised (HV, VH) waves are induced by volume
scattering (Lee and Pottier 2009) (e.g., as occurring within woody canopies) and are
thus more sensitive to volume and possess a stronger correlation with forest
structure parameters compared to co-polarised (HH, VV) waves (Rauste et al. 1994;
Watanabe et al. 2006). Advanced SAR techniques (e.g., interferometry (InSAR),
polarimetry  (PolSAR), polarimetric interferometry (PollnSAR), tomography
(TomoSAR)) show promising results for estimating vegetation structure parameters
(Antropov et al. 2017; Askne et al. 2013; Dinh Ho Tong et al. 2014; Hajnsek et al.
2009; Papathanassiou and Cloude 2001; Solberg et al. 2013). For instance, studies
based on TanDEM-X single-pass interferometer (e.g., Askne et al. 2013; Schlund et
al. 2016; Solberg et al. 2013; Solberg et al. 2017)) reported promising sensitivity of
the InSAR height to canopy height and thus to stem volume and AGB in boreal and
tropical forests. Since the temporal baseline of the TanDEM-X mission is quasi zero,
temporal decorrelation of the interferometric coherence can be excluded, and the
InSAR coherence is primarily impacted by volume decorrelation. Furthermore, due
to the short wavelength of TanDEM-X data (i.e., X-band), most of the incoming
electromagnetic energy is scattered from the top of vegetation and the TanDEM-X
InSAR height exhibits a strong correlation with vegetation height. For PolInSAR
analysis, at least two full polarimetric (i.e., all polarisations are available) SAR
datasets acquired from two slightly different positions are needed to determine the
volume phase scattering centre, which is located close to the top of a canopy.
Accordingly, this measurement is useful to estimate tree height. For TomoSAR
methods, a stack of multi-baseline SAR data is required to delineate SAR
Tomograms. From the Tomogram, the 3D position and scattering amplitude of each
relevant scatterer can be derived, i.e., individual tomographic layers can be classified
as surface layers, topmost layers and volume layers (e.g., middle heights). However,
currently only one of these methods can be applied for large-scale mapping (i.e.,
single-pass InSAR), due to the lack of PollnSAR and TomoSAR data at this scale.
Moreover, single-pass interferometry based on TanDEM-X data is also somehow
limited due to data policy, including restricted data access for scientific use. Because
of the data availability and technically less complex analysis compared to InSAR,
PolInSAR and TomoSAR, most studies on the estimation of forest structure
parameters are based on SAR backscatter analysis (e.g., for AGB estimation
(Santoro and Cartus 2018)). For instance, L-band backscatter was successfully

applied to map fractional woody cover (Bucini et al. 2010; Li et al. 2012; Musick et
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al. 1998; Naidoo et al. 2016; Urbazaev et al. 2015) as well as regional or global
forests (Dong et al. 2014; Shimada et al. 2014; Thiel et al. 2006; Thiel et al. 2009).
Moreover, L-band backscatter was used to predict vegetation height in various
biomes from boreal (Suzuki et al. 2013) and temperate (Cartus et al. 2012a; Garcia
et al. 2018) to tropical forests (Xu et al. 2016).

In this study, we examine the potential of multi-temporal L-band SAR
backscatter acquired by the Advanced Land Observation Satellite 2 Phased Array
L-band Synthetic Aperture Radar 2 (ALOS-2 PALSAR-2) in ScanSAR mode to
estimate vegetation height over tropical deciduous and evergreen forests in the
Yucatan peninsula, Mexico. ScanSAR data exhibit much larger swath width
compared to Stripmap data (i.e., 350 km vs. 70 km) and accordingly can cover wider
areas at higher repetition rates. For instance, ScanSAR acquisitions cover the entire
tropical region approximately every 42 days. Therefore, we analyse the performance
of the multi-temporal combination of L-band backscatter for vegetation height
mapping. Airborne LiDAR-based vegetation height is used as reference data for
model training and validation.

In this paper, we demonstrate the value of multi-temporal PALSAR-2 ScanSAR
mosaics compared to open global PALSAR-2 Stripmap Fine Beam Dual Polarisation
(FBD) mosaics. Moreover, we apply two different validation approaches to show the
effect of spatial autocorrelation on model performance. In previous studies (e.g.,
Garcia et al. 2018; Xu et al. 2016)) it was reported that statistical models improve
by increasing the number of spatial predictors as well as response variables. We
examine these findings considering two different validation schemes, which include
and minimise the autocorrelation. The results of the study are relevant in the
context of the upcoming L-band missions for global vegetation monitoring (e.g.,
ALOS-4, NISAR, SAOCOM, Tandem-L) and an increasing number of L-band SAR
data in the near future. Since vegetation height correlates with other forest
parameters (e.g., AGB, tree canopy cover) (Chave et al. 2005; Colgan et al. 2013;
Saatchi et al. 2011a), we can assume that similar results can be achieved for the
estimation of AGB and tree canopy cover using multi-temporal dual-polarised
L-band SAR backscatter.
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4.2 Material and Methods

4.2.1 Study area

The study area is the Yucatan peninsula, Mexico, which is mostly covered by
tropical deciduous and evergreen forests (Figure 4-1). According to a land use map
for 2010 generated by the Mexican National Institute for Statistics and Geography
(INEGI) (INEGI 2010), around 1/3 of the total area (i.e., ~140,000 km?) is covered by
tropical deciduous forests (i.e., ~42,000 km?), whereas around 1/2 of the total area is
covered by tropical evergreen forests (~68,000 km?). Based on ca. 5000 field plots
collected over the entire peninsula during the National Forest Inventory programme
between 2004 and 2011 (CONAFOR 2012), mean tree height is 9 m (max. height 27
m), mean diameter at breast height (DBH) is 13 c¢m (max. DBH 46 c¢m), mean basal
area is 12 m”- ha™' (max. 36 m”- ha ') and mean AGB is 70 t - ha ' (max. AGB 227
t -ha™'). The area of the peninsula is rather flat. According to the Shuttle Radar
Topography Mission (SRTM) Digital Elevation Model (DEM) version 4.1 (CGIAR
2016), average elevation is 62 m with a standard deviation of 70.8 m. The average
slope is 1.3° with a standard deviation of 1.5°.

The regional climate is tropical sub-humid with slightly higher air temperatures
in summer than in winter (Figure 4-2). The average annual temperature between
2013 and 2017 was ~27 °C (SMN 2018). Average annual precipitation ranges from
1000 to 1500 mm, while the period between May and November is characterised by
pronounced rainfall, and the relatively dry period extends between December and
April (Figure 4-2) (SMN 2018). Furthermore, the rainfall increases from north
(~1100 mm mean annual total precipitation between 2013 and 2017 for the federal
state of Yucatan) to south (~1400-1450 mm mean annual total precipitation
between 2013 and 2017 for the federal states of Campeche and Quintana Roo,
respectively). The forests in the north-western part of the peninsula have
experienced slash-and-burn agriculture for 2000 years, resulting in forest patches at
different succession stages (Urquiza-Haas et al. 2007). In contrast, the southern and
eastern parts of the Yucatan peninsula show one of the lowest annual deforestation
rates, with some nearly intact areas of tropical forest in Central America (e.g.,

Calakmul Biosphere Reserve) (Urquiza-Haas et al. 2007).
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Figure 4-1: Study area. Land use and vegetation map of Mexico from the Mexican
National Institute for Statistics and Geography (INEGI) Series IV (INEGI 2010) with the
available airborne LiDAR strips
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4.2.2 Remote Sensing Data

4.2.2.1 Airborne LiDAR data

Small-footprint discrete-return airborne LiDAR data were collected by the
NASA’s G-LiHT imager (Cook et al. 2013) in April-May 2013 over entire Mexico
(Figure 4-1). The average pulse density was approximately 6 returns-m-—2. The
data over the Yucatan peninsula were acquired during leaf-off conditions, which can
lead to an underestimation of vegetation height. The LiDAR returns were classified
into “ground returns”, “shrub returns” (i.e., non-ground returns below 1.37 m) and
“tree returns” (i.e., returns above 1.37 m). From the topography-normalised point
clouds, 88 plot-aggregated LiDAR metrics (e.g., percentiles, density metrics for
“shrub returns”, “tree returns” and “all returns”) as described in (Evans et al. 2009;
Goetz et al. 2007; Naesset 2002) were calculated at 13 m spatial resolution. These
LiDAR. metrics correspond to the vertical structure of a target. Both LiDAR. point
cloud, as well as metrics, can be downloaded from the NASA G-LiHT data portal
(NASA 2018). In this study, a LiDAR metric, percentile 100% of all returns
(hereafter pl00) (i.e., top-of-canopy estimate), was used as reference data
(i.e., for model training and result validation). In the next step, we aggregated this
LiDAR metric from 13 m x 13 m to 100 m x 100 m using block averaging and
nearest neighbour resampling, i.e., a top-of-canopy estimate for a 13 m x 13 m pixel
was averaged to 100 m. In total, ca. 150,000 - 1 ha LiDAR samples (ca. 1% of the
total area of the Yucatan peninsula) were used as reference data for
wall-to-wall mapping of vegetation height. Although LiDAR provides an estimation
of height, its accuracy might be higher than field height measurements, especially in
a forest with a closed canopy, where the top of a tree is difficult to detect from the

ground.

4.2.2.2 SAR Data

The multi-temporal L-band SAR backscatter measurements used in this study
were collected by the ALOS-2 PALSAR-2 sensor in dual-polarisation (i.e., HH and
HV) ScanSAR mode between October 2014 and February 2018 (resulting in 24
ScanSAR mosaics). ALOS-2 PALSAR-2 ScanSAR data feature a swath width of ca.
350 km and a repetition rate of ca. 42 days (Rosenqvist et al. 2014). The data were
distributed by the Japan Aerospace Exploration Agency (JAXA) in the frame of the

Kyoto & Carbon Initiative as 1° x 1° tiles with a pixel spacing of 50 m. Single
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ScanSAR tiles were then mosaicked to provide wall-to-wall L-band backscatter
mosaics (hereafter ScanSAR mosaics) over the entire peninsula. In addition to the
ScanSAR mosaics, three annual global PALSAR-2 mosaics based on Stripmap Fine
Beam Dual Polarisation (i.e., HH and HV) data from 2015, 2016 and 2017 (hereafter
FBD mosaics) (JAXA 2016) were used in the study to examine the merit of
ScanSAR time series data. The FBD mosaics feature a pixel spacing of 25 m. Both
ScanSAR and FBD mosaics were pre-processed (slope-corrected and orthorectified)
by JAXA. In the next step, ScanSAR and FBD mosaics were speckle-filtered using
the multi-temporal filter by Quegan et al. (Quegan et al. 2000; Quegan and Yu
2001). Finally, the speckle-filtered ScanSAR and FBD mosaics were aggregated to a
pixel spacing of 100 m using block averaging and nearest neighbour resampling. The
SAR data were aggregated to a pixel spacing of 100 m as a trade-off between the
efficiency of the model and the spatial details (Garcia et al. 2018). The model’s
predictive performance increases with decreasing of spatial scale caused by reduction
of speckle in SAR data and local variability in reference data (Garcia et al. 2018;
Mathieu et al. 2013; Saatchi et al. 2011b; Urbazaev et al. 2015). 24 ScanSAR
mosaics and 3 FBD mosaics were then used separately for vegetation height

estimation (Section 4.2.4) (Table 4-1).

Table 4-1: Dataset used in the study

Pixel spacing Data
Parameter Dataset o
[m)] acquisition
24 ScanSAR mosaics (HH/HV 50 Oct 2014 -
SAR L-band polarisations) Feb 2018
backscatter 3 FBD mosaics (HH/HV . 2015, 2016,
polarisations) 2017
Airborne LiDAR Apr-M
Hborne _1 Top-of-Canopy (p100) 13 P a
metric 2013

4.2.3 Splitting Methods of Reference Data

For model training and validation of SAR-based estimates, we applied two
different splitting methods of the reference data (i.e., LiDAR-based vegetation
height). For both approaches, 70% of the reference data were selected for model
training (calibration) and the remaining 30% were used for testing (validation). In
the first approach, we applied stratified random sampling, i.e., the data were split
based on value intervals with ignoring spatial location of the samples. For this,
intervals of 3 m were selected, i.e., 70/30 partition for each 3 m height class. We
used intervals of 3 m as a trade-off between a sufficient number of samples for each

height class and small enough bins to ensure the intra-class similarity. This splitting
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approach does not consider spatial autocorrelation between the training and test
datasets, which generally results in overoptimistic model prediction statistics
(Brenning 2012). Therefore, in the second splitting approach, we divided the
reference data based on their spatial location using k-means clustering of spatial
coordinates (i.e., latitude and longitude) (Figure 4-3) using the R package
“sperrorest” (Brenning 2012). The first splitting approach will hereafter be called
“stratified random sampling”, while the second splitting approach will be called
“spatial sampling”. After data splitting using a “stratified random sampling”
approach, the value distribution in training and test dataset is similar (Figure 4-4a).
In “spatial sampling” after data splitting based on their geographical location, we fit
the histograms of training and test data to each other, to ensure that value
distribution in both datasets is similar, and the differences in the model’s predictive
performance are from spatial autocorrelation and not from different value
distributions. For this, the number of samples for specific 3 m height classes have
been reduced until similar height distributions in the training and test datasets are
reached (Figure 4-4b).

N | Yucatan

B Trainingset
\S Testset

Figure 4-3: Location of training and validation data using the “spatial sampling”
approach of the LiDAR metric pl100. Black stripes represent model training data; red stripes

represent validation data.
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test using (a) “stratified random sampling” (i.e., based on value intervals while ignoring

spatial location) and (b) “spatial sampling” (i.e., based on spatial location).

4.2.4 Estimation of Vegetation Height from SAR Data

To estimate vegetation height using PALSAR-2 L-band backscatter, we applied
different scenarios comprising two splitting approaches of reference data (i.e.,
“stratified random sampling” and “spatial sampling”) and two sets of input variables
(i.e., ScanSAR and FBD mosaics). For all scenarios, the estimation of vegetation
height was performed using a machine learning algorithm, namely Random Forests
(RF) (Breiman 2001). This machine learning algorithm generates an ensemble of
regression trees with a random selection of predictors at each node as well as with a
random subset of samples for each tree to prevent overfitting. To calculate a single
estimate, the predictions of each regression tree are averaged (Breiman 2001). We
selected RF, since it is computationally efficient and has already been successfully
applied to map vegetation structure metrics over large areas (e.g., AGB, vegetation

height) with high retrieval accuracy (e.g., Avitabile et al. 2012; Baccini et al. 2008;
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Baccini et al. 2012; Cartus et al. 2012a)). We generated RF models with 500
regression trees.

We furthermore investigated the impact of multi-temporal combination of
ScanSAR data on the model’s predictive performance. Therefore, we modelled
vegetation height using a different number of input layers. The acquisition date of a
single ScanSAR mosaic can be found in Figure 4-5 (note: a single mosaic can be
comprised of different ScanSAR products with slightly different acquisition dates
(4/- one week from the reference date in Figure 4-5).We first estimated vegetation
height with the first four ScanSAR scenes from2014-2015 (i.e., mosaics from 13
October 2014 to 16 February 2015 (Figure 4-5)) and added four further scenes at
each step, i.e., we estimated vegetation height using 4, 8, 12, 16, 20 and 24 ScanSAR
mosaics. The reference data were split using “stratified random sampling” and
“spatial sampling” with 100 repetitions, i.e., the training and testing data were
selected 100 times using both approaches to get reliable goodness-of-fit statistics
(i.e., R* and RMSE). Additionally, we performed the same steps for speckle
unfiltered ScanSAR. data to show the effect of speckle filtering.

Finally, we examined the impact of the number of training samples on the
model prediction performance. Therefore, from the training set, 1%, 5%, and every
decile (i.e., 10%, 20% ... 90%) of the data were sampled randomly 100 times and
model performance statistics (i.e., R? and RMSE) for each scenario were analysed.
The validation dataset from “stratified random sampling” and “spatial sampling” (e.g.,

red stripes in Figure 4-3) remained unchanged.
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Figure 4-5: Acquisition dates of the ScanSAR mosaics with corresponding monthly

precipitation for the three federal states from (SMN 2018).
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4.3 Results

4.3.1 Estimation of Vegetation Height from SAR Data

We first sought to determine the merit of multi-temporal ScanSAR mosaics
compared to the annual global FBD mosaics to map vegetation height. To examine
this, we modelled vegetation height using ScanSAR and FBD mosaics separately. As
described above, we applied two validation approaches, i.e., “stratified random
sampling” and “spatial sampling” of reference data.

The results based on the “stratified random sampling” approach provide higher
goodness-of-fit statistics (R? and RMSE) compared to the “spatial sampling”
approach for different sets of input variables (i.e., ScanSAR and FBD mosaics)
(Figure 4-6). This is caused by the spatial autocorrelation of reference data, which is
ignored in the “stratified random sampling” approach. In contrast, the “spatial
sampling” validation considers this effect, providing a more realistic estimation of
the model’s predictive performance (Brenning 2012), and might contribute to
building a more robust predictive model. Furthermore, in the “spatial sampling”
validation, the effect of over- and underestimations at low and high ranges,
respectively, is more apparent compared to “stratified random sampling”. The effect
of over- and underestimations at both ends have been reported in many studies that
have applied an ensemble of regression trees (e.g., Random Forests) (Cartus et al.

2014; Urbazaev et al. 2018; Xu et al. 2016).
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Figure 4-6: ScanSAR (above) and FBD (bottom)-based vegetation height estimates
plotted against LiDAR p100 metric. The training and test data were split using “stratified
random sampling” (left) and “spatial sampling” (right). ScanSAR mosaics (24 scenes) show
higher retrieval accuracy compared to FBD mosaics (3 scenes) due to a larger number of
SAR images. The “stratified random sampling” approach shows higher goodness-of-fit
statistics compared to the “spatial sampling” approach due to spatial autocorrelation

between training and test data.

Moreover, the FBD-based vegetation height estimates are more biased at low and
high ranges compared to the results based on ScanSAR mosaics for both validation
scenarios (Figure 4-6). In other words, FBD-based vegetation height estimates tend
to average height values of the training data. In the difference map between the two
products (Figure 4-7), the FBD height possesses greater values in the areas with
small vegetation (e.g., the northern part of the peninsula) compared to the

ScanSAR-based product (i.e., it shows a larger overestimation), while in the intact
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areas (e.g., the Calakmul Biosphere Reserve) the FBD height exhibits lower values

than in the ScanSAR height (i.e., it shows a larger underestimation).

A) ScanSAR-based vegetation height B) FBD-based vegetation height
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Figure 4-7: Vegetation height estimates based on ScanSAR (A) and FBD (B) mosaics
using the “spatial sampling” approach. The difference map (C) between the two products
depicts disagreements in areas with low (northern part) and tall trees (central and southern
parts). The height values over the two red transects (A-B profile and C-D profile) are shown
in Figure 4-8. White gaps in the ScanSAR-based vegetation height map resulted from the

gaps in the ScanSAR backscatter mosaics.

For areas with obvious disagreements between the two maps and where LiDAR
data were available, transects of vegetation height (red stripes at the bottom of
Figure 4-7) were generated (Figure 4-8). Compared to the LiIDAR measurements,
both SAR-based vegetation height maps show an overestimation of small vegetation
and an underestimation of tall vegetation. The over- und underestimation at both
ends (small and large trees) is partly caused by a tree-based regression (e.g.,
Random Forests and Cubist), where single predictions of each tree are averaged.
Thus, height at low and high range tends to a mean value. Larger bias is observed
for the FBD-based estimates (Figure 4-8). Accordingly, the increasing number of
spatial predictors results in a reduction of the bias at both ends (i.e., the lowest and
highest vegetation heights). Moreover, a lower deviation from LiDAR height for the

A-B transect between pixel IDs 80-150 (Figure 4-8) can be observed. This is caused
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by the fact that this part of the LiDAR transect was used for model training, while

other parts are independent (Figures 4-3 and 4-8).
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Figure 4-8: Transects of the vegetation height of the three products over areas with

small (upper profile) and tall trees (bottom profile). The upper image shows vegetation

height for the transect A-B in the northern part of the peninsula (Figure 4-7), while the

bottom image shows vegetation height for the transect C-D in the central part of the

peninsula (Figure 4-7). The FBD-based map overestimated height in areas with small

vegetation and underestimated in areas with tall vegetation more noticeably compared to the

ScanSAR-based map. For visualisation reasons, every 5 pixels from north to south was

averaged.
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4.3.2 Impact of Number of L-Band Observations on Model’s Predictive

Performance

Here, we analysed the influence of the number of spatial predictors on model
prediction performance. For this analysis, we used ScanSAR mosaics only. As
mentioned in Section 4.2.3, the reference data were divided into training and test
data using “stratified random sampling” and “spatial sampling” with 100 repetitions.
Furthermore, to show the effect of a speckle filter on the model’s predictive
performance, unfiltered and multi-temporal speckle-filtered SAR data after (Quegan
and Yu 2001) were used as predictive variables. The models based on “stratified
random sampling” demonstrate a steady increase of R? and decrease of RMSE using
both unfiltered and filtered SAR data (Figure 4-9 upper and bottom left). Moreover,
the results based on the filtered SAR data possess much higher R? and lower RMSE
compared to the results from unfiltered SAR data. The increase of R* and decrease
of RMSE from 4 to 8 scenes and further is much stronger in the models based on
speckle-filtered SAR. data. This is most likely caused by the fact that the applied
filter uses a 7 x 7 moving window and thus strengthens the spatial autocorrelation
between training and test data.

Another observation is that the variance of the model statistics based on
“stratified random sampling” is much lower compared to the model statistics based
on “spatial sampling”. Considering the models based on “spatial sampling”, those
based on filtered data possess higher R? and lower RMSE compared to those based
on unfiltered SAR data (Figure 4-9 upper and bottom right). However, the
differences in the statistics are not as high as in the “stratified random sampling”
models. This confirms that the differences between the results based on filtered and
unfiltered SAR data using “stratified random sampling” are caused by the spatial
autocorrelation of the reference data. Finally, it can be observed that for more than
12 scenes, further increment of acquisitions does not result in further improvement

of R? and RMSE.
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Figure 4-9: Impact of number of scenes on model prediction performance using

“stratified random sampling” (left) and “spatial sampling” (right) for multi temporal

Quegan speckle-filtered data (“mtf”, white boxplots) and unfiltered ScanSAR data (“orig”,

dark-grey boxplot).

4.3.3

Impact of Number of Samples on Model Prediction Performance

To test the impact of number of training samples on model’s predictive

performance, the test data from both sampling strategies remained unchanged, while

training set from both sampling strategies were sampled randomly 100 times with

1%, 5%, and every decile of the data. According to Figure 4-10 (dark-grey boxplots),

for the “stratified random sampling” scenario, an increasing number of training data
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results in a steady improvement of the goodness-of-fit statistics (i.e., increase of R?
of about 27% and decrease of RMSE of about 22%). This is again caused by the
spatial autocorrelation between training and test data, i.e., with an increasing
number of training data, the probability to be adjoined with test data increases,
resulting in continuous improvement of retrieval accuracies. However, if spatial
autocorrelation is considered (i.e., the “spatial sampling” scenario), the model’s
predictive performance saturates with an increasing number of training samples
(Figure 4-10, white boxplots). With an increasing number of training data in the
“spatial sampling” scenario, the model performance is enhanced up to a threshold of
20% of the training data, and very slightly afterwards. Additionally, the variance in
the model statistics decreases with an increasing number of training samples. Based
on the results, a threshold of around 20% of training data represents a plausible
trade-off between model efficiency and data collection effort. 20% of training data

corresponds here to 20,000 1-ha samples.
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Figure 4-10: Impact of sample quantity on model prediction performance using
“stratified random sampling” (dark-grey boxplot) and “spatial sampling” (white boxplot).
With an increasing number of training samples, the model performance increases
continuously for “stratified random sampling” and saturates for “spatial sampling”. 1% of

training data corresponds to 1000 1-ha samples.
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4.4 Discussion and Summary

We examined the potential of multi-temporal L-band SAR backscatter to
estimate vegetation height. Additionally, we investigated the impact of the number
of spatial predictors and training samples on the model’s predictive performance
given that the dataset is characterised by spatial autocorrelation.

This study has three main implications. First, we showed the value of multi-
temporal I-band SAR backscatter for estimation of vegetation height. It is well
known that, depending on forest structure, L-band SAR backscatter saturates in
dense forests at biomass levels around 100 t/ha (Mermoz et al. 2014; Mitchard et al.
2009a; Yu and Saatchi 2016). Our results indicate that including more L-band
observations in a statistical model can partly help to reduce under- and
overestimation at low and high ranges of a forest parameter, respectively (Figure 4-8).
These results are in agreement with previous studies reporting that the usage of
multi-temporal L- and C-band SAR data improves retrieval accuracies of growing
stock volume and AGB (Antropov et al. 2017; Cartus et al. 2012b; Santoro et al.
2006; Santoro et al. 2011; Santoro et al. 2015). We found, however, that after a
specific number of observations, the model’s predictive performance is not further
enhanced. In our case, using 12 dual-polarised I-band SAR observations, we
estimated vegetation height with similar retrieval accuracies as using 24 dual-
polarised L-band SAR observations (Figure 4-9). Obviously, 10-12 ScanSAR
observations are sufficient to represent the multi-seasonal conditions of the forest
vegetation over one year including dry and wet conditions at different phenological
stages (i.e., leaf-off/leaf-on). According to our findings, the integration of 12
additional ScanSAR scenes does not lead to further prediction improvements. Hence,
no relevant additional information can be gained from these images.

Second, spatial autocorrelation in the training and test dataset must be
considered to provide a realistic predictive performance of the model. In the case
where spatial autocorrelation in the reference data is ignored, estimation of the
model’s performance is overoptimistic, caused by spatial autocorrelation between
training and test data (Brenning 2012). Moreover, ignoring spatial autocorrelation
between training and test data can lead to incorrect conclusions, e.g., an increasing
number of spatial predictors and/or training samples leads to steady improvements
of the model’s predictive performance.

Third, an increasing number of training samples leads to improvements in the

model’s predictive performance, but it saturates at a specific percentage of training
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samples. In contrast, Xu et al. (Xu et al. 2016) reported steady improvements of
model performance with an increasing number of training samples in tropical forests.
Garcia et al. (Garcia et al. 2018) showed that retrieval accuracies were enhanced
and saturated at a different percentage of training samples depending on forest
structure (i.e., temperate broadleaf, mixed or coniferous forests). Nonetheless,
neither study split the training and test data using geographical location of them,
which might result in an overoptimistic model performance due to the likely spatial
autocorrelation. In our study, using 20% of the training data was sufficient to get a
similar level of accuracy as using 100% of the training data (Figure 4-10). 20% of
the training data represents 20,000 1-ha samples, though it is still a large number of
training data. In any case, it is crucial that training samples represent the entire
range of values (in our case vegetation height) from different forest types (i.e.,
deciduous and evergreen forests) of the study area.

As expected, speckle filtering of the SAR images resulted in a better retrieval
accuracy. However, using a speckle filter based on a moving window approach
strengthens the spatial autocorrelation in the reference data. Nowadays, with the
increasing availability of SAR time series (e.g., Sentinel-1), novel approaches that
rely on temporal patterns only can be applied to suppress speckle and preserve
spatial details without spatial blurring (Cremer et al. 2018). Furthermore, since the
difference in acquisition time between LiDAR and SAR data is between one to five
years, significant changes (caused, e.g., by fire or deforestation) within the LiDAR
transects might have occurred, which together with forest growth reduce model’s
predictive performance (Urbazaev et al. 2016).

As shown in several studies (Cartus et al. 2014; Garcia et al. 2018; Rodriguez-
Veiga et al. 2016; Urbazaev et al. 2016; Xu et al. 2016), retrieval accuracies of forest
structure parameters can be improved by including additional information from
optical remote sensing data, i.e., Landsat or Sentinel-2 surface reflectance, and
digital surface model (e.g., SRTM DEM). Nevertheless, in this study, we analysed
the performance of multi-temporal L-band backscatter data only for the estimation
of vegetation height. Since vegetation height correlates with other forest parameters
(e.g., AGB, tree canopy cover) (Chave et al. 2005; Colgan et al. 2013; Saatchi et al.
2011a), we can assume that similar results can be achieved for the estimation of
AGB and tree canopy cover using multi-temporal dual-polarised L-band SAR

backscatter.
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4.5 Conclusion

ALOS-2 PALSAR-2 ScanSAR data provide time series of dual-polarised L-band
observations (~10 observations per year) over wider areas (i.e., 350 km) at medium
spatial resolution (i.e., 50 m), which is crucial for land monitoring at national or
continental scales. In this study, we investigated the potential of this dataset to map
vegetation height over tropical deciduous and evergreen forests of the Yucatan
peninsula, Mexico. For this, we used airborne LiDAR-based vegetation height for
the training of L-band backscatter using the Random Forests algorithm. Specifically,
we examined the value of multi-temporal L-band data for the estimation of
vegetation height taking the spatial autocorrelation between training and test data
into account. Our results indicate that ignoring spatial autocorrelation between
training and test data lead to an overoptimistic model’s predictive performance.
Accordingly, a spatial splitting of the reference data into training and test data
should be preferred to provide realistic retrieval accuracies. Moreover, based on this
analysis, we determined an optimal number of L-band observations and training
samples as a trade-off between retrieval accuracies and data collection effort.

Open data policies such as those of the ESA and NASA stimulate development of
novel approaches based on these data (e.g., Landsat, Sentinels). Bearing in mind
new L-band missions in near future (ALOS-4, NISAR, SAOCOM, Tandem-L) that
will provide time series of L-band observations, open L-band PALSAR-2 ScanSAR
data for the scientific community would foster further development of innovative
algorithms for forest monitoring including mapping of forest structure parameters
and detection of deforestation and forest degradation over large areas to support
international climate initiatives (e.g., UN Reducing Emissions from Deforestation

and Forest Degradation+ programme).
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5.1 Comparison with the existing national AGB maps

The NFI- and LiDAR-calibrated forest aboveground biomass maps introduced in
the Section 3 were compared with four existing nationwide remote sensing based
aboveground biomass maps, i.e., Saatchi et al. (201la); Cartus et al. (2014);
Avitabile et al. (2016); Rodriguez-Veiga et al. (2016). The pan-tropical AGB map of
Baccini et al. (2012) was not considered, since this map covers only the southern
Mexico. A summary of the data and methods used for AGB estimation is shown in

Table 5-1.

Table 5-1: Summary of materials and methods used for AGB estimation in Mexico

Pixel Temporal
spacing | coverage

Study Input data Training data Forest mask Model

MODIS SR (surface Pan-tropical forest
Saatchi et al. 2011a reflectance), P 1km 2000 no MaxEnt

. plots and IceSAT GLAS
QuickScat, SRTM DEM

Weighted average
Pan-tropical AGB between Saatchi
maps of Saatchi et al. and Baccini and

Avitabile etal. 2016 | 0~ LS INFyS 1km 2000-2008 no calibration with

al. 2012 local reference
data
ALOS PALSAR,
Landsat Tree C , | INFyS bet 2004-
Cartus et al. 2014 andsat free Lover y> between 30m 2007 no Random Forests
INEGI Land use map, 2009
SRTM DEM
Forest probability
Rodri -Vei MODIS SR, AL INF 2004- |
odriguez-Veiga et ODIS SR, ALOS yS between 200 250m 2008 ayer based on MaxEnt
al. 2016 PALSAR, SRTM DEM 2011 PALSAR HV
backscatter
ALOS PALSAR,
INFyS between 2004- Landsat Tree Cover i
Urbazaev et al. 2018| Landsat SR, Landsat 100 m 2008 Cubist
2011 >10%
Tree Cover, SRTM

ALOS PALSAR, INFyS between 2004 Landsat Tree Cover

Urbazaev et al. 2018| Landsat SR, Landsat . i 100 m 2008 Cubist
2011, airborne LiDAR >10%

Tree Cover, SRTM

The AGB maps of Saatchi et al. (2011a) (hereafter Saatchi map) and Avitabile et
al. (2016) (hereafter Avitabile map) were produced for the entire tropics at a coarse
spatial resolution (1 km). Cartus et al. (2014) (hereafter Cartus map),
Rodriguez-Veiga et al. (2016) (hereafter Rodriguez-Veiga map) and a part of the
results of this work (Urbazaev et al. 2018) (hereafter Urbazaev map) estimated AGB
specifically for Mexico. A crucial difference between the Saatchi map and the three
national AGB maps (Cartus map, Rodriguez-Veiga map, and Urbazaev map) is that
the pan-tropical map was calibrated with spaceborne LiDAR-based AGB estimates

collected over the entire Latin America (incl. Amazon basin). In contrast to the
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Saatchi map, the Cartus, Rodriguez-Veiga and Urbazaev maps were calibrated with
the national forest inventory (INFyS) data. In addition to the national forest
inventory data, Urbazaev et al. (2018) used airborne LiDAR data for model
calibration (hereafter Urbazaev-LiDAR map). The Avitabile map is a fused product
of the Saatchi map, the Baccini et al. (2012) map and the national forest inventory
data. Therefore, the Avitabile map for Mexico can be considered as the fusion of two
pan-tropical maps and the Mexican NFI data. A detailed description of the methods
can be found in the corresponding publications.

The Saatchi, Avitabile and Cartus maps represent total aboveground biomass
(incl. shrub and herbaceous biomass), while the Rodriguez-Veiga and Urbazaev
maps estimated AGB in forests. Furthermore, the INFyS data have been collected in
forested areas only and represent forest AGB stocks. Therefore, a forest mask was
applied for the Saatchi, Avitabile and Cartus maps, in order to compare six national
forest AGB maps. Forested areas were defined as areas with tree cover > 10%
obtained from the global Landsat Tree Cover product for 2010 (Hansen et al. 2013)
similarly as for the Urbazaev maps.

The national Mexican AGB maps that were calibrated with the INFyS data (i.e.,
all except the Saatchi map) show similar mean and total national AGB values and
are in accordance with the INFyS estimates (Figure 5-1). All maps (except the
Saatchi map) and the INFyS data indicate that Mexican forest AGB reach values
up to 125-150 t ha'. According to these maps, forest AGB with values higher than
150 t ha' represent only a small part of the total forested areas. The Saatchi map
show a second AGB peak at around 140 t ha' and the AGB values in this map goes
up to 300 t ha™.
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Te}
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Figure 5-1: Distribution of the Mexican national forest AGB according to the six remote
sensing based maps (Table 5-1) and the INFyS estimates. Non-forested areas were masked

out using Landat Tree Cover product (Hansen et al. 2013) with a threshold of 10%.

Although the forest AGB maps show similar total forest AGB distribution at
national scale (with some deviation of the Saatchi map), at pixel scale the individual
maps indicate different spatial distribution of forest AGB (Figure 5-2). To compare
the maps spatially, all the maps were first aggregated to 1 km (pixel spacing of the
Saatchi and Avitabile maps) by averaging of the corresponding pixel within the 1
km pixel. Between all AGB maps the absolute difference as well as scatterplots with

coefficient of determination were calculated (Figure 5-2).
Comparison with the Saatchi map

An AGB map with the greatest difference to the other maps is the Saatchi map.
The spatial difference maps between the Saatchi and other maps show similar
patterns with much higher AGB values almost everywhere besides the areas in the
mid-western part of Mexico (Sierra-Madre Occidental) (blue areas in the Figure 5-2:
first row and third to sixth columns), where the Cartus, Rodriguez-Veiga and

Urbazaev maps depict higher values. The reason for much higher estimates in the
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Saatchi map is the model calibration conducted at the continental scale with some
training areas located in dense tropical forests of the Amazon basin. In the
mid-western part of Mexico (Sierra-Madre Occidental), the Cartus, Rodriguez-Veiga
and Urbazaev maps were calibrated locally with a large amount of training data
over these areas (Figure 1-11) and show higher AGB estimates as in the Saatchi
map. The Avitabile map possesses strongest correlation to the Saatchi map, since it
is based on the fusion of the Saatchi and Baccini maps. Interestingly to note that
the Urbazaev-LiDAR has the second strongest correlation to the Saatchi map. One
reason for this can be that the both maps were calibrated with LiDAR data
(spaceborne ICESAT GLAS and airborne G-LiHT) and not with NFI data.

Comparison with the Avitabile map

Since Avitabile et al. (2016) used Mexican inventory data for bias removal
between the Saatchi and Baccini maps, this map has stronger correlation with the
locally calibrated AGB maps as the Saatchi map. Two areas of disagreements
between the Avitabile map and locally calibrated AGB maps can be identified.
Similarly as the Saatchi map, Avitabile et al. (2016) estimated lower AGB values in
the areas in the mid-western part of Mexico (Sierra-Madre Occidental). The second
area with greater AGB values in the Avitabile map are the areas in the southern
Mexico along the dense cloud forests of Sierra-Madre del Sur and Chimalapas and
Lacandon tropical forests (red areas from west to east in the Figure 5-2: second row
and third to fifth columns). In contrast to the NFIl-calibrated maps, the
Urbazaev-LiDAR map possesses not such high differences with the Avitabile map

over these areas.
Comparison of the NFI-calibrated maps

The strongest correlation (R*>0.7) between the single maps indicate the
NFI-calibrated AGB maps, i.e., the Cartus, Rodriguez-Veiga and Urbazaev-NFI
maps. These three national AGB maps are based on the similar input variables
(L-band backscatter together with optical data (Landsat or MODIS) and SRTM
DEM), but different machine learning algorithms were applied (Table 5-1). The
Cartus and Urbazaev-NFI maps indicate similar spatial distribution of AGB (within
+ 20 t ha') with small areas of larger discrepancies. Rodriguez-Veiga et al. (2016)
estimated more forest biomass in the Yucatan peninsula as the Cartus,
Urbazaev-NFI and Urbazaev-LiDAR. One of the reason for different spatial
distribution of AGB is the statistical approaches used. While Cartus et al. (2014)
and Urbazaev et al. (2018) applied tree-based regressions (Random Forests and

Cubists), the MaxEnt algorithm used in the Rodriguez-Veiga et al. (2016) is based
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on probability distribution of discrete biomass classes with maximum entropy.
Urbazaev et al. (2018) and Cartus et al. (2014) reported an underestimation at high
AGB ranges, which is partly caused by a tree-based regression (i.e., averaging of
single estimates for each prediction tree). Furthermore, Rodriguez-Veiga et al.
(2016) used MODIS optical data (at coarse spatial resolution of 250 m) in contrast
to Landsat optical data used in Cartus et al. (2014) and Urbazaev et al. (2018).
MODIS mid-infrared channels have showed sensitivity to high biomass over
pan-tropical regions (e.g., Baccini et al. 2008; Saatchi et al. 2011a; Baccini et al.
2012) and thus, might improve AGB estimation over the Yucatan peninsula in the

Rodriguez-Veiga map.
Comparison with the Urbazaev-LiDAR map

The Urbazaev-NFI and Urbazaev-LiDAR possess strongest correlation as the
same input variables and statistical algorithm were applied. The main difference
between the Urbazaev-LiDAR map and NFI-calibrated maps (Cartus, Rodriguez-
Veiga and Urbazaev-NFT) is the spatial distribution of AGB in the southern Mexico
(cloud forests of Sierra-Madre del Sur and tropical forests of Chimalapas and
Lacandon). Since these areas are the conservation areas, a very small amount of
forest inventory data have been collected there. There exist, however, airborne
LiDAR acquisitions over the Sierra-Madre del Sur and Lacandon forests, which
were used in the Urbazaev-LiDAR map. The Saatchi and Avitabile maps estimated
high AGB over these three regions as well.

In general, three main regions with large discrepancies between the maps can be
identified. In the pan-tropical maps the mid-western part of Mexico (Sierra Madre
Occidental) possesses lower AGB estimates as the locally calibrated AGB maps.
Furthermore, in the southern Mexico (cloud forests of Sierra-Madre del Sur and
tropical forests of Chimalapas and Lacandon) the pan-tropical maps as well as the
Urbazaev-LiDAR map show higher AGB values as the NFI-calibrated maps. Finally,
between the locally calibrated AGB maps the main discrepancies are in the Yucatan
peninsula with greater AGB estimates in the Rodriguez-Veiga map.

Although the locally calibrated national AGB maps showed similar goodness-of-
fit statistics with the NFI data at pixel scale (R? between 0.3 and 0.5) as well as
good agreement at state and national scales (Cartus et al. 2014; Rodriguez-Veiga et
al. 2016; Urbazaev et al. 2018), these four maps illustrated different spatial
distribution of forest AGB (Figure 5-2). To further improve AGB estimates and
assess the retrieval accuracies of these maps independently, additional field

inventory data (for instance, through the Mexican Network of Intensive Carbon
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Monitoring Sites (Red Mex-SMIC) (Birdsey et al. 2015)) and/or airborne LiDAR
data can be collected over the areas with discrepancies and used for model

calibration and validation.

Saatchi Avitabile Cartus Rodriguez- Veiga Urbazaev-NFI  Urbazaev-LiDAR

Cartus Avitabile Saatchi

Rodriguez- Veiga

Urbazaev-LIDAR  Urbazaev-NFI

Forest Aboveground Biomass [t/ha] Absolute Difference [t/ha]

N o0 [ 20 -0 [ <0150 [ 601 -0 [ <0 - 100 [N 1001 - 120 [ - 120 | gy s —— ]

<-80 -80 -680 40 -20 0 20 40 60 8 >80

Figure 5-2: Comparison between the Mexican national AGB maps. The maps in the
diagonals show single AGB maps at pixel spacing of 1 km. The maps outside the diagonal
represent absolute AGB difference between the products. To calculate the absolute
difference, a map in the row is the minuend and a map in the column is the subtrahend (e.g.,
Saatchi-Avitabile difference map represents Saatchi AGB minus Avitabile AGB). In the
scatterplots between the single AGB maps the columns indicate the X-axes and the rows are
the Y-axes. Non-forested areas were masked out using Landat Tree Cover product (Hansen
et al. 2013) with a threshold of 10%.
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5.2 Summary

The main research aim of this work was to determine capabilities and limitations
of remote sensing data (SAR, optical and LiDAR) to estimate forest structure
parameters in sub-tropical forests of Mexico. For this, various scenarios by
integrating multi-temporal SAR-, optical-, LiDAR-based parameters, and field data
were applied at local, regional and national scales.

Research objective #1 - Improved Multi-Sensor Satellite-Based Aboveground
Biomass FEstimation by Selecting Temporally Stable Forest Inventory Plots Using
NDVI Time Series

Combination of multi-sensor remote sensing data (SAR and optical) leads to an
improvement of AGB modelling compared to the results based on either sensor alone
(Figure 2-5). This can be explained by providing additional explanatory information
from Landsat-based tree cover product as well as SRTM elevation data.
Furthermore, more accurate AGB estimates can be derived by selecting temporally
stable forest inventory data, if there exists a time lag between field and satellite data
acquisitions. MODIS NDVTI time series and the BFAST change detection algorithm
have been shown to be efficient tools to detect and isolate forest inventory data,
where abrupt land cover changes might occur. We showed that improvements in
AGB estimations are due to BFAST-filtering and not due to a reduced number of
field observations. For this, the same number of the NFI data were randomly
excluded as were selected for the BFAST-filtered data (Figure 2-5). This method
can be applied over large areas, where field data are outdated in relation to satellite
data acquisition (e.g., >5 years). Nevertheless, it was not possible to exclude the
confounding influence of the false detection of abrupt changes over field plots,
bearing in mind a lower spatial resolution of a MODIS NDVI pixel compared to the
plot area (250 m vs. 100 m), and the possible influence of clouds and cloud shadows.

Both methods (multi-sensor combination and filtering of NFI data) were
evaluated in two study areas (each site size ca. 70x70 km) in tropical dry and humid
forests of Mexico. The accuracy of AGB estimation based on original (unfiltered)
NFTI data is consistent with the results produced by Cartus et al. (2014) in terms of
statistical metrics (R* = 0.52 (Cartus et al. 2014) vs. R? = 0.55 (mean for two study
sites); RMSE = 28.2 t ha' (Cartus et al. 2014) vs. RMSE = 23.8 t ha' (mean for
two study sites), while AGB estimates based on BFAST-filtered plots produce more
accurate estimates (mean for two study sites R* = 0.67 and RMSE = 21.2 t ha™).
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Research objective #2 - Estimation of Forest Aboveground Biomass and
Uncertainties by Integration of Field Measurements, Airborne LiDAR, and SAR
and Optical Satellite Data in Mezico

Three national forest aboveground biomass maps for Mexico at a spatial
resolution of 100 m based on remote sensing data and two sets of reference data
were derived. One AGB map was calibrated with a large number of NFI data
collected over the forested areas across the country. Two others AGB maps were
produced by applying a two-stage up-scaling method of reference data, i.e., from
field-AGB to LiDAR-AGB and from LiDAR-AGB to satellite-based AGB estimates.
For one LiDAR-calibrated wall-to-wall AGB map all LiDAR-AGB samples were
used, while to generate another wall-to-wall map LiDAR-AGB samples with
uncertainties lower than 50% were utilized for model training. A comprehensive
comparison of the derived AGB maps with another available satellite-based AGB
products as well as with the NFI data can be found in Section 5.1 and Section 3.3.4.

For all AGB maps corresponding uncertainty layers were derived. For this, errors
in the field-AGB were estimated and propagated to LiDAR-AGB and satellite-based
AGB using Monte Carlo simulations. A two-stage up-scaling approach can be
considered as more cost-efficient compared to the traditional field to satellite
imagery up-scaling, since a lower amount of field data are required. However, the
uncertainty analysis showed that by applying two-stage up-scaling methods an error
propagation should be performed. This should be done to prevent propagation of
errors in the final wall-to-wall map. We showed that ignoring field to LiDAR error
lead to an uncertainty in the wall-to-wall LiDAR-calibrated AGB map of up to
150%, which is much higher compared to the NFI-calibrated AGB map (Figure 3-8,
3-11).

Research objective #3 - Potential of Multi-Temporal ALOS-2 PALSAR-2
ScanSAR Data for Vegetation Height Estimation in Tropical Forests of Mezico

A vegetation height map for the Yucatan peninsula, which is covered by tropical
dry and humid forests, was derived. Furthermore, 24 multi-temporal L-band
backscatter imagery (collected between 2014 and 2018) and more than 150,000 1 ha
LiDAR samples (ca. 1% of the total area of the Yucatan peninsula collected in 2013)
were used to investigate: 1) the impact of number of L-band backscatter intensities
and training samples on model’s predictive performance; 2) the influence of spatial
autocorrelation between the calibration and validation data on model’s accuracy.

Using 12 dual-polarised L-band SAR observations, we estimated vegetation
height with similar retrieval accuracies as using 24 dual-polarised L-band SAR

observations (Figure 4-9). Obviously, 12 L-band observations were sufficient to
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represent the multi-seasonal conditions of the forest vegetation over one year
including dry and wet conditions at different phenological stages (i.e., leaf-off/leaf-
on), so that additional 12 acquisitions did not provide extra information. However,
we showed the merit of multi-temporal L-band backscatter compared, for instance,
to the four annual global L-band mosaics by decreasing over- and underestimation
at low and high vegetation height (Figure 4-8).

Furthermore, with an increasing number of training samples model’s accuracy
was improved, but the prediction performance was saturated already at 20% of all
training samples (Figure 4-10). Finally, spatial autocorrelation between training and
validation data should be considered, i.e., they should be spatially separated, in
order to provide a realistic model’s accuracy (Figure 4-9). In general, time series of
PALSAR-2 ScanSAR L-band observations, which features a wide swath of 350 km,

are crucial for land monitoring at large national or continental scales.
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5.3

Outlook

Based on the results of this work following limitations for estimation of forest

structure parameters with remote sensing methods can be determined:

1.

Mono-temporal satellite imagery (either optical or SAR) are less appropriate

for forest structure mapping due to the impact of environmental conditions.

. SAR imagery acquired over hilly terrain might lead to AGB overestimation on

slopes facing the sensor (strong return) and to AGB underestimation on the

opposite side (low return).

. Signal from both optical and L-band SAR sensors saturates at high biomass

(>100 t ha'). The underestimation of dense biomass is further strengthened
due to a limited amount of training samples collected at this range, i.e., these

biomass levels are less represented in a statistical model.

. Forest biomass at low range (<10-20 t ha') is often overestimated. The reason

for this is strong impact of surface conditions, such as roughness, moisture as
well as photosynthetically active non-woody vegetation that contribute to a

higher SAR or optical signal.

. In tree-based ensemble methods (e.g., Random Forests, Cubist) a final

estimate is usually determined by averaging of many estimates from single
trees. The averaging of single estimates reduces model variance, i.e., precision
is increased. On the other side, however, the averaging introduces bias, e.g.,
under- and overestimation at low and high biomass, respectively. In contrast,

empirical or physically-based models are less biased but possess high variance.

. Quality, amount and spatial distribution of in situ data are crucial to develop

and validate remote sensing based models.

. Very high resolution (VHR) remote sensing data can be served as reference

data, but might introduce large uncertainties to the final estimates.

. Spatial autocorrelation between the training and validation data might cause

overoptimistic prediction statistics.

Bearing in mind the limitations listed above, remote sensing methods offer

following capabilities for estimation of forest structure parameters:

1.

Remote sensing based products of forest AGB are in line with in situ based
statistics on national forest biomass at aggregated scales (hexagon, federal

states and national AGB level) (Figure 3-16, 3-17, 5-1).

. Multi-sensor combination of remote sensing data improves AGB retrieval

accuracy (Figure 2-5).
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. Optical imagery are an important tool for providing information on
photosynthetically active vegetation and tree density.

. SRTM DEM correlates with object height and contribute to a more accurate
AGB retrieval.

. MODIS NDVI time series are able to detect outdated forest inventory plots
and improves AGB modelling performance by selecting temporally stable
inventory plots.

. Multi-temporal = combination of SAR imagery reduces over- and
underestimation in sparse and dense forests, respectively (Figure 4-8). For
instance, over the entire tropics there exist around 8-10 PALSAR-2
dual-polarised ScanSAR mosaics per year that are much more valuable than
single annual mosaics (Figure 4-6).

. The impact of topography on forest structure mapping with SAR can be
reduced e.g., by combining ascending and descending orbits to compensate for
radar shadow effects. Furthermore, high quality DEM can be used for a more
accurate radiometric terrain correction. Finally, more weight might be given to
optical imagery over hilly terrain in statistical models.

. VHR remote sensing data can be used as reference data, and hence reduce
collection effort of field data. It is important to characterize errors contained
in the VHR-based reference data in order to prevent propagation of errors in
the wall-to-wall map.

. VHR remote sensing data can be served as an efficient tool for model
calibration, bearing in mind repetitive reference data acquisitions as well as

sampling from not accessible areas.

10.Although satellite-based maps of forest structure parameters contain errors,

they represent the relative distribution of forest parameters over large areas.
Therefore, satellite-based products can be wused for forest stratification
analyses, i.e., to improve sampling strategies of field data by reducing cost and

increasing representativeness of them.

Some of the limitations and capabilities listed above are well known and

documented phenomena (e.g., saturation at high biomass, impact of environmental

conditions). In this work we showed how the quality (e.g., outdated data), quantity

(LiDAR as training data) and distribution (spatial autocorrelation) of reference data

might impact the estimation of forest structure using satellite imagery.

Considering Mexico as the study area, the main limitation for estimation of forest

parameters is the hilly terrain of the country (Figure 1-11). Local topography
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complicates both the collection of field data and hence, quality, quantity and
distribution, as well as impacts the signal scattered back to the sensors (SAR,
optical and LiDAR). The saturation of L-band signal theoretically should not be the
main restriction of forest structure mapping in Mexico, since a small part of the
total area is covered by forests with biomass higher than 100-120 t ha™ (Figure 5-1).
However, by comparison of the three national AGB products (Cartus et al. 2014;
Rodriguez-Veiga et al. 2016; Urbazaev et al. 2018), forest biomass magnitude varies
in the Yucatan peninsula (flat terrain) up to 100 t ha’ (Figure 5-2). The main
reason for this is rather the statistical models applied (Section 5.1), since similar
input and training data were used. A further important issue in biomass mapping in
Mexico is the forest definition, since large areas are covered by woodland-to-forest
transition (INEGI 2010). For instance, in Cartus et al. (2014) the total aboveground
carbon varied by 44% (2.21 PgC vs. 1.53 PgC), depending on whether a forest mask
was applied. Rodriguez-Veiga et al. (2016) applied different forest masks (e.g.,
MODIS Tree Cover >10%, PALSAR-based forest mask, forest class from the INEGI
national land cover) to calculate national forest AGC and concluded that the total
AGC varied by 31% (lowest forest AGC 1.47 PgC, highest forest AGC 1.92 PgC).
Therefore, a consistent and accurate national forest mask is crucial to assess national
forest carbon stocks and changes.

We showed the merit of multi-temporal L-band SAR data to reduce over- and
underestimation in sparse and dense forests, respectively. Bearing in mind new
L-band missions in the near future (SAOCOM, NISAR, ALOS-4, potentially
Tandem-L), dense time series of L-band backscatter are of great interest to improve
forest structure mapping. LiDAR is an extremely important tool for repetitive
reference data acquisitions over large areas. LIDAR captures spatial variability of
heterogeneous tropical forests. However, we showed that a two-stage up-scaling
method needs to be analysed and validated with great care. Field inventory is an
essential tool to measure and observe ecological processes at local scale as it can
provide a higher level of data richness when compared to LiDAR. Therefore, LIDAR
can be used as an extension to NFI, for example, for areas that are difficult or not
possible to access. Future research can investigate an integration of dense time series
of L-band backscatter with airborne LiDAR data and field inventory for forest
carbon stock assessments as a trade-off between map accuracy (i.e., user

requirements) and resulting costs (i.e., number of NFI and LiDAR data).
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